JP2009017706A - モータ制御装置とモータ制御方法 - Google Patents

モータ制御装置とモータ制御方法 Download PDF

Info

Publication number
JP2009017706A
JP2009017706A JP2007177669A JP2007177669A JP2009017706A JP 2009017706 A JP2009017706 A JP 2009017706A JP 2007177669 A JP2007177669 A JP 2007177669A JP 2007177669 A JP2007177669 A JP 2007177669A JP 2009017706 A JP2009017706 A JP 2009017706A
Authority
JP
Japan
Prior art keywords
motor
phase
control
axis
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007177669A
Other languages
English (en)
Inventor
Noriko Matsuo
紀子 松尾
Hiroyuki Inagaki
浩之 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2007177669A priority Critical patent/JP2009017706A/ja
Publication of JP2009017706A publication Critical patent/JP2009017706A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

【課題】3相モータのパラメータが変動した際であっても、安定した電流制御を行うことが可能なモータ制御装置を提供する。
【解決手段】3相モータ10の回転子に配設された永久磁石が発生する磁界の方向であるd軸及び前記d軸に直交するq軸の電圧指令値を3相各相の3相電圧指令値に変換し、3相電圧指令値に基づいた制御により3相モータ10を駆動するモータ駆動装置100は、3相各相のモータ電流をPWM制御によって制御するPWM制御部6と、所期の規範モデルに追従させるときの等価入力と切り替え面に拘束させるための制御入力とを決定し、PWM制御の周期と同期してスライディングモード制御を行うスライディングモード制御部5と、を備える。
【選択図】図1

