JP2001167631A - Ultra-fine particle conductor paste, method of preparing the same, and conductor film and laminated ceramic electronic parts using the same - Google Patents

Ultra-fine particle conductor paste, method of preparing the same, and conductor film and laminated ceramic electronic parts using the same

Info

Publication number
JP2001167631A
JP2001167631A JP34705399A JP34705399A JP2001167631A JP 2001167631 A JP2001167631 A JP 2001167631A JP 34705399 A JP34705399 A JP 34705399A JP 34705399 A JP34705399 A JP 34705399A JP 2001167631 A JP2001167631 A JP 2001167631A
Authority
JP
Japan
Prior art keywords
ultra
paste
conductor
ultrafine
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34705399A
Other languages
Japanese (ja)
Other versions
JP3705052B2 (en
Inventor
Seirai Kuruma
声雷 車
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP34705399A priority Critical patent/JP3705052B2/en
Publication of JP2001167631A publication Critical patent/JP2001167631A/en
Application granted granted Critical
Publication of JP3705052B2 publication Critical patent/JP3705052B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a conductor paste and a method of preparing the same, which is suitable for the formation of a thin conductor film required in a laminated ceramic capacitor or a ceramic multi-layer substrate, and in which ultra- fine particle conductive metal powders are uniformly formed. SOLUTION: The ultra-fine conductor paste comprises ultra-fine particles in which all solids including conductive metal powders are 1-300 nm in diameter and the content of the conductive metal powders is 10-80% by weight. The ultra-fine particles of the conductive metal powders are produced in a solvent by a wet reduction method, and mixed and dispersed in a vehicle without being completely isolated from the solvent. Using the resulting ultra-fine particle conductor paste, a thin conductor film having a thickness of 1.0 μm or below can be formed. Laminated ceramic electronic parts can be provided which utilizes the thin conductor film as an inner conductor and has a small size and a large capacity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、積層セラミックコ
ンデンサやセラミック多層基板の内部電極等の形成に用
いられる導体ペーストに関し、特に厚さ1.0μm以下
の薄い導体の形成に適した超微粒子導体ペーストに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive paste used for forming internal electrodes of a multilayer ceramic capacitor or a multilayer ceramic substrate, and more particularly to an ultrafine conductive paste suitable for forming a thin conductor having a thickness of 1.0 μm or less. About.

【0002】[0002]

【従来の技術】エレクトロニクス分野においては、電子
回路や抵抗、コンデンサ、ICパッケージ等の部品を製
造するために、有機ビヒクル中に導電性粉末等を分散さ
せた導体ペーストや抵抗ペーストなどが一般に使用され
ている。
2. Description of the Related Art In the field of electronics, a conductor paste or a resistance paste in which conductive powder or the like is dispersed in an organic vehicle is generally used to manufacture electronic circuits, components such as resistors, capacitors, and IC packages. ing.

【0003】これらの導体ペーストや抵抗ペーストは、
金属、合金、金属酸化物等の導電性粉末を、必要に応じ
てガラス質結合剤やその他の添加剤と共に有機ビヒクル
に均一に混合分散させたものであり、これを基板上に印
刷等の方法で塗布した後、高温で焼成することによって
導体被膜や抵抗体被膜を形成する。導体ペーストに用い
られる導電性金属粉末としては、導電性、安定性、コス
トなどの面からAu、Ag、Pt、Pd等の貴金属や、
Ni、Cu、Co、Fe、Al、Mo、Wなどの卑金
属、又はこれらの合金等が使用されている。
[0003] These conductor pastes and resistance pastes are
Conductive powders such as metals, alloys, and metal oxides are uniformly mixed and dispersed in an organic vehicle together with a vitreous binder and other additives as necessary. And baking at a high temperature to form a conductor film and a resistor film. The conductive metal powder used for the conductive paste includes noble metals such as Au, Ag, Pt, and Pd in terms of conductivity, stability, cost, and the like.
Base metals such as Ni, Cu, Co, Fe, Al, Mo, and W, and alloys thereof are used.

【0004】また、積層セラミックコンデンサ(MLC
C)等の積層セラミック電子部品の製造では、未焼成の
誘電体層と導体ペースト層とを交互に複数積層し、高温
で同時焼成することによって、誘電体層に挟まれた内部
導体膜が形成される。現在のMLCCにおける誘電体層
と内部導体膜の厚さは、誘電体層が2.0〜3.0μm及
び内部導体膜が約1.5μm程度まで薄くなっていると
されている。
Further, a multilayer ceramic capacitor (MLC)
In the production of multilayer ceramic electronic components such as C), an internal conductor film sandwiched between dielectric layers is formed by alternately laminating a plurality of unfired dielectric layers and conductor paste layers and simultaneously firing them at a high temperature. Is done. It is said that the thickness of the dielectric layer and the internal conductor film in the current MLCC is as thin as 2.0 to 3.0 μm for the dielectric layer and about 1.5 μm for the internal conductor film.

