JP2011092828A - Method for manufacturing magnetic metal catalyst particulate form substrate, and magnetic metal catalyst particulate form substrate - Google Patents

Method for manufacturing magnetic metal catalyst particulate form substrate, and magnetic metal catalyst particulate form substrate Download PDF

Info

Publication number
JP2011092828A
JP2011092828A JP2009247465A JP2009247465A JP2011092828A JP 2011092828 A JP2011092828 A JP 2011092828A JP 2009247465 A JP2009247465 A JP 2009247465A JP 2009247465 A JP2009247465 A JP 2009247465A JP 2011092828 A JP2011092828 A JP 2011092828A
Authority
JP
Japan
Prior art keywords
magnetic metal
substrate
metal catalyst
base material
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009247465A
Other languages
Japanese (ja)
Other versions
JP5590858B2 (en
Inventor
Kumiko Yoshihara
久美子 吉原
Takuji Komukai
拓治 小向
Atsushi Shimomoto
温 下元
Masuyuki Nakai
勉之 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta Corp
Original Assignee
Nitta Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Corp filed Critical Nitta Corp
Priority to JP2009247465A priority Critical patent/JP5590858B2/en
Publication of JP2011092828A publication Critical patent/JP2011092828A/en
Application granted granted Critical
Publication of JP5590858B2 publication Critical patent/JP5590858B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To generate a deposition of magnetic metal catalyst particles, with a uniform particle size and a uniform distribution, on a substrate with a high reproducibility. <P>SOLUTION: A manufacturing method includes: a step of forming a base material that consists of an ampholytic non-magnetic metal on the substrate; a step of forming a magnetic metal, that reacts to a carbon-containing gas and is insoluble to alkaline, on the base material; a step of agglomerating the magnetic metal in the base material by a heat treatment to deposit the magnetic metal catalyst particles in the interface between the substrate and the base material at least; and a step of removing the base material by alkaline to expose the magnetic metal catalyst particles on the substrate. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、炭素含有ガスに接触反応してカーボンナノチューブ(CNT)等を成長させる際の成長起点となる磁性金属触媒微粒子を形成した基板を製造する方法および磁性金属触媒微粒子形成基板に関するものである。   The present invention relates to a method for producing a substrate on which magnetic metal catalyst fine particles are formed as a starting point of growth when carbon nanotubes (CNT) and the like are grown by contact reaction with a carbon-containing gas, and a magnetic metal catalyst fine particle-formed substrate. .

CNTは、その性状、サイズ、等により、各種用途が期待されている物質である。CNTの製造方法の一つに、炭素含有ガスに接触反応する触媒膜が成膜された触媒構造を有する基板を用いる方法がある。   CNT is a substance that is expected to be used for various purposes depending on its properties, size, and the like. One of the methods for producing CNTs is a method using a substrate having a catalyst structure on which a catalyst film that reacts with a carbon-containing gas is formed.

この触媒構造には、図6で示すように、基板50上にCNTの成長に対する触媒作用を持たないアルミニウム等の非磁性金属からなる非磁性金属触媒膜51と、この非磁性金属触媒膜51上の鉄等の磁性金属からなる磁性金属触媒膜52との2層構造としたものがある。また、先行技術文献として下記の特許文献1、2を挙げる。   As shown in FIG. 6, the catalyst structure includes a nonmagnetic metal catalyst film 51 made of a nonmagnetic metal such as aluminum that does not have a catalytic action for the growth of CNTs on a substrate 50, and the nonmagnetic metal catalyst film 51. And a magnetic metal catalyst film 52 made of a magnetic metal such as iron. The following patent documents 1 and 2 are listed as prior art documents.

特開2001−303250号公報JP 2001-303250 A 特開平08−67966号公報Japanese Patent Application Laid-Open No. 08-67966