Description

本発明は、3相モータの駆動時に安定した電流制御を行うことが可能なモータ制御装置とそのようなモータ制御方法に関する。
従来から3相モータの駆動制御において、モータ電流を、モータのロータが有する永久磁石が発生する磁界の方向であるd軸及び当該d軸に直交するq軸のベクトル成分に座標変換を行って3相モータの回転制御を行っているものがある(例えば、非特許文献1)。非特許文献1に類する3相モータの駆動制御では、座標変換された結果に基づいてPI制御を行うことで回転制御の安定化を図っている。
しかしながら、PI制御では、制御応答の時間に問題があり、目標値に制御するには、一定の時間(時定数)が必要となる。この時定数が大きいと、外乱があった時の応答性能が悪くなるため、外乱に対しすばやく反応できず、すぐには元の目標値には戻せないといった問題がある。したがって、3相モータの回転制御にPI制御を用いると、例えば、3相モータの諸特性(パラメータ)が変動した際に、電流制御が安定しないといった問題がある。
杉本英彦編「ACサーボシステムの理論と設計の実際 基礎からソフトウェアサーボまで」総合電子出版、p.86−92
本発明の目的は、上記問題を鑑み、3相モータのパラメータが変動した際であっても、安定した電流制御を行うことが可能なモータ制御装置を提供することにある。
上記目的を達成するための本発明に係るモータ制御装置の特徴は、3相モータの回転子に配設された永久磁石が発生する磁界の方向であるd軸及び前記d軸に直交するq軸の電圧指令値を3相各相の3相電圧指令値に変換し、前記3相電圧指令値に基づいた制御により前記3相モータを駆動し、3相各相のモータ電流をPWM制御によって制御するPWM制御部と、所期の規範モデルに追従させるときの等価入力と切り替え面に拘束させるための制御入力とを決定し、前記PWM制御の周期と同期して前記3相各相のモータ電流をスライディングモード制御によって制御するスライディングモード制御部と、を備える点にある。
このような構成とすれば、例えば制御対象の出力が変動する場合であっても、制御対象の出力に対し一定の許容度を持つ特性のスライディングモード制御部が入力信号であるモータ電流を迅速に決定することができる。詳細には、等価入力からの切り替え時の不感帯を決定し、切り替え面と不感帯とを含めた中でPWM制御を行うことにより、モータ電流の瞬時値が常に規範モデル近傍に拘束させることができる。したがって、3相各相に対して安定した電流制御を行うことが可能となる。
また、前記モータ制御装置は、前記PWM制御に用いられるPWM制御信号の立ち上がりが、前記PWM制御部から一定周期で出力される信号に応じて決定されると共に、前記PWM制御信号の立ち下がりが、前記スライディングモード制御部から出力される信号に応じて決定されると好適である。
このような構成とすれば、PWM制御部が行うPWM制御信号の立ち上がりと、スライディングモード制御部が行うPWM制御信号の立ち下がりと、を同期させてPWM制御を行うことができる。したがって、PWM制御による周期とスライディングモード制御による周期とが非同期となることがないため、安定した電流制御を行うことが可能となる。
更に、前記モータ制御装置は、3相モータの回転子に配設された永久磁石が発生する磁界の方向であるd軸及び前記d軸に直交するq軸の電圧指令値を3相各相の3相電圧指令値に変換し、前記3相電圧指令値に基づいたPWM制御により前記3相モータを駆動するモータ駆動装置のためのモータ制御方法も権利範囲としており、そのモータ制御方法は、3相各相のモータ電流をPWM制御により制御し、所期の規範モデルに追従させる入力となる等価入力と切り替え面に拘束させるための制御入力とを決定し、前記PWM制御の周期と同期してスライディングモード制御を行うものである。
このように構成されたモータ制御装置のためのモータ制御方法も上述した本発明の対象としてのモータ制御装置と比べて、実質的な特徴構成には相違はなく、上述した作用効果を得ることが可能である。
以下、本発明の実施例を図面に基づいて説明する。図1は、本発明のモータ制御装置100の構成を示す概略図である。本モータ制御装置100は、目標電流設定部1、積分制御部2、第1の2相/3相変換部3、第2の2相/3相変換部4、スライディングモード制御部5、PWM制御部6、インバータ7、3相/2相変換部8、電流算出部9、3相モータ10を備えている(詳細は後述する)。