【0005】しかし最近では、電気製品、情報通信機器
等の小型化及び高性能化に伴って、小型で大容量のML
CCが要請されている。小さな体積で大きな容量を達成
するためには、誘電体の誘電率を上げる一方、できる限
り誘電体層と内部導体膜を薄くし、且つ積層の数を多く
することが望ましい。そのため、誘電体層と内部導体膜
の厚さを更に薄くする必要があり、それぞれ誘電体層で
1.0μm以下及び内部導体膜で0.5μm以下の厚さを
目標に開発が進められている。
However, recently, with the miniaturization and high performance of electric appliances, information communication equipment, etc., small and large-capacity MLs have been developed.
A CC has been requested. In order to achieve a large capacitance with a small volume, it is desirable to increase the dielectric constant of the dielectric while reducing the thickness of the dielectric layer and the internal conductor film as much as possible and increasing the number of layers. Therefore, it is necessary to further reduce the thicknesses of the dielectric layer and the internal conductor film, and developments are being made with the goal of achieving a thickness of 1.0 μm or less for the dielectric layer and 0.5 μm or less for the internal conductor film. .

【0006】[0006]

【発明が解決しょうとする課題】導体ペーストを用いて
導体膜を形成する場合、一般的に、導電性金属粉末等の
固形分の粒径が目標とする導体膜の膜厚の少なくとも1
/3以下でないと、平坦で連続的な導体膜が形成できな
いとされている。しかしながら、現在の内部導体膜用の
導体ペーストでは、金属粉末として粒径0.4〜1.0μ
mの粒子を使用しているため、厚さ1.0μm以下の薄
い導体膜の形成には不向きである。
When a conductive film is formed using a conductive paste, the particle size of the solid content of the conductive metal powder or the like is generally at least one of the target film thickness of the conductive film.
It is said that a flat and continuous conductor film cannot be formed unless it is less than / 3. However, the current conductive paste for an internal conductive film has a particle diameter of 0.4 to 1.0 μm as a metal powder.
Since particles of m are used, it is not suitable for forming a thin conductor film having a thickness of 1.0 μm or less.

【0007】通常の導体ペーストの他に、金属有機化合
物溶液を用いた導体膜の形成法も開発されているが、そ
の溶液中の金属含有率が10重量%前後と低いために、
厚さ0.2μm以下の薄膜しか作ることができない。こ
のような薄膜は電気抵抗が大きくなるため、積層セラミ
ックコンデンサ(MLCC)等の積層セラミック電子部
品の内部導体膜としては使用できない。
A method for forming a conductive film using a metal organic compound solution has been developed in addition to the usual conductive paste. However, since the metal content in the solution is as low as about 10% by weight,
Only a thin film having a thickness of 0.2 μm or less can be formed. Such a thin film cannot be used as an internal conductor film of a multilayer ceramic electronic component such as a multilayer ceramic capacitor (MLCC) because of an increase in electric resistance.

【0008】また、特開平9−134891号公報に
は、アスペクト比の大きいコンタクトホールやビヤホー
ルを有する半導体基板上に薄膜を形成するにあたって、
粒径が0.001〜0.1μmの金属粒子を有機溶剤に分
散させた分散液を適用する方法が提案されている。しか
しながら、この方法は、半導体基板以外への適用ができ
ないうえ、0.5〜1.0μm前後の厚さの導体膜の形成
には不向きであるなどの欠点があるため、積層セラミッ
ク電子部品の内部導体膜の形成には用いることができな
い。
Japanese Patent Application Laid-Open No. 9-134891 discloses that a thin film is formed on a semiconductor substrate having a contact hole or a via hole having a large aspect ratio.
There has been proposed a method of applying a dispersion in which metal particles having a particle diameter of 0.001 to 0.1 μm are dispersed in an organic solvent. However, this method has drawbacks that it cannot be applied to other than a semiconductor substrate and is not suitable for forming a conductor film having a thickness of about 0.5 to 1.0 μm. It cannot be used to form a conductor film.

【0009】また、従来から、金属粉末等の粒子は、溶
液中で生成された後に溶液から取り出し、一旦乾燥して
から使用され又は市販されているが、この過程で粒子の
凝集が非常に発生しやすく、処理条件によっては粉末の
強固な凝集を引き起こす。特に粒径が0.2μm以下の
超微粒子は非常に凝集しやすいので、ペースト化するこ
とは現実的には困難であるとされ、超微粒子を凝集させ
ることなく均一に分散してペースト化する技術の開発が
望まれている。
Conventionally, particles such as metal powder are produced in a solution, taken out of the solution, dried once, and then used or sold on the market. It causes strong agglomeration of the powder depending on the processing conditions. In particular, since ultrafine particles having a particle size of 0.2 μm or less are very easily aggregated, it is said that it is practically difficult to form a paste. The development of is desired.