このような2層構造において、チャンバ内において、熱アニール処理を施すと、上層の磁性金属触媒膜52が微粒子化してくるが、この場合、熱アニール処理中でのチャンバ内の残留ガス等により、図7で示すように、そうした磁性金属触媒膜52の凝集状態に差が生じて不均一に凝集し、微粒子化してくる結果、非磁性金属触媒膜51上に粒径および分布共に不均一な形態で磁性金属触媒微粒子53が生成される。このようなこれら磁性金属触媒微粒子53をCNTの成長起点としこれらに炭素含有ガスを接触反応させると、図8で示すように、直径不均一でかつ成長密度不均一にCNT54が成長する結果となる。   In such a two-layer structure, when the thermal annealing process is performed in the chamber, the upper magnetic metal catalyst film 52 becomes fine particles. In this case, due to residual gas in the chamber during the thermal annealing process, As shown in FIG. 7, a difference occurs in the aggregation state of the magnetic metal catalyst film 52 to cause non-uniform aggregation and fine particles. As a result, the particle size and distribution are not uniform on the non-magnetic metal catalyst film 51. Thus, magnetic metal catalyst fine particles 53 are generated. When such magnetic metal catalyst fine particles 53 are used as a starting point for the growth of CNT and a carbon-containing gas is brought into contact with them, as shown in FIG. 8, CNT 54 grows with a non-uniform diameter and a non-uniform growth density. .

本発明では、粒子直径均一、粒子分布一様にして、それら磁性金属触媒微粒子を基板上に形成できるようにすることを課題としている。   An object of the present invention is to make the magnetic metal catalyst fine particles uniform on the substrate by making the particle diameter uniform and the particle distribution uniform.

本発明による磁性金属触媒微粒子基板の製造方法は、両性の非磁性金属からなる母材を基板上に形成するステップと、炭素含有ガスに反応するものでアルカリに非可溶の磁性金属を上記母材上に形成するステップと、熱処理により上記母材中に上記磁性金属を凝集させて少なくとも基板と母材との界面に磁性金属触媒微粒子を析出するステップと、アルカリにより上記母材を除去して上記基板上に磁性金属触媒微粒子を露出させるステップと、を含むことを特徴とする。   The method for producing a magnetic metal catalyst fine particle substrate according to the present invention comprises a step of forming a base material made of an amphoteric non-magnetic metal on the substrate, and a magnetic metal that reacts with a carbon-containing gas and is insoluble in an alkali. Forming on the material, aggregating the magnetic metal in the base material by heat treatment to deposit magnetic metal catalyst fine particles at least at the interface between the substrate and the base material, and removing the base material with an alkali. Exposing the magnetic metal catalyst fine particles on the substrate.

上記アルカリには、水酸化カリウム、水酸化ナトリウム、アンモニアなどの水溶液等があり、これらから適宜選択することができるが、特に水酸化カリウムのアルコール溶液は、基板に対して均一なエッチング作用が期待できるため好ましい。   Examples of the alkali include aqueous solutions of potassium hydroxide, sodium hydroxide, ammonia, and the like, and can be appropriately selected from these. Particularly, an alcohol solution of potassium hydroxide is expected to have a uniform etching action on the substrate. This is preferable because it is possible.

上記熱処理は、上記凝集が生じ析出が起きる温度での加熱と加熱時間での熱処理であればよく、特に限定しない。   The heat treatment is not particularly limited as long as it is a heat treatment at a temperature at which the aggregation occurs and precipitation occurs and a heat treatment for a heating time.

上記母材はすべて除去する意味に限定されず、一部除去する場合も含む。   The above-mentioned base material is not limited to the meaning of removing all, but includes the case where a part is removed.

本発明においては、熱処理により母材中に磁性金属を微粒子状に凝集させるので、基板と母材との界面には磁性金属触媒微粒子を粒径均一でかつ当該界面上における析出間隔均一、したがって、磁性金属触媒微粒子の形成密度均一にして析出することができる。このように基板上に粒径均一かつ形成密度均一に形成されている磁性金属触媒微粒子に炭素含有ガスを一定の温度において接触反応させると、この磁性金属触媒微粒子上にはCNTを直径均一でかつ成長密度均一に成長することができる。   In the present invention, the magnetic metal is agglomerated in the base material by heat treatment, so the magnetic metal catalyst fine particles are uniform in particle size at the interface between the substrate and the base material, and the precipitation interval on the interface is uniform. The formation density of the magnetic metal catalyst fine particles can be made uniform. When the carbon-containing gas is brought into contact with the magnetic metal catalyst fine particles having a uniform particle size and a uniform formation density on the substrate in this way at a constant temperature, the CNTs have a uniform diameter on the magnetic metal catalyst fine particles. The growth density can be grown uniformly.

上記両性の非磁性金属としては、アルミニウム、亜鉛、鉛、錫がある。   Examples of the amphoteric nonmagnetic metal include aluminum, zinc, lead, and tin.