図2は、PWM制御部6とインバータ7と3相モータ10との構成を示した図である。3相モータ10は、図示はしないが、永久磁石を備えるロータと、当該ロータに回転力を与えるための磁界を発生させるステータとを備える。このステータは、U相、V相、W相の3相のステータコイル10u、10v、10wを備える。各ステータコイルの一端は、電気的に中性な中性点で共通に接続され、Y結線される。各ステータコイルの他端は、インバータ7に接続される。
インバータ7は、図2に示されるように、電源20の正電圧側に接続されたハイサイドのトランジスタQ1、Q3、Q5と、電源20の負電圧側に接続されたローサイドのトランジスタQ2、Q4、Q6と、の合計6つのトランジスタQ1〜Q6で構成される。例えば、トランジスタQ1及びトランジスタQ4のみを同時にオンさせると、電源20から第1電源ライン21、トランジスタQ1、ステータコイル10v、ステータコイル10w、トランジスタQ4を介して第2電源ライン22に電流が流れる。一方、トランジスタQ3及びトランジスタQ2のみを同時にオンさせると、電源20から第1電源ライン21、トランジスタQ3、ステータコイル10w、ステータコイル10v、トランジスタQ2を介して第2電源ライン22に電流が流れる。
このトランジスタQ1及びトランジスタQ4のみをオンさせた場合と、トランジスタQ3及びトランジスタQ2のみをオンさせた場合とでは、ステータコイル10v及びステータコイル10wに流れる電流の方向が異なる。そのため、各ステータコイルには電流の流れる方向に応じた電磁力が働き、当該電磁力とロータが備える永久磁石との間で引力及び斥力が発生することとなる。したがって、トランジスタQ1〜Q6の中から選択されたハイサイドのトランジスタとローサイドのトランジスタとで形成される上下対トランジスタを順次オンさせることにより、ロータが回転力を得ることができる。
尚、トランジスタQ1〜Q6には、コレクタ端子にカソード端子が、またエミッタ端子にアノード端子が接続されるように夫々ダイオードD1〜D6が配設されている。ここで、各ステータコイルには、通電中にエネルギーが蓄えられるが、これらのダイオードD1〜D6は各ステータコイルの通電を停止した際に該エネルギーに起因して発生する逆起電力によって周辺部品に悪影響を及ぼさないようにするために配設されるものである。このようなトランジスタQ1〜Q6に対する一連の制御は、PWM制御部6により行われる(詳細は後述する)。
図1に戻り、目標電流設定部1は、3相モータ10を回転するために必要な総トルクから、目標電流の設定を行う。この目標電流設定部1が設定した目標電流は、積分制御部2や第2の2相/3相変換部4に伝達されるが、積分制御部2には3相/2相変換部8からの出力も帰還信号として伝達される。
ここで、本モータ制御装置100は、モータ電流iu、iv、iwを、3相モータ10のロータが有する永久磁石が発生する磁界の方向であるd軸及び当該d軸に直交するq軸のベクトル成分Id及びIqに座標変換を行って、3相モータ10の回転制御を行う。図3は、この座標変換の原理を示す図である。図3に示す3相モータ10では、2極の永久磁石mを有するロータ10rを備え、ロータ10rの回転角と電気角θとが一致する。図3(a)は3相交流電流波形と電気角θとの関係を示した図であり、図3(b)は図3(a)の時刻t1におけるロータ10rとステータ10sとの位置関係及び座標変換前後の電流ベクトルを示す図である。尚、図3(b)においては、ステータ10sのU相の磁極位置を基準として、ロータ10rの磁極位置となる電気角θが示されている。
図3(b)に示されるように、永久磁石mが発生する磁界の方向をd軸とし、当該d軸に直交する方向をq軸とする。図3(a)に示すように、ロータ10rの磁極位置に応じて、ステータコイル10u、10v、10wに3相交流電流iu、iv、iwを流すことにより、トルクが発生する。図3(a)の時刻t1での電気角θにおける電機子電流の総和を示すベクトルia(Ia)は、図3(a)よりW相電流iwが零であるため、U相電流iuとV相電流ivとのベクトル和となる。この電気角θにおける電流ベクトルiaをd軸及びq軸に対して分解すると、d軸電流Idとq軸電流Iqとが得られる。このように、3相のモータ電流iu、iv、iwは、d軸電流Idとq軸電流Iqとに座標変換される。
