JP2008180517A - トルクセンサ - Google Patents

トルクセンサ Download PDF

Info

Publication number
JP2008180517A
JP2008180517A JP2007012326A JP2007012326A JP2008180517A JP 2008180517 A JP2008180517 A JP 2008180517A JP 2007012326 A JP2007012326 A JP 2007012326A JP 2007012326 A JP2007012326 A JP 2007012326A JP 2008180517 A JP2008180517 A JP 2008180517A
Authority
JP
Japan
Prior art keywords
magnetic
diameter cylindrical
magnetic flux
torque sensor
cylindrical portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007012326A
Other languages
English (en)
Inventor
Atsuyoshi Asaga
淳愛 浅賀
Yasuhiro Kawai
康寛 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007012326A priority Critical patent/JP2008180517A/ja
Publication of JP2008180517A publication Critical patent/JP2008180517A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Power Steering Mechanism (AREA)

Abstract

【課題】センサの軸方向の長さを短くするとともに、組み立てを容易にしたトルクセンサを提供すること。
【解決手段】第1の軸体12と第2の軸体16とを連結する連結棒14と、第1の軸体12に固体された永久磁石20と、連結棒14に固定されて、永久磁石20の磁気回路を形成する複数の磁性体22、24および補助磁性体30、32と、磁性体22、24および補助磁性体30、32の誘導による磁束を検出する磁束検出器38とを備え、第1の軸体12または第2の軸体16にトルクが作用したときに、磁束検出器38の検出出力に基づいてトルクを検出するトルクセンサにおいて、永久磁石20は、平面形状の環状体として形成されて、相異なる磁極が軸方向に多極着磁され、磁性体22、24と第1の軸体12の軸方向において面対向し、磁性体22、24と補助磁性体30、32は、その一部が第1の軸体12の径方向において面対向している。
【選択図】図1