上記炭素含有ガスに接触反応するものでアルカリに非可溶の磁性金属としては、鉄、ニッケル、コバルト等がある。   Examples of magnetic metals that are in contact with the carbon-containing gas and are not soluble in alkali include iron, nickel, and cobalt.

基板の素材は、特に限定されないが、シリコンを例示することができる。   Although the material of a board | substrate is not specifically limited, Silicon can be illustrated.

基板上の磁性金属触媒微粒子により成長するカーボンファイバは、その種類は特に限定されないが、CNT、グラファイトナノファイバ、カーボンナノホーン、カーボンナノコーン、カーボンナノバンブ等を例示することができる。   The type of carbon fiber grown by the magnetic metal catalyst fine particles on the substrate is not particularly limited, and examples thereof include CNT, graphite nanofiber, carbon nanohorn, carbon nanocone, and carbon nanobump.

本発明によれば、基板表面に磁性金属触媒微粒子をほぼ粒径均一、密度均一に形成することができ、したがって、この基板を用いた場合、基板上には直径均一かつ高い直線性のCNTを成長させることができる。   According to the present invention, magnetic metal catalyst fine particles can be formed on the substrate surface with a uniform particle size and a uniform density. Therefore, when this substrate is used, CNTs with uniform diameter and high linearity are formed on the substrate. Can be grown.

図1は本発明の実施の形態にかかる磁性金属触媒微粒子形成基板の製造方法において熱アニール処理前の基板の構成を示す図である。FIG. 1 is a diagram showing a configuration of a substrate before thermal annealing in a method for producing a magnetic metal catalyst fine particle-formed substrate according to an embodiment of the present invention. 図2は非磁性金属母材中に磁性金属触媒微粒子を析出した場合の基板の構成を示す図である。FIG. 2 is a diagram showing the configuration of the substrate when magnetic metal catalyst fine particles are deposited in a nonmagnetic metal base material. 図3(a)は非磁性金属母材中に磁性金属触媒微粒子を析出した場合の基板のTEM写真を示す図、図3(b)は図3(a)に対応するモデル図である。FIG. 3A is a diagram showing a TEM photograph of a substrate when magnetic metal catalyst fine particles are deposited in a nonmagnetic metal base material, and FIG. 3B is a model diagram corresponding to FIG. 図4(a)は図2の基板から母材を溶解除去した場合の基板の構成を示す図、図4(b)は図2の基板から母材を溶解除去した場合において当該母材の一部が残留する場合の基板の構成を示す図である。4A is a diagram showing the configuration of the substrate when the base material is dissolved and removed from the substrate of FIG. 2, and FIG. 4B is a diagram of the base material when the base material is dissolved and removed from the substrate of FIG. It is a figure which shows the structure of a board | substrate when a part remains. 図5は図4(a)の基板上にCNTを成長させた場合の基板の構成を示す図である。FIG. 5 is a diagram showing the configuration of the substrate when CNTs are grown on the substrate of FIG. 図6は従来例にかかる磁性金属触媒微粒子形成基板の製造方法において熱アニール処理前の基板の構成を示す図である。FIG. 6 is a diagram showing a configuration of a substrate before a thermal annealing process in a method for manufacturing a magnetic metal catalyst fine particle-formed substrate according to a conventional example. 図7は図6の基板に対して熱アニール処理を実施した場合の基板の構成を示す図である。FIG. 7 is a diagram showing the configuration of the substrate when the thermal annealing process is performed on the substrate of FIG. 図8は図7の基板に対してCNTを成長させた場合の基板の構成を示す図である。FIG. 8 is a diagram showing the configuration of the substrate when CNTs are grown on the substrate of FIG.

以下、添付した図面を参照して、本発明の実施の形態に係る磁性金属触媒微粒子形成基板の製造方法を説明する。なお、同方法の実施においては図示略のEB−PVD(電子ビーム物理蒸着)装置におけるチャンバを用いる。EB−PVD装置は、周知されるように、高真空中で高エネルギーの電子ビーム(EB)を蒸着原料に照射し、この蒸着原料を加熱蒸気化させて基板表面に蒸着させることにより同原料による成膜を行う装置である。この成膜を行うための上記チャンバ内部は真空下あるいは不活性ガス雰囲気下におかれる。   Hereinafter, a method for manufacturing a magnetic metal catalyst fine particle-formed substrate according to an embodiment of the present invention will be described with reference to the accompanying drawings. In the implementation of this method, a chamber in an unillustrated EB-PVD (electron beam physical vapor deposition) apparatus is used. As is well known, the EB-PVD apparatus uses an electron beam (EB) of high energy in a high vacuum to irradiate the deposition material, and the deposition material is heated and vaporized to be deposited on the substrate surface. An apparatus for forming a film. The inside of the chamber for forming this film is placed in a vacuum or in an inert gas atmosphere.

