JP2009155693A - Substrate unit - Google Patents

Substrate unit Download PDF

Info

Publication number
JP2009155693A
JP2009155693A JP2007336092A JP2007336092A JP2009155693A JP 2009155693 A JP2009155693 A JP 2009155693A JP 2007336092 A JP2007336092 A JP 2007336092A JP 2007336092 A JP2007336092 A JP 2007336092A JP 2009155693 A JP2009155693 A JP 2009155693A
Authority
JP
Japan
Prior art keywords
catalyst
film
substrate
substrate unit
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007336092A
Other languages
Japanese (ja)
Inventor
Takuji Komukai
拓治 小向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sonac KK
Original Assignee
Sonac KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sonac KK filed Critical Sonac KK
Priority to JP2007336092A priority Critical patent/JP2009155693A/en
Publication of JP2009155693A publication Critical patent/JP2009155693A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate unit of which a catalytic membrane on a substrate is not oxidized even when having been left in the air. <P>SOLUTION: The substrate unit 1 includes the substrate 3, the catalytic membrane 5 which is formed on the substrate 3 and turns into micro particles at a thermal annealing temperature, and a catalyst protection membrane 7 which protects the catalytic membrane 5 by covering the surface of the catalytic membrane 5 and has a thermal decomposition temperature lower than the thermal annealing temperature. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、基板表面に熱アニール温度で微粒子化し炭素系ガスに反応しカーボンファイバを合成する触媒膜が成膜されている基板ユニットに関するものである。   The present invention relates to a substrate unit in which a catalyst film that forms fine particles at a thermal annealing temperature and reacts with a carbon-based gas to synthesize a carbon fiber is formed on the substrate surface.

カーボンナノチューブ等のカーボンファイバは、ナノオーダーで細くかつ高アスペクト比であり、電子エミッタ材料、水素吸蔵体、高容量キャパシタ材料、二次電池または燃料電池の電極材料、電磁波吸収材料、等に汎用されつつある。   Carbon fibers such as carbon nanotubes are nano-order thin and have a high aspect ratio, and are widely used for electron emitter materials, hydrogen storage materials, high-capacity capacitor materials, secondary battery or fuel cell electrode materials, electromagnetic wave absorbing materials, etc. It's getting on.

このようなカーボンファイバの製造方法には、アーク放電法、レーザ蒸発法、熱CVD法、などがある。これら製造方法のうち、熱CVD法では、基板上にカーボンファイバの成長のための金属系の触媒微粒子を基板上に生成し、炭素系の触媒ガスの雰囲気中で基板を加熱することにより、触媒微粒子が触媒ガスに接触作用させることによりカーボンファイバを製造することが行われている。   Such a carbon fiber manufacturing method includes an arc discharge method, a laser evaporation method, a thermal CVD method, and the like. Among these manufacturing methods, in the thermal CVD method, metal-based catalyst fine particles for growing carbon fibers are generated on a substrate, and the substrate is heated in an atmosphere of a carbon-based catalyst gas, thereby producing a catalyst. Production of carbon fibers has been performed by allowing fine particles to contact a catalytic gas.

上記触媒微粒子は図4(a)で示すように基板3に成膜された触媒膜5をアニール処理して図4(b)で示すように触媒微粒子11を生成することにより得られる。本明細書では、上記微粒子化のため触媒膜をアニール処理する温度のことを熱アニール温度という。ところで、上記触媒膜5は基板3上に直接成膜されたり、あるいは、下地膜を介して成膜される。下地膜は、触媒膜の加熱処理中に触媒膜を構成する金属が基板中に拡散することを防止するものである(特許文献1参照)。   The catalyst fine particles are obtained by annealing the catalyst film 5 formed on the substrate 3 as shown in FIG. 4A to generate catalyst fine particles 11 as shown in FIG. 4B. In this specification, the temperature at which the catalyst film is annealed for the above-mentioned fine particle formation is referred to as a thermal annealing temperature. By the way, the catalyst film 5 is directly formed on the substrate 3 or is formed through a base film. The base film prevents the metal constituting the catalyst film from diffusing into the substrate during the heat treatment of the catalyst film (see Patent Document 1).

