JP2006037145A - Silver nano-grain and producing method therefor, and dispersion body containing silver nano-grain - Google Patents

Silver nano-grain and producing method therefor, and dispersion body containing silver nano-grain Download PDF

Info

Publication number
JP2006037145A
JP2006037145A JP2004216425A JP2004216425A JP2006037145A JP 2006037145 A JP2006037145 A JP 2006037145A JP 2004216425 A JP2004216425 A JP 2004216425A JP 2004216425 A JP2004216425 A JP 2004216425A JP 2006037145 A JP2006037145 A JP 2006037145A
Authority
JP
Japan
Prior art keywords
silver
nanoparticles
grain
toluene
amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004216425A
Other languages
Japanese (ja)
Other versions
JP4484043B2 (en
Inventor
Yasuo Kakihara
康男 柿原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2004216425A priority Critical patent/JP4484043B2/en
Publication of JP2006037145A publication Critical patent/JP2006037145A/en
Application granted granted Critical
Publication of JP4484043B2 publication Critical patent/JP4484043B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an Ag nano-grain which is easily dissolved into organic solvents, such as toluene, and can be used for low temperature sintering electric conductive paste, or the like, because a dispersant is spattered at ≤300°C, by using a more simple method without needing the control of heating condition for a long time, such as a heat decomposition method. <P>SOLUTION: The Ag nano-grain sticking a carboxyl silver amine-complex can be obtained by dispersing the carboxyl silver into the toluene, and after forming the silver amine-complex by adding the amine having ≤300°C boiling point into the toluene, its reducing reaction is developed by adding a reducing agent. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、トルエンなどの有機溶媒に易溶であり、また、分散剤が300℃以下で飛散するので低温焼結が可能な導電性ペーストなどに用いることができるAgナノ粒子を提供するとともに、該Agナノ粒子を熱分解法のように長時間にわたり加熱条件を制御することなく、より簡便な手法を用いて製造する方法を提供する。   The present invention provides Ag nanoparticles that are easily soluble in an organic solvent such as toluene, and that can be used for conductive pastes that can be sintered at low temperature because the dispersing agent scatters at 300 ° C. or lower. Provided is a method for producing the Ag nanoparticles using a simpler method without controlling the heating conditions over a long period of time unlike the thermal decomposition method.

近年、各種電子機器の小型化、高性能化及び軽量化に伴い、電子機器部品に用いられる材料について特性改善が要求されている。   In recent years, along with the reduction in size, performance, and weight of various electronic devices, there is a demand for improvement in characteristics of materials used for electronic device parts.

現在、特性改善のために期待されている材料のひとつとして銀超微粒子が挙げられる。銀超微粒子は低温焼結性導電性ペーストへの応用が期待されている。また、単分散であり均一な形状を有した銀超微粒子は、高性能顔料、2次元あるいは3次元構造を有するナノクリスタル材料に用いることができる。   At present, ultrafine silver particles are one of the materials expected to improve the characteristics. Silver ultrafine particles are expected to be applied to low-temperature sinterable conductive pastes. Moreover, the monodispersed silver ultrafine particles having a uniform shape can be used for a high performance pigment, a nanocrystal material having a two-dimensional or three-dimensional structure.

そこで、微粒子でありながら、単分散であり、形状がそろった銀超微粒子が要求されている。   Therefore, there is a demand for ultrafine silver particles that are monodispersed and have a uniform shape, even though they are fine particles.

従来、カルボン酸銀を熱分解することで単分散性のAgナノ粒子を合成する方法が知られている(特許文献1、非特許文献1)。   Conventionally, a method of synthesizing monodisperse Ag nanoparticles by thermally decomposing silver carboxylate is known (Patent Document 1, Non-Patent Document 1).

また、銀キレート錯体スラリーを用いて湿式還元法を用いた製造法が知られている(特許文献2)。   Moreover, the manufacturing method using the wet reduction method using the silver chelate complex slurry is known (patent document 2).