この方法に用いる基板は、図1(a)で示すように、その基板1の表面にバリア膜1aが形成されている。基板1は例えばガラス、シリコン、MgO、GaAs、フェライト、等を用いることができる。   The substrate used in this method has a barrier film 1a formed on the surface of the substrate 1 as shown in FIG. As the substrate 1, for example, glass, silicon, MgO, GaAs, ferrite, or the like can be used.

図1(b)で示すように、基板1表面には、バリア膜1aを介して、両性の非磁性金属である例えばアルミニウムからなる母材2を形成する。この場合、EB−PVD装置のチャンバ内において電子ビームを母材の蒸着原料に照射し、この蒸着原料を加熱蒸気化し、基板1上に蒸着する。もちろん、この母材2の形成は、この蒸着法に限らず、スパッタリング法、分子線エピタキシャル法、その他で形成してもよい。   As shown in FIG. 1B, a base material 2 made of, for example, aluminum which is an amphoteric nonmagnetic metal is formed on the surface of the substrate 1 via a barrier film 1a. In this case, in the chamber of the EB-PVD apparatus, an electron beam is irradiated to the vapor deposition raw material of the base material, and the vapor deposition raw material is heated and vaporized and deposited on the substrate 1. Of course, the formation of the base material 2 is not limited to the vapor deposition method, and may be formed by a sputtering method, a molecular beam epitaxial method, or the like.

そして、図1(c)で示すように、炭素含有ガスに接触反応するものでアルカリに非可溶の磁性金属例えば鉄からなる膜(磁性金属触媒膜)3を母材2上に形成する。この場合も、EB−PVD装置のチャンバ内において電子ビームを磁性金属からなる蒸着原料に照射し、この蒸着原料を加熱蒸気化し、母材2上に磁性金属を膜状に蒸着する。もちろん、この磁性金属触媒膜3の形成は、この蒸着法に限らず、スパッタリング法、分子線エピタキシャル法、その他で形成してもよい。   Then, as shown in FIG. 1C, a film (magnetic metal catalyst film) 3 made of a magnetic metal that is in contact with the carbon-containing gas and is insoluble in alkali, for example, iron, is formed on the base material 2. Also in this case, in the chamber of the EB-PVD apparatus, an electron beam is irradiated onto the vapor deposition material made of magnetic metal, the vapor deposition material is heated and vaporized, and the magnetic metal is deposited on the base material 2 in a film shape. Of course, the formation of the magnetic metal catalyst film 3 is not limited to the vapor deposition method, and may be formed by a sputtering method, a molecular beam epitaxial method, or the like.

以上第1、第2ステップを経た基板を図1に示す。1は基板、1aはバリア膜、2は非磁性金属母材、3は磁性金属触媒膜である。   The substrate that has undergone the first and second steps is shown in FIG. 1 is a substrate, 1a is a barrier film, 2 is a non-magnetic metal base material, and 3 is a magnetic metal catalyst film.

次に、図2で示すように、熱アニール処理により母材2中に磁性金属触媒膜3からの磁性金属を微粒子状に凝集させて、磁性金属触媒微粒子3a,3b,3cを析出させる。   Next, as shown in FIG. 2, the magnetic metal from the magnetic metal catalyst film 3 is agglomerated in the base material 2 by a thermal annealing process to precipitate the magnetic metal catalyst fine particles 3a, 3b, 3c.

図3(a)に図2に対応して実際に磁性金属触媒微粒子を析出させた場合のTEM写真を示し、図3(b)に図3(a)の理解のため同TEM写真のモデルを示す。   FIG. 3 (a) shows a TEM photograph when magnetic metal catalyst fine particles are actually deposited corresponding to FIG. 2, and FIG. 3 (b) shows a model of the TEM photograph for understanding FIG. 3 (a). Show.