ここで、特に永久磁石埋め込み型の同期モータでは、ステータコイル10u、10v、10wから見たインダクタンスが、ロータ10rとの関係、即ち磁極位置との関係で変化する。磁極の方向であるd軸方向では、永久磁石が持つ透磁率の大きさの逆数に比例した磁気抵抗を持つために磁路が妨げられてしまう。一方、q軸方向では、透磁率が大きいケイ素鋼などの磁性体を通るため、磁気抵抗の値は永久磁石に比べると著しく小さくなり、磁路が妨げられにくくなる。そのため、q軸インダクタンスLqは、d軸インダクタンスLdよりも大きい値となる。ステータコイル10u、10v、10wから見てd軸及びq軸は磁極位置との関係で変化するので、ステータコイル10u、10v、10wから見たインダクタンスが変化することになる。
したがって、永久磁石によるマグネットトルク(主トルク)に加えて、q軸インダクタンスLqとd軸インダクタンスLdとの差によるリラクタンストルクも発生する。表面磁石型の同期モータなど、リラクタンストルクを積極的に利用しない場合には、Id=0とする制御を行うと効率が良い。しかし、永久磁石埋め込み型の同期モータなどでリラクタンストルクも利用する場合には、Id≠0とする制御を行う方が効率が良くなる。永久磁石埋め込み型の同期モータでは、図4で示されるd軸電流Idとq軸電流Iqとの電流位相角βにより最高効率を出す動作点が変わる((1)式参照)。
Figure 2009017706
3相モータ10の総合トルクTは、Pn:極対数、ψa:電機子の鎖交磁束、ia:電機子電流、Ld:d軸インダクタンス、Lq:q軸インダクタンス、β:電流位相角とすると、(2)式に示すトルク方程式よって表される。
Figure 2009017706
(2)式において、中括弧内の第1項がマグネットトルクを示し、第2項がリラクタンストルクを示す。また、図4から、下記(3)〜(5)式であることが明らかであるから、(2)式のトルク方程式は、下記(6)式のように表すこともできる。
Figure 2009017706
Figure 2009017706
Figure 2009017706
Figure 2009017706
このように、電機子電流Iaはd軸電流Idとq軸電流Iqとを含んでいる。従って、(2)式及び(6)式に示すトルク方程式は、鎖交磁束と、d軸及びq軸のインダクタンスと、d軸及びq軸の電流とを用いて3相モータ10のトルクを表す式であるということができる。
図1に戻り、積分制御部2は、目標電流設定部1により設定された目標電流と、電流算出部9が検出した3相モータ10に流れるモータ電流に基づいて、3相/2相変換部8が座標変換を行うことにより求められたd軸電流Id及びq軸電流Iqとから、d軸電流指令値Idr、q軸電流指令値Iqrを演算する。例えば、上記(2)式に示すトルク方程式は、電機子電流Iaの式に変形できる。積分制御部2は、目標トルクや他のパラメータを代入して変形後のトルク方程式を解き、位相角βによってベクトル分解することによって電流指令値Idr、Iqrを算出することが可能である。又は、(6)式から電流指令値Idr、Iqrを算出することも当然に可能である。更に、積分制御部2は、目標電流設定部1により算出された電流指令値Idr、Iqrから、電圧方程式に基づいて、d軸の電圧指令値Vdr及びq軸の電圧指令値Vqrの算出を行う。d軸の電圧Vd及びq軸の電圧Vqを表す電圧方程式は、ψa:電機子の鎖交磁束、ω:角速度、Id:d軸電流、Iq:q軸電流、Ld:d軸インダクタンス、Lq:q軸インダクタンス、Ra:電機子抵抗、p:微分演算子として、以下の(7)式のように表される。
Figure 2009017706
(7)式は、鎖交磁束と、d軸及びq軸のインダクタンスを含む3相モータ10のステータコイルのインピーダンスと、d軸及びq軸の電流とを用いて3相モータ10を駆動する電圧を表す電圧方程式となっていることが明らかである。積分制御部2は、(7)式に示される電圧方程式に電流指令値Idr、Iqrや、他のパラメータを代入することによって、d軸電圧Vd、q軸電圧Vqを算出する。算出されたd軸電圧Vd及びq軸電圧Vqは、d軸電圧指令値Vdr及びq軸電圧指令値Vqrとして出力される。
第1の2相/3相変換部3は、積分制御部2によって算出されたd軸の電圧指令値Vdr及びq軸の電圧指令値Vqrを上述の座標変換とは逆の変換を行うことにより、3相電圧指令値vu、vv、vwに変換する。また、第2の2相/3相変換部4も、目標電流設定部1により算出された目標電流を上述の座標変換とは逆の変換を行うことにより、3相電圧指令値vu、vv、vwに変換する。この逆の変換は、図3及び図4を用いて上述した座標変換の逆変換であるため、変換方法についての詳細な説明は省略する。