特開平10−183207号公報Japanese Patent Laid-Open No. 10-183207 特開2004−100013号公報JP 2004-100013 A 第13回マイクロエレクトロニクスシンポジウム論文集、社団法人エレクトロニクス実装学会、2003年10月、p.100−103Proceedings of 13th Microelectronics Symposium, Japan Institute of Electronics Packaging, October 2003, p. 100-103

微粒子でありながら、単分散であり、形状がそろった銀超微粒子の簡便な合成方法は、現在最も要求されているところであるが、満足な方法は未だ見出されていない。   A simple method for synthesizing silver ultrafine particles that are monodispersed and uniform in shape even though they are fine particles is currently most demanded, but no satisfactory method has yet been found.

即ち、特許文献1及び非特許文献1記載の方法では、加熱の条件を極めて厳密に制御するとともに、長時間の反応時間が必要であり、また、Agナノ粒子のトルエンへの分散性は良好とは言い難いものであった。これはもともと原料のカルボン酸銀がトルエンなどの有機溶媒に難溶で、そのカルボン酸銀が分散剤の役目を果たしているためAgナノ粒子の分散性が悪くなると予想される。   That is, in the methods described in Patent Document 1 and Non-Patent Document 1, heating conditions are extremely strictly controlled, a long reaction time is required, and the dispersibility of Ag nanoparticles in toluene is good. It was hard to say. Originally, the raw material silver carboxylate is hardly soluble in an organic solvent such as toluene, and since the silver carboxylate serves as a dispersant, the dispersibility of the Ag nanoparticles is expected to deteriorate.

また、特許文献2に記載の方法では、ナノ粒子を得ることが困難であり、分散性に優れるとは言い難い。   Moreover, in the method described in Patent Document 2, it is difficult to obtain nanoparticles, and it is difficult to say that the dispersibility is excellent.

そこで、本発明においては、トルエンなどの有機溶媒に易溶であって、分散剤が300℃以下で飛散するので低温焼結が可能な導電性ペーストなどに用いることができるAgナノ粒子を簡便な手法を用いて製造する方法を提供することを技術的課題とする。   Therefore, in the present invention, Ag nanoparticles that are easily soluble in an organic solvent such as toluene and the dispersing agent scatters at 300 ° C. or lower and can be used for conductive pastes that can be sintered at a low temperature are easily used. It is a technical problem to provide a method of manufacturing using a technique.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、カルボン酸銀アミン錯体が付着したAgナノ粒子である。   That is, the present invention is Ag nanoparticles to which a silver carboxylate amine complex is attached.

また、本発明は、カルボン酸銀をトルエン中に分散させ、該トルエン中に300℃以下の沸点を持つアミンを添加して銀のアミン錯体を形成させた後、還元剤を添加して還元反応を行うことを特徴とする前記Agナノ粒子の製造法である。   In the present invention, silver carboxylate is dispersed in toluene, an amine having a boiling point of 300 ° C. or lower is added to the toluene to form a silver amine complex, and then a reducing agent is added to reduce the reaction. It is the manufacturing method of the said Ag nanoparticle characterized by performing.

本発明に係るAgナノ粒子は、トルエンなどの有機溶媒に易溶であり、また、分散剤が300℃以下で飛散するので、低温焼結が可能な導電性ペーストなどに好適に用いることができる。   The Ag nanoparticles according to the present invention are easily soluble in an organic solvent such as toluene, and the dispersing agent scatters at 300 ° C. or lower, and therefore can be suitably used for conductive pastes that can be sintered at low temperature. .

また、本発明に係るAgナノ粒子の製造法は、Agナノ粒子を熱分解法のように長時間にわたり加熱条件を制御する必要が無いので、簡便なAgナノ粒子の製造法として好適である。   Further, the method for producing Ag nanoparticles according to the present invention is suitable as a simple method for producing Ag nanoparticles because it is not necessary to control the heating conditions for a long time unlike the thermal decomposition method of Ag nanoparticles.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

本発明に係るAgナノ粒子は、カルボン酸銀アミン錯体が存在することによって、分散性に優れるものである。   The Ag nanoparticles according to the present invention are excellent in dispersibility due to the presence of a silver carboxylate amine complex.