磁性金属触媒微粒子3aは、母材2の表面2aに析出し、磁性金属触媒微粒子3bは母材2中に析出し、磁性金属触媒微粒子3cは、基板1のバリア膜1aと母材2との界面に析出する。磁性金属触媒微粒子3aは、粒径不均一、分布不一様である。また、磁性金属触媒微粒子3bは母材2中であるため、粒径均一である。磁性金属触媒微粒子3cも、微粒子粒径均一、微粒子分布一様である。母材2の表面2aに析出した磁性金属触媒微粒子3aは、表面に露出しているために残留ガス等の影響を受けやすい結果、粒径不均一、分布一様に形成される。母材2中の磁性金属触媒微粒子3bは、残留ガス等の影響を受けにくいため、粒径均一である。母材2中の磁性金属触媒微粒子3cは、残留ガス等の影響を受けにくい結果、粒径均一かつ分布一様である。   The magnetic metal catalyst fine particles 3a are deposited on the surface 2a of the base material 2, the magnetic metal catalyst fine particles 3b are precipitated in the base material 2, and the magnetic metal catalyst fine particles 3c are formed between the barrier film 1a and the base material 2 of the substrate 1. Precipitates at the interface. The magnetic metal catalyst fine particles 3a have nonuniform particle sizes and nonuniform distribution. Further, since the magnetic metal catalyst fine particles 3b are in the base material 2, the particle diameter is uniform. The magnetic metal catalyst fine particles 3c also have a uniform fine particle size and a uniform fine particle distribution. Since the magnetic metal catalyst fine particles 3a deposited on the surface 2a of the base material 2 are exposed on the surface, the magnetic metal catalyst fine particles 3a are easily affected by residual gas and the like. The magnetic metal catalyst fine particles 3b in the base material 2 have a uniform particle size because they are not easily affected by residual gas or the like. The magnetic metal catalyst fine particles 3c in the base material 2 have a uniform particle size and uniform distribution as a result of being hardly affected by residual gas or the like.

ついで、母材2は両性の非磁性金属であるので、酸にもアルカリにも溶解する。そのため、図2の状態で例えばアルカリ溶液である水酸化カリウム(KOH)溶液中に基板1を浸漬すると、磁性金属触媒微粒子3a−3cは溶解しないが、両性非磁性金属で構成される母材2は溶解する。この溶解と共に、母材2表面と中の磁性金属触媒微粒子3a,3bは除去されて図4(a)のように磁性金属触媒微粒子3cがバリア膜1a上に露出させられる。この場合、図4(b)で示すように、バリア膜1a上に母材2の一部が2bとして残留し、この残留した母材2の一部2bにより、磁性金属触媒微粒子3cをバリア膜1a上に補助的に固定するようになる。   Next, since the base material 2 is an amphoteric nonmagnetic metal, it dissolves in both acid and alkali. Therefore, when the substrate 1 is immersed in, for example, a potassium hydroxide (KOH) solution that is an alkaline solution in the state of FIG. 2, the magnetic metal catalyst fine particles 3a-3c are not dissolved, but the base material 2 composed of an amphoteric nonmagnetic metal. Dissolves. Along with this dissolution, the surface of the base material 2 and the magnetic metal catalyst fine particles 3a and 3b are removed, and the magnetic metal catalyst fine particles 3c are exposed on the barrier film 1a as shown in FIG. In this case, as shown in FIG. 4B, a part of the base material 2 remains as 2b on the barrier film 1a, and the magnetic metal catalyst fine particles 3c are transferred to the barrier film by the part 2b of the residual base material 2. It comes to be fixed on 1a auxiliary.

以上から、本実施の形態では、熱処理により母材2中に磁性金属触媒膜3を凝集し、これにより磁性金属触媒微粒子3a−3cを析出させ、基板1と母材2との界面に磁性金属触媒微粒子3cを粒径均一でかつ当該界面上における析出間隔均一、したがって、形成密度均一にして析出することができる。その結果、図4(a)のバリア膜1a上に粒径均一かつ形成密度均一に形成されている磁性金属触媒微粒子3cに炭素含有ガスを詳細は略するが、チャンバ内にて所定の温度および圧力条件下で接触反応させると、この磁性金属触媒微粒子3c上には図5で示すようにCNT4が直径均一でかつ成長密度均一に成長することができる。   From the above, in the present embodiment, the magnetic metal catalyst film 3 is aggregated in the base material 2 by heat treatment, thereby precipitating the magnetic metal catalyst fine particles 3a-3c, and the magnetic metal catalyst at the interface between the substrate 1 and the base material 2 The catalyst fine particles 3c can be deposited with a uniform particle size and a uniform deposition interval on the interface, and thus a uniform formation density. As a result, although the details of the carbon-containing gas are omitted in the magnetic metal catalyst fine particles 3c formed on the barrier film 1a in FIG. When a contact reaction is performed under pressure conditions, the CNTs 4 can grow on the magnetic metal catalyst fine particles 3c with a uniform diameter and a uniform growth density as shown in FIG.