【0010】本発明は、このような従来の事情に鑑み、
超微粒子を均一に分散させた導体ペースト、特に積層セ
ラミックコンデンサやセラミック多層基板等の内部電極
として必要な厚さ1.0μm以下の薄い導体膜の形成に
適した超微粒子導体ぺースト、及びその製造方法を提供
することを目的とする。また、この超微粒子導体ペース
トを用いて形成した導体膜、並びに積層セラミック電子
部品を提供することを目的とする。
The present invention has been made in view of such a conventional situation,
Conductive paste in which ultrafine particles are uniformly dispersed, especially ultrafine conductive paste suitable for forming a thin conductive film having a thickness of 1.0 μm or less required for internal electrodes of multilayer ceramic capacitors, ceramic multilayer substrates, and the like, and production thereof The aim is to provide a method. It is another object of the present invention to provide a conductor film formed using the ultrafine particle conductor paste and a multilayer ceramic electronic component.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供する超微粒子導体ペーストは、導電性
金属粉末を含む全固形分の粒径が1〜300nmの超微
粒子であり、且つ該導電性金属粉末の含有量が10〜8
0重量%であることを特徴とする。
Means for Solving the Problems In order to achieve the above object, the ultrafine conductive paste provided by the present invention is ultrafine particles having a total solid content of 1 to 300 nm including conductive metal powder, and The content of the conductive metal powder is 10 to 8
0% by weight.

【0012】本発明の上記超微粒子導体ペーストの製造
方法は、湿式還元法により溶剤中で導電性金属粉末の超
微粒子を生成させた後、得られた超微粒子を該溶剤から
分離することなくビヒクルに混合分散させることを特徴
とする。
In the method for producing an ultrafine particle conductive paste according to the present invention, the ultrafine particles of a conductive metal powder are produced in a solvent by a wet reduction method, and the resulting ultrafine particles are separated from the solvent without separating the vehicle. Is mixed and dispersed.

【0013】また、本発明は、上記超微粒子導体ペース
トを用いて形成された導体膜、及び上記超微粒子導体ペ
ーストを用いて形成された導体膜を備える積層セラミッ
ク電子部品を提供するものである。
The present invention also provides a conductor film formed using the above-mentioned ultrafine particle conductor paste, and a multilayer ceramic electronic component provided with a conductor film formed using the above ultrafine particle conductor paste.

【0014】[0014]

【発明の実施の形態】本発明における導電性金属粉末
は、単一の金属粉末の他、合金粉末や混合金属粉末も含
むものであり、その成分はNi、Co、Fe、Cu、P
b、Pd、Ag、Au、Pt、W、Mo、Alの中から
選ばれた1種又は2種以上の元素からなる。また、この
導電性金属粉末は粒径1〜300nmの超微粒子であ
り、粒径が300nmを越えると厚さ1.0μm以下の
導体膜の形成が困難となる。
BEST MODE FOR CARRYING OUT THE INVENTION The conductive metal powder in the present invention includes not only a single metal powder but also an alloy powder and a mixed metal powder, and its components are Ni, Co, Fe, Cu, P
It is composed of one or more elements selected from b, Pd, Ag, Au, Pt, W, Mo, and Al. The conductive metal powder is ultrafine particles having a particle size of 1 to 300 nm. If the particle size exceeds 300 nm, it becomes difficult to form a conductive film having a thickness of 1.0 μm or less.

【0015】上記の金属超微粒子は、気相法又は液相法
の何れの方法でも合成することができるが、粒径が0.
3μmを越える巨大粒子の形成を抑えるために、粒度分
布の広い気相法よりも湿式還元法による合成、例えばポ
リオール等の多価アルコールを用いる湿式還元法が望ま
しい。ポリオールによる湿式還元法は主に非晶質金属粒
子の合成に適用されてきたが、結晶性の良い金属超微粒
子を合成する場合には、水熱法で反応や結晶成長の速度
を上げることができる。更に、マイクロ波、電場、磁
場、超音波等をかけながら合成することも、生産効率を
上げるのに有効である。この方法によれば、結晶性が良
く、高密度で且つ高分散性の金属又は合金の超微粒子が
得られ、粒径が均一であり且つそのコントロールも容易
であるという利点がある。
The above-mentioned ultrafine metal particles can be synthesized by either a gas phase method or a liquid phase method, but have a particle size of 0.1.
In order to suppress the formation of giant particles exceeding 3 μm, synthesis by a wet reduction method, for example, a wet reduction method using a polyhydric alcohol such as a polyol is preferable to a gas phase method having a wide particle size distribution. The wet reduction method using a polyol has been mainly applied to the synthesis of amorphous metal particles.However, when synthesizing ultrafine metal particles with good crystallinity, the rate of reaction and crystal growth can be increased by the hydrothermal method. it can. Furthermore, synthesis while applying a microwave, an electric field, a magnetic field, an ultrasonic wave, or the like is also effective in increasing production efficiency. According to this method, there are advantages in that ultrafine particles of a metal or alloy having good crystallinity, high density and high dispersibility can be obtained, the particle diameter is uniform, and the control thereof is easy.

【0016】湿式還元法においては、金属粉末の出発原
料化合物として、硝酸塩、塩化物、硫酸塩、燐酸塩、ア
ンモニウム錯体、カルボン酸塩、金属アルコラート、樹
脂酸塩等の1種又は2種以上の無機又は有機金属塩類が
使用される。2種以上の金属塩を混合使用すれば、合金
粉末や混合粉末を得ることができる。また、還元剤とし
ては、ポリオール、ヒドラジン又はその塩類、ポリビニ
ールピロリドン、還元糖、次亜燐酸塩等が使用される。
In the wet reduction method, one or more of nitrate, chloride, sulfate, phosphate, ammonium complex, carboxylate, metal alcoholate, resinate and the like are used as starting material compounds of the metal powder. Inorganic or organometallic salts are used. If two or more metal salts are mixed and used, an alloy powder or a mixed powder can be obtained. As the reducing agent, polyol, hydrazine or salts thereof, polyvinylpyrrolidone, reducing sugar, hypophosphite and the like are used.