本発明に係るAgナノ粒子におけるカルボン酸銀アミン錯体の存在量は、3〜20wt%が好ましい。3wt%未満の場合には分散安定性が悪くなり、20wt%を越える場合には溶液の粘度があがってしまう問題が生じる。より好ましくは4〜15wt%である。なお、カルボン酸銀アミン錯体の存在量はTG(熱量分析)により測定した。   The abundance of the carboxylic acid silver amine complex in the Ag nanoparticles according to the present invention is preferably 3 to 20 wt%. When the amount is less than 3 wt%, the dispersion stability is deteriorated, and when it exceeds 20 wt%, there is a problem that the viscosity of the solution increases. More preferably, it is 4-15 wt%. The abundance of the silver carboxylate amine complex was measured by TG (calorimetric analysis).

本発明に係るAgナノ粒子の平均粒子径は1〜20nmが好ましい。本発明の製造法において、1nm未満のAgナノ粒子を工業的に得ることは困難である。20nmを越える場合には、導電性ペーストなどに応用した場合に低温焼結性に問題があり実用的でない。好ましくは1〜15nmであり、より好ましくは1〜10nmである。   The average particle diameter of the Ag nanoparticles according to the present invention is preferably 1 to 20 nm. In the production method of the present invention, it is difficult to industrially obtain Ag nanoparticles of less than 1 nm. When the thickness exceeds 20 nm, there is a problem in low-temperature sinterability when applied to a conductive paste or the like, which is not practical. Preferably it is 1-15 nm, More preferably, it is 1-10 nm.

本発明に係るAgナノ粒子の分散体におけるAgナノ粒子の濃度は、用途に応じて種々変化させればよいが、有機溶媒中にAgナノ粒子を10〜80wt%含有することが好ましい。また、有機溶媒としては、Agナノ粒子が安定して分散するものであれば限定されるものではなく、例えば、トルエン、テルピネオール等である。   The concentration of Ag nanoparticles in the dispersion of Ag nanoparticles according to the present invention may be variously changed depending on the use, but it is preferable to contain 10-80 wt% of Ag nanoparticles in the organic solvent. The organic solvent is not limited as long as Ag nanoparticles are stably dispersed, and examples thereof include toluene and terpineol.

次に、本発明に係るAgナノ粒子の製造法について述べる。   Next, a method for producing Ag nanoparticles according to the present invention will be described.

本発明に係るAgナノ粒子は、カルボン酸銀をトルエン中に分散させ、該トルエン中に300℃以下の沸点を持つアミンを添加することにより、カルボン酸銀のアミン錯体を形成させることでトルエン中に溶解させ、室温下でアスコルビン酸や蟻酸などの還元剤を滴下し還元反応によって製造することができる。   The Ag nanoparticles according to the present invention are prepared by dispersing silver carboxylate in toluene and adding an amine having a boiling point of 300 ° C. or less to the toluene to form an amine complex of silver carboxylate in toluene. And a reducing agent such as ascorbic acid or formic acid is added dropwise at room temperature and can be produced by a reduction reaction.

本発明においてはカルボン酸銀アミン錯体がAgナノ粒子の原料であるとともに分散剤の役割を担っている。銀へ還元された後、カルボン酸とアミンは溶液中へ遊離し、一部は塩になっていると考えられる。これらは精製時に取り除くことが可能である。還元された銀の粒子の周りにはカルボン酸銀アミン錯体が存在し、分散性を高めていると考えている。   In the present invention, the silver carboxylate amine complex is a raw material for Ag nanoparticles and plays the role of a dispersant. After reduction to silver, the carboxylic acid and amine are thought to be released into solution and partially salted. These can be removed during purification. It is believed that a silver carboxylate amine complex is present around the reduced silver particles, increasing dispersibility.

本発明におけるカルボン酸銀は既知の方法で調製できる。例えば、ラウリン酸ナトリウムなどのカルボン酸ナトリウムを蒸留水に溶解し、別に用意した当量の硝酸銀水溶液を滴下することにより、容易にカルボン酸銀が調製される。得られた白色粉末のカルボン酸銀をろ過し、水洗して余分なカルボン酸ナトリウムと硝酸銀を取り除き、乾燥して得られる。   The silver carboxylate in the present invention can be prepared by a known method. For example, silver carboxylate is easily prepared by dissolving sodium carboxylate such as sodium laurate in distilled water and dropping a separately prepared equivalent amount of silver nitrate aqueous solution. The obtained white powdered silver carboxylate is filtered, washed with water to remove excess sodium carboxylate and silver nitrate, and dried.