1 基板
1a バリア膜
2 非触媒金属母材
2a 母材表面
2b 母材一部
3 磁性金属膜
3a,3b,3c 磁性金属触媒微粒子
4 CNT
DESCRIPTION OF SYMBOLS 1 Substrate 1a Barrier film 2 Non-catalytic metal base material 2a Base material surface 2b Part of base material 3 Magnetic metal film 3a, 3b, 3c Magnetic metal catalyst fine particles 4 CNT

Claims (5)

両性である非磁性金属からなる母材を基板上に形成するステップと、
炭素含有ガスに反応するものでアルカリに非可溶の磁性金属を上記母材上に形成するステップと、
熱処理により上記母材中に上記磁性金属を凝集させて少なくとも基板と母材との界面に磁性金属触媒微粒子を析出するステップと、
アルカリにより上記母材を除去して上記基板上に磁性金属触媒微粒子を露出させるステップと、
を含む磁性金属触媒微粒子基板の製造方法。
Forming a base material made of a non-magnetic metal that is amphoteric on a substrate;
Forming an alkali-insoluble magnetic metal that reacts with a carbon-containing gas on the base material;
Agglomerating the magnetic metal in the base material by heat treatment to deposit magnetic metal catalyst fine particles at least at the interface between the substrate and the base material;
Removing the base material with alkali to expose the magnetic metal catalyst fine particles on the substrate;
The manufacturing method of the magnetic metal catalyst fine particle substrate containing this.
請求項1に記載の方法により製造した基板。   A substrate manufactured by the method according to claim 1. 基板上に形成した両性である非磁性金属からなる母材中に炭素含有ガスに反応しかつアルカリに非可溶の磁性金属触媒微粒子が当該母材と基板との界面に析出している基板。   A substrate in which magnetic metal catalyst fine particles that react with a carbon-containing gas and are insoluble in alkali are deposited on an interface between the base material and the substrate in a base material made of an amphoteric nonmagnetic metal formed on the substrate. 請求項3に記載の基板を用いたもので、アルカリで母材が除去されて上記磁性金属触媒微粒子が基板上に露出している基板。   A substrate using the substrate according to claim 3, wherein the base metal is removed with an alkali and the magnetic metal catalyst fine particles are exposed on the substrate. 請求項3に記載の基板を用いたもので、上記磁性金属触媒微粒子が、基板上の上記母材の一部により基板上に補助的に固定された状態で露出している基板。   A substrate using the substrate according to claim 3, wherein the magnetic metal catalyst fine particles are exposed in a state of being supplementarily fixed on the substrate by a part of the base material on the substrate.
JP2009247465A 2009-10-28 2009-10-28 Method for producing magnetic metal catalyst fine particle-formed substrate Expired - Fee Related JP5590858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009247465A JP5590858B2 (en) 2009-10-28 2009-10-28 Method for producing magnetic metal catalyst fine particle-formed substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009247465A JP5590858B2 (en) 2009-10-28 2009-10-28 Method for producing magnetic metal catalyst fine particle-formed substrate

Publications (2)

Publication Number Publication Date
JP2011092828A true JP2011092828A (en) 2011-05-12
JP5590858B2 JP5590858B2 (en) 2014-09-17

Family

ID=44110359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009247465A Expired - Fee Related JP5590858B2 (en) 2009-10-28 2009-10-28 Method for producing magnetic metal catalyst fine particle-formed substrate

Country Status (1)