Description

本発明は、トルクセンサに係り、例えば、自動車のステアリング装置などの回転軸に発生するねじりトルク等を測定するためのトルクセンサに関する。
従来、回転軸に発生するねじれトルクなどを測定するものとしては、例えば、集磁器として作用するリング状のセンサ部材が設けられたもの(特許文献1参照)、円弧状の集磁器が1個設けられ、2個の磁気検出素子で磁束変化を検出するもの(特許文献2、3参照)、磁気回路内に設けた磁性体間に磁気検出素子を配置して磁束変化を検出するもの(特許文献4参照)、磁気回路内の磁性体および集磁器を鉄板で形成し、リング状の集磁器で磁束を集め、1個または2個の磁気検出素子で磁束を検出するもの(特許文献5参照)などが提案されている。
しかし、特許文献1〜5に記載されたものは、周対向型センサで構成されているので、磁気ヨークは、永久磁石から一定以上の磁束を受けることができるようにしなければならず、磁気ヨークと永久磁石の磁極との対向する面積を一定以上に確保する必要がある。そのため、永久磁石は、入力軸の軸方向に一定以上の長さ(高さ)が必要であり、トルク検出装置を入力軸の軸長方向に短縮できず、小型化が困難である。
そこで、小型化を図るために、永久磁石を円錐状多極磁石で構成したものが提案された(特許文献6参照)。
特開平2−162211号公報 実開平3−48714号公報 特開平2−141616号公報 特開平2−93321号公報 特開2003−149062号公報 特開2006−20527号公報
しかし、特許文献6に記載されたものでは、リング磁石を用い、磁気ヨークで挟み込む形状としているが、磁石の両側に磁気ヨークを配置しているため、軸方向寸法を短くするには十分ではなく、しかも、加工が困難であり、組み立てコストが高くなる。
本発明は、前記従来技術の課題に鑑みて為されたものであり、その目的は、センサの軸方向の長さを短くし、組み立てを容易にしたトルクセンサを提供することにある。
前記目的を達するために、本発明は、第1の軸体と、第2の軸体と、前記第1の軸体と前記第2の軸体とを連結する連結棒と、前記第1の軸体又は、前記連結棒の一端に固体された永久磁石と、前記第2の軸体又は前記連結棒の他端に固定されて、前記永久磁石の磁界内に配置され、前記永久磁石の磁気回路を形成する複数の磁性体および補助磁性体と、前記磁性体および補助磁性体の誘導による磁束を検出する磁束検出器とを備え、前記第1の軸体または前記第2の軸体にトルクが作用したときに、前記磁束検出器の検出出力に基づいて前記トルクを検出するトルクセンサにおいて、前記永久磁石は、前記連結棒を囲む平面形状の環状体として形成されて、相異なる磁極が交互に軸方向に着磁され、前記磁性体と前記第1の軸体の軸方向において面対向し、かつ前記磁性体と前記補助磁性体は、少なくともその一部が前記第1の軸体の径方向において相対向してなることを特徴とするものである。
本発明によれば、第1の軸体と第2の軸体との間に捩れトルクが入力され、連結棒に捩れが生じると、永久磁石と各磁性体との相対位置が変化し、磁気回路内の磁束密度分布が変化する。この磁束密度分布の変化を磁束検出器で検出することにより、永久磁石と各磁性体との相対位置の変動を求めることができ、最終的にはトルクを求めることができる。また、永久磁石と磁性体が第1の軸体の軸方向において面対向して配置されているため、センサの軸方向の長さを短くすることができ、センサの小型化および組み立てコストの低減に寄与することができる。さらに、各磁性体の一部と各補助磁性体の一部が第1の軸の径方向において相対向しているため、軸方向変動の影響を受けにくい利点がある。
前記トルクセンサを構成するに際しては、以下の要素を付加することができる。複数の磁性体は、環状に形成されて永久磁石を中心とした両側の領域のうち一方の領域に配置され、永久磁石と面対向してなる。このように構成することで、各磁性体が永久磁石を軸方向に挟まないため、小型化が可能で、且つ組み立てが容易となる。
複数の磁性体のうち一方の磁性体は、小径円筒部を有し、他方の磁性体は、小径円筒部よりも径の大きい大径円筒部を有し、小径円筒部と大径円筒部にはそれぞれ永久磁石と対向する複数の爪部が形成され、複数の爪部は小径円筒部と大径円筒部でその数が等しく、かつ全周に亘って等間隔で配置されてなる。
このように構成することで、各磁性体を軸方向に分けて配置する必要がないので、小型化が可能となる。さらに、複数の爪部は小径円筒部(内側)と大径円筒部(外側)でその数が等しく、かつ全周に亘って等間隔で配置されているため、漏れ磁束を減らし、且つ永久磁石からの磁束を有効に誘導することができる。