カルボン酸としては、カルボン酸が飽和、不飽和、環状のアルキル基を有しており、アルキル基の中に芳香族環を含んでいてもよい。また、カルボン酸のカルボキシル基は、一価であっても多価カルボン酸であっても良い。   As the carboxylic acid, the carboxylic acid has a saturated, unsaturated, or cyclic alkyl group, and the alkyl group may contain an aromatic ring. The carboxyl group of the carboxylic acid may be monovalent or polyvalent carboxylic acid.

用いるカルボン酸銀の種類は溶液への分散安定性、分解温度、生成Ag粒子の粒子径を考慮して選択すればよく、特に限定される物ではない。カルボン酸銀は1種類で用いても、数種類の混合物を用いても良い。   The type of silver carboxylate to be used may be selected in consideration of the dispersion stability in the solution, the decomposition temperature, and the particle diameter of the produced Ag particles, and is not particularly limited. One kind of silver carboxylate may be used, or several kinds of mixtures may be used.

用いるアミンは沸点が300℃以下であればよく、飽和、不飽和、環状のアルキル基を有し、また、芳香族環を含んでいても良い。また、2級若しくは3級のアミンを用いてもよいが、Agイオンに配位し易い1級のアミンがより好ましい。例えば、ブチルアミン、オクチルアミン又はラウリルアミン等のアルキルアミンが好ましい。アミンは1種類で用いても数種類の混合物を用いても良い。   The amine to be used has a boiling point of 300 ° C. or lower, has a saturated, unsaturated, cyclic alkyl group, and may contain an aromatic ring. Secondary or tertiary amines may be used, but primary amines that are easily coordinated to Ag ions are more preferred. For example, alkylamines such as butylamine, octylamine or laurylamine are preferred. One type of amine may be used, or several types of mixtures may be used.

還元剤としては、蟻酸、アスコルビン酸を用いることが好ましい。その他の還元剤では水素化ホウ素ナトリウムやヒドラジンが挙げられるが、水素化ホウ素ナトリウムでは導電性ペーストなどに用いる場合にナトリウムやホウ素の残存が懸念され、ヒドラジンでは単分散な粒子を得ることが難しい。   As the reducing agent, formic acid and ascorbic acid are preferably used. Other reducing agents include sodium borohydride and hydrazine, but sodium borohydride is feared to remain sodium and boron when used in a conductive paste and the like, and it is difficult to obtain monodisperse particles with hydrazine.

本発明におけるカルボン酸銀に対するアミンの添加比率は2〜3当量が好ましい。2当量未満では錯体の形成が不十分となる。3当量を越える場合は未反応分が多くなるため好ましくない。   The addition ratio of amine to silver carboxylate in the present invention is preferably 2 to 3 equivalents. If it is less than 2 equivalents, complex formation will be insufficient. If it exceeds 3 equivalents, the amount of unreacted components increases, which is not preferable.

本発明におけるカルボン酸銀に対する還元剤の添加比率は、カルボン酸銀を還元するのに十分な量があれば良いが、好ましくはカルボン酸銀:還元剤の比がモル比で1:1〜1:2が好ましい。還元剤の量が前記範囲より多量の場合には、効果が飽和するため必要以上に添加する意味がない。   The addition ratio of the reducing agent to the silver carboxylate in the present invention is sufficient if it is sufficient to reduce the silver carboxylate, but preferably the silver carboxylate: reducing agent ratio is 1: 1 to 1 in molar ratio. : 2 is preferred. When the amount of the reducing agent is larger than the above range, the effect is saturated, so there is no meaning to add more than necessary.

得られたAgナノ粒子分散溶液中にアセトンやメタノールを加え凝集沈殿させる。上澄み溶液をデカンテーションにより取り除く。再びアセトンやメタノールを加え凝集物を洗浄し、デカンテーションにより上澄み溶液を取り除く。この作業を数回繰り返した後、得られた凝集物をトルエンなどの再分散溶媒に再分散させる。   Acetone and methanol are added to the obtained Ag nanoparticle dispersion solution to cause aggregation precipitation. The supernatant solution is removed by decantation. Acetone and methanol are added again to wash the aggregates, and the supernatant solution is removed by decantation. After repeating this operation several times, the obtained aggregate is redispersed in a redispersion solvent such as toluene.