【0017】一方、ビヒクルを構成する成分には特に制
限がなく、通常の厚膜ペーストのバインダーとして使用
される樹脂や溶媒を、ペーストの種類や用途に合わせて
適宜調整すればよい。例えば、溶媒としては水、アルコ
ール類、エステル類、アセトン、エーテル類、芳香族
類、炭化水素類等の有機溶剤、又はこれらの混合溶剤が
使用され、バインダーとなる樹脂はセルロース類、アク
リル類、ポリビニールブチラール類などが使用される。
ペーストを製造する際に上記金属超微粒子が容易に分散
され、しかも貯蔵中における粒子の凝集や沈降を防ぎ、
且つペーストの保存性を向上させるために、ビヒルクに
は表面活性剤や分散剤等を適宜添加することができる。
On the other hand, the components constituting the vehicle are not particularly limited, and a resin or a solvent used as a binder of a usual thick film paste may be appropriately adjusted according to the kind and use of the paste. For example, water, alcohols, esters, acetone, ethers, aromatics, organic solvents such as hydrocarbons, or a mixed solvent thereof are used as the solvent, and a resin serving as a binder is a cellulose, an acrylic, For example, polyvinyl butyral is used.
When manufacturing the paste, the metal ultrafine particles are easily dispersed, and also prevent aggregation and sedimentation of the particles during storage,
In order to improve the storage stability of the paste, a surfactant, a dispersant, and the like can be appropriately added to bihirk.

【0018】積層セラミックコンデンサ(MLCC)や
多層セラミック基板の内部導体膜、或いは同時焼成用の
外部導体膜等に使用する場合には、セラミック層と同時
焼成を行う際に金属粉末の焼結開始がセラミックスに比
べて早すぎると、焼結収縮挙動の不一致によりデラミネ
ーションやクラックのような構造欠陥、基板の反り等が
発生しやすい。これを防ぐために、超微粒子導体ペース
トには、誘電体の超微粒子又はスラリーや、適切な酸化
物超微粒子又は高温で酸化物を生成する化合物を、共剤
として混入することができる。これにより金属超微粒子
の焼結が抑制され、その焼結開始が遅れるので、デラミ
ネーションやクラック等の積層構造欠陥を防止すること
ができる。尚、共剤の粒径は金属超微粒子と同等又はそ
れより更に細かいものが好ましい。
When used for the internal conductor film of a multilayer ceramic capacitor (MLCC) or a multilayer ceramic substrate, or the external conductor film for co-firing, the sintering of the metal powder is started when co-firing with the ceramic layer. If it is too early in comparison with ceramics, structural defects such as delamination and cracks, substrate warpage, and the like are likely to occur due to inconsistency in sintering shrinkage behavior. In order to prevent this, the ultrafine conductor paste may be mixed with ultrafine particles or slurry of a dielectric material, appropriate oxide ultrafine particles or a compound capable of generating an oxide at a high temperature as a co-agent. As a result, sintering of the ultrafine metal particles is suppressed, and the start of sintering is delayed, so that it is possible to prevent laminated structure defects such as delamination and cracks. The particle size of the co-agent is preferably equal to or smaller than the ultrafine metal particles.

【0019】本発明の超微粒子導体ペーストでは、上記
超微粒子の導電性金属粉末を含めて全ての固形分の粒径
が1〜300nmであり、且つ超微粒子の導電性金属粉
末の含有量を10〜80重量%の範囲とする。固形分の
粒径が300nmを越えると厚さ1.0μm以下の導体
膜の形成が困難となり、また導電性金属粉末の含有量が
10重量%未満では良好な導電性の導体膜が形成でき
ず、逆に80重量%を越えるとペーストの印刷性が悪く
なり、薄くて連続な塗膜の作成が難しいからである。
In the ultrafine conductive paste of the present invention, the particle size of all solids including the ultrafine conductive metal powder is 1 to 300 nm, and the content of the ultrafine conductive metal powder is 10%. To 80% by weight. If the solid content exceeds 300 nm, it becomes difficult to form a conductive film having a thickness of 1.0 μm or less, and if the content of the conductive metal powder is less than 10% by weight, a good conductive film cannot be formed. On the other hand, when the content exceeds 80% by weight, the printability of the paste deteriorates, and it is difficult to form a thin and continuous coating film.

【0020】尚、本発明の超微粒子導体ペーストは、上
記固形分の粒径と導電性金属粉末の含有量以外に、組成
に対して特に制限はない。従って、必要に応じて、他の
導電性粉末や共剤、ガラスフリット等の無機添加剤、分
散剤、その他の有機添加剤を含有させてもよい。
The composition of the ultrafine particle conductor paste of the present invention is not particularly limited except for the above-mentioned particle diameter of the solid content and the content of the conductive metal powder. Therefore, if necessary, other conductive powders, co-agents, inorganic additives such as glass frit, dispersants, and other organic additives may be contained.