小径円筒部と大径円筒部における爪部は、永久磁石の極数と等しい数に対応して形成されてなる。このように構成することで、トルクを検出するのに必要な永久磁石の磁極の境界を最大限利用できる。
複数の磁性体と複数の補助磁性体はそれぞれ径の相異なる環状体として形成されて、少なくともその一部が第1の軸体の径方向において相対向し、各磁性体と各補助磁性体との対向部は全周に亘って形成されてなる。
このように構成することで、第1の軸体および第2の軸体の回転角度によらず常に一定の磁束を磁性体から補助磁性体へ誘導することができる。
各磁性体と各補助磁性体との対向部の軸方向の長さは、各補助磁性体よりも各磁性体の方が長い。このように構成することで、磁性体と補助磁性体の軸方向における相対位置が変化しても、磁束検出器へ誘導する磁束量の変動を無くすことができる。
複数の磁性体のうち一方の磁性体は、小径円筒部を有し、他方の磁性体は、大径円筒部を有し、前記複数の補助磁性体のうち一方の補助磁性体は、前記磁性体の小径円筒部とは径の異なる小径円筒部を有し、他方の補助磁性体は、前記磁性体の大径円筒部とは径の異なる大径円筒部を有し、前記各小径円筒部はそれぞれ前記第1の軸体の径方向において相対向する事で前記小径円筒対向部を形成し、前記各大径円筒部はそれぞれ前記第1の軸体の径方向において相対向する事で前記大径円筒対向部を形成し、前記小径円筒対向部と前記大径円筒対向部が軸方向にずれて配置されてなる。
このように構成することで、各小径円筒部における対向部(内側の対向部)と各大径円筒部における対向部(外側の対向部)との間のパーミアンスを下げることができ、漏れ磁束を減らすことができる。
複数の補助磁性体は、各磁性体に磁気結合されて各磁性体からの磁束をそれぞれ誘導するとともに、誘導した磁束を集めるための磁束集中部を有し、磁束検出器は、磁束集中部に集められた磁束を検出してなる。
このように構成することで、磁性体から補助磁性体へ誘導される磁束を磁束検出器へ集中させることが可能となり、且つ磁束検出器を固定することもできる。
また、磁束検出器を2個備え、2個の磁束検出器が差動出力を構成してなることにより、2重系となり、且つ差動出力に伴ってダイナミックレンジが広くなり、外来ノイズの影響を受けにくくでき、磁束検出器の温度ドリフトをキャンセルすることもできる。
さらにまた、磁束検出器3以上備えることにより、故障した磁束検出器を特定する事が出来るため、トルクセンサの信頼性を向上させることができる。
本発明によれば、センサの軸方向の長さを短くすることができるとともに、組み立てを容易にすることができ、センサの小型化および組み立てコストの低減に寄与することができる。
以下、本発明の実施の形態を図面に基づいて説明する。図1は、本発明の第1実施例を示すトルクセンサの断面図、図2は、トルクセンサの分解斜視図、図3は、トルクセンサの要部断面上斜視図、図4は、トルクセンサの要部断面下斜視図である。
図1乃至図4において、トルクセンサ10は、略円柱状に形成された第1の軸体12を備えており、第1の軸体12は、その一部が軸受(図示せず)によって回転自在に支持されている。第1の軸体12の軸方向一端側には、電動パワーステアリング装置(EPS)のステアリングホイール(図示せず)が連結され、軸方向他端側には連結棒14を介して第2の軸体16が連結されている。連結棒14は、ねじり要素の弾性部材および第1の軸体12と第2の軸体16とを連結する連結部材として、その軸方向両端側がそれぞれ第1の軸体12と第2の軸体16に連結されている。第2の軸体16は、その一部が軸受(図示せず)によって回転自在に支持されている。
連結棒14の周囲には、円環状に形成されたバックヨーク18と、円環状に形成された永久磁石20が配置されている。永久磁石20は、平面形状の環状体として、リング状に形成されて第1の軸体12に直接または間接に固定され、その軸方向に相異なる磁極(N極とS極)が着磁された多極磁石として構成されている。
永久磁石20を中心としたその軸方向両側の領域のうち一方の領域には径の相異なる一組の磁性体(ヨーク)22、24が、第1の軸体12の軸方向において永久磁石20と面対向して配置されている。大径の磁性体22は、大径円筒部22aを備えており、大径円筒部22aの底部側には、大径円筒部22aから内側に突出したクローポール(爪部)26が複数個周方向に沿って等間隔で配列されている。小径の磁性体24は、大径円筒部22aより小径の小径円筒部24aを備えており、小径円筒部24aには、小径円筒部24aの底部側から外側に突出したクローポール(爪部)28が複数個周方向に沿って等間隔で配列されている。
