JP2009235648A - パルプの製造方法 - Google Patents

パルプの製造方法 Download PDF

Info

Publication number
JP2009235648A
JP2009235648A JP2008085872A JP2008085872A JP2009235648A JP 2009235648 A JP2009235648 A JP 2009235648A JP 2008085872 A JP2008085872 A JP 2008085872A JP 2008085872 A JP2008085872 A JP 2008085872A JP 2009235648 A JP2009235648 A JP 2009235648A
Authority
JP
Japan
Prior art keywords
pulp
cavitation
fibers
amount
fine fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008085872A
Other languages
English (en)
Inventor
Takeshi Nakayama
武史 中山
Yoji Tsuji
洋路 辻
Tomoe Yuzawa
知恵 湯沢
Takaharu Noda
貴治 野田
Noriyuki Kikuchi
紀幸 菊池
Shinichi Onoki
晋一 小野木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd, Jujo Paper Co Ltd filed Critical Nippon Paper Industries Co Ltd
Priority to JP2008085872A priority Critical patent/JP2009235648A/ja
Publication of JP2009235648A publication Critical patent/JP2009235648A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Abstract

【課題】 嵩高かつ寸法安定性が良好なパルプの製造方法を提供し、得られたパルプを用いて、嵩高性と良好な寸法安定性を両立する紙を得ることを目的とする。
【解決手段】 パルプの製造工程において、パルプ全繊維に対する繊維長0.2mm以下の微細繊維量を10%以下に調整し、好ましくは、微細繊維量の調整の前または後に叩解処理を行う。叩解処理としては、キャビテーションによって生ずる気泡が崩壊する際に生じる衝撃力をパルプ繊維に与える処理が好ましい。
【選択図】 なし