第1の2相/3相変換部3及び第2の2相/3相変換部4により求められた演算結果は、電流算出部9が検出した3相モータ10に流れる電流と共に、スライディングモード制御部5に入力される。スライディングモード制御部5では、入力された演算結果により各相における等価入力を決定し、当該等価入力からPWM制御の周期と同期させたチャタリング周波数を考慮した不感帯を決定する。そして、スライディングモード制御における切り替え面を中心とした不感帯から3相モータの制御が逸脱した場合に各相のPWM制御の出力の切り替えを行う。
この切り替えに関して、図5を用いて簡単に説明する。図5のAで示した破線(以下、A線とする)が、本モータ制御装置100としての所期の制御を示すライン、即ちσu(xs)=0となる。モータ制御装置100は、目標電流設定部1等のモータ制御部100が備える各機能部により演算された必要なトルクを得るために、A線に沿うようにモータ制御を行おうとするが(例えば、a点)、特に3相モータ10が有する諸特性により当該制御が影響を受けて、所期の制御(A線上における制御)から逸脱することがある(例えば、b点)。
ここで、スライディングモード制御では、予め、所定の幅Δσuをもつ不感帯が定められている。図5においては、A線から互いにΔσuの幅をもつB線とC線とで決定される不感帯が定められる。尚、当該B線及びC線は、夫々、不感帯を示すMAX閾値及びMIN閾値となる切り替え面である。上述のようにA線上のモータ制御から逸脱し、C線上で示されるモータ制御になってしまうと、スライディングモード制御部5は、モータ制御をB線で示される不感帯内におさまるように制御を行う(例えば、c点)。
モータ制御を行うにつれ、再び、モータ制御の結果がC線に沿うような制御になると(例えば、d点)、スライディングモード制御部5は、不感帯内におさまるように(例えば、e点)、B線に沿うようなモータ制御を行う。このようにスライディングモード制御部5は、所定の幅Δσuをもつ不感帯内で所期のモータ制御が可能となるように3相モータ10のPWM制御を行うが、特にスライディングモード制御によりPWM制御信号の立ち下がりの制御を行う。
上述のようにスライディングモード制御は不感帯内でモータ制御を行うが、不感帯を逸脱しようとした際に、切り替え面において制御を切り替えるために、一定周期となるように制御を行うことができない。しかしながら、モータ制御においては、一定周期で3相モータ10を回転させたほうが安定したトルクを得ることができる。したがって、PWM制御部6はPWM制御信号の立ち上がりの制御を行っている。このように、本モータ制御装置100は、PWM制御部6がPWM制御信号の立ち上がりを制御し、スライディングモード制御部5がPWM制御信号の立ち下がりの制御を行うため、3相モータ10の諸特性に変動が生じても、安定したモータ制御を行うことが可能となる。
次に、本モータ制御装置100が行うPWM制御信号の生成に関して、図を用いて説明する。図6は、実施例を説明するためのシステムブロック図である。図6に示されるように入力vから第一出力x1が得られ、第一出力x1から第二出力x2、即ち出力iが得られる。ここで、L:d軸及びq軸のインダクタンス平均値、r:1相あたりのコイル抵抗、τ:回路及びセンサの時定数である。
図6のシステムブロック図より、本システムは(8)式のように表すことができる。
Figure 2009017706
ここで、スライディングモード制御における切り替え面を示す切り替え関数Sは、理想的な応答となるように(9)式のように決定する。
Figure 2009017706
スライディングモード制御における等価入力は、(10)式のように表される。
Figure 2009017706
切り替え周波数が有限であるとき、システムの状態は切り替え面には到達することはできないが、その切り替え面の近傍には到達可能である。その場合における極限値ulimをumin及びumaxとすると、(11)式のようになる。
Figure 2009017706
ここで、umax:バッテリ電圧Vb、umin:ダイオードの順方向電圧Vfである。
一方、理想的なスライディングモード制御である場合には、u=uequとすると(12)式のようになる。
Figure 2009017706
よって、(11)及び(12)式より、
Figure 2009017706
が求まる。
σu(x)の偏差を図7に示す。図7に示されるように、切り替え遅れによりσu(x)は不感帯±Δσuの中で変動する。ulim=umaxの場合、これに相当した時間は(14)式のようになる。
Figure 2009017706
この時間制御中は、uequは定数と仮定する。また、ulim=uminの場合、これに相当する時間は(15)式のようになる。
Figure 2009017706