大径円筒部22aと小径円筒部24aは、対向部として、第1の軸12の径方向において相対向して配置されている。各クローポール26、28は、それぞれ台形形状に形成されて互い違いに嵌め合わされて、永久磁石20の各磁極と面対向し、かつ、ギャップを保って配置されている。
磁性体22、24は、永久磁石20の磁界内に配置されて、永久磁石20の磁気回路の一要素として構成されており、一方のクローポール26が、例えば、永久磁石20のS極と対向しているときには、他方のクローポール28が永久磁石20のN極と対向するようになっている。すなわち、トルク未入力時に、永久磁石20の磁極の境界線とクローポール26、28の中心が一致するように配置する。なお、クローポール26、28は、台形形状に限らず、三角形状や矩形形状とすることもできる。また、永久磁石20の裏面のバックヨーク18は設けなくてもよいが、設けた方が、磁束の漏洩を少なくすることができるので好ましい。
磁性体22、24に隣接して、補助磁性体30、32が一定の間隙を保って配置されている。補助磁性体30、32は、円環状に形成されて、連結棒14または第2の軸体16を囲むように配置されている。補助磁性体30は、大径円筒部30aを備えており、大径円筒部30aの一部には、大径円筒部30aから突出した磁束集中部34が形成されている。補助磁性体32は、大径円筒部30aより小径の小径円筒部32aを備えており、小径円筒部32aの一部には、小径円筒部32aから突出した磁束集中部36が形成されている。
大径円筒部30aと小径円筒部32aは、第1の軸12の径方向において相対向して配置されており、大径円筒部30aは、外側対向部として、磁性体22の大径円筒部22aと第1の軸12の径方向において相対向して配置され、小径円筒部32aは、内側対向部として、磁性体24の小径円筒部24aと第1の軸12の径方向において相対向して配置されている。
磁性体22、24と補助磁性体30、32との対向部は、補助磁性体30、32よりも磁性体22、24の方が、軸方向における長さが長くなっているため、軸方向変位の影響をキャンセル出来る。
また、磁束集中部34と磁束集中部36との間には、磁束量に応じて出力電圧が変化するリニアタイプの磁束検出器(磁気検出素子)38が挿入されるようになっている。磁束検出器38は、磁束集中部34、36の軸方向隙間を通過する磁束の磁束密度を測定することができる。
補助磁性体30、32は、永久磁石20の磁界内で磁性体22、24と一定の間隙を保って面対向して配置されて磁気回路を構成するとともに、補助磁性体30、32のうち磁束集中部34、36間の軸方向における隙間を他の部分よりも狭くすることで、永久磁石20から発生する磁束を磁束集中部34、36に集中的に集めることができるようになっている。この場合、磁性体22、24は樹脂40でモールドされて一体成型された状態で、連結棒14に固定され、補助磁性体30、32は、樹脂42でモールドされて一体成型された状態で樹脂40に連結され、両者は、面対向した状態で磁気回路を構成しているので、磁性体22、24や、補助磁性体30、32が回転しても、両者を通過する磁束の全体の量が変動することはない。なお、モールド方法としては、インサート成型や、ポッティングなどを用いることができる。
また、補助磁性体30、32のうち磁束集中部34、36の軸方向における隙間に磁束検出器38を挿入することで、磁束集中部34、36の軸方向における隙間を通過する磁束の量を磁束検出器38によって確実に測定できる。
磁束検出器38としては、ホール素子、MR素子、MI素子など、磁束の量を測定できるものであれば良い。
また、磁束検出器38は、1個で良いが、2個以上使用することで、装置の信頼性を高めることができる。2個以上の磁束検出器38を用いる場合、各磁束検出器38の磁束の検出方向を変え、各磁束検出器38の出力差を差動出力として磁束を測定すれば、ゼロ点の変動をキャンセルすることができる。さらに、2個の磁束検出器38を用いると、2重系となり、且つ差動出力に伴ってダイナミックレンジが広くなり、外来ノイズの影響を受けにくくでき、磁束検出器38の温度ドリフトをキャンセルすることもできる。この際、磁束集中部34、36は、各補助磁性体30、32にそれぞれ1個所設けるだけでも良いが、2個所以上設けた方が、それぞれの磁束集中部34、36の面積を管理できるので好ましい。