Description

本発明はパルプの製造方法の発明に関する。更に詳しくは、パルプ製造工程において、微細繊維量を調整することにより、嵩高かつ寸法安定性に優れるパルプを得ることができるパルプの製造方法に関する。
近年、省資源や物流コスト減、及び高級感やボリューム感といった高付加価値化という観点から嵩高で軽量な紙への要求が高まっている。これまで、嵩高化に関する検討としては以下に示すような様々な方法が試みられてきた。例えば、(1)架橋処理したパルプを用いる方法(特許文献1)、(2)合成繊維を混抄する方法(特許文献2)、(3)パルプ繊維間に無機物を充填する方法(特許文献3)、(4)空隙をもたらす発泡性粒子を添加する方法(特許文献4)、(5)嵩高薬品を添加する方法(特許文献5)などが提案されている。しかしながら、上記の方法ではパルプのリサイクルが不可能なことや、パルプに対して別種の薬品や填料等を添加するためコスト上昇が避けられないこと、抄紙工程での発泡増加などの新たな問題を生じることが避けられないことなどの問題があった。
このようなリスクを回避するため、パルプ製造時に嵩高性を持たせることが提案されている。例えば、(6)カールした繊維を混抄する方法(特許文献6)、(7)広葉樹から嵩高性に優れたケミ−サーモメカニカルパルプを製造する方法(特許文献7)が考案されている。しかしながら、カールした繊維は紙の寸法安定性の悪化要因として非常に影響が大きく、また、メカニカルパルプを用いた場合には微細繊維分を多く含んだパルプであるために、これらの方法でも寸法安定性を悪化させる懸念があった。
特開平4−185791号公報 特開平3−269199号公報 特開平3−124895号公報 特開平5−230798号公報 特開昭58−24000号公報 特開平9−41300号公報 特開2002−294574号公報
本発明はこれらの問題を解決するために、嵩高かつ寸法安定性が良好なパルプの製造方法を提供し、得られたパルプを用いて、嵩高性と良好な寸法安定性を両立する紙を得ることを目的とする。
本発明者らは、パルプの製造工程と繊維特性に関し鋭意研究を行った結果、パルプの製造工程において、パルプ全繊維に対する繊維長0.2mm以下の微細繊維量を10%以下に減少させることにより、嵩高かつ寸法安定性の良好なパルプを製造できることを見出した。特に、微細繊維量の調整の前または後に叩解処理を行うこと、さらには、叩解処理としてキャビテーションによって生ずる気泡が崩壊する際に生じる衝撃力をパルプ繊維に与える処理を行うことで、嵩高性及び寸法安定性への効果が更に高まることを見出し、本発明を完成させた。
本発明では、パルプ全繊維に対する繊維長0.2mm以下の微細繊維量を調整することにより、嵩高かつ寸法安定性の良好なパルプを製造することができる。
以下、本発明の実施形態に係るパルプの製造方法について説明する。
本発明の対象とする原料パルプとしては、木材から得られるセルロースを主成分とする繊維状の物質であり、針葉樹及び広葉樹のクラフトパルプ、サルファイトパルプ等の化学パルプ繊維、針葉樹及び広葉樹の砕木パルプ、リファイナー砕木パルプ、サーモメカニカルパルプ、ケミサーモメカニカルパルプ等の機械パルプ繊維、古紙や繊維素からなるシート状の物質由来の再生パルプ繊維などが挙げられる。これらのパルプは、単独でも、混合でも構わない。
本発明の微細繊維とは、全パルプ繊維のうち、繊維長0.2mm以下の繊維のことをいう。
本発明におけるパルプ全繊維に対する繊維長0.2mm以下の微細繊維量は、絶乾パルプあたり10%以下に調整することが好ましく、6%以下がさらに好ましい。また、微細繊維が含まれなくても良い。微細繊維量が10%以上の場合、嵩高及び寸法安定性の良化への効果が小さくなる。
微細繊維の量は、離解されたパルプスラリーを光学式繊維長測定器(例えば、KAJAANI社のFibarLab)を使用し、パルプ繊維の長さ加重平均繊維長を測定する際に、繊維長0.2mm以下の繊維の占める重量の割合(百分率)で測定することができる。なお、上記光学式繊維長測定器の検出できる下限値は、1.5μmである。
微細繊維量の調整方法は特に限定されず、既知の機械的分級機、分級技術を用いて調整することができる。例えば、パルプ洗浄機あるいはシリンダープレス機等のような、パルプに対してメッシュを用いて脱水する機械を使用して脱水処理することで、全パルプ繊維中に含まれる微細繊維を除くことが出来る。
微細繊維量の調整は、叩解処理の前または後の工程で行うことが好ましい。これは、パルプの製造工程において、叩解処理時に特に微細繊維量の増加が起こりやすく、微細繊維量の調整による本発明の効果が得られ易いためである。
本発明の叩解処理の方法としてはどのような方法でも良いが、例えば、ダブルディスクリファイナー(DDR)やコニファイナー、シリンダー型叩解機、ビーター、PFIミル、ニーダー、ディスパーザーのような機械的処理(叩解プレートは問わない)、あるいは、キャビテーションによって生ずる気泡が崩壊する際に生じる衝撃力をパルプ繊維に与える処理(以下、「キャビテーション処理」とする)などが挙げられる。中でも、粘状叩解を目的としたコニファイナー、シリンダー型叩解機等による機械的処理や、キャビテーション処理を行うと、微細繊維の発生が低く抑えられるために、本発明の効果が得られやすく好ましく、キャビテーション処理を行うことがとりわけ好ましい。