上記触媒膜5は、基板3上に成膜されてから微粒子化されるまでの時間帯において、空気中に一定時間晒されてしまう時間帯(気中放置時間帯)が存在する。触媒膜5は一般に鉄からなり、気中放置時間帯で酸化され易い状態である。   The catalyst film 5 has a time zone (air leaving time zone) in which it is exposed to the air for a certain period of time from when it is formed on the substrate 3 until it is atomized. The catalyst film 5 is generally made of iron, and is easily oxidized in the air standing time zone.

特に触媒膜5はμmオーダーの極めて薄い膜であるから、酸化が進行しやすい。触媒膜5が酸化されたのでは、上記アニール処理しても微粒子化されないか、微粒子化されても均質な微粒子化ができない。   In particular, since the catalyst film 5 is a very thin film on the order of μm, the oxidation tends to proceed. If the catalyst film 5 is oxidized, it is not finely divided even if the annealing treatment is performed, or even if it is finely divided, uniform fine particles cannot be formed.

さらに、触媒膜5の酸化を防止するよう酸化防止膜で単に覆うとしても触媒膜5を微粒子化のためアニールする直前に酸化防止膜を触媒膜5から剥離するのでは、その剥離に多大な労力を要し、作業コストアップをもたらす。
特開2001−303250号公報
Furthermore, even if the catalyst film 5 is simply covered with an antioxidant film so as to prevent the oxidation of the catalyst film 5, if the antioxidant film is peeled off from the catalyst film 5 just before annealing to make the catalyst film 5 fine, a great deal of effort is required for the peeling. Cost and increase work costs.
JP 2001-303250 A

本発明により解決すべき課題は、基板上の触媒膜を触媒保護膜で覆って気密封止する一方、触媒膜の熱アニールに際し触媒保護膜の剥離を不要化した基板ユニットを提供することである。   The problem to be solved by the present invention is to provide a substrate unit in which the catalyst film on the substrate is covered with a catalyst protective film and hermetically sealed, but the catalyst protective film is not required to be peeled off during thermal annealing of the catalyst film. .

本発明に係る基板ユニットは、基板と、上記基板上に成膜され熱アニール処理で微粒子化する金属材からなる触媒膜と、上記触媒膜表面を覆って該表面を気密封止し上記熱アニール温度より低い熱分解温度で分解する触媒保護膜と、を備えることを特徴とするものである。   The substrate unit according to the present invention includes a substrate, a catalyst film made of a metal material formed on the substrate and made into fine particles by a thermal annealing process, and the surface of the catalyst film is hermetically sealed to cover the surface. And a catalyst protective film that decomposes at a thermal decomposition temperature lower than the temperature.

本発明の基板ユニットでは、触媒膜は触媒保護膜で被覆され気密封止され空気中に晒されていないから空気中に放置されても触媒膜が酸化されることがない。一方、触媒膜を熱アニール温度で加熱して微粒子化する際に、触媒保護膜はその熱アニール温度より低い温度である熱分解温度で熱分解されて消失するので、触媒膜の熱アニール時に触媒保護膜を剥離する必要がない。この場合、カーボンファイバの製造工数としては触媒保護膜を触媒膜上に成膜する成膜作業が増加するとしても、コストと時間とがかかる触媒保護膜の剥離作業が不要であるから、カーボンファイバの製造工数全体からはコストはさほど増大することがない。   In the substrate unit of the present invention, the catalyst film is covered with the catalyst protective film, hermetically sealed, and not exposed to the air, so that the catalyst film is not oxidized even if left in the air. On the other hand, when the catalyst film is heated to a thermal annealing temperature to form fine particles, the catalyst protective film is thermally decomposed and disappears at a thermal decomposition temperature that is lower than the thermal annealing temperature. There is no need to remove the protective film. In this case, the number of steps for producing the carbon fiber is such that even if the film forming work for forming the catalyst protective film on the catalyst film is increased, the costly and time-consuming peeling work of the catalyst protective film is unnecessary. From the whole manufacturing man-hours, the cost does not increase so much.