さらに、3個以上磁束検出器を用いると、磁束検出器の一つが故障した場合でも正常な検出器が2ケ以上残るため、多数決による信頼性が高いデータを得ることができる。
なお、磁束検出器38は、一般的には、素子がプラスチックのパッケージ内に収納されており、検出器(素子)自体は、パッケージの外形寸法より小さい。そのため、磁束集中部34、36のうち互いに平行となる平行部の面積はパッケージの大きさに合わせるのではなく、検出器(素子)自身の大きさに合わせても良い。
但し、余り小さすぎると、磁束集中部34、36の材料の飽和磁束密度を超えてしまうため、磁気飽和が起きない面積にするのが良い。
次に、上記構成によるトルクセンサ10の動作を説明する。図5に示すように、トルクの入力が無い状態では、クローポール26、28の円周方向中心が永久磁石20の極の境界上に位置し、クローポール26、28から見た永久磁石20のN極、S極に対するパーミアンスが等しいので、図5中の矢印のような磁束の流れとなる。具体的には、図2,3において永久磁石20のN極から発生した磁束は、磁性体24のクローポール28に入り、そのまま永久磁石20のS極へ入る。よって、磁束が磁束検出器38を流れないため、磁束検出器38は中間電圧を出力する。
運転者がステアリングホイールを回転させることによってトルクが入力されると、連結棒14の入力側は、ステアリングホイールと同様に回転するとともに連結棒14自体に入力トルクに応じた捩れが発生する。この捩れによって、連結棒14の入力側と出力側に相対角度変位が発生する。この連結棒14の入力側と出力側の間に発生した相対角度変位は、本発明のトルクセンサのクローポール26、28と永久磁石20の間の相対角度変位として現れる。クローポール26、28と永久磁石20の間に相対角度変位が発生すると、図6のようにパーミアンスのバランスが崩れ、図2,3における磁束検出器38を含む磁気回路、即ち、永久磁石20のN極から発生した磁束が磁性体24のクローポール28に流れ、磁性体24から補助磁性体30、磁束集中部34を経由し、磁束集中部34と磁束集中部36の間に位置する磁束検出器38を通過し、磁束集中部36、補助磁性体32、磁性体22、クローポール26を経由して永久磁石20のS極へと戻る磁気回路に磁束が流れる。この磁束検出器38を含む磁気回路に発生した磁束を磁束検出器38で検出することで、相対角度変位が測定でき、連結棒14にかかるトルクを検出することができる。
本実施例によれば、永久磁石20と磁性体22、24が第1の軸体12の軸方向において面対向して配置されているため、軸方向の長さを短くすることができ、センサの小型化およびコスト低減に寄与することができる。さらに、磁性体22、24の一部と補助磁性体30、32の一部が第1の軸12の径方向において相対向しているため、軸方向変動の影響を受けにくく、信頼性の向上に寄与することができる。
また、本実施例によれば、以下のような効果を奏することができる。
磁性体22、24は、環状に形成されて永久磁石20を中心とした両側の領域のうち一方の領域に配置され、永久磁石20と面対向しているので、磁性体22、24が永久磁石20を挟むことはなく、小型化が可能で、且つ組み立てが容易となる。
クローポール26、28は、小径円筒部24aと大径円筒部22aでその数が等しく、かつ全周に亘って等間隔で配置されているので、磁性体22、24を軸方向に分けて配置する必要がなく、小型化が可能になるとともに、漏れ磁束を減らし、且つ永久磁石20からの磁束を有効に磁束検出器38に誘導することができる。また、クローポール26、28は、永久磁石20の極数と等しい数に対応して形成されているので、トルクを検出するのに必要な永久磁石20の磁極の境界を最大限利用できる。
磁性体22、24と補助磁性体30、32はそれぞれ径の相異なる環状体として形成されて、少なくともその一部が第1の軸体12の径方向において相対向し、磁性体22、24と補助磁性体30、32との対向部は全周に亘って形成されているので、第1の軸体12および第2の軸体16の回転角度によらず常に一定の磁束を磁性体22、24から補助磁性体30、32へ誘導することができる。