通常の機械的処理による叩解、特にカッティング叩解を促進させる叩解機もしくは叩解プレートを用いた場合に、叩解処理後の微細繊維量が大幅に増加する。このような場合には、叩解処理後に微細繊維量を調整することが望ましい。一方、粘状叩解のようなカッティングの少ない叩解方法を用いたり、叩解負荷を低く抑えたりした場合には、微細繊維量の変動は少なくなる。とりわけ、叩解処理としてキャビテーション処理を用いると、微細繊維量はほとんど増加しないと推測される。このように、叩解処理後の微細繊維量が増加しにくい叩解方法を用いた場合には、叩解処理前に微細繊維量を調整してもよい。
本発明におけるキャビテーションの発生手段としては、液体噴流による方法、超音波振動子を用いる方法、超音波振動子とホーン状の増幅器を用いる方法、レーザー照射による方法などが挙げられるが、これらに限定されるものではない。好ましくは、液体噴流を用いる方法が、キャビテーション気泡の発生効率が高く、より強力な崩壊衝撃力を持つキャビテーション気泡雲を形成することが可能となるため未離解片に対する作用効果が大きい。上記の方法によって発生するキャビテーションは、従来の流体機械に自然発生的に生じる制御不能の害悪をもたらすキャビテーションと明らかに異なる。
本発明において、液体噴流を用いてキャビテーションを発生させる際に、パルプ懸濁液を液体噴流として噴射させることによってパルプ繊維と気泡を接触させることができる。また、液体噴流が噴流をなす流体は、流動状態であれば液体、気体、粉体やパルプ等の固体の何れでもよく、またそれらの混合物であってもよい。更に必要であれば上記の流体に、新たな流体として、別の流体を加えることができる。上記流体と新たな流体は、均一に混合して噴射してもよいが、別個に噴射してもよい。
液体噴流とは、液体または液体の中に固体粒子や気体が分散あるいは混在する流体の噴流のことをいう。ここで云う気体は、キャビテーションによる気泡を含んでいてもよい。
キャビテーションは液体が加速され、局所的な圧力がその液体の蒸気圧より低くなったときに発生するため、流速及び圧力が特に重要となる。このことから、キャビテーション状態を表わす基本的な無次元数、キャビテーション数(Cavitation Number)σは次の数式1のように定義される(加藤洋治編著、新版キャビテーション基礎と最近の進歩、槇書店、1999)。
Figure 2009235648
(p:一般流の圧力、U:一般流の流速、p:流体の蒸気圧、ρ:流体の密度)
ここで、キャビテーション数が大きいということは、その流れ場がキャビテーションを発生し難い状態にあるということを示す。特にキャビテーション噴流のようなノズルあるいはオリフィス管を通してキャビテーションを発生させる場合は、ノズル上流側圧力p、ノズル下流側圧力p、試料水の飽和蒸気圧pから、キャビテーション数σは下記式(2)のように書きかえることができ、キャビテーション噴流では、p、p2、間の圧力差が大きく、p≫p≫pとなることから、キャビテーション数σはさらに以下のように近似することができる(H. Soyama, J. Soc. Mat. Sci. Japan, 47(4), 381 1998)。
Figure 2009235648
本発明におけるキャビテーションの条件は、上述したキャビテーション数σが0.001以上0.5以下であることが望ましく、0.003以上0.2以下であることが好ましく、0.01以上0.1以下であることが特に好ましい。キャビテーション数σが0.001未満である場合、キャビテーション気泡が崩壊する時の周囲との圧力差が低いため効果が小さくなり、0.5より大である場合は、流れの圧力差が低くキャビテーションが発生し難くなる。
また、ノズルまたはオフィリス管を通じて噴射液を噴射してキャビテーションを発生させる際には、噴射液の圧力(上流側圧力)は0.01MPa以上30MPa以下であることが望ましく、0.7MPa以上20MPa以下であることが好ましく、3MPa以上15MPa以下であることが特に好ましい。上流側圧力が0.01MPa未満では下流側圧力との間で圧力差を生じ難く作用効果は小さい。また、30MPaより高い場合、特殊なポンプ及び圧力容器を必要とし、消費エネルギーが大きくなることからコスト的に不利である。一方、容器内の圧力(下流側圧力)は静圧で0.05MPa以上0.3MPa以下が好ましい。また、容器内の圧力と噴射液の圧力との圧力比は0.001〜0.5の範囲が好ましい。
また、噴射液の噴流の速度は1m/秒以上200m/秒以下の範囲であることが望ましく、20m/秒以上100m/秒以下の範囲であることが好ましい。噴流の速度が1m/秒未満である場合、圧力低下が低く、キャビテーションが発生し難いため、その効果は弱い。一方、200m/秒より大きい場合、高圧を要し特別な装置が必要であり、コスト的に不利である。