生成したAgナノ粒子のトルエン中での分散性は非常に良好である。これはAgナノ粒子表面にカルボン酸銀アミン錯体が付着し分散剤として機能していることによるものと考えられる。   The dispersibility of the produced Ag nanoparticles in toluene is very good. This is considered to be due to the fact that the silver carboxylate amine complex adheres to the Ag nanoparticle surface and functions as a dispersant.

<作用>
本発明によって得られたAgナノ粒子に付着している分散剤は、以下の測定結果より推測される。Agナノ粒子のTG(熱量分析)結果では、還元後に生成するカルボン酸の沸点より低い温度から重量の減量が始まっている。例えばラウリン酸銀の場合、ラウリン酸の沸点は225℃/100mmHgであるが、重量減量の終点は237℃/760mmHgである。これはカルボン酸銀が加熱分解し炭酸ガスと炭化水素になったためと考えられ、分散剤がカルボン酸ではなくカルボン酸銀化合物であると推測される。
また、有機溶媒への分散性が良好なことから、カルボン酸銀化合物がカルボン酸Agのアミン錯体になってAgナノ粒子の分散性を向上させていると推測される。アミン錯体のアミンがいずれの温度域で飛散しているかは不明であるが、300℃度以下の沸点のアミンであればカルボン酸銀の分解温度付近までに十分に飛散することが確かめられた。
<Action>
The dispersant adhering to the Ag nanoparticles obtained by the present invention is estimated from the following measurement results. In the TG (calorimetric analysis) results of Ag nanoparticles, weight loss starts from a temperature lower than the boiling point of the carboxylic acid produced after the reduction. For example, in the case of silver laurate, the boiling point of lauric acid is 225 ° C./100 mmHg, but the end point of weight loss is 237 ° C./760 mmHg. This is presumably because the silver carboxylate was thermally decomposed into carbon dioxide gas and hydrocarbons, and it is assumed that the dispersant is not a carboxylic acid but a silver carboxylate compound.
Moreover, since the dispersibility to an organic solvent is favorable, it is estimated that the carboxylic acid silver compound becomes the amine complex of carboxylic acid Ag and has improved the dispersibility of Ag nanoparticle. It is unclear at which temperature range the amine of the amine complex is scattered, but it has been confirmed that an amine having a boiling point of 300 ° C. or less is sufficiently scattered by the decomposition temperature of silver carboxylate.

本発明の代表的な実施の形態は次の通りである。   A typical embodiment of the present invention is as follows.

Agナノ粒子の平均粒子径は透過型電子顕微鏡(50万倍)で観察し、粒子100個の粒子径を測定して平均値を算出した。   The average particle diameter of Ag nanoparticles was observed with a transmission electron microscope (500,000 times), and the average value was calculated by measuring the particle diameter of 100 particles.

Agナノ粒子は、株式会社島津製作所製 UV−3150を用いて紫外−可視吸収スペクトルを測定し、銀であることを確認した。   Ag nanoparticle measured the ultraviolet-visible absorption spectrum using Shimadzu Corporation UV-3150, and confirmed that it was silver.

実施例1
ラウリルカルボン酸銀(10g)とブチルアミン(4.8g)とをトルエン(100mL)に溶解させた。次いで、蟻酸(1.5g)を滴下し、そのまま室温で1.5時間攪拌した。大量のメタノールを加えるとAgナノ粒子の凝集物が沈殿するのでこれをデカンテーションした。デカンテーションを2〜3回繰り返したのち、沈殿物を減圧下で乾燥させた。最後にテルピネオール中へ再分散させた。分散性は非常に良好であった。また、得られたAgナノ粒子の収率は63%であった。
透過型電子顕微鏡写真より粒子径が約10nmの非常に良くそろったAgナノ粒子であることが分かった(図1)。また、トルエンへ分散させたAgナノ粒子をTG(熱分析測定)で評価した結果、300℃以下でほとんどの有機分が飛散することが分かった(図2)。
カルボン酸銀アミン錯体の含有量は5.4wt%(分散体中のAg含有量は29wt%)であった。
Example 1
Silver lauryl carboxylate (10 g) and butylamine (4.8 g) were dissolved in toluene (100 mL). Next, formic acid (1.5 g) was added dropwise, and the mixture was stirred at room temperature for 1.5 hours. When a large amount of methanol was added, Ag nanoparticle aggregates precipitated and were decanted. After repeating the decantation 2-3 times, the precipitate was dried under reduced pressure. Finally, it was redispersed in terpineol. Dispersibility was very good. Moreover, the yield of the obtained Ag nanoparticles was 63%.
It was found from transmission electron micrographs that the Ag nanoparticles were very well aligned with a particle size of about 10 nm (FIG. 1). Moreover, as a result of evaluating Ag nanoparticle disperse | distributed to toluene by TG (thermal analysis measurement), it turned out that most organic components are scattered at 300 degrees C or less (FIG. 2).
The content of the carboxylic acid silver amine complex was 5.4 wt% (Ag content in the dispersion was 29 wt%).

実施例2
ラウリルカルボン酸銀(10g)とラウリルアミン(12.1g)をトルエン(100mL)に溶かす。アスコルビン酸(8.6g)を加え、そのまま室温で2.0時間攪拌した。大量のメタノールを加えるとAgナノ粒子の凝集物が沈殿するのでこれをデカンテーションした。デカンテーションを2〜3回繰り返したのち、沈殿物を減圧下で乾燥させた。最後にテルピネオール中へ再分散させた。分散性は非常に良好であった。また、得られたAgナノ粒子の収率は55%であった。
Example 2
Dissolve silver laurylcarboxylate (10 g) and laurylamine (12.1 g) in toluene (100 mL). Ascorbic acid (8.6 g) was added, and the mixture was stirred as it was at room temperature for 2.0 hours. When a large amount of methanol was added, Ag nanoparticle aggregates precipitated and were decanted. After repeating the decantation 2-3 times, the precipitate was dried under reduced pressure. Finally, it was redispersed in terpineol. Dispersibility was very good. Moreover, the yield of the obtained Ag nanoparticles was 55%.

透過型電子顕微鏡写真より粒子径が約8nmの非常に良くそろったAgナノ粒子であることが分かった。また、テルピネオールへ分散させたAgナノ粒子をTG(熱分析測定)で評価した結果、300℃以下でほとんどの有機分が飛散することが分かった。   From transmission electron micrographs, it was found that the Ag nanoparticles were very well aligned with a particle size of about 8 nm. Moreover, as a result of evaluating Ag nanoparticles dispersed in terpineol by TG (thermal analysis measurement), it was found that most organic components were scattered at 300 ° C. or lower.

比較例1
既知の方法で得られたラウリル酸Ag(10g)を窒素気流中、200℃で4時間加熱した。始め固体であったラウリル酸Agは溶解し、次第に黄色の色を帯び、さらに茶色へと変化した。メタノールとアセトンを加えて洗浄した後、トルエンを加えて溶解させた。溶液の色は黄色の色を呈し、Agナノ粒子の存在が確かめられたが、灰色の凝集粒子が底部に沈殿した。沈殿溶液に一級のオクチルアミンを加えると沈殿物の一部は溶解したが、凝集物は依然残存した。
熱分解法で生成した粒子にアミンを加えると、一部はアンミン錯体になり溶解性が向上するが、十分な分散性の向上は見られなかった。
Comparative Example 1
Lauric acid Ag (10 g) obtained by a known method was heated at 200 ° C. for 4 hours in a nitrogen stream. Lauric acid Ag, which was a solid at first, dissolved, gradually became yellowish, and further changed to brown. After washing with methanol and acetone, toluene was added and dissolved. The color of the solution was yellow and the presence of Ag nanoparticles was confirmed, but gray aggregated particles precipitated at the bottom. When primary octylamine was added to the precipitation solution, a part of the precipitate was dissolved, but aggregates still remained.
When amine was added to the particles produced by the thermal decomposition method, a part of the amine became an ammine complex and the solubility was improved, but sufficient dispersibility was not observed.

比較例2
ブチルアミンを添加しない以外は、前記実施例1と同様にして反応を行った場合、カルボン酸銀の還元反応が起こらず、Agナノ粒子は生成しなかった。
Comparative Example 2
When the reaction was carried out in the same manner as in Example 1 except that butylamine was not added, the silver carboxylate reduction reaction did not occur and Ag nanoparticles were not produced.