磁性体22、24と補助磁性体30、32との対向部の軸方向の長さは、補助磁性体30、32よりも磁性体22、24の方が長いので、磁性体22、24と補助磁性体30、32の軸方向における相対位置が変化しても、磁束検出器38へ誘導する磁束量の変動を無くすことができる。すなわち、アキシアル方向変動が生じても、対向面積が変化しないため、アキシアル方向変動の影響を減少させることができる。
小径円筒部24a、32aはそれぞれ第1の軸体12の径方向において相対向して配置され、大径円筒部22a、30aはそれぞれ第1の軸体12の径方向において相対向して配置されているので、小径円筒部24a、32aにおける対向部(内側の対向部)と大径円筒部22a、30aにおける対向部(外側の対向部)との間のパーミアンスを下げることができ、漏れ磁束を減らすことができる。
なお、磁性体22、24と補助磁性体34、36は、平面形状としているので、これらを平面プレスなどで加工でき、低コスト化が可能であるとともに、軸方向寸法を短くできる。
次に、本発明の第2実施例を図7に基づいて説明する。本実施例は、電動パワーステアリング装置(EPS)のウォームホイール44を第1の軸体として、永久磁石20をウォームホイール44の側面に固定し、全体の軸方向の寸法をさらに短くしたものであり、その他の構成は第1実施例と同様である。
永久磁石20をウォームホイール44の側面に固定すると、センサ全体の軸方向寸法をさらに短くすることができる。
本実施例によれば、前記実施例と同様の効果を奏することができるとともに、前記実施例のものよりも、センサ全体の軸方向寸法をさらに短くすることができる。
なお、ウォームホイール44の材質が鉄の場合は、バックヨーク18を省くことができる。一方、ウォームホイール44の材質がプラスチックの場合は、バックヨーク18があった方が、磁束が漏れないので好ましい。
また、前記各実施例において、永久磁石20の材料としては、フェライト磁石や希土類磁石(Nd−Fe−B系磁石やSm−Co系磁石など)が使用可能である。また、金属磁石や焼結磁石でも良いが、プラスチック磁石やゴム磁石でも良い。
さらに、永久磁石20の半径方向寸法を磁性体22、24のクローポール26、28の長さよりも長くても良いが、磁性体22、24のクローポール26、28の方を長くした方が、永久磁石20の磁束の大部分を磁性体22、24に誘導でき、磁性体22、24以外に漏れる磁束を少なくできるので、好ましい。
磁性体22、24と補助磁性体30、32との対向部は、補助磁性体30、32よりも磁性体22、24の方が、軸方向における長さが長くなっているため、軸方向変異の影響をキャンセル出来る。なお、磁性体、及び、補助磁性体の材質はニッケルを含有した合金であるのが好ましい。
磁性体、及び、補助磁性体に構造用鋼を使用すると、磁気検出素子の出力にヒステリシスが存在し、出力値から角度を正確に測定することが難しい。これは、磁性休、及び、補助磁性体に使用した材料の磁気特性によるものである。そこで、磁性体、及び、補助磁性体の磁気特性を改善するため、ニッケルを含んだ合金を使用するのが望ましい。
磁性体、及び、補助磁性体にニッケルを約40%以上含んだ合金(例えば45%含有)を使用すると、構造用鋼を使用した場合に比べて、出力のヒステリシスを格段に小さくすることができ、トルクの検出精度を向上することができた。
しかしながら、ヒステリシスはわずかに残っており、高精度な検出を要求される場合には適用できない。このような場合は、さらに特性を改善する必要がある。そこで、さらに磁気特性を向上するためには、ニッケルを約70%以上含んだ合金(例えば75%含有)を使用するのがさらに望ましい。ニッケルを75%含んだ合金を使用すると、ヒステリシスはほぼゼロとすることができた。
しかしながら、ニッケルは高価な金属であるため、できれば使用量が少ない方が好ましく、要求される性能に応じて、ニッケルの含有量は適宜選択されるのが好ましい。
本発明の第1実施例を示すトルクセンサの断面図である。 トルクセンサの分解斜視図である。 トルクセンサの要部断面上斜視図である。 トルクセンサの要部断面下斜視図である。 トルクの入力が無いときのトルクセンサの動作を説明するための概略図である。 トルクの入力が最大のときのトルクセンサの動作を説明するための概略図である。 (a)は、本発明の第2実施例を示すトルクセンサの断面図、(b)は、磁性体の要部拡大図、(c)は、補助磁性体の要部拡大図である。
符号の説明
10 トルクセンサ
12 第1の軸体
14 連結棒
16 第2の軸体
20 永久磁石
22、24 磁性体
26、28 クローポール
30、32 補助磁性体
34、36 磁束集中部
38 磁束検出器