なお、触媒保護膜は、炭素系の樹脂で構成することが好ましい。この樹脂にはアクリル系樹脂、セルロース系樹脂、等を例示することができる。アクリル系樹脂にはポリブチルアクリレート、ポリメタクリレートなどを例示することができ、また、セルロース系樹脂にはニトロセルロースやエチルセルロース、ヒドロキシエチルセルロースなどを例示することができる。炭素系の樹脂の場合、触媒保護膜が熱分解した際に炭化水素系ガスが生成され、その炭化水素系ガス中の成分がカーボンファイバの成長に必要な原料として再利用することができる。   The catalyst protective film is preferably composed of a carbon-based resin. Examples of this resin include acrylic resins and cellulose resins. Examples of the acrylic resin include polybutyl acrylate and polymethacrylate, and examples of the cellulose resin include nitrocellulose, ethyl cellulose, and hydroxyethyl cellulose. In the case of a carbon-based resin, a hydrocarbon-based gas is generated when the catalyst protective film is thermally decomposed, and components in the hydrocarbon-based gas can be reused as a raw material necessary for the growth of the carbon fiber.

本発明では、触媒膜上への触媒保護膜の成膜形態に何等限定されることがないが、この成膜形態としては例えばスクリーン印刷法、バーコーター法、ロールコーター法、ダイコーター法、ドクターブレード法などを例示することができる。   In the present invention, the form of the catalyst protective film on the catalyst film is not limited in any way. Examples of the film form include a screen printing method, a bar coater method, a roll coater method, a die coater method, and a doctor. The blade method etc. can be illustrated.

本発明では、触媒膜に特に限定されないが、Fe、Ni、Co、Y、Rh、Pd、Pt、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、ErおよびLu等を例示することができる。   In the present invention, the catalyst film is not particularly limited, but Fe, Ni, Co, Y, Rh, Pd, Pt, La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Lu, and the like are exemplified. Can do.

本発明では、基板の素材に特に限定されないが、シリコン、クロム、銅、タングステン、アルミニウム等を例示することができる。なお、この基板上の触媒微粒子により成長するカーボンファイバは、その種類に特に限定されないが、カーボンナノチューブ、グラファイトナノファイバ、カーボンナノホーン、カーボンナノコーン、カーボンナノバンブ等を例示することができる。   In the present invention, the material of the substrate is not particularly limited, but silicon, chromium, copper, tungsten, aluminum and the like can be exemplified. The carbon fiber grown by the catalyst fine particles on the substrate is not particularly limited, but examples thereof include carbon nanotubes, graphite nanofibers, carbon nanohorns, carbon nanocones, and carbon nanobumps.

本発明によれば、触媒膜が触媒保護膜で被覆されパッケージ化されているので、基板ユニットが気中放置されても触媒膜が酸化されることがない。そのため、触媒膜を熱アニール温度で加熱して微粒子化した場合、触媒膜が酸化されていない状態から熱アニールするので、生成した触媒微粒子は均質で結晶性も高く、そのため炭素系ガスを作用させてカーボンファイバを成長させた場合には、品質に優れたカーボンファイバに成長させることができる。   According to the present invention, since the catalyst film is coated with the catalyst protective film and packaged, the catalyst film is not oxidized even if the substrate unit is left in the air. For this reason, when the catalyst film is heated to a thermal annealing temperature to form fine particles, the catalyst film is thermally annealed from an unoxidized state, so the generated catalyst fine particles are homogeneous and have high crystallinity. When carbon fiber is grown, it can be grown into a carbon fiber with excellent quality.

また、触媒保護膜は熱アニール温度より低い温度で熱分解することができる保護膜であるので、触媒膜をアニール処理により微粒子化する際に触媒保護膜を剥離する必要がないから、カーボンファイバの製造工数としては触媒保護膜を触媒膜上に成膜する成膜作業が必要であるとしても、剥離作業が不要であるから、カーボンファイバの製造工数全体からのコスト増大を低く抑制することができる。   In addition, since the catalyst protective film is a protective film that can be thermally decomposed at a temperature lower than the thermal annealing temperature, there is no need to peel off the catalyst protective film when the catalyst film is made into fine particles by annealing treatment. Even if a film forming operation for forming a catalyst protective film on the catalyst film is necessary as a manufacturing man-hour, a peeling operation is not necessary, so that an increase in cost from the entire man-hour of carbon fiber can be suppressed low. .

以下、添付した図面を参照して、本発明の実施の形態に係る基板ユニットを詳細に説明する。   Hereinafter, a substrate unit according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1は、実施の形態の基板ユニット1を示す。この基板ユニット1は、基板3と、この基板3上に成膜されていて熱アニール温度で加熱されることにより微粒子化する触媒膜5と、この触媒膜5の表面を気密封止状態に覆って上記触媒膜5を酸化から保護するもので熱分解温度が熱アニール温度未満である触媒保護膜7とを備えて構成されている。上記気密封止状態とは、触媒膜5表面全体が空気中に露出しないようにその全体を気密に封止した状態である。触媒膜5の一部でも空気中に露出しているとその露出部分から酸化が進行するから、触媒保護膜7で完全に触媒膜5を覆うことで触媒膜5の酸化を有効に防止することができるからである。   FIG. 1 shows a substrate unit 1 according to an embodiment. This substrate unit 1 covers a substrate 3, a catalyst film 5 formed on the substrate 3 and micronized by heating at a thermal annealing temperature, and the surface of the catalyst film 5 is covered in an airtight sealed state. The catalyst film 5 is protected from oxidation, and is provided with a catalyst protection film 7 having a thermal decomposition temperature lower than the thermal annealing temperature. The airtight sealed state is a state in which the entire surface of the catalyst film 5 is hermetically sealed so as not to be exposed to the air. If a part of the catalyst film 5 is exposed to the air, the oxidation proceeds from the exposed part. Therefore, the catalyst film 5 is completely covered with the catalyst protective film 7 to effectively prevent the catalyst film 5 from being oxidized. Because you can.

上記熱アニール温度と熱分解温度との関係を満たすうえで、触媒膜5にはFe膜、触媒保護膜7にはアクリル系樹脂とかセルロース系樹脂等を例示することができる。この関係を満たすうえでは必ずしも触媒保護膜7は樹脂系に限定されるものではなく、例えばセルロース系を例示することができる。   In order to satisfy the relationship between the thermal annealing temperature and the thermal decomposition temperature, the catalyst film 5 can be exemplified by an Fe film, and the catalyst protective film 7 can be exemplified by an acrylic resin or a cellulose resin. In order to satisfy this relationship, the catalyst protective film 7 is not necessarily limited to the resin type, and for example, a cellulose type can be exemplified.

触媒膜5をアニールするために基板ユニット1を加熱すると、その基板ユニット1が熱アニール温度に到達する前にその熱アニール温度より低い熱分解温度で触媒保護膜7が熱分解する結果、図2で示すように触媒保護膜7を剥離すること無く、基板3上には炭化水素系ガスを分解してカーボンファイバを成長させる成長核としての触媒微粒子11を生成することができる。   When the substrate unit 1 is heated to anneal the catalyst film 5, the catalyst protective film 7 is thermally decomposed at a thermal decomposition temperature lower than the thermal annealing temperature before the substrate unit 1 reaches the thermal annealing temperature. As shown in FIG. 6, the catalyst fine particles 11 as the growth nuclei for growing the carbon fiber can be generated on the substrate 3 by decomposing the hydrocarbon gas without peeling off the catalyst protective film 7.

上記例において、例えば、触媒膜5がFe膜、触媒保護膜7が()膜であれば、熱アニール温度は650℃であり、触媒保護膜7の熱分解温度は450℃を例示することができる。   In the above example, for example, if the catalyst film 5 is an Fe film and the catalyst protective film 7 is a () film, the thermal annealing temperature is 650 ° C., and the thermal decomposition temperature of the catalyst protective film 7 is 450 ° C. it can.

この場合、触媒保護膜7はアクリル系やセルロース系の樹脂であれば、触媒膜5をアニールして触媒微粒子化する前に触媒保護膜7が炭化水素系ガスに熱分解されており、この熱分解で生成されている炭化水素系ガスをカーボンファイバの原料ガスに再利用できるという利点がある。   In this case, if the catalyst protective film 7 is an acrylic or cellulose resin, the catalyst protective film 7 is thermally decomposed into a hydrocarbon-based gas before the catalyst film 5 is annealed to form catalyst fine particles. There is an advantage that the hydrocarbon-based gas produced by the decomposition can be reused as the raw material gas for the carbon fiber.