Country Link
JP (1) JP5590858B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015174797A (en) * 2014-03-14 2015-10-05 ヤマハ株式会社 Substrate for cnt growth, and production method of carbon nano-tube
WO2016035484A1 (en) * 2014-09-01 2016-03-10 ニッタ株式会社 Structure for holding catalyst particles for carbon nanotube production and method for producing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931757A (en) * 1995-07-10 1997-02-04 Res Dev Corp Of Japan Manufacturing of graphite fiber
JP2002066337A (en) * 2000-08-31 2002-03-05 Kawasaki Heavy Ind Ltd Catalyst provided with high heat-transfer capability and preparation process of the same catalyst
JP2002204957A (en) * 2001-01-09 2002-07-23 Hitachi Metals Ltd Catalyst body and production of the same
JP2005314206A (en) * 2003-09-02 2005-11-10 Toray Ind Inc Method of manufacturing carbon nanotube and carbon nanotube-containing composition
JP2007090129A (en) * 2005-09-26 2007-04-12 Sonac Kk Catalyst arrangement structure
JP2007117881A (en) * 2005-10-27 2007-05-17 Sonac Kk Catalyst support substrate and manufacturing method of the same
JP2009155693A (en) * 2007-12-27 2009-07-16 Sonac Kk Substrate unit
JP2009173497A (en) * 2008-01-25 2009-08-06 Mie Univ Carbon nanotube synthetic method using paracrystalline catalyst

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931757A (en) * 1995-07-10 1997-02-04 Res Dev Corp Of Japan Manufacturing of graphite fiber
JP2002066337A (en) * 2000-08-31 2002-03-05 Kawasaki Heavy Ind Ltd Catalyst provided with high heat-transfer capability and preparation process of the same catalyst
JP2002204957A (en) * 2001-01-09 2002-07-23 Hitachi Metals Ltd Catalyst body and production of the same
JP2005314206A (en) * 2003-09-02 2005-11-10 Toray Ind Inc Method of manufacturing carbon nanotube and carbon nanotube-containing composition
JP2007090129A (en) * 2005-09-26 2007-04-12 Sonac Kk Catalyst arrangement structure
JP2007117881A (en) * 2005-10-27 2007-05-17 Sonac Kk Catalyst support substrate and manufacturing method of the same
JP2009155693A (en) * 2007-12-27 2009-07-16 Sonac Kk Substrate unit
JP2009173497A (en) * 2008-01-25 2009-08-06 Mie Univ Carbon nanotube synthetic method using paracrystalline catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015174797A (en) * 2014-03-14 2015-10-05 ヤマハ株式会社 Substrate for cnt growth, and production method of carbon nano-tube
WO2016035484A1 (en) * 2014-09-01 2016-03-10 ニッタ株式会社 Structure for holding catalyst particles for carbon nanotube production and method for producing same
US10207920B2 (en) 2014-09-01 2019-02-19 Nitta Corporation Structure for holding catalyst particles for carbon nanotube production and method for producing same

Also Published As

Publication number Publication date
JP5590858B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
Zheng et al. Plasma‐assisted approaches in inorganic nanostructure fabrication
JP5816981B2 (en) Control method of graphene film growth
TWI307908B (en) Gate controlled filed emission triode and process for fabricating the same
JP2007126311A (en) Method for producing carbon fiber and catalyst substrate
KR100799570B1 (en) Fabrication method of silicon nanotube using doughnut type catalytic metal layer
JP2006507211A (en) Method for forming carbon nanotube
JP5590858B2 (en) Method for producing magnetic metal catalyst fine particle-formed substrate
Huang et al. Terminal Atom‐Controlled Etching of 2D‐TMDs
JP2006521934A (en) Method for forming carbon nanotube
JP2007182349A (en) Method for producing nanotube and quantum dot
JP2006273601A (en) Substrate for growing carbon nanotube and method for forming carbon nanotube
JP2006335591A (en) Treating method for carbon material
JP5636337B2 (en) Method for producing carbon nanotube film
JP4829634B2 (en) Method for forming catalyst and method for producing carbon film using the same
JP3908104B2 (en) Carbon nanotube wiring board and manufacturing method thereof
US7799374B2 (en) Method for manufacturing field emission cathode
JP4280221B2 (en) Method for producing metal nanoparticle composite film
CN109534328A (en) A kind of two dimension nitrogen-doped graphene and preparation method thereof
JP5783669B2 (en) Method for forming catalytic metal fine particles
KR20030085272A (en) Metal/nanomaterial heterostructure and method for the preparation thereof
RU2664525C1 (en) Method for obtaining nanocomposite
Hofmeister et al. Carbon nanotube growth from Cu–Co alloys for field emission applications
CN111356522A (en) Method for manufacturing filter formed body
JP2011240278A (en) Method for manufacturing filter
JP6212598B2 (en) Method for forming Fe fine particles for carbon fiber growth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140729

R150 Certificate of patent or registration of utility model

Ref document number: 5590858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees