JP2009159250A - バイアス回路、差動増幅器 - Google Patents

バイアス回路、差動増幅器 Download PDF

Info

Publication number
JP2009159250A
JP2009159250A JP2007334481A JP2007334481A JP2009159250A JP 2009159250 A JP2009159250 A JP 2009159250A JP 2007334481 A JP2007334481 A JP 2007334481A JP 2007334481 A JP2007334481 A JP 2007334481A JP 2009159250 A JP2009159250 A JP 2009159250A
Authority
JP
Japan
Prior art keywords
transistor
bias circuit
input terminal
bias
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007334481A
Other languages
English (en)
Other versions
JP5001822B2 (ja
Inventor
Shiro Taga
史朗 多賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2007334481A priority Critical patent/JP5001822B2/ja
Publication of JP2009159250A publication Critical patent/JP2009159250A/ja
Application granted granted Critical
Publication of JP5001822B2 publication Critical patent/JP5001822B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

【課題】低消費電力で精度の高い電流制御が可能なバイアス回路並びにこれを用いた差動増幅器を提供する。
【解決手段】差動入力端子20pi、20niに接続される増幅段のトランジスタを被制御側トランジスタ201、202としてカレントミラー回路を構成可能な制御側トランジスタ100と、差動入力端子20pi、20ni間に相互に並列接続された、接続点にて直列接続された抵抗素子111と抵抗素子112と接続点にて直列接続された抵抗素子113と抵抗素子114と、制御側トランジスタのベースを正入力端子に、抵抗素子113と抵抗素子114の接続点を負入力端子に、抵抗素子111と抵抗素子112の接続点を出力端子にそれぞれ接続し、制御側トランジスタ100のベースエミッタ接合面積と入力バイアス電流Ibiとの比を、被制御側トランジスタ201、202のベースエミッタ接合面積と直流コレクタ電流Ic1、Ic2との比と同等にした。
【選択図】 図1