こうして基板3上に触媒微粒子11が生成され、炭化水素系ガスの作用で触媒微粒子11上に図示略のカーボンファイバを製造する熱CVD法は公知であるのでその詳細は略する。   Since the catalytic fine particles 11 are thus produced on the substrate 3 and a carbon fiber (not shown) is produced on the catalytic fine particles 11 by the action of the hydrocarbon-based gas, the thermal CVD method is well known, and the details thereof are omitted.

なお、触媒膜5を構成する金属はその種類に限定されないが、その金属としては、上記Fe以外に、Ni、Co、Y、Rh、Pd、Pt、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、ErおよびLu等を例示することができる。   In addition, although the metal which comprises the catalyst film 5 is not limited to the kind, As said metal, Ni, Co, Y, Rh, Pd, Pt, La, Ce, Pr, Nd, Gd, Tb other than said Fe , Dy, Ho, Er, Lu, and the like.

基板3はその素材に限定されないが、シリコン、クロム、銅、タングステン、アルミニウム等を例示することができる。   Although the board | substrate 3 is not limited to the raw material, a silicon | silicone, chromium, copper, tungsten, aluminum etc. can be illustrated.

カーボンファイバは、その種類に限定されないが、カーボンナノチューブ、グラファイトナノファイバ、カーボンナノホーン、カーボンナノコーン、カーボンナノバンブ等を例示することができる。   Although carbon fiber is not limited to the kind, A carbon nanotube, a graphite nanofiber, a carbon nanohorn, a carbon nanocone, a carbon nanobump etc. can be illustrated.

触媒保護膜7は、触媒膜5上に、スクリーン印刷法、バーコーター法、ロールコーター法、ダイコーター法、ドクターブレード法など、一般的な方法で成膜することができる。   The catalyst protective film 7 can be formed on the catalyst film 5 by a general method such as a screen printing method, a bar coater method, a roll coater method, a die coater method, or a doctor blade method.

図3に他の実施の形態の基板ユニットを示す。図2において図1と対応する部分には同一の符号を付している。この実施の形態の基板ユニット1が図1のそれと相違するのは、基板3と、触媒膜5との間にAl等の下地膜9が介装されていることである。この下地膜9についての説明は略する。   FIG. 3 shows a substrate unit according to another embodiment. In FIG. 2, parts corresponding to those in FIG. The substrate unit 1 of this embodiment is different from that of FIG. 1 in that a base film 9 such as Al is interposed between the substrate 3 and the catalyst film 5. A description of the base film 9 is omitted.

以上説明したように本実施の形態の基板ユニット1の構造では、触媒膜5が触媒保護膜7で被覆されパッケージ化されているので、空気中放置されても触媒膜5が酸化されることがない。そのため、触媒膜5を熱アニール温度で加熱して微粒子化した場合、均質で結晶性も高い触媒微粒子1を得ることができるので、この触媒微粒子11に炭素系ガスを作用させてカーボンファイバを成長させた場合に、品質に優れたカーボンファイバに成長させることができる。   As described above, in the structure of the substrate unit 1 of the present embodiment, the catalyst film 5 is covered with the catalyst protective film 7 and packaged, so that the catalyst film 5 may be oxidized even if left in the air. Absent. Therefore, when the catalyst film 5 is heated to a thermal annealing temperature to form fine particles, homogeneous and highly crystalline catalyst fine particles 1 can be obtained. Therefore, carbon fibers are allowed to act on the catalyst fine particles 11 to grow carbon fibers. When it is made to grow, it can be made to grow in the carbon fiber excellent in quality.

さらに、触媒保護膜7は熱アニール温度より低い温度で熱分解することができる膜であるので、触媒膜5をアニール処理により微粒子化する際に触媒保護膜7を剥離する必要がないから、カーボンファイバの製造工数としては触媒保護膜7を触媒膜5上に成膜する成膜作業が必要であるとしても、剥離作業が不要であるから、カーボンファイバの製造工数全体からのコスト増大を低く抑制することができる。   Furthermore, since the catalyst protective film 7 is a film that can be thermally decomposed at a temperature lower than the thermal annealing temperature, there is no need to peel off the catalyst protective film 7 when the catalyst film 5 is made into fine particles by annealing treatment. Even if a film forming operation for forming the catalyst protective film 7 on the catalyst film 5 is necessary as a fiber manufacturing man-hour, a stripping operation is not required, so the cost increase from the entire carbon fiber manufacturing man-hour is kept low. can do.