【0021】本発明の超微粒子導体ペーストを調整する
には、上記超微粒子からなる導電性金属粉末とビヒル
ク、及びその他の添加成分を、ペーストの種類や用途に
合わせて通常の方法で分散混合すればよい。分散混合の
仕方としては、ロール混練、撹拌混合、ディーズミル、
ボールミル等の手段が使用される。これらの方法によっ
て分散混合する際に、最終的にペースト中の固形分の粒
径を1〜300nmの範囲に調整する。
In order to prepare the ultra-fine particle conductor paste of the present invention, the conductive metal powder composed of the above-mentioned ultra-fine particles, bihirk, and other additive components are dispersed and mixed in a usual manner according to the type and use of the paste. I just need. Roll mixing, stirring and mixing, D's mill,
A means such as a ball mill is used. At the time of dispersion mixing by these methods, the particle size of the solid content in the paste is finally adjusted to a range of 1 to 300 nm.

【0022】特に好ましい超微粒子導体ペーストの調整
方法として、湿式還元法により溶剤中で金属超微粒子を
合成した後、溶剤から金属超微粒子を完全に分離するこ
となく、金属超微粒子を溶剤と共にビヒルクに添加して
混合分散させる。この方法により、金属超微粒子が凝集
を起こすことなく、均一に分散させることができる。実
際には、蒸発、遠心分離、濾過、沈降等の手段によって
大部分の溶剤を除去した後、残りの溶剤と金属超微粒子
を、共剤や添加剤等と一緒にビヒクル中に混合する。湿
式還元法に用いる溶剤は、金属超微粒子から完全に分離
せずにビヒクルに混合してペースト化されるため、用い
るビヒクルに応じて水や有機溶媒から適宜選択する。
As a particularly preferred method for preparing the ultrafine particle conductive paste, after synthesizing the metal ultrafine particles in a solvent by a wet reduction method, the metal ultrafine particles are mixed with the solvent without completely separating the metal ultrafine particles from the solvent. Add and mix and disperse. According to this method, the ultrafine metal particles can be uniformly dispersed without causing aggregation. In practice, after most of the solvent is removed by means of evaporation, centrifugation, filtration, sedimentation or the like, the remaining solvent and the ultrafine metal particles are mixed in a vehicle together with a co-agent or an additive. The solvent used in the wet reduction method is mixed with the vehicle without being completely separated from the ultrafine metal particles to form a paste. Therefore, the solvent is appropriately selected from water and an organic solvent according to the vehicle used.

【0023】本発明の超微粒子導体ペーストによる導体
膜の形成は、ペーストの粘度等のレオロジー特性は上記
成分の配合によって調節できるので、常法に従って塗布
又は描画した後、焼成すればよい。例えば、通常の厚膜
ペーストと同様に印刷等の方式で使用される一方、フィ
ラーの固形分は超微粒子であるから薄膜の形成も可能で
あり、スプレー、ディップコーティング、スピンコーテ
ィング、あるいはマイクロディスペンサーによる直接描
画も可能である。
In the formation of a conductor film using the ultrafine particle conductor paste of the present invention, the rheological properties such as the viscosity of the paste can be adjusted by the blending of the above-mentioned components. For example, it is used in a method such as printing like a normal thick film paste, but the solid content of the filler is ultra fine particles, so it is possible to form a thin film, spray, dip coating, spin coating, or micro dispenser Direct drawing is also possible.

【0024】このように本発明の超微粒子導体ペースト
を用いることによって、厚さ1.0μm以下、更には0.
5μm程度の薄い導体膜を欠陥なく容易に形成すること
ができる。従って、この薄い導体膜を内部電極とする積
層セラミック電子部品を製造することができ、特に小型
で大容量の積層セラミックコンデンサ(MLCC)の開
発及び生産に適している。
As described above, by using the ultrafine particle conductor paste of the present invention, the thickness is 1.0 μm or less, and more preferably 0.1 μm.
A thin conductor film of about 5 μm can be easily formed without defects. Therefore, it is possible to manufacture a multilayer ceramic electronic component using this thin conductor film as an internal electrode, and it is particularly suitable for the development and production of a small and large-capacity multilayer ceramic capacitor (MLCC).

【0025】[0025]

【実施例】実施例1 水酸化ニッケルとエチレングリコールを1:10の重量
比で混合し、10時間還流させて、粒径が約20nmの
Ni超微粒子のゾルを合成した。続いて、このゾルを加
熱してエチレングリコールを半分程度に濃縮させた後、
予めエチルセルロースをターピネオールに溶かして作っ
たビヒクルに添加し、均一に撹拌混合することによっ
て、金属含有量が50重量%及び樹脂含有量が3重量%
の導体ペーストを作製した。
【Example】Example 1  1:10 weight of nickel hydroxide and ethylene glycol
And then refluxed for 10 hours to give a particle size of about 20 nm.
A sol of Ni ultrafine particles was synthesized. Then, add this sol
After heating to concentrate the ethylene glycol to about half,
Dissolve ethyl cellulose in terpineol in advance and make
To the vehicle, and mix uniformly with stirring.
The metal content is 50% by weight and the resin content is 3% by weight
Was prepared.