Description

本発明は、カレントミラー回路の制御側トランジスタをバイアス回路に、被制御側トランジスタを差動増幅器の増幅段に、それぞれ用いたバイアス回路、及びそれを含む差動増幅器に関する。
半導体集積回路のトランジスタ増幅器に着目した場合、トランジスタを正確な動作点にて作動させるためバイアス回路が存在する。このバイアス回路は増幅器には必要不可欠であり、一般には増幅器の一部とみなされる。本書では発明の成立上バイアス回路と増幅器とを分けて以下説明する。
エミッタ接地増幅回路のベースである入力端子にバイアス電流を供給する手段として、図4に示すバイアス回路が特許文献1に記載されている。図4は、エミッタ接地増幅回路とそのバイアス回路を示す。この図4の回路の特徴は、カレントミラー回路を構成しており、バイアス回路の入力バイアス電流にてエミッタ接地増幅回路の直流コレクタ電流を制御し、仮に同じ集積回路内のトランジスタの電流増幅率の変化があったとしても、いわゆるカレントミラー比にて電流増幅特性を制御するというものである。
図4を参照して説明する。エミッタ接地増幅回路40には増幅器本体としてのトランジスタ41及びそのエミッタに接続された抵抗素子42を有し、直流コレクタ電流44が流れるコレクタは出力端子43に接続される構成を有している。また、このトランジスタ41のベースは直流カットのコンデンサ40Cを介して入力信号源40Sに接続されている。
バイアス回路400は、エミッタ接地増幅回路40を構成するトランジスタ41のベースに接続され、そのベース電流を供給する。ここで、バイアス回路400は、トランジスタ401及びそのエミッタに接続され接地された抵抗素子402を有し、入力バイアス電流404が流れるコレクタは、バイアス入力端子403に接続される。更に、トランジスタ401のコレクタとベースとの間には、エミッタフォロアトランジスタ405が介在され、トランジスタ401のコレクタとエミッタフォロアトランジスタ405のベースとが接続され、エミッタフォロアトランジスタ405のエミッタとトランジスタ401のベースとが抵抗素子406を介して接続される構造である。また、エミッタフォロアトランジスタ405のエミッタとエミッタ接地増幅回路40を構成するトランジスタ41のベースとの間にも抵抗素子407が介在されている。
この結果、トランジスタ41、トランジスタ401、及びエミッタフォロアトランジスタ405にてベース電流補償型カレントミラー回路を構成し、エミッタフォロアトランジスタ405のエミッタ電流がトランジスタ41及び401のベース電流に振り分けられ、入力バイアス電流I404に応じた直流コレクタ電流I44が流れることになる。すなわち、抵抗素子402、406、407、42の各抵抗値をR402、R406、R407、R42とするとき、R402/R42=R406/R407の関係を成立させる。これによって、電源電圧や製造プロセス更には温度変化に起因するトランジスタの電流増幅率の変化に拘らず、I44/I404=R402/R42=R406/R407からなるカレントミラー比が得られ、入力バイアス電流I404に応じてエミッタ接地増幅回路40のトランジスタ41に流れる直流コレクタ電流I44を決定することができる。
図5は、図4のバイアス回路を差動増幅器に適用した回路を例示する。すなわち、差動増幅器50では、トランジスタ51とそのエミッタの抵抗素子52と直流コレクタ電流I54が流れる出力端子53とを有し、更にトランジスタ55とそのエミッタの抵抗素子56と直流コレクタ電流I58が流れる出力端子57とを有し、トランジスタ51、55のエミッタ同士はインピーダンス調整の抵抗素子59にて接続され、トランジスタ51、55の各ベースは、容量素子50C1、50C2を介して差動入力信号源50Sに接続されると共に、バイアス回路500に接続される。
バイアス回路500は、図4に示すバイアス回路400と略同様の回路構成を有する。すなわち、トランジスタ501、抵抗素子502、バイアス入力端子503、エミッタフォロアトランジスタ505、抵抗素子506を有し、トランジスタ501のベースに接続されエミッタフォロアトランジスタ505のエミッタより分岐して差動増幅器50の差動入力端子に接続される途中には、抵抗素子507、508が介在されている。