一方、チャタリング周波数fcは(16)式のようになる。
Figure 2009017706
(14)〜(16)式より、(17)式が得られる。
Figure 2009017706
よって、不感帯Δσuは(18)式のように表される。
Figure 2009017706
この不感帯Δσuを用いてスライディングモード制御部5が行うPWM制御信号の切り替えタイミングの設定についてフローチャートを用いて説明する。図8は、U相における切り替えタイミングの演算について示したものである。尚、V相及びW相についても、同様に演算することが可能であるため、説明は省略する。
まず、電流算出部9が算出した3相モータ10のコイル電流がスライディングモード制御部5に入力される(ステップ#01)。また、目標電流設定部1により設定された目標電流が第1の2相/3相変換部3により変換された3相指示電流もスライディングモード制御部5に入力される(ステップ#02)。スライディングモード制御部5は、これらのコイル電流と指示電流とから偏差の算出を行う(ステップ#03)。
続いて、スライディングモード制御における等価入力、不感帯、切り替え面の演算が行われる(ステップ#04〜#06)。ここで、ステップ#06におけるKIは、偏差を補償するための積分制御部2におけるゲインを示す。そして、演算された不感帯と切り替え面とから制御入力が演算される(ステップ#07)。ステップ#07において求められた制御入力が、0より大きい場合には(ステップ#08:Yes)、設定値Aを1に設定する(ステップ#09)。一方、求められた制御入力が0以下の場合には(ステップ#08:No)、設定値Aは0と設定される(ステップ#10)。
また、ステップ#06において求められた切り替え面が0より大きい場合には(ステップ#11:Yes)、設定値Bを1に設定する(ステップ#12)。一方、切り替え面が0以下の場合には(ステップ#11:No)、設定値Bを0に設定する(ステップ13)。このようにも設定された設定値A及び設定値Bを用いて、スライディングモード制御部5が有する演算部から出力される出力Zの論理演算が行われる(ステップ#14)((19)式参照)。
Figure 2009017706
ここで、Z(n−1):前回の出力Zである。(19)式で求められたZがPWM制御信号の立ち下がりのトリガとなり、出力Zが1となった場合にトリガ信号が出力される。
図8で示されたフローチャートにより求められた出力Z、コイル電流、指示電流、d軸及びq軸インダクタンス平均値を用いて、図9に示される論理回路からPWM制御信号が演算される。具体的には、図9で示された論理回路において、パルスジェネレータ5aは振幅10、周波数10kHz、Duty50%のパルスが出力される。したがって、パルスジェネレータ5aからは、100μ秒毎に1が出力される。これにより、PWM制御部の周期を10kHzとしておくと、スライディングモード制御部5から出力される信号とPWM制御部6とのPWM制御信号とを同期させることが可能となる。
上述において、τ:5×10-6〔sec〕、L=3.27×10-4〔H〕、r=0.15〔Ω〕、Vb=200〔V〕、Vf=2.8〔V〕、KI=3.9478×107とした場合における3相電流応答の例を図10に示す。図10に示されるように本モータ制御装置100によれば、安定した電流制御を行うことが可能である。
〔その他の実施形態〕
上記実施形態において、PWM制御信号の周波数を10kHzとして説明したが、これに限らない。PWM制御部6から出力されるPWM制御信号の立ち上がり周期に合わせて、スライディングモード制御部5が備えるパルスジェネレータ5aから発生される信号の周期を同期すれば、本発明に係るスライディングモード制御により安定した電流制御によって3相モータ10を制御することは当然に可能である。
モータ制御装置の構成を模式的に示す図 PWM制御部とインバータと3相モータとの構成を示す図 座標変換の原理を示す図 電機子電流の位相角について説明するベクトル図 スライディングモード制御の軌跡を示す図 システムブロック図の一例を示す図 スライディングモード制御の軌跡の偏差を示す図 スライディングモード制御の出力を演算するためのフローチャート スライディングモード制御部の出力を演算する論理回路 3相電流応答の一例を示す図
符号の説明
1:目標電流設定部
2:積分制御部
3:第1の2相/3相変換部
4:第2の2相/3相変換部
5:スライディングモード制御部
6:PWM制御部
7:インバータ
8:3相/2相変換部
9:電流算出部
10:3相モータ