【0026】この導体ペーストは黒茶色を呈し、そのN
i超微粒子の粒径は約20nmであり、常温では6ケ月
以上放置しても分離が見られなかった。また、この導体
ペーストを用いて、スクリーン印刷によりアルミナ基板
上にパターンを形成し、乾燥した後、水素を含む還元性
雰囲気にて1000℃で焼成することによって、銀色の
金属光沢を持つ厚さが0.9μmの連続したニッケル導
体膜が得られた。
This conductor paste has a black-brown color and its N
The particle size of the i ultrafine particles was about 20 nm, and no separation was observed at room temperature for 6 months or more. Also, using this conductive paste, a pattern is formed on an alumina substrate by screen printing, dried, and then baked at 1000 ° C. in a reducing atmosphere containing hydrogen, so that a thickness having silver metallic luster is obtained. A continuous nickel conductor film of 0.9 μm was obtained.

【0027】実施例2 硝酸金とポリビニールピロリドン(PVP)を1:10
の重量比で無水エタノールに溶解させ、この混合溶液を
12時間還流させることにより、粒径が約30nmのA
u超微粒子のゾルを合成した。続いて、このゾルをエタ
ノールで繰り返し洗浄した後、加熱してエタノールを半
分程度に濃縮させた後、予めエチルセルロースをターピ
ネオールに溶かして作ったビヒクルに添加し、均一に撹
拌混合することにより、金属含有量が50重量%及び樹
脂含有量が3重量%の導体ペーストを作製した。
[0027]Example 2  1:10 gold nitrate and polyvinylpyrrolidone (PVP)
And dissolved in absolute ethanol at a weight ratio of
By refluxing for 12 hours, A having a particle size of about 30 nm
A sol of u ultrafine particles was synthesized. Then, add this sol
After repeated washing with ethanol, heat to remove half of the ethanol.
After concentrating the mixture to about
Add to the vehicle made by dissolving in neol and stir evenly.
By stirring and mixing, the metal content is 50% by weight and the
A conductor paste having a fat content of 3% by weight was prepared.

【0028】この導体ペーストはワインレッド色を呈
し、そのAu超微粒子の粒径は約30nmであり、常温
では6ケ月以上放置しても分離は見られなかった。ま
た、この導体ペーストを用いて、スクリーン印刷により
アルミナ基板上にパターンを形成し、乾燥した後、空気
中にて1000℃で焼成した結果、厚さが0.8μmの
連続した金導体膜が得られた。
This conductive paste had a wine red color, and the ultrafine particles of Au had a particle size of about 30 nm. No separation was observed even at room temperature for 6 months or more. Using this conductor paste, a pattern was formed on an alumina substrate by screen printing, dried, and baked at 1000 ° C. in air. As a result, a continuous gold conductor film having a thickness of 0.8 μm was obtained. Was done.

【0029】実施例3 気相法により合成された平均粒径が0.1μmのPd超
微粒子を用い、これを分散剤と共にターピネオールに添
加し、超音波をかけながら撹拌して均一に分散させた。
この分散液を、予めエチルセルロースをターピネオール
に溶かして作ったビヒクル、共剤である粒径0.1μm
のチタン酸バリウム超微粒子と共に、三本ロールで混練
して、金属含有量が50重量%及び樹脂含有量が3重量
%の導体ペーストを作製した。
[0029]Example 3  Exceeding Pd with average particle size of 0.1 μm synthesized by gas phase method
Using fine particles, add this to terpineol with a dispersant
Then, the mixture was stirred and dispersed uniformly while applying ultrasonic waves.
Ethyl cellulose was previously added to terpineol
Vehicle made by dissolving in water, particle size 0.1μm as co-agent
With three rolls together with barium titanate ultrafine particles
The metal content is 50% by weight and the resin content is 3% by weight.
% Conductor paste was prepared.

【0030】この導体ペーストは黒色を呈し、そのPd
超微粒子を含む全固形分の粒径は約300nm以下であ
った。この導体ペーストを用いて、スクリーン印刷によ
りアルミナ基板上にパターンを形成し、乾燥した後、空
気中にて1200℃で焼成した結果、厚さが1.0μm
の連続したパラジウム導体膜が得られた。
This conductor paste has a black color and its Pd
The particle size of the total solid content including the ultrafine particles was about 300 nm or less. Using this conductor paste, a pattern was formed on an alumina substrate by screen printing, dried, and then baked at 1200 ° C. in air, resulting in a thickness of 1.0 μm.
Was obtained.

【0031】比較例1 市販されている平均粒径0.6μmのNi粉末と約10
重量%の共剤の入った導体ペーストを、スクリーン印刷
によりアルミナ基板上にウェット状態の厚さが10μm
のパターンを形成し、乾燥した後、還元性雰囲気中にて
1000℃で焼成した結果、厚さが1.8μmの連続し
た銀色のニッケル導体膜が得られた。
[0031]Comparative Example 1  A commercially available Ni powder having an average particle size of 0.6 μm and about 10
Screen printing of conductor paste containing weight percent co-agent
10 μm wet thickness on alumina substrate
After forming the pattern and drying, in a reducing atmosphere
As a result of firing at 1000 ° C, a continuous 1.8 μm thick
A silver nickel conductor film was obtained.