このバイアス回路500にあっても、抵抗素子502、506、507、508、52、56の各抵抗値をR502、R506、R507、R508、R52、R56とするとき、R507=R508、R52=R56、R502/R52=R506/R507の関係を成立させる。これによって、I54/I504=I58/I504=R502/R52=R502/R56=R506/R507=R506/R508からなるカレントミラー比が得られ、入力バイアス電流I504によって差動増幅回路の各直流コレクタ電流I54、I58を決定することができる。
米国特許第6300837号明細書
上述した図5に示す差動増幅器50及びそのバイアス回路500にあって、差動入力信号源50Sからバイアス回路500を含む差動増幅器50の入力インピーダンスを見る。この時、入力インピーダンスは、直接接続された抵抗素子507、508によるインピーダンスとトランジスタ51、55の各ベース間のインピーダンスとの並列回路による合成インピーダンスである。この合成インピーダンスをZi、差動入力信号源50Sの出力インピーダンスをZo、差動入力信号源50Sの出力振幅をVs、差動増幅器50の入力端での信号振幅をVinとするとき、Vin=Zi/(Zo+Zi)×Vsの関係を生ずる。ここで合成インピーダンスZiが小さくなると、差動増幅器50の入力信号振幅Vinが減少する。すなわち、差動入力信号源50Sによる入力信号の電力ロスが発生する。
この入力信号の電力ロスを減少させるためには、抵抗素子507、508の抵抗値を十分大きくする必要がある。
一方、バイアス回路500の消費電力をできるだけ抑えるためには、入力バイアス電流I504を小さくカレントミラー比を十分大きくする必要がある。カレントミラー比は前述のようにI54/I504=I58/I504=R506/R507=R506/R508にて決まる。したがって、入力信号の電力ロスを減少させ、バイアス回路の消費電力を減少させるためには、抵抗素子506の抵抗値を大きくすることになる。
ここで、抵抗素子506とトランジスタ501のベース容量によってRCローパスフィルタが形成される。したがって、この抵抗素子506の抵抗値の増大は、トランジスタ501のベース容量を加味するときRCローパスフィルタによる位相遅れを増大させる。この結果、エミッタフォロアトランジスタ505を含むループの周波数応答にピーキング特性を生じ、ひいてはサーマルノイズを増幅させ、ノイズ特性を劣化する。こうしてみると、抵抗素子506の抵抗値の増大も限度がある。すなわち、抵抗素子506を増大させてバイアス回路の消費電力を減少させることは、限度がある。
また、バイアス回路を半導体集積回路にて作成するとき、製造工程上個々のトランジスタ501、51、55の電流増幅率がばらつき、あるいは、個々の抵抗素子502、506、507、508の抵抗値がばらつく。このため、計算どおりのカレントミラー比が得られず、バイアス回路の消費電流並びに特性のばらつきを生じ、精度の高い電流制御ができない。
本発明は、上記した点に鑑みてなされたものであって、低消費電力で精度の高い電流制御が可能なバイアス回路並びにこれを用いた差動増幅器を提供することを目的とする。
以上の課題を解決するため、本発明の請求項1に記載のバイアス回路は、差動増幅回路の差動入力端子に接続可能なバイアス回路であって、前記差動入力端子に接続される前記差動増幅回路内の増幅段のトランジスタを被制御側トランジスタとしてカレントミラー回路を構成可能な制御側トランジスタと、
接続点にて直列接続された第1インピーダンス素子と第2インピーダンス素子とからなり前記差動入力端子間に接続された出力インピーダンス素子と、接続点にて直列接続された第3インピーダンス素子と第4インピーダンス素子とからなり前記差動入力端子間に接続された帰還インピーダンス素子と、
前記制御側トランジスタのベースが正入力端子に、前記帰還インピーダンス素子の接続点が負入力端子に、前記出力インピーダンス素子の接続点が出力端子にそれぞれ接続した演算増幅器と、を有することを特徴とする。
また、請求項2に記載のバイアス回路は、請求項1に記載の発明において、前記制御側トランジスタのベースエミッタ接合面積と入力バイアス電流との比を、前記被制御側トランジスタのベースエミッタ接合面積と直流コレクタ電流との比と同等にしたことを特徴とする。
また、請求項3に記載のバイアス回路は、請求項1または請求項2に記載の発明において、前記制御側トランジスタのエミッタは第5インピーダンス素子を介して電源線に接続されることを特徴とする。
また、請求項4に記載のバイアス回路は、請求項1又は請求項2に記載の発明において、前記制御側トランジスタのエミッタは電源線に直結されることを特徴とする。