本発明におけるキャビテーション発生場所としてはタンクなど任意の容器内もしくは配管内を選ぶことができるが、これらに限定するものではない。また、ワンパスで処理することも可能であるが、必要回数だけ循環することによって更に効果を増大できる。さらに複数の発生手段を用いて並列で、あるいは順列で処理することができる。
キャビテーションを発生させるための噴射は、大気開放の容器の中でなされても良いが、キャビテーションをコントロールするために圧力容器の中でなされるのが好ましい。
本発明におけるキャビテーション発生場所としてはタンクなど任意の容器内もしくは配管内を選ぶことができるが、これらに限定するものではない。また、ワンパスで処理することも可能であるが、必要回数だけ循環することによって更に離解効果を増大できる。
液体噴射によってキャビテーションを発生させる際の処理対象のパルプ懸濁液の固形分濃度は10重量%以下であることが好ましく、さらに好ましくは0.1〜5.0重量%の範囲で処理することが気泡の発生効率の点から好ましい。被噴射液の固形分濃度が10重量%以上30重量%以下である場合は、噴射液濃度を10重量%以下にすることによって作用効果を得ることができる。また、パルプ懸濁液のpHがアルカリ条件である方が繊維の膨潤性がよく、OH活性ラジカルの生成量が増加することから望ましい。
本発明では、液体の噴射圧力を高めることで、噴射液の流速が増大し、これに伴って圧力が低下し、より強力なキャビテーションが発生する。更に被噴射液を収める容器を加圧することで、キャビテーション気泡が崩壊する領域の圧力が高くなり、気泡と周囲の圧力差が大きくなるため気泡は激しく崩壊し衝撃力も大となる。キャビテーションは液体中の気体の量に影響され、気体が多過ぎる場合は気泡同士の衝突と合一が起こるため崩壊衝撃力が他の気泡に吸収されるクッション効果を生じるため衝撃力が弱まる。従って、溶存気体と蒸気圧の影響を受けるため、その処理温度は0℃以上70℃以下であることが好ましく、特に10℃以上60℃以下であることが好ましい。一般には、融点と沸点の中間点で衝撃力が最大となると考えられることから、水溶液の場合、50℃前後が好適であるが、それ以下の温度であっても、蒸気圧の影響を受けないため、上記の範囲であれば高い効果が得られる。
本発明においては、界面活性剤を添加することでキャビテーションを発生させるために必要なエネルギーを低減することができる。使用する界面活性剤としては、公知または新規の界面活性剤、例えば、脂肪酸塩、高級アルキル硫酸塩、アルキルベンゼンスルホン酸塩、高級アルコール、アルキルフェノール、脂肪酸などのアルキレンオキシド付加物などの非イオン界面活性剤、陰イオン界面活性剤、陽イオン界面活性剤、両性界面活性剤などが挙げられる。これらの単一成分からなるものでも2種以上の成分の混合物でも良い。添加量は噴射液及び/または被噴射液の表面張力を低下させるために必要な量であればよい。
本発明により製造したパルプを原料として紙を製造する際には、公知の抄紙機を使用することができるが、その抄紙条件は特に限定されるものではない。例えば、抄紙機としては、長網型、オントップツインワイヤー型、ギャップフォーマー型、円網型、多層型などを使用することができ、表面強度の向上や吸水抵抗性を付与する目的で、表面処理剤を塗布しても良い。表面処理剤を塗布する場合、表面処理剤の成分には特に限定はなく、またサイズプレスの型式も限定はなく、2ロールサイズプレスや、ゲートロールサイズプレス、シムサイザーのような液膜転写方式サイズプレスなどを適宜用いることができる。また、紙の表面を平滑にする目的で、マシンカレンダー、ソフトニップカレンダー、高温ソフトニップカレンダーなどの公知のカレンダー装置を用いて処理を行っても良い。
本発明によって得られる紙は、紙の種類、坪量には限定はなく、更に各種の原紙や板紙を含む。また、紙中灰分の限定もない。また、1層の紙の他、2層以上の多層紙であっても良い。
[作用]
本発明において、嵩高かつ寸法安定性が良好なパルプを得られる理由としては、次の理由が考えられる。紙の嵩に関しては、繊維同士の結合力が高い場合、例えばフィブリル状の長繊維や微細繊維量が多い場合には、抄紙後の紙は密度が高くなり、嵩は下がる傾向にある。一方、紙の寸法安定性の悪化要因は様々であるが、特に繊維形状の変化による影響に関して考えると、繊維カールや微細繊維量の増加、叩解方法の違いなどが寸法安定性に影響を与えるとされている。以上のように、微細繊維は紙の嵩と寸法安定性の両方に関与していることから、微細繊維を減少させることにより、嵩高性と寸法安定性の良化の双方に対して効果が得られたものと考えられる。
特に、キャビテーション処理によって本発明の効果が得られやすい理由としては、以下の理由が考えられる。キャビテーション処理を利用したパルプの叩解では、DDRなどの機械的作用による叩解と比べて、パルプ繊維の外部フィブリル化が起こりやすい。このようなパルプに含まれる微細繊維はフィブリル状のものが多く、このフィブリル状の微細繊維は、繊維同士の結合が強く、密度が高くなりやすい。そのため、フィブリル状の微細繊維を除くと、繊維同士の結合がより小さくなり、密度が小さくなると推測される。また、内部フィブリル化された繊維が少ないことから、叩解処理によって潰された繊維が少なく低密度化の一因になったと思われる。さらに、外部フィブリル化した繊維は、内部フィブリル化した繊維よりも保水度が低く、繊維の膨潤が起こりにくいと推測されるため、寸法安定性の良化に寄与したと推測される。