【0032】更に、これとは別に、薄塗りしてウエット
状態の厚さが5μmのパターンを形成して、上記と同様
に乾燥及び焼成したところ、得られた導体膜は島状の不
連続なものとなり、導電性は得られなかった。
Further, separately from this, a pattern having a thickness of 5 μm in a wet state is formed by thin coating and dried and fired in the same manner as described above. And no conductivity was obtained.

【0033】比較例2 上記実施例1と同様にして水酸化ニッケルとエチレング
リコールからNi超微粒子のゾルを合成した後、溶剤を
完全に脱除してNi乾燥粉末を得た。この乾燥粉末は黒
茶色を呈した硬いケーキ状であり、電子顕微鏡で観察し
たところ各粒子が強固な凝集体を形成していた。これを
粉砕してペースト化を試みたが、粒子が分散できず、ロ
ール上でニッケルのフレークが多量に形成された。
[0033]Comparative Example 2  In the same manner as in Example 1 above, nickel hydroxide and ethylene
After synthesizing sol of Ni ultra-fine particles from recall, solvent was removed
It was completely removed to obtain a Ni dry powder. This dry powder is black
It is a hard cake with a brown color.
As a result, each particle had formed a strong aggregate. this
Tried to make a paste by pulverizing, but the particles could not be dispersed.
A large amount of nickel flakes were formed on the tool.

【0034】[0034]

【発明の効果】本発明によれば、粒径1〜300nmの
超微粒子からなる導電性金属粉末を均一に混合分散させ
た超微粒子導体ペーストを提供することができ、特にポ
リオール法を含む湿式還元法により金属超微粒子を合成
した後、溶剤を完全に分離せずにペースト化することに
よって、超微粒子を凝集させずに均一且つ安定に分散さ
せた超微粒子導体ペーストとすることができる。
According to the present invention, it is possible to provide an ultra-fine particle conductive paste in which conductive metal powder composed of ultra-fine particles having a particle size of 1 to 300 nm is uniformly mixed and dispersed. By synthesizing metal ultrafine particles by the method and then forming a paste without completely separating the solvent, it is possible to obtain an ultrafine particle conductor paste in which ultrafine particles are uniformly and stably dispersed without aggregation.

【0035】本発明の超微粒子導体ペーストは、全固形
分の粒径が1〜300nmの範囲に調整してあるので、
厚さ1.0μm以下の導体膜の形成に適しており、特に
小型で大容量の積層セラミックコンデンサ(MLCC)
等の積層セラミック電子部品の導体膜の形成に好適であ
る。
In the ultrafine particle conductor paste of the present invention, the particle diameter of the total solid content is adjusted in the range of 1 to 300 nm.
Suitable for forming a conductor film with a thickness of 1.0 μm or less, especially a small and large-capacity multilayer ceramic capacitor (MLCC)
And the like are suitable for forming a conductive film of a multilayer ceramic electronic component.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年2月4日(2000.2.4)[Submission date] February 4, 2000 (200.2.4)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Correction target item name] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 導電性金属粉末を含む全固形分の粒径が
1〜300nmの超微粒子であり、且つ該導電性金属粉
末の含有量が10〜80重量%であることを特徴とする
超微粒子導体ペースト。
An ultra-fine particle having a total solid content including a conductive metal powder of 1 to 300 nm in particle diameter, and a content of the conductive metal powder of 10 to 80% by weight. Fine particle conductor paste.
【請求項2】 前記超微粒子の導電性金属粉末がNi、
Co、Fe、Cu、Pb、Ag、Au、Pt、W、M
o、Alの何れか一種、又はこれらの元素の合金である
ことを特徴とする、請求項1に記載の超微粒子導体ペー
スト。
2. The method according to claim 1, wherein the conductive metal powder of the ultrafine particles is Ni,
Co, Fe, Cu, Pb, Ag, Au, Pt, W, M
2. The ultrafine particle conductor paste according to claim 1, wherein the paste is any one of o and Al, or an alloy of these elements.
【請求項3】 湿式還元法により溶剤中で導電性金属粉
末の超微粒子を生成させた後、得られた超微粒子を該溶
剤から分離することなくビヒクルに混合分散させること
を特徴とする超微粒子導体ペーストの製造方法。
3. Ultra-fine particles, wherein ultra-fine particles of a conductive metal powder are produced in a solvent by a wet reduction method, and the obtained ultra-fine particles are mixed and dispersed in a vehicle without being separated from the solvent. Manufacturing method of conductor paste.
【請求項4】 請求項1又は請求項2の超微粒子導体ペ
ーストを用いて形成された導体膜。
4. A conductive film formed by using the ultrafine particle conductive paste according to claim 1.
【請求項5】 請求項1又は請求項2の超微粒子導体ペ
ーストを用いて形成された導体膜を備える積層セラミッ
ク電子部品。
5. A multilayer ceramic electronic component comprising a conductive film formed using the ultrafine particle conductive paste according to claim 1.
JP34705399A 1999-12-07 1999-12-07 Method for producing ultrafine conductor paste Expired - Lifetime JP3705052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34705399A JP3705052B2 (en) 1999-12-07 1999-12-07 Method for producing ultrafine conductor paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34705399A JP3705052B2 (en) 1999-12-07 1999-12-07 Method for producing ultrafine conductor paste