また、請求項5に記載のバイアス回路は、請求項1乃至請求項4のいずれか1項に記載の発明において、前記演算増幅器の出力端子と負入力端子との間には、容量素子が介在されることを特徴とする。
また、請求項6に記載のバイアス回路は、請求項1乃至請求項5のいずれか1項に記載の発明において、前記演算増幅器は、正入力端子及び負入力端子が電界効果トランジスタのゲートに接続される構成であることを特徴とする。
また、請求項7に記載の差動増幅器は、請求項1乃至請求項6のいずれか1項に記載のバイアス回路を差動入力端子に接続したことを特徴とする。
請求項1に記載のバイアス回路は、差動入力信号源から差動増幅器の入力インピーダンスを見るに、出力インピーダンス素子と帰還インピーダンス素子とによって合成インピーダンスを増大させることができ、差動入力信号源からの入力信号の電力ロスを減少させることができ、また、バイアス回路の制御側トランジスタのコレクタベース間を直結することによりしかも抵抗素子が介在されないことにより、入力バイアス電流を一層減少させることが可能となり、しかもバイアス回路の制御側トランジスタのベース容量による位相遅れも問題なくなってこのトランジスタのフィードバックループの安定を図ることができる。この結果、低消費電力で精度の高い電流制御が可能となる。
請求項2に記載のバイアス回路は、カレントミラー比を制御側トランジスタと被制御側トランジスタとのエミッタのインピーダンス素子のみにて決定することができ、よって製造プロセスや温度変化に起因する各トランジスタの電流増幅率のばらつきの影響を受けることなく、直流コレクタ電流を制御することができ、出力インピーダンス素子と帰還インピーダンス素子とのインピーダンスのばらつきによる影響も少ない。
請求項3に記載のバイアス回路は、この第5インピーダンスによって、カレントミラー比による電流制御を行うことができる。
請求項4に記載のバイアス回路は、カレントミラー比はベースエミッタ接合面積に依存させることができる。
請求項5に記載のバイアス回路は、位相遅れを解消し演算増幅器を含むフィードバックループを安定化させることができる。
請求項6に記載のバイアス回路は、演算増幅器の入力インピーダンスの増大により、演算増幅器の入力端子に流入する直流電流は非常に小さいので、精度の高いカレントミラー比による電流制御を行うことができる。
請求項7に記載の差動増幅器は、差動増幅器への適用にて、精度よく安定したカレントミラー比を得ることができる。
以下、図を参照して本発明に係るバイアス回路及び差動増幅器の一実施形態を説明する。
(回路構成)
図1は、本実施形態のバイアス回路及び差動増幅器を説明するための回路図である。この図1に示す回路は、バイアス回路10及びこのバイアス回路10にて制御される差動増幅器20を備える。このうち、バイアス回路10は、バイアス入力端子10i及び差動増幅器20の差動入力端子に対応するバイアス出力端子10po、10noを有する。バイアス入力端子10iは、NPNバイポーラトランジスタであるトランジスタ100のコレクタに接続される。このトランジスタ100は、そのコレクタとベースとが短絡されてダイオード化され、ワイドラー型カレントミラー回路の制御用トランジスタを構成する。トランジスタ100のエミッタは、抵抗素子(第5インピーダンス素子)110を経て電源線32に接続(例えば接地)される。
トランジスタ100のベースでコレクタとの短絡点は、演算増幅器(オペアンプという)121の正入力端子に接続される。オペアンプ121の出力端子は、バイアス出力端子10po及び10no間に直列接続された抵抗素子(第1インピーダンス素子)111と抵抗素子(第2インピーダンス素子)112との接続点に接続されている。更に、バイアス出力端子10po及び10no間には、抵抗素子(第3インピーダンス素子)113と抵抗素子(第4インピーダンス素子)114とが直列接続され、この直列接続された抵抗素子113、114の接続点は、オペアンプ121の負入力端子に接続される。したがって、抵抗素子111、112では、オペアンプ121からの出力電圧が得られ、抵抗素子113、114は、オペアンプ121の帰還抵抗となる。