Claims (3)

  1. 3相モータの回転子に配設された永久磁石が発生する磁界の方向であるd軸及び前記d軸に直交するq軸の電圧指令値を3相各相の3相電圧指令値に変換し、前記3相電圧指令値に基づいた制御により前記3相モータを駆動するモータ駆動装置において、
    3相各相のモータ電流をPWM制御によって制御するPWM制御部と、
    所期の規範モデルに追従させるときの等価入力と切り替え面に拘束させるための制御入力とを決定し、前記PWM制御の周期と同期して前記3相各相のモータ電流をスライディングモード制御によって制御するスライディングモード制御部と、を備えるモータ制御装置。
  2. 前記PWM制御に用いられるPWM制御信号の立ち上がりが、前記PWM制御部から一定周期で出力される信号に応じて決定されると共に、
    前記PWM制御信号の立ち下がりが、前記スライディングモード制御部から出力される信号に応じて決定される請求項1に記載のモータ制御装置。
  3. 3相モータの回転子に配設された永久磁石が発生する磁界の方向であるd軸及び前記d軸に直交するq軸の電圧指令値を3相各相の3相電圧指令値に変換し、前記3相電圧指令値に基づいたPWM制御により前記3相モータを駆動するモータ駆動装置のためのモータ制御方法において、
    3相各相のモータ電流をPWM制御により制御し、
    所期の規範モデルに追従させる入力となる等価入力と切り替え面に拘束させるための制御入力とを決定し、前記PWM制御の周期と同期してスライディングモード制御を行う、モータ制御方法。
JP2007177669A 2007-07-05 2007-07-05 モータ制御装置とモータ制御方法 Pending JP2009017706A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007177669A JP2009017706A (ja) 2007-07-05 2007-07-05 モータ制御装置とモータ制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007177669A JP2009017706A (ja) 2007-07-05 2007-07-05 モータ制御装置とモータ制御方法

