JP2008100869A - Method for producing carbon nanotube - Google Patents

Method for producing carbon nanotube Download PDF

Info

Publication number
JP2008100869A
JP2008100869A JP2006284233A JP2006284233A JP2008100869A JP 2008100869 A JP2008100869 A JP 2008100869A JP 2006284233 A JP2006284233 A JP 2006284233A JP 2006284233 A JP2006284233 A JP 2006284233A JP 2008100869 A JP2008100869 A JP 2008100869A
Authority
JP
Japan
Prior art keywords
carbon nanotube
carbon
discharge
catalyst
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006284233A
Other languages
Japanese (ja)
Inventor
Hidekazu Sugiyama
英一 杉山
Kazutaka Koshiro
和高 小城
Tadashi Imai
正 今井
Takeshi Noma
毅 野間
Sukeyuki Yasui
祐之 安井
Motofumi Tanaka
元史 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006284233A priority Critical patent/JP2008100869A/en
Publication of JP2008100869A publication Critical patent/JP2008100869A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To stabilize the growth of a carbon nanotube by eliminating a carbon material excluding the carbon nanotube and/or defective crystal parts of a carbon nanotube or by uniformalizing a hydrocarbon mixture to lower molecular weights. <P>SOLUTION: In the method for producing a carbon nanotube using a catalytic growth method, reaction active species are generated by electric-discharging in a reaction tube 12 while carbon nanotube 18 is in the process of growing. The carbon material excluding the generated carbon nanotube 18 and/or defective crystal parts of the carbon nanotube 18 are eliminated by the generated reaction species. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、カーボンナノチューブの製造方法に関する。   The present invention relates to a method for producing carbon nanotubes.

近年、鋼鉄の数十倍の強さを持ち、しかも折れ曲がりに強く、耐薬品性、耐熱性、導電性に優れた素材としてカーボンナノチューブ(以下、CNTと呼ぶ)が注目されている。このCNTは、カーボン(炭素)からなり、直径がナノメートル単位のチューブ状の物質である。   In recent years, carbon nanotubes (hereinafter referred to as CNT) have attracted attention as a material that is several tens of times stronger than steel, and is strong against bending, and has excellent chemical resistance, heat resistance, and conductivity. This CNT is a tube-shaped substance made of carbon and having a diameter of nanometers.

従来、CNTは、例えば図7に示すように製造されている。
図中の1は、炉2内に配置されて加熱される反応管を示す。この反応管1の内部には触媒3が配置されている。こうした反応管1を用いてCNTを製造するときは、反応管1を加熱しながら原料ガス4を反応管内に流通させ、反応管内の触媒3上でCNT5を成長させる。反応後のガスは、排ガス6として反応管1から排出される。
Conventionally, CNTs are manufactured as shown in FIG. 7, for example.
1 in the figure indicates a reaction tube that is placed in the furnace 2 and heated. A catalyst 3 is disposed inside the reaction tube 1. When producing CNTs using such a reaction tube 1, the raw material gas 4 is circulated in the reaction tube while heating the reaction tube 1, and the CNT 5 is grown on the catalyst 3 in the reaction tube. The gas after the reaction is discharged from the reaction tube 1 as the exhaust gas 6.

また、従来、CNTを製造する技術としては、例えば特許文献1や特許文献2が知られている。
特許文献1には、化学蒸着法(CVD法)を用いて、電気炉によって加熱されたチャンバ内にCuからなる基材上にNiを被着した基板を配置し、Cを供給するとともにフィラメントによって加熱することにより、線径が1nm〜2μmで少なくとも一部が螺旋状の炭素物質を製造する技術が開示されている。
Conventionally, for example, Patent Document 1 and Patent Document 2 are known as techniques for manufacturing CNTs.
In Patent Document 1, a chemical vapor deposition method (CVD method) is used to place a substrate coated with Ni on a base material made of Cu in a chamber heated by an electric furnace, and supply C 2 H 4 . A technique for producing a carbon material having a wire diameter of 1 nm to 2 μm and at least a part of a spiral by heating with a filament is disclosed.