一方、差動増幅器20は、差動入力端子20pi及び20niを有すると共に、出力端子20po及び20noを有する。差動増幅器20の一方の増幅段を構成するトランジスタ201は、NPN型バイポーラトランジスタであり、そのコレクタが出力端子20poにそのベースが差動入力端子20piに接続され、エミッタは抵抗素子211を経て電源線32に接続される。同様に、差動増幅器20の他方の増幅段を構成するトランジスタ202も、NPN型バイポーラトランジスタであり、そのコレクタが出力端子20noにそのベースが差動入力端子20niに接続され、エミッタは抵抗素子212を経て電源線32に接続される。また、抵抗素子211及び212間は、インピーダンス調整の抵抗素子213にて接続される。
更に、差動入力端子20pi、20niは、容量素子30C1、30C2を介して差動入力信号源31Sに接続される。
また、差動増幅器20の差動入力端子20pi、20niは、差動入力信号源31Sに接続されると共に、バイアス回路の出力端子10po、10noに接続される。
したがって、差動入力端子20pi、20niには、バイアス回路10からバイアス電圧が印加されると共に、差動入力信号源31Sから差動交流信号Vinputが入力されることになる。この結果、差動増幅器20の各トランジスタ201、202では、差動交流信号Vinputの振幅が増幅され、出力端子20po、20noから差動増幅信号が出力される。
(バイアス回路の動作)
バイアス入力端子10iからは、入力バイアス電流Ibiが入力される。この入力バイアス電流Ibiは、定電流、トランジスタ相互コンダクタンス温度補償電流、あるいは出力可変の制御電流が考えられる。この入力バイアス電流Ibiは、オペアンプ121の入力インピーダンスが高インピーダンスであるために、コレクタとベースとが短絡されたトランジスタ100を介して、抵抗素子110を流れる。すなわち、トランジスタ100のベース(コレクタ)電圧Vbiは、トランジスタ100のベースエミッタ電圧をVbe100及び抵抗素子110の抵抗値をR110とするとき、(Vbe100+Ibi×R110)となる。そして、このトランジスタ100のベース電圧Vbiが、オペアンプ121の正入力端子に加えられることになる。
ここで、オペアンプ121の出力電圧は、抵抗素子111を介して出力端子10poに現れ、抵抗素子112を介して出力端子10noに現れる。一方、オペアンプ121の負入力端子には抵抗113、114を介して、出力端子10po、10noの電圧中点が入力される。このように接続すると、オペアンプ121は出力端子10po、10noの電圧中点がトランジスタ100のベース電圧Vbiと等しくなるようにオペアンプ121の出力端子電圧を制御する。この結果、バイアス回路10に差動増幅器20を接続することによって、トランジスタ100のベース電圧、トランジスタ201のベース電圧、並びにトランジスタ202のベース電圧は、すべて同一の電圧Vbiを得る。
このトランジスタ100、201、202の各ベース電圧が等しいことは、以下のような結論を導き出すことができる。すなわち、今トランジスタ201、202のベースエミッタ間電圧をVbe201、Vbe202とし、抵抗素子211、212の抵抗値をR211、R212とし、トランジスタ201、202の直流コレクタ電流をIc1、Ic2とする。すると、各トランジスタ100、201、202の等しいベース電圧Vbiは、(Vbi=Vbe100+Ibi×R110=Vbe201+Ic1×R211
=Vbe202+Ic2×R212)・・・式(1)のようになる。
一方、コレクタ電流Icとベースエミッタ間電圧Vbeとの一般的な関係は、バイポーラトランジスタのベースエミッタ接合面積(サイズという)をNAとし、比例定数をAとすると、Ic=NA×A×exp(Vbe)なる関係がある。すなわち、複数のバイポーラトランジスタにあって、コレクタ電流IcとサイズNAとの比を同じにすれば、同じベースエミッタ間電圧Vbeを得る。したがって、トランジスタ100のサイズをNA100とし、トランジスタ201のサイズをNA201とし、トランジスタ202のサイズをNA202とした場合、
(NA100/Ibi=NA201/Ic1=NA202/Ic2)とすることによって、
(Vbe100=Vbe201=Vbe202)となる。
この結果、前式(1)のVbiは、
(Vbi=Ibi×R110=Ic1×R211=Ic2×R212)となる。すなわち、バイアス回路10のバイアス電流Ibiと差動増幅器20の直流コレクタ電流Ic1、Ic2とのカレントミラー比は、抵抗素子110、211、212によってのみ決定されることになる。また、上記式にて抵抗素子110、211、212の抵抗値をなくしエミッタを信号源32に直結することでトランジスタ100、201、202のサイズNAのみにてカレントミラー比が決定される。