Claims (11)

  1. 第1の軸体と、第2の軸体と、前記第1の軸体と前記第2の軸体とを連結する連結棒と、前記第1の軸体又は前記連結棒の一端に固体された永久磁石と、前記第2の軸体又は前記連結棒の他端に固定されて、前記永久磁石の磁界内に配置され、前記永久磁石の磁気回路を形成する複数の磁性体および補助磁性体と、前記磁性体および補助磁性体の誘導による磁束を検出する磁束検出器とを備え、前記第1の軸体または前記第2の軸体にトルクが作用したときに、前記磁束検出器の検出出力に基づいて前記トルクを検出するトルクセンサにおいて、前記永久磁石は、前記連結棒を囲む平面形状の環状体として形成されて、相異なる磁極が交互に軸方向に着磁され、前記磁性体と前記第1の軸体の軸方向において面対向し、かつ前記磁性体と前記補助磁性体は、少なくともその一部が前記第1の軸体の径方向において相対向してなることを特徴とするトルクセンサ。
  2. 前記複数の磁性体は、環状に形成されて前記永久磁石を中心とした軸方向の両側の領域のうち一方の領域に配置され、前記永久磁石と面対向してなることを特徴とする請求項1に記載のトルクセンサ。
  3. 前記複数の磁性体のうち一方の磁性体は、小径円筒部を有し、他方の磁性体は、前記小径円筒部よりも径の大きい大径円筒部を有し、前記小径円筒部と前記大径円筒部にはそれぞれ前記永久磁石と対向する複数の爪部が形成され、前記複数の爪部は前記小径円筒部と前記大径円筒部でその数が等しく、かつ全周に亘って等間隔で配置されてなることを特徴とする請求項1または2に記載のトルクセンサ。
  4. 前記小径円筒部と前記大径円筒部における爪部は、前記永久磁石の極数と等しい数に対応して形成されてなることを特徴とする請求項3に記載のトルクセンサ。
  5. 前記複数の磁性体と前記複数の補助磁性体はそれぞれ径の相異なる環状体として形成されて、少なくともその一部が前記第1の軸体の径方向において相対向し、前記各磁性体と前記各補助磁性体との対向部は全周に亘って形成されてなることを特徴とする請求項1乃至4のいずれか1項に記載のトルクセンサ。
  6. 前記各磁性体と前記各補助磁性体との対向部の軸方向の長さは、前記各補助磁性体よりも前記各磁性体の方が長いことを特徴とする請求項5に記載のトルクセンサ。
  7. 前記複数の磁性体のうち一方の磁性体は、小径円筒部を有し、他方の磁性体は、大径円筒部を有し、前記複数の補助磁性体のうち一方の補助磁性体は、前記磁性体の小径円筒部とは径の異なる小径円筒部を有し、他方の補助磁性体は、前記磁性体の大径円筒部とは径の異なる大径円筒部を有し、前記各小径円筒部はそれぞれ前記第1の軸体の径方向において相対向する事で前記小径円筒対向部を形成し、前記各大径円筒部はそれぞれ前記第1の軸体の径方向において相対向する事で前記大径円筒対向部を形成し、前記小径円筒対向部と前記大径円筒対向部が軸方向にずれて配置されてなることを特徴とする請求項5または6に記載のトルクセンサ。
  8. 前記複数の補助磁性体は、前記各磁性体に磁気結合されて前記各磁性体からの磁束をそれぞれ誘導するとともに、誘導した磁束を集めるための磁束集中部を有し、前記磁束検出器は、前記磁束集中部に集められた磁束を検出してなることを特徴とする請求項1乃至7のいずれか1項に記載のトルクセンサ。
  9. 前記磁束検出器を2個備え、前記2個の磁束検出器は差動出力を構成してなることを特徴とする請求項1乃至8のいずれか1項に記載のトルクセンサ。
  10. 前記磁束検出器を3ケ以上備える請求項1乃至8のいずれか1項記載のトルクセンサ。
  11. 前記磁束検出器は、電動パワーステアリング装置に搭載されて、ステアリングシャフトに作用する操舵トルクを検出してなることを特徴とする請求項1乃至10のいずれか1項に記載のトルクセンサ。
JP2007012326A 2007-01-23 2007-01-23 トルクセンサ Pending JP2008180517A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007012326A JP2008180517A (ja) 2007-01-23 2007-01-23 トルクセンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007012326A JP2008180517A (ja) 2007-01-23 2007-01-23 トルクセンサ