特許文献2には、金属触媒を用いて製造されたCNT粗生成物を粉砕、溶液中に攪拌し、遠心分離や浮選により非晶質炭素、グラファイトを除去し、更に酢で溶かす(或いは磁場中を通過させる)ことにより金属触媒やその金属の炭化物等の金属不純物を除去し、CNTの純度を向上させる技術が開示されている。
特開2001−240403号公報 特開平8−198611号公報
In Patent Document 2, a CNT crude product produced using a metal catalyst is pulverized, stirred into a solution, amorphous carbon and graphite are removed by centrifugation or flotation, and further dissolved in vinegar (or a magnetic field). A technique for improving the purity of CNT by removing metal impurities such as a metal catalyst and a carbide of the metal by passing through the inside is disclosed.
JP 2001-240403 A JP-A-8-198611

しかしながら、CVD法にプラズマや触媒を組み合せたCNTの製造では、CNT製造時にアモルファス等の他の炭素材が副生成し、この炭素材はCNTと同素体の為、炭素材を分離することが困難である。また、CNT中に結晶欠陥があると、これもCNTの収率低下の要因や特性低下の原因となる。   However, in the production of CNTs by combining plasma and catalyst with the CVD method, other carbon materials such as amorphous are by-produced during the production of CNTs, and since this carbon material is an allotrope of CNTs, it is difficult to separate the carbon materials. is there. In addition, if there are crystal defects in the CNT, this also causes a decrease in the yield and characteristics of the CNT.

本発明は、こうした事情を考慮してなされたもので、触媒成長法を用いたカーボンナノチューブの製造方法において、生成した反応活性種によってCNT以外の炭素材及び/又はCNTの結晶欠陥部分の除去をなしえるカーボンナノチューブの製造方法を提供することを目的とする。   The present invention has been made in consideration of such circumstances, and in the carbon nanotube production method using the catalytic growth method, the carbon material other than CNT and / or the crystal defect portion of CNT is removed by the generated reactive species. An object of the present invention is to provide a method for producing a carbon nanotube.

また、本発明は、組成変動のある炭化水素混合物を原料の少なくとも一部としたカーボンナノチューブの製造方法において、CNTを成長させる触媒の上流側、又は触媒内において放電を行うことにより、炭化水素混合物を均質・低分子化してCNT成長を安定化させることを特徴とするカーボンナノチューブの製造方法を提供することを目的とする。   The present invention also relates to a method for producing carbon nanotubes using a hydrocarbon mixture having a composition variation as at least a part of a raw material, by performing discharge on the upstream side of the catalyst for growing CNTs or in the catalyst, thereby An object of the present invention is to provide a method for producing carbon nanotubes characterized by stabilizing the growth of CNTs by homogenizing and reducing the molecular weight.

本発明のカーボンナノチューブの製造方法は、触媒成長法を用いたカーボンナノチューブの製造方法において、カーボンナノチューブの成長時に、反応管内において放電を行うことにより反応活性種を生成させ、生成した反応活性種によってカーボンナノチューブ以外の炭素材及び/又はカーボンナノチューブの結晶欠陥部分の除去を行うことを特徴とする。   The carbon nanotube production method of the present invention is a carbon nanotube production method using a catalyst growth method, wherein during the growth of the carbon nanotube, a reactive active species is generated by performing discharge in a reaction tube, and depending on the generated reactive active species, The carbon material other than the carbon nanotube and / or the crystal defect portion of the carbon nanotube is removed.

また、本発明のカーボンナノチューブの製造方法は、組成変動のある炭化水素混合物を原料の少なくとも一部としたカーボンナノチューブの製造方法において、カーボンナノチューブを成長させる触媒の上流側、又は触媒内において放電を行うことにより、炭化水素混合物を均質・低分子化してカーボンナノチューブ成長を安定化させることを特徴とする。   Further, the carbon nanotube production method of the present invention is a carbon nanotube production method using a hydrocarbon mixture having a composition variation as at least a part of a raw material, and discharge is performed on the upstream side of the catalyst for growing the carbon nanotube or in the catalyst. This is characterized by stabilizing the growth of the carbon nanotubes by homogenizing and reducing the molecular weight of the hydrocarbon mixture.