本実施形態において、差動入力信号源31Sから差動増幅器20の入力インピーダンスを見るに、合成インピーダンスは、トランジスタ201及び202間のベース間インピーダンスと直列な抵抗素子111及び112の抵抗値と直列な抵抗素子113及び114の抵抗値との並列回路によるインピーダンスになる。この場合、直列な抵抗素子111及び112の抵抗値とオペアンプ121の帰還のための直列な抵抗素子113及び114の抵抗値によって合成インピーダンスを増大させることができる。したがって、差動入力信号源31Sからの入力信号の電力ロスを減少させることができる。
また、本実施形態において、図5に示す従来のようにバイアス回路のトランジスタ501にエミッタフォロアトランジスタ505や抵抗素子506を備える必要がないので、言い換えればバイアス回路10のトランジスタ100のコレクタベース間は直結されしかも抵抗素子が介在されないので、入力バイアス電流Ibiを一層減少させることが可能となる。
また、本実施形態においては、従来のようにトランジスタ501に抵抗素子506を備える必要がなくなるので、トランジスタ100のベース容量による位相遅れによる弊害の発生を除去することができる。なお、位相遅れに関して本実施形態では、抵抗素子111、容量30C1、トランジスタ201のベース容量によるローパスフィルタ、抵抗素子112、容量30C2、トランジスタ202のベース容量によるローパスフィルタ、抵抗素子113、114とオペアンプ121の負入力端子の入力容量によるローパスフィルタは、位相遅れを発生させることになる。しかし、オペアンプ121の出力と負入力端子との間に容量素子を介在させることにより、これらローパスフィルタによる位相遅れを低減し、オペアンプ121を含むフィードバックループの安定性を向上させることができる。
更に、本実施形態では、入力バイアス電流Ibiに対する差動増幅器20の直流コレクタ電流Ic1、Ic2はトランジスタ100、201、202と抵抗素子110、211、212の抵抗値によってのみ決まることになるので、製造プロセスや温度変化に起因する各トランジスタの電流増幅率のばらつきの影響を受けることなく、直流コレクタ電流を制御することができる。この場合、前述したトランジスタのサイズは、集積回路製造工程にて高精度のサイズを得ることができる。また、トランジスタのベースに接続される抵抗素子111、112、113、114は、カレントミラー比には関係しないので、これらの抵抗素子のばらつきによるカレントミラー比の劣化は少ない。
図1に示す本実施形態では、各トランジスタ100、201、202のエミッタの抵抗素子110、211、212の抵抗値を零としても良い。この場合、カレントミラー比は前式に基づきトランジスタ100、201、202のサイズ比によって決定されるので、抵抗素子110、211、212の抵抗値のばらつきによるカレントミラー比の劣化はなくなる。
本実施形態では、NPN型バイポーラトランジスタを用いた差動増幅器を例示したが、PNP型バイポーラトランジスタを用いた回路構成についても、適用することができる。
オペアンプ121は、その内部構成がバイポーラトランジスタにて構成されていても、その入力インピーダンスは大きい。しかし、正入力端子及び負入力端子は、図2、図3に示すように電界効果トランジスタのゲートに接続することで、入力抵抗が更に大きくなり、高入力インピーダンスのオペアンプを得ることができる。なお、図2は、Nチャネル電界効果トランジスタを入力に用いたオペアンプを例示し、図3は、Pチャネル電界効果トランジスタを入力に用いたオペアンプを例示する。
本発明の一実施形態のバイアス回路及び差動増幅器の回路図である。 Nチャネル電界効果トランジスタを用いたオペアンプの回路図である。 Pチャネル電界効果トランジスタを用いたオペアンプの回路図である。 従来のバイアス回路と増幅器を例示する回路図である。 従来のバイアス回路と差動増幅器を例示する回路図である。
符号の説明
10 バイアス回路
20 差動増幅器
30C1、30C2 容量
31S 差動入力信号源
100 制御側トランジスタ
121 オペアンプ
201、202 被制御側トランジスタ
110、111、112、113、114、211、212、213 抵抗素子
10i バイアス入力端子
10po、10no 出力端子
20pi、20ni 差動入力端子
20po、20no 出力端子
Ibi 入力バイアス電流
Ic1、Ic2 直流コレクタ電流