比較例3
実施例1のラウリルカルボン酸銀に変えて、塩化銀を用いた以外は前記実施例1と同様にして反応を行った場合、Agナノ粒子は生成しなかった。
Comparative Example 3
When the reaction was carried out in the same manner as in Example 1 except that silver chloride was used instead of silver laurylcarboxylate in Example 1, Ag nanoparticles were not produced.

本発明に係るAgナノ粒子は、トルエンなどの有機溶媒に易溶であり、また、分散剤が300℃以下で飛散するので、低温焼結性の導電性ペーストなどに好適に用いることできる。   The Ag nanoparticles according to the present invention are easily soluble in an organic solvent such as toluene, and the dispersing agent scatters at 300 ° C. or lower, and thus can be suitably used for a low-temperature sinterable conductive paste.

Agナノ粒子の透過型顕微鏡写真(50万倍)Transmission micrograph of Ag nanoparticles (500,000 times) Agナノ粒子の熱分析測定結果Thermal analysis measurement results of Ag nanoparticles

Claims (3)

カルボン酸銀アミン錯体が付着したAgナノ粒子。 Ag nanoparticles to which a silver carboxylate complex is attached. 請求項1記載のAgナノ粒子を有機溶媒に分散させた分散体。 A dispersion in which the Ag nanoparticles according to claim 1 are dispersed in an organic solvent. カルボン酸銀をトルエン中に分散させ、該トルエン中に300℃以下の沸点を持つアミンを添加して銀のアミン錯体を形成させた後、還元剤を添加して還元反応を行うことを特徴とする請求項1記載のAgナノ粒子の製造法。
It is characterized in that silver carboxylate is dispersed in toluene, an amine having a boiling point of 300 ° C. or lower is added to the toluene to form a silver amine complex, and then a reducing agent is added to perform a reduction reaction. The method for producing Ag nanoparticles according to claim 1.
JP2004216425A 2004-07-23 2004-07-23 Method for producing Ag nanoparticles Active JP4484043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004216425A JP4484043B2 (en) 2004-07-23 2004-07-23 Method for producing Ag nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004216425A JP4484043B2 (en) 2004-07-23 2004-07-23 Method for producing Ag nanoparticles

Publications (2)

Publication Number Publication Date
JP2006037145A true JP2006037145A (en) 2006-02-09
JP4484043B2 JP4484043B2 (en) 2010-06-16

Family

ID=35902455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004216425A Active JP4484043B2 (en) 2004-07-23 2004-07-23 Method for producing Ag nanoparticles

Country Status (1)

Country Link
JP (1) JP4484043B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038976A1 (en) * 2006-09-29 2008-04-03 Lg Chem, Ltd. Organic silver complex compound used in paste for conductive pattern forming
JP2008156720A (en) * 2006-12-25 2008-07-10 Mitsui Mining & Smelting Co Ltd Method for producing silver nanoparticle
JP2008176951A (en) * 2007-01-16 2008-07-31 Mitsubishi Chemicals Corp Silver-based particulate ink paste
JP2009144241A (en) * 2007-12-05 2009-07-02 Xerox Corp Metal nanoparticle stabilized with carboxylic acid-organoamine complex
JP2010500475A (en) * 2006-08-07 2010-01-07 インクテック カンパニー リミテッド Method for producing silver nanoparticles and silver ink composition comprising silver nanoparticles produced thereby
CN102500755A (en) * 2011-11-03 2012-06-20 苏州大学 Preparation method for graphene-supported metal nanoparticle compound
WO2012102286A1 (en) 2011-01-26 2012-08-02 丸善石油化学株式会社 Metallic nanoparticle composite and method for producing the same
WO2012133767A1 (en) * 2011-03-31 2012-10-04 ナミックス株式会社 Thermally conductive composition and thermal conductor
JP2013079430A (en) * 2011-10-05 2013-05-02 Nippon Synthetic Chem Ind Co Ltd:The Method for producing metal composite hyperfine particle
JP2018070891A (en) * 2011-12-23 2018-05-10 ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ イリノイ Ink composition for making conductive silver structure
CN109411464A (en) * 2018-09-17 2019-03-01 天津大学 A kind of 1200V/50A IGBT power module based on Fast Sintering nano mattisolda without pressure interconnection technique