図1は本発明の実施の形態に係る基板ユニットの側面断面図である。FIG. 1 is a side sectional view of a substrate unit according to an embodiment of the present invention. 図2は基板ユニットを熱分解温度以下から熱アニール温度にまで加熱した場合の基板ユニットの状態を示す側面断面図である。FIG. 2 is a side cross-sectional view showing the state of the substrate unit when the substrate unit is heated from the thermal decomposition temperature or lower to the thermal annealing temperature. 図3は本発明の他の実施の形態に係る基板ユニットの断面図である。FIG. 3 is a cross-sectional view of a substrate unit according to another embodiment of the present invention. 図4(a)は従来の基板ユニットの側面断面図、図4(b)は図4(a)の基板ユニットを熱アニール温度にまで加熱した場合の基板ユニットの状態を示す側面断面図である。4A is a side sectional view of a conventional substrate unit, and FIG. 4B is a side sectional view showing a state of the substrate unit when the substrate unit of FIG. 4A is heated to a thermal annealing temperature. .

符号の説明Explanation of symbols

1 基板ユニット
3 基板
5 触媒膜
7 触媒保護膜
9 下地膜
11 触媒微粒子
DESCRIPTION OF SYMBOLS 1 Substrate unit 3 Substrate 5 Catalyst film 7 Catalyst protective film 9 Base film 11

Claims (2)

基板と、上記基板上に成膜され熱アニール処理で微粒子化する金属材からなる触媒膜と、上記触媒膜表面を覆って該表面を気密封止し上記熱アニール温度より低い熱分解温度で分解する触媒保護膜と、を備えることを特徴とする基板ユニット。   A substrate, a catalyst film made of a metal material formed on the substrate and made into fine particles by a thermal annealing process, and the catalyst film surface is covered and hermetically sealed and decomposed at a thermal decomposition temperature lower than the thermal annealing temperature. And a catalyst protective film. 基板と触媒膜との間に下地膜が成膜されている、ことを特徴とする請求項1に記載の基板ユニット。   The substrate unit according to claim 1, wherein a base film is formed between the substrate and the catalyst film.
JP2007336092A 2007-12-27 2007-12-27 Substrate unit Pending JP2009155693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007336092A JP2009155693A (en) 2007-12-27 2007-12-27 Substrate unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007336092A JP2009155693A (en) 2007-12-27 2007-12-27 Substrate unit

Publications (1)

Publication Number Publication Date
JP2009155693A true JP2009155693A (en) 2009-07-16

Family

ID=40960009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007336092A Pending JP2009155693A (en) 2007-12-27 2007-12-27 Substrate unit

Country Status (1)

Country Link
JP (1) JP2009155693A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011092828A (en) * 2009-10-28 2011-05-12 Nitta Corp Method for manufacturing magnetic metal catalyst particulate form substrate, and magnetic metal catalyst particulate form substrate
JP2012091082A (en) * 2010-10-25 2012-05-17 Nitta Corp STRUCTURE FOR RETAINING Fe FINE PARTICLE, AND CATALYST AND METHOD FOR CNT PRODUCTION

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731460B2 (en) * 1977-08-29 1982-07-05
JPH04363147A (en) * 1991-06-06 1992-12-16 Mitsubishi Rayon Co Ltd Molded or supported catalyst for synthesis of methacrolein and methacrylic acid having excellent mechanical strength and its production
JP2004181620A (en) * 2002-12-05 2004-07-02 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Matrix structure and manufacture method of carbon nanotubes
JP2004362960A (en) * 2003-06-05 2004-12-24 Akio Hiraki Electron emitting element and manufacturing method of the same
JP2006305554A (en) * 2005-03-30 2006-11-09 Sonac Kk Method of forming catalyst and method of manufacturing carbon film using the same
JP2007091484A (en) * 2005-09-26 2007-04-12 Sonac Kk Method for production of carbon fiber, and substrate unit
JP2007111581A (en) * 2005-10-18 2007-05-10 Mitsubishi Rayon Co Ltd Solid catalyst for synthesizing methacrylic acid, its preparing method and manufacturing method of methacrylic acid
JP2007534508A (en) * 2004-04-20 2007-11-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Nanostructures and methods for producing such nanostructures