Claims (7)

  1. 差動増幅回路の差動入力端子に接続可能なバイアス回路であって、
    前記差動入力端子に接続される前記差動増幅回路内の増幅段のトランジスタを被制御側トランジスタとしてカレントミラー回路を構成可能な制御側トランジスタと、
    接続点にて直列接続された第1インピーダンス素子と第2インピーダンス素子とからなり前記差動入力端子間に接続された出力インピーダンス素子と、接続点にて直列接続された第3インピーダンス素子と第4インピーダンス素子とからなり前記差動入力端子間に接続された帰還インピーダンス素子と、
    前記制御側トランジスタのベースが正入力端子に、前記帰還インピーダンス素子の接続点が負入力端子に、前記出力インピーダンス素子の接続点が出力端子にそれぞれ接続された演算増幅器と、
    を有することを特徴とするバイアス回路。
  2. 前記制御側トランジスタのベースエミッタ接合面積と入力バイアス電流との比を、前記被制御側トランジスタのベースエミッタ接合面積と直流コレクタ電流との比と同等にしたことを特徴とする請求項1記載のバイアス回路。
  3. 前記制御側トランジスタのエミッタは第5インピーダンス素子を介して電源線に接続されることを特徴とする請求項1または請求項2に記載のバイアス回路。
  4. 前記制御側トランジスタのエミッタは電源線に直結されることを特徴とする請求項1または請求項2に記載のバイアス回路。
  5. 前記演算増幅器の出力端子と負入力端子との間には、容量素子が介在されることを特徴とする請求項1乃至請求項4のいずれか1項に記載のバイアス回路。
  6. 前記演算増幅器は、正入力端子及び負入力端子が電界効果トランジスタのゲートに接続される構成であることを特徴とする請求項1乃至請求項5のいずれか1項に記載のバイアス回路。
  7. 請求項1乃至請求項6記載のいずれか1項のバイアス回路を差動入力端子に接続したことを特徴とする差動増幅器。
JP2007334481A 2007-12-26 2007-12-26 バイアス回路、差動増幅器 Active JP5001822B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007334481A JP5001822B2 (ja) 2007-12-26 2007-12-26 バイアス回路、差動増幅器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007334481A JP5001822B2 (ja) 2007-12-26 2007-12-26 バイアス回路、差動増幅器