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139343A (en) * 2006-08-07 2014-07-31 Inktec Co Ltd Method for manufacturing silver nanoparticle, silver ink composition containing silver nanoparticle manufactured by the same
JP2010500475A (en) * 2006-08-07 2010-01-07 インクテック カンパニー リミテッド Method for producing silver nanoparticles and silver ink composition comprising silver nanoparticles produced thereby
WO2008038976A1 (en) * 2006-09-29 2008-04-03 Lg Chem, Ltd. Organic silver complex compound used in paste for conductive pattern forming
JP2008156720A (en) * 2006-12-25 2008-07-10 Mitsui Mining & Smelting Co Ltd Method for producing silver nanoparticle
JP2008176951A (en) * 2007-01-16 2008-07-31 Mitsubishi Chemicals Corp Silver-based particulate ink paste
JP2009144241A (en) * 2007-12-05 2009-07-02 Xerox Corp Metal nanoparticle stabilized with carboxylic acid-organoamine complex
WO2012102286A1 (en) 2011-01-26 2012-08-02 丸善石油化学株式会社 Metallic nanoparticle composite and method for producing the same
US9598553B2 (en) 2011-01-26 2017-03-21 Maruzen Petrochemical Co., Ltd. Metal nanoparticle composite and method for producing the same
WO2012133767A1 (en) * 2011-03-31 2012-10-04 ナミックス株式会社 Thermally conductive composition and thermal conductor
JP5872545B2 (en) * 2011-03-31 2016-03-01 ナミックス株式会社 Thermally conductive composition and method for producing thermal conductor
TWI564381B (en) * 2011-03-31 2017-01-01 納美仕有限公司 Thermal conductive composition and thermal conductive body
JP2013079430A (en) * 2011-10-05 2013-05-02 Nippon Synthetic Chem Ind Co Ltd:The Method for producing metal composite hyperfine particle
CN102500755A (en) * 2011-11-03 2012-06-20 苏州大学 Preparation method for graphene-supported metal nanoparticle compound
JP2018070891A (en) * 2011-12-23 2018-05-10 ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ イリノイ Ink composition for making conductive silver structure
CN109411464A (en) * 2018-09-17 2019-03-01 天津大学 A kind of 1200V/50A IGBT power module based on Fast Sintering nano mattisolda without pressure interconnection technique

Also Published As

Publication number Publication date
JP4484043B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
KR100956505B1 (en) Method of fabricating carbon particle/copper composites
JP4973830B2 (en) Conductive composition, conductive paste and conductive film
KR100797484B1 (en) Method for manufacturing cubic copper or copper oxide nanoparticles
JP6274444B2 (en) Method for producing copper powder
JP4978242B2 (en) Method for producing silver ultrafine particles
JP5449154B2 (en) Method for forming electrically conductive copper pattern layer by laser irradiation
JP4390057B2 (en) Silver ultrafine particle colloid production method
KR102147012B1 (en) Silver fine particle dispersion liquid
JP4484043B2 (en) Method for producing Ag nanoparticles
CN101784352B (en) Preparation method of copper particle composition
WO2009060803A1 (en) Copper fine particle, method for producing the same, and copper fine particle dispersion
JP2009270146A (en) Method for producing silver hyperfine particle
JP2011074476A (en) Method for producing copper nanoparticle
JP2006118010A (en) Ag NANOPARTICLE, METHOD FOR PRODUCING THE SAME AND DISPERSED SOLUTION OF Ag NANOPARTICLE
JP7150273B2 (en) Copper oxide particle composition, conductive paste and conductive ink
JP4662760B2 (en) Ultrafine copper powder, ultrafine copper powder slurry, and method for producing ultrafine copper powder slurry
KR20150028970A (en) Silver powder
JP2014152395A (en) Method for producing copper nanoparticle suitable for copper nanoink
JP2006045655A (en) Silver nanoparticle and production method therefor
KR20130090803A (en) Method of producing metal nano-particles
TWI825594B (en) copper powder
CN110681872A (en) Preparation method of copper/silver corn-shaped structure nanoparticles
KR101096059B1 (en) Method for manufacturing of copper nanopowders
JP2005097677A (en) Method for manufacturing copper particulate and copper particulate dispersion liquid
JP5985216B2 (en) Silver powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4484043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350