本発明によれば、生成した反応活性種によってCNT以外の炭素材の除去、あるいはCNTの結晶欠陥部分の除去、の少なくともいずれか一方を行うことができる。また、本発明によれば、炭化水素混合物を均質・低分子化してカーボンナノチューブ成長を安定化させることができる。   According to the present invention, at least one of removal of a carbon material other than CNT and removal of a crystal defect portion of CNT can be performed by the generated reactive species. Further, according to the present invention, the growth of carbon nanotubes can be stabilized by homogenizing and reducing the molecular weight of the hydrocarbon mixture.

以下、本発明に係るCNTの製造方法について更に詳しく説明する。
(1) 本願第1の発明は、請求項1に記載のように、触媒成長法を用いたカーボンナノチューブの製造方法において、カーボンナノチューブの成長時に、反応管内において放電を行うことにより反応活性種を生成させ、生成した反応活性種によってカーボンナノチューブ以外の炭素材及び/又はカーボンナノチューブの結晶欠陥部分の除去を行うことを特徴とするカーボンナノチューブの製造方法である。ここで、「カーボンナノチューブ以外の炭素材及び/又はカーボンナノチューブの結晶欠陥部分の除去」としては、CNT以外の炭素材の除去、あるいはCNTの結晶欠陥部分の除去、或いは両者の除去のいずれかが挙げられる。
Hereinafter, the CNT manufacturing method according to the present invention will be described in more detail.
(1) According to the first invention of this application, as described in claim 1, in the method for producing carbon nanotubes using the catalytic growth method, the reactive species are obtained by performing discharge in the reaction tube during the growth of the carbon nanotubes. A method for producing carbon nanotubes, characterized in that carbon materials other than carbon nanotubes and / or crystal defect portions of carbon nanotubes are removed by the generated reactive species. Here, “removal of carbon materials other than carbon nanotubes and / or crystal defect portions of carbon nanotubes” includes either removal of carbon materials other than CNTs, removal of crystal defect portions of CNTs, or removal of both. Can be mentioned.

(2) 本願第2の発明は、請求項2に記載のように、組成変動のある炭化水素混合物を原料の少なくとも一部としたカーボンナノチューブの製造方法において、カーボンナノチューブを成長させる触媒の上流側、又は触媒内において放電を行うことにより、炭化水素混合物を均質・低分子化してカーボンナノチューブ成長を安定化させることを特徴とするカーボンナノチューブの製造方法である。ここで、「触媒の上流側」とは、例えば後述する図2に示すように電極が炉の外に配置された状態で放電を行う場合を示す。また、「触媒内」とは、例えば後述する図3に示すように電極間に配置された触媒上で放電を行う場合を示す。   (2) The second invention of the present application is the upstream side of the catalyst for growing carbon nanotubes in the method for producing carbon nanotubes, wherein the hydrocarbon mixture having a composition variation is at least a part of the raw material. Alternatively, the carbon nanotube production method is characterized by stabilizing the growth of the carbon nanotubes by performing a discharge in a catalyst to make the hydrocarbon mixture homogeneous and low molecular. Here, the “upstream side of the catalyst” indicates a case where discharge is performed in a state where the electrodes are arranged outside the furnace as shown in FIG. 2 described later, for example. In addition, “within the catalyst” indicates, for example, a case where discharge is performed on the catalyst disposed between the electrodes as shown in FIG. 3 described later.

(3) 上記(1)又は(2)において、前記反応管内に酸素、水或いは水蒸気の少なくともいずれか1つを添加し、酸素分子及び/又は水分子に由来する反応活性種を利用することが挙げられる。ここで、「酸素、水或いは水蒸気の少なくともいずれか1つ」とは、酸素、水、水蒸気を単独に添加する場合、あるいは酸素及び水、あるいは酸素及び水蒸気、あるいは酸素と水と水蒸気を添加する場合が挙げられる。   (3) In the above (1) or (2), adding at least one of oxygen, water, or water vapor to the reaction tube and utilizing a reactive species derived from oxygen molecules and / or water molecules Can be mentioned. Here, “at least one of oxygen, water, and water vapor” means that oxygen, water, water vapor is added alone, or oxygen and water, oxygen and water vapor, or oxygen, water, and water vapor are added. There are cases.