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731460B2 (en) * 1977-08-29 1982-07-05
JPH04363147A (en) * 1991-06-06 1992-12-16 Mitsubishi Rayon Co Ltd Molded or supported catalyst for synthesis of methacrolein and methacrylic acid having excellent mechanical strength and its production
JP2004181620A (en) * 2002-12-05 2004-07-02 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Matrix structure and manufacture method of carbon nanotubes
JP2004362960A (en) * 2003-06-05 2004-12-24 Akio Hiraki Electron emitting element and manufacturing method of the same
JP2007534508A (en) * 2004-04-20 2007-11-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Nanostructures and methods for producing such nanostructures
JP2006305554A (en) * 2005-03-30 2006-11-09 Sonac Kk Method of forming catalyst and method of manufacturing carbon film using the same
JP2007091484A (en) * 2005-09-26 2007-04-12 Sonac Kk Method for production of carbon fiber, and substrate unit
JP2007111581A (en) * 2005-10-18 2007-05-10 Mitsubishi Rayon Co Ltd Solid catalyst for synthesizing methacrylic acid, its preparing method and manufacturing method of methacrylic acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011092828A (en) * 2009-10-28 2011-05-12 Nitta Corp Method for manufacturing magnetic metal catalyst particulate form substrate, and magnetic metal catalyst particulate form substrate
JP2012091082A (en) * 2010-10-25 2012-05-17 Nitta Corp STRUCTURE FOR RETAINING Fe FINE PARTICLE, AND CATALYST AND METHOD FOR CNT PRODUCTION

Similar Documents

Publication Publication Date Title
JP3878642B2 (en) Short carbon nanotube for catalyst support, method for producing the same, carbon nanotube-supported catalyst using the carbon nanotube, and fuel cell employing the same
CA2350099A1 (en) Gas-phase nucleation and growth of single-wall carbon nanotubes from high pressure co
JP2005075725A (en) Carbon nanotube structural body, producing method therefor, and electric field emission element and display unit obtained by applying the same
US20060067872A1 (en) Method of preparing catalyst base for manufacturing carbon nanotubes and method of manufacturing carbon nanotubes employing the same
US20080131351A1 (en) Method of preparing single-wall carbon nanotubes
JP2004168634A (en) Carbon nanotube matrix and method of growing the same
JP2008296338A (en) Covered structure
Mori et al. Direct synthesis of carbon nanotubes from only CO 2 by a hybrid reactor of dielectric barrier discharge and solid oxide electrolyser cell
US20080014346A1 (en) Method of synthesizing single-wall carbon nanotubes
JP5746830B2 (en) Metal substrate, carbon nanotube electrode and manufacturing method thereof
JP2009256204A (en) Method for making carbon nanotube
Hussain et al. Growth and plasma functionalization of carbon nanotubes
JP2009155693A (en) Substrate unit
JP2007091484A (en) Method for production of carbon fiber, and substrate unit
JP2007091479A (en) Method for production of carbon fiber
US9289753B2 (en) Substrate for carbon nanotube growth and method for manufacturing the same
JP5117675B2 (en) Carbon nanotube synthesis method
JP2005239481A (en) Metal occlusion carbon nanotube aggregate, its manufacturing method, metal occlusion carbon nanotube, metal nanowire, and its manufacturing method
US20080131602A1 (en) Method of preparing catalyst for catalyzing growth of single-wall carbon nanotubes
US20080132410A1 (en) Catalyst for catalyzing growth of single-wall carbon nanotubes
KR101679693B1 (en) Method for preparing carbon nanotube and hybrid carbon nanotube composite
Yamagiwa et al. Synthesis of highly aligned carbon nanotubes by one-step liquid-phase process: Effects of carbon sources on morphology of carbon nanotubes
JP2007091480A (en) Catalyst arrangement structure
JP5403644B2 (en) Carbon fiber manufacturing method
Qian et al. A Comparison Between Reduced and Intentionally Oxidized Metal Catalysts for Growth of Single‐Walled Carbon Nanotubes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130416