Publications (2)

Publication Number Publication Date
JP2009159250A true JP2009159250A (ja) 2009-07-16
JP5001822B2 JP5001822B2 (ja) 2012-08-15

Family

ID=40962788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007334481A Active JP5001822B2 (ja) 2007-12-26 2007-12-26 バイアス回路、差動増幅器

Country Status (1)

Country Link
JP (1) JP5001822B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107645280A (zh) * 2016-07-21 2018-01-30 成都锐成芯微科技股份有限公司 高速放大电路
CN116667798A (zh) * 2023-07-24 2023-08-29 深圳飞骧科技股份有限公司 射频功率放大电路及射频芯片

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164115A (ja) * 1988-12-19 1990-06-25 Fujitsu Ltd カレントミラー回路
WO1998005027A1 (en) * 1996-07-26 1998-02-05 Advanced Micro Devices, Inc. Vertical wavetable cache architecture
JPH11145741A (ja) * 1997-11-11 1999-05-28 Hitachi Ltd 集積化バイアス回路
JP2002033653A (ja) * 2000-07-17 2002-01-31 Mitsubishi Electric Corp 信号レベル変換回路およびそれを備える半導体装置
JP2002198798A (ja) * 2000-12-26 2002-07-12 Nec Corp 出力回路
JP2004159123A (ja) * 2002-11-07 2004-06-03 Renesas Technology Corp 高周波電力増幅用電子部品および無線通信システム
JP2005341149A (ja) * 2004-05-26 2005-12-08 Sony Corp 差動増幅回路
JP2006517751A (ja) * 2002-11-13 2006-07-27 クゥアルコム・インコーポレイテッド デシベル利得制御特性においてリニアを有する連続可変利得無線周波数ドライバ増幅器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164115A (ja) * 1988-12-19 1990-06-25 Fujitsu Ltd カレントミラー回路
WO1998005027A1 (en) * 1996-07-26 1998-02-05 Advanced Micro Devices, Inc. Vertical wavetable cache architecture
JPH11145741A (ja) * 1997-11-11 1999-05-28 Hitachi Ltd 集積化バイアス回路
JP2002033653A (ja) * 2000-07-17 2002-01-31 Mitsubishi Electric Corp 信号レベル変換回路およびそれを備える半導体装置
JP2002198798A (ja) * 2000-12-26 2002-07-12 Nec Corp 出力回路
JP2004159123A (ja) * 2002-11-07 2004-06-03 Renesas Technology Corp 高周波電力増幅用電子部品および無線通信システム
JP2006517751A (ja) * 2002-11-13 2006-07-27 クゥアルコム・インコーポレイテッド デシベル利得制御特性においてリニアを有する連続可変利得無線周波数ドライバ増幅器
JP2005341149A (ja) * 2004-05-26 2005-12-08 Sony Corp 差動増幅回路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107645280A (zh) * 2016-07-21 2018-01-30 成都锐成芯微科技股份有限公司 高速放大电路
CN116667798A (zh) * 2023-07-24 2023-08-29 深圳飞骧科技股份有限公司 射频功率放大电路及射频芯片
CN116667798B (zh) * 2023-07-24 2024-03-26 深圳飞骧科技股份有限公司 射频功率放大电路及射频芯片

Also Published As

Publication number Publication date
JP5001822B2 (ja) 2012-08-15

Similar Documents

Publication Publication Date Title
GB798523A (en) Improvements relating to transistor amplifier circuits
US7501893B2 (en) Variable gain amplifier circuit
EP0131340B1 (en) Current stabilising circuit
JP5001822B2 (ja) バイアス回路、差動増幅器
US4357578A (en) Complementary differential amplifier
JPH04307804A (ja) 単位利得最終段
CN113411055B (zh) 偏置电流控制装置、射频放大器、电子设备及芯片
JPH05299949A (ja) 帰還形差動増幅回路
KR20020086607A (ko) 고주파 트랜지스터의 동작점을 설정하는 회로 배열 및증폭기 회로
US6218906B1 (en) Amplifier circuit
EP0611105B1 (en) Current source
JP2002542700A (ja) 改良型演算増幅器出力段
US7230476B1 (en) Bipolar high impedance element
JPS6333726B2 (ja)
JP3180820B2 (ja) コンプリメンタリ多段増幅回路
EP2424107B1 (en) Current-voltage conversion circuit
JPS5914813Y2 (ja) 定電流回路
JPH0786843A (ja) 増幅回路
JPH03284004A (ja) エミッタフォロア回路
JP2600648B2 (ja) 差動増幅回路
JP2626196B2 (ja) 差動増幅回路
JPS593606Y2 (ja) 相補差動増幅回路
JP2577946B2 (ja) 増幅回路
JPH1168478A (ja) 電流供給回路とこれを用いたフィルター回路
JP2000031764A (ja) 増幅回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120518

R150 Certificate of patent or registration of utility model

Ref document number: 5001822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350