以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明は係る実施例に限定されるものではない。
[実施例1〜3]
工場で製造された上質系原料(原料古紙が上質系古紙主体であるDIP)をDIP原料A(CSF404ml)とした。これを150メッシュワイヤー(目開き106μm)上で流水にて洗浄し、長繊維分(150メッシュオン)と微細繊維分(150メッシュパス)に分離した。このときの長繊維分を原料B(微細繊維量0%)とし、微細繊維分は沈降分離により濃縮した。次に、原料Bに対して微細繊維分を5重量%または10重量%加え、配合前後のそれぞれの原料に含まれる灰分を測定し、下記の方法により微細繊維量を計算した。
上記各原料に、歩留り向上剤(DR1500)を100ppm加え、JIS P 8222に基づいて手抄きシートを作製した。手抄きシートの厚さ、坪量を下記の方法で測定し、これを元に密度を算出した。さらに、寸法安定性の評価として、浸水伸度を下記の方法で測定した。結果を表1に示す。
・厚さ:JIS P8118:1998に従った。
・坪量:JIS P8124:1998(ISO536:1995)に従った。
・密度:手抄きシートの厚さ、坪量の測定値より算出した。
・灰分:DIP原料を温度525℃で2時間加熱した後に残った灰の重量と、元の固形分との比率から算出した。
・微細繊維量:KAJAANI社のFibarLabで測定した微細繊維量の値から、灰分の割合を除いて算出した。
・浸水伸度:乾燥プレート、リングを使用せずに、JIS P 8111:1998に規定する標準状態で、一昼夜乾燥させること以外はJIS P 8222:1998に準じて手抄きシートを作製し、これについて、J. TAPPI No.27Aに従い、60分後の浸水伸度を測定した。
[比較例1]
原料Aを用いて実施例1と同様に手抄きシートを作製し、同様の評価を行った。結果を表1に示す。
[比較例2、3]
原料Bに微細繊維分を15重量%または20重量%加えたものを原料として用いた以外は、実施例2、3と同様に評価を行った。結果を表1に示す。
Figure 2009235648
表1の結果から、比較例1〜3と比べて微細繊維量の少ない実施例1〜3は、微細繊維量の減少とともに密度が小さくなり、嵩高となっていることがわかる。また、実施例1〜3は、微細繊維量の減少と共に浸水伸度が低下していることから、寸法安定性に優れることがわかる。
[実施例4]
広葉樹漂白クラフトパルプシートを離解し、任意の濃度に調整した後、ナイアガラビーターでCSF390mlに達するまで叩解し、原料Cとした。その後、原料Cを150メッシュワイヤー(目開き106μm)上で叩解後のパルプを流水にて洗浄し、微細繊維を取り除いた。灰分を測定し、微細繊維量を算出した。
上記原料に、歩留り向上剤(DR1500)を100ppm加え、JIS P 8222に基づいて手抄きシートを作製した。手抄きシートの厚さ、坪量を測定し、これを元に密度を算出した。さらに、寸法安定性の評価として、浸水伸度を測定した。結果を表2に示す。
・カナダ標準濾水度(CSF):JIS P8121:1995に従った。
[比較例4]
原料Cについて、実施例4と同様に手抄きシートを作製し、同様の項目を評価した。結果を表2に示す。
[実施例5]
広葉樹漂白クラフトパルプシートを離解し、任意の濃度に調整した後、特願2005−321231に記載のキャビテーション噴流式洗浄装置(ノズル径1.5mm)を用いて、噴射液の圧力(上流側圧力)を7MPa(噴流の流速70m/秒)、被噴射容器内の圧力(下流側圧力)を0.3MPaとして、CSFが390mlに達するまで叩解し、原料Dとした。なお、噴射液として濃度1.1重量%のパルプ懸濁液を使用し、容器内のパルプ懸濁液(濃度1.1重量%)として処理を行った。その後、原料Dを150メッシュワイヤー(目開き106μm)上で叩解後のパルプを流水にて洗浄し、微細繊維を取り除いた。灰分を測定し、微細繊維量を算出した。
上記原料に、歩留り向上剤(DR1500)を100ppm加え、JIS P 8222に基づいて手抄きシートを作製した。手抄きシートの厚さ、坪量を測定し、これを元に密度を算出した。さらに、寸法安定性の評価として、浸水伸度を測定した。結果を表2に示す。
[比較例5]
原料Dについて、実施例5と同様に手抄きシートを作製し、同様の項目を評価した。結果を表2に示す。
Figure 2009235648
表2の結果から、比較例4と比べて微細繊維量の少ない実施例4、比較例5と比べて微細繊維量の少ない実施例5は、それぞれ比較例4または比較例5よりも密度が小さく、嵩高であった。また、実施例4および実施例5は、それぞれ比較例4または比較例5よりも浸水伸度が小さいことから、寸法安定性に優れることがわかる。また、実施例4よりも実施例5の方が、密度が小さく、かつ寸法安定性に優れたことから、特にキャビテーション処理を行った場合に、本発明の効果が顕著に現れることがわかる。