Publications (1)

Publication Number Publication Date
JP2009017706A true JP2009017706A (ja) 2009-01-22

Family

ID=40357920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007177669A Pending JP2009017706A (ja) 2007-07-05 2007-07-05 モータ制御装置とモータ制御方法

Country Status (1)

Country Link
JP (1) JP2009017706A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103023412A (zh) * 2012-11-18 2013-04-03 空军工程大学 一种基于动态终端滑模变结构的永磁容错电机暂态控制方法
CN103236814A (zh) * 2013-04-27 2013-08-07 南京工程学院 基于分数阶积分滑模的永磁同步电机速度控制方法及装置
CN104639001A (zh) * 2015-01-22 2015-05-20 广州市香港科大***研究院 融合滑模控制和分数阶神经网络控制的伺服电机控制方法
CN106849790A (zh) * 2017-01-05 2017-06-13 江苏大学 一种不匹配受扰圆筒容错永磁直线电机***的新型滑模控制方法
CN106849791A (zh) * 2017-01-05 2017-06-13 江苏大学 一种抑制永磁直线电机不匹配扰动的基于内模的滑模速度控制方法
CN109617482A (zh) * 2018-12-31 2019-04-12 西安科技大学 永磁同步电机的l2滑模控制方法
CN110022105A (zh) * 2019-04-25 2019-07-16 西安理工大学 基于fosmc的永磁同步电机预测电流控制方法及***
CN111293942A (zh) * 2020-03-07 2020-06-16 西南交通大学 一种车网***多工况运行下的性能改善方法
CN113206623A (zh) * 2021-05-06 2021-08-03 大连理工大学 基于快速积分终端滑模及干扰估计的永磁同步电机有限时间调速控制方法
WO2022100371A1 (zh) * 2020-11-12 2022-05-19 湘潭大学 一种新型双滑模观测器spmsm无传感器复合控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08249067A (ja) * 1995-03-14 1996-09-27 Yaskawa Electric Corp 電動機の位置制御装置
JP2731815B2 (ja) * 1989-03-11 1998-03-25 サンケン電気株式会社 モータ制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2731815B2 (ja) * 1989-03-11 1998-03-25 サンケン電気株式会社 モータ制御方法
JPH08249067A (ja) * 1995-03-14 1996-09-27 Yaskawa Electric Corp 電動機の位置制御装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103023412A (zh) * 2012-11-18 2013-04-03 空军工程大学 一种基于动态终端滑模变结构的永磁容错电机暂态控制方法
CN103236814A (zh) * 2013-04-27 2013-08-07 南京工程学院 基于分数阶积分滑模的永磁同步电机速度控制方法及装置
CN104639001A (zh) * 2015-01-22 2015-05-20 广州市香港科大***研究院 融合滑模控制和分数阶神经网络控制的伺服电机控制方法
CN106849791B (zh) * 2017-01-05 2019-06-28 江苏大学 一种抑制永磁直线电机不匹配扰动的滑模速度控制方法
CN106849791A (zh) * 2017-01-05 2017-06-13 江苏大学 一种抑制永磁直线电机不匹配扰动的基于内模的滑模速度控制方法
CN106849790A (zh) * 2017-01-05 2017-06-13 江苏大学 一种不匹配受扰圆筒容错永磁直线电机***的新型滑模控制方法
CN106849790B (zh) * 2017-01-05 2019-06-28 江苏大学 一种圆筒容错永磁直线电机***的新型滑模控制方法
CN109617482A (zh) * 2018-12-31 2019-04-12 西安科技大学 永磁同步电机的l2滑模控制方法
CN109617482B (zh) * 2018-12-31 2022-07-08 重庆虬龙科技有限公司 永磁同步电机的l2滑模控制方法
CN110022105A (zh) * 2019-04-25 2019-07-16 西安理工大学 基于fosmc的永磁同步电机预测电流控制方法及***
CN111293942A (zh) * 2020-03-07 2020-06-16 西南交通大学 一种车网***多工况运行下的性能改善方法
CN111293942B (zh) * 2020-03-07 2023-05-05 西南交通大学 一种车网***多工况运行下的性能改善方法
WO2022100371A1 (zh) * 2020-11-12 2022-05-19 湘潭大学 一种新型双滑模观测器spmsm无传感器复合控制方法
CN113206623A (zh) * 2021-05-06 2021-08-03 大连理工大学 基于快速积分终端滑模及干扰估计的永磁同步电机有限时间调速控制方法
CN113206623B (zh) * 2021-05-06 2022-12-20 大连理工大学 基于快速积分终端滑模及干扰估计的永磁同步电机有限时间调速控制方法

Similar Documents

Publication Publication Date Title
JP2009017706A (ja) モータ制御装置とモータ制御方法
JP4754417B2 (ja) 永久磁石型回転電機の制御装置
JP4895703B2 (ja) モータ制御装置
JP5155344B2 (ja) 電動機の磁極位置推定装置
JP4746667B2 (ja) 電動機の相電流推定装置および電動機の磁極位置推定装置
JP4906369B2 (ja) 同期モータの制御方法および装置
Bharatkar et al. Dual-mode switching technique for reduction of commutation torque ripple of brushless dc motor
US7576511B2 (en) Motor control device and motor control method
JP5365837B2 (ja) モータ制御装置
CN109983689B (zh) 逆变器控制装置及电动机驱动***
JP5509167B2 (ja) 同期電動機の制御システム
JP2010148324A (ja) モータ制御装置
JPWO2020196719A1 (ja) 回転電機制御システム
JP2010093931A (ja) 永久磁石型同期モータの制御装置及び制御方法
JP2010088262A (ja) 電動機の相電流推定装置
JP2010088260A (ja) 電動機の相電流推定装置
JP4675766B2 (ja) 電動機の制御装置
JP6731700B2 (ja) 電動モータの制御装置
JP5365838B2 (ja) モータ制御装置
JP4486195B2 (ja) 位置センサレスモータ制御装置
JP2010130752A (ja) 電動機の相電流推定装置
JP5186352B2 (ja) 電動機の磁極位置推定装置
JP4727405B2 (ja) 電動機の制御装置
JP4628942B2 (ja) 電動機の制御装置
JP4722689B2 (ja) 電動機の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120816