Publications (2)

Publication Number Publication Date
JP2001167631A true JP2001167631A (en) 2001-06-22
JP3705052B2 JP3705052B2 (en) 2005-10-12

Family

ID=18387610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34705399A Expired - Lifetime JP3705052B2 (en) 1999-12-07 1999-12-07 Method for producing ultrafine conductor paste

Country Status (1)

Country Link
JP (1) JP3705052B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003141948A (en) * 2001-11-06 2003-05-16 Sumitomo Electric Ind Ltd Forming method of micro metal structural body and ceramic package, multi-chip substrate, and substrate for plasma display panel using the same
JP2008517159A (en) * 2004-10-21 2008-05-22 コミツサリア タ レネルジー アトミーク Nanostructure coating and coating method
JP2009064603A (en) * 2007-09-05 2009-03-26 Iwatani Internatl Corp Conductive paste for mlcc
US7595974B2 (en) * 2003-11-21 2009-09-29 Tdk Corporation Layered ceramic capacitor
JP2010153362A (en) * 2008-11-27 2010-07-08 Taiyo Ink Mfg Ltd Photosensitive conductive paste, electrode formed using it, plasma display panel, and method for manufacturing photosensitive conductive paste
JP2018137076A (en) * 2017-02-21 2018-08-30 株式会社村田製作所 Method for producing conductive paste
CN115233022A (en) * 2022-09-23 2022-10-25 西安稀有金属材料研究院有限公司 Ultrahigh-hardness nano-structure molybdenum-aluminum alloy and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003141948A (en) * 2001-11-06 2003-05-16 Sumitomo Electric Ind Ltd Forming method of micro metal structural body and ceramic package, multi-chip substrate, and substrate for plasma display panel using the same
US7595974B2 (en) * 2003-11-21 2009-09-29 Tdk Corporation Layered ceramic capacitor
JP2008517159A (en) * 2004-10-21 2008-05-22 コミツサリア タ レネルジー アトミーク Nanostructure coating and coating method
JP2009064603A (en) * 2007-09-05 2009-03-26 Iwatani Internatl Corp Conductive paste for mlcc
JP2010153362A (en) * 2008-11-27 2010-07-08 Taiyo Ink Mfg Ltd Photosensitive conductive paste, electrode formed using it, plasma display panel, and method for manufacturing photosensitive conductive paste
JP2018137076A (en) * 2017-02-21 2018-08-30 株式会社村田製作所 Method for producing conductive paste
CN115233022A (en) * 2022-09-23 2022-10-25 西安稀有金属材料研究院有限公司 Ultrahigh-hardness nano-structure molybdenum-aluminum alloy and preparation method thereof

Also Published As

Publication number Publication date
JP3705052B2 (en) 2005-10-12

Similar Documents

Publication Publication Date Title
US5082811A (en) Ceramic dielectric compositions and method for enhancing dielectric properties
JP2012174797A (en) Conductive paste for photogravure used for multilayer ceramic capacitor internal electrode
JP2001023852A (en) Laminated ceramic electronic component
JPH03142808A (en) Thick film conductor composite
EP1184881B1 (en) Conductive paste
JP2010067418A (en) Conductive paste and method of manufacturing the same
JP2001114569A (en) Ceramic slurry composition, ceramic green sheet and production of multilayer ceramic electronic part
JPH0387091A (en) Alumina multilayer wiring board having high dielectric layer
JP2006299385A (en) Platinum powder, production method therefor and platinum paste for piezoelectric ceramic material
JP3705052B2 (en) Method for producing ultrafine conductor paste
JP3783678B2 (en) Method for producing raw material powder for dielectric ceramic, dielectric ceramic and multilayer ceramic capacitor
JP5206246B2 (en) Nickel powder and method for producing the same
JP5630363B2 (en) Conductive paste and method for producing the same
JPH06168620A (en) Conductive paste composition
JP3527822B2 (en) Conductive paste
JP3474170B2 (en) Nickel powder and conductive paste
JP4601438B2 (en) Green sheet manufacturing method
US3798516A (en) Ceramic capacitors with noble electrodes alloy
JPH07197103A (en) Method for coating surface of metallic powder with metallic compound
JP4562282B2 (en) Manufacturing method of ceramic circuit board
JP6799931B2 (en) Nickel fine particle-containing composition and its manufacturing method, internal electrodes and laminated ceramic capacitors
JP3132106B2 (en) Manufacturing method of non-reducing dielectric porcelain
JP2002294310A (en) Method for producing copper powder, copper powder, electrically conductive paste and ceramic electronic parts
JP5779489B2 (en) Surface-treated nickel ultrafine powder and method for producing the same
KR100568282B1 (en) Additive for Dieletric Composition of Multi-Layer Ceramic Capacitor, Method of Manufacturing Thereof and Method of Manufacturing Dieletric Composition Slurry of Multi-Layer Ceramic Capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050718

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3705052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

EXPY Cancellation because of completion of term