Claims (4)

  1. パルプの製造工程において、パルプ全繊維に対する繊維長0.2mm以下の微細繊維量を10%以下に調整することを特徴とするパルプの製造方法。
  2. パルプを叩解処理した後、脱水処理によりパルプ全繊維に対する繊維長0.2mm以下の微細繊維量を10%以下に調整することを特徴とする請求項1記載のパルプの製造方法。
  3. 脱水処理によりパルプ全繊維に対する繊維長0.2mm以下の微細繊維量を10%以下に調整した後、パルプを叩解処理することを特徴とする請求項1記載のパルプの製造方法。
  4. 前記叩解処理が、キャビテーションによって生ずる気泡が崩壊する際に生じる衝撃力をパルプ繊維に与える処理であることを特徴とする請求項2又は3記載のパルプの製造方法。
JP2008085872A 2008-03-28 2008-03-28 パルプの製造方法 Pending JP2009235648A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008085872A JP2009235648A (ja) 2008-03-28 2008-03-28 パルプの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008085872A JP2009235648A (ja) 2008-03-28 2008-03-28 パルプの製造方法

Publications (1)

Publication Number Publication Date
JP2009235648A true JP2009235648A (ja) 2009-10-15

Family

ID=41249941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008085872A Pending JP2009235648A (ja) 2008-03-28 2008-03-28 パルプの製造方法

Country Status (1)

Country Link
JP (1) JP2009235648A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110011550A1 (en) * 2008-03-31 2011-01-20 Nippon Paper Industries Co., Ltd. Tissue papers for household use
CN109024044A (zh) * 2018-08-07 2018-12-18 李春光 一种用水浮莲制备纸浆的方法、制备的纸浆及应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110011550A1 (en) * 2008-03-31 2011-01-20 Nippon Paper Industries Co., Ltd. Tissue papers for household use
CN109024044A (zh) * 2018-08-07 2018-12-18 李春光 一种用水浮莲制备纸浆的方法、制备的纸浆及应用

Similar Documents

Publication Publication Date Title
JP5266045B2 (ja) セルロースを主体とする繊維状物質
JP6994514B2 (ja) 増強された特性を有するミクロフィブリル化セルロースおよびその製造方法
FI127682B (en) Process for manufacturing microfibrillated cellulose
JP6814444B2 (ja) セルロースナノファイバーの製造装置及びセルロースナノファイバーの製造方法
JP4546936B2 (ja) パルプの叩解方法
JP5542356B2 (ja) 家庭用薄葉紙
JP2010106373A (ja) 非木材繊維シート及びこれを用いた成形体
JP6310044B1 (ja) セルロースナノファイバーの製造装置及びセルロースナノファイバーの製造方法
JP4932574B2 (ja) 乾式解砕用パルプシート
JP6233150B2 (ja) 金型プレス成型加工用原紙
JP2009235648A (ja) パルプの製造方法
JP6280593B2 (ja) セルロースナノファイバーの製造方法
JP2017057515A (ja) グラシン紙
JP2008248459A (ja) 紙の製造方法
JP2006257621A (ja) 書籍本文用紙
JP2006257620A (ja) 新聞印刷用紙
JP2008038311A (ja) パルプの叩解方法
JP2009197371A (ja) 紙の製造方法及び紙
JP2008248453A (ja) 嵩高紙の製造方法
JP2006257625A (ja) 印刷用塗工紙
JP2009228186A (ja) パルプの処理方法
JP7201170B2 (ja) タオルペーパー
JP2017054602A (ja) 電池用セパレータ
JP2016121406A (ja) 印刷用紙
JP2006257624A (ja) 電子写真用転写紙