Publications (1)

Publication Number Publication Date
JP2008180517A true JP2008180517A (ja) 2008-08-07

Family

ID=39724534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007012326A Pending JP2008180517A (ja) 2007-01-23 2007-01-23 トルクセンサ

Country Status (1)

Country Link
JP (1) JP2008180517A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8607649B2 (en) 2009-04-08 2013-12-17 Kabushiki Kaisha Honda Lock Torque sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8607649B2 (en) 2009-04-08 2013-12-17 Kabushiki Kaisha Honda Lock Torque sensor

Similar Documents

Publication Publication Date Title
JP2008180518A (ja) トルクセンサ
KR101331182B1 (ko) 360도 범위의 자기 각위치 센서
EP2072985A1 (en) Torque detector, method of producing the torque detector, and electric power steering device
US7424830B2 (en) Torque sensor
JP5064315B2 (ja) 回転角度センサ
US20030233889A1 (en) Torque sensor having a magnet and a magnetic sensor
KR20130069483A (ko) 토크 센서 장치
US20100289485A1 (en) System including a magnet and first and second concentrators
CN102472639A (zh) 旋转角检测装置
EP2587223A2 (en) Magnetic encoder with improved resolution
KR101741963B1 (ko) 토크 센서 및 이를 갖는 스티어링 시스템
JP2008216019A (ja) トルクセンサ及び電動式パワーステアリング装置
JP2008076148A (ja) ねじりトルク測定装置
KR101680898B1 (ko) 스티어링 시스템의 토크 센서
JP2009020064A (ja) トルク検出器及び電動パワーステアリング装置
JP2008180517A (ja) トルクセンサ
JP2008157762A (ja) トルク測定器
JP4305271B2 (ja) 磁歪式トルクセンサ
JP4878747B2 (ja) トルクセンサ
JP2008215942A (ja) トルクセンサ及び電動式パワーステアリング装置
JP2009128181A (ja) トルク検出器、電動パワーステアリング装置及びクローポールの製造方法
JP2006125594A (ja) センサ付軸受装置
JP2006010669A (ja) トルクセンサ装置
JP4878746B2 (ja) トルクセンサ
JP2009042122A (ja) トルク検出器及び電動パワーステアリング装置