(4) 上記(1)〜(3)において、前記反応管が放電電極を備え、この放電電極内に誘電体を配置することにより放電を安定化させることが挙げられる。ここで、放電電極は原料ガスの供給を妨げないように例えばラダー型の形状をしている。前記誘電体の形状としては、例えばハニカム状あるいはスポンジが挙げられる。   (4) In the above (1) to (3), the reaction tube includes a discharge electrode, and a discharge is stabilized by disposing a dielectric in the discharge electrode. Here, the discharge electrode has, for example, a ladder shape so as not to disturb the supply of the source gas. Examples of the shape of the dielectric include a honeycomb shape or a sponge.

(5) 上記(1)〜(4)において、炭化水素混合物を触媒内に導入する前に吸着剤に吸着させ、該吸着剤内で放電することにより、吸着能の高い炭化水素又は濃度の低い炭化水素の少なくともいずれか一方の炭化水素を低分子化して、炭化水素混合物を均質・低分子化することが好ましい。こうした構成にすることにより、吸着能の高い炭化水素又は濃度の低い炭化水素の放電場内での滞在時間が増大し、効率よく低分子化を行うことができる。   (5) In the above (1) to (4), the hydrocarbon mixture is adsorbed on the adsorbent before being introduced into the catalyst, and discharged in the adsorbent, whereby the hydrocarbon having a high adsorbing capacity or the concentration is low. It is preferable to reduce the molecular weight of at least one of the hydrocarbons to make the hydrocarbon mixture homogeneous and low molecular. With such a configuration, the residence time of the hydrocarbon having a high adsorption ability or the hydrocarbon having a low concentration in the discharge field is increased, and the molecular weight can be reduced efficiently.

次に、本発明に係るCNTの製造方法の具体的な実施形態について図面を参照して説明する。
(第1の実施形態):請求項1に対応
図1は、本発明の第1の実施形態におけるカーボンナノチューブの製造方法の概略的な説明図を示す。
図中の符番11は、炉12内に配置されて加熱される反応管を示す。この反応管11の内部には触媒13が配置されている。また、反応管11内には、触媒13の上流側及び下流側に位置するように一対のラダー型の放電電極14a,14bが配置されている。これらの放電電極14a,14bは、電線15を介して電源16に接続されている。電源16から供給された電力により、放電電極14a,14b間に放電場17が形成される。
Next, specific embodiments of the CNT manufacturing method according to the present invention will be described with reference to the drawings.
(First Embodiment): Corresponding to Claim 1
FIG. 1 is a schematic explanatory view of a carbon nanotube production method according to the first embodiment of the present invention.
Reference numeral 11 in the figure indicates a reaction tube that is placed in the furnace 12 and heated. A catalyst 13 is disposed inside the reaction tube 11. Further, a pair of ladder-type discharge electrodes 14 a and 14 b are arranged in the reaction tube 11 so as to be positioned upstream and downstream of the catalyst 13. These discharge electrodes 14 a and 14 b are connected to a power source 16 through an electric wire 15. A discharge field 17 is formed between the discharge electrodes 14 a and 14 b by the power supplied from the power supply 16.

こうした反応管11を用いてCNT18を製造するときは、反応管11を加熱するとともに、放電電極14a,14b間に放電場17を形成しながら、原料ガス19を反応管内に流通させ、反応管内の触媒13上でCNT18を成長させる。反応後のガスは、排ガス20として反応管11から排出される。   When manufacturing the CNT 18 using such a reaction tube 11, while heating the reaction tube 11 and forming the discharge field 17 between the discharge electrodes 14 a and 14 b, the source gas 19 is circulated in the reaction tube, CNTs 18 are grown on the catalyst 13. The gas after the reaction is discharged from the reaction tube 11 as the exhaust gas 20.

第1の実施形態によれば、放電電極14a,14b間に放電場17を形成しながら、原料ガス19を反応管内に流通させることにより、放電場17によって精製された反応活性種がCNT以外の炭素材又はCNT18の結晶欠陥部分を除去することになり、高品質のCNT18を精製できる。   According to the first embodiment, while the discharge field 17 is formed between the discharge electrodes 14a and 14b, the source gas 19 is circulated in the reaction tube, so that the reactive species purified by the discharge field 17 is other than CNT. The carbon material or the crystal defect portion of the CNT 18 is removed, and the high-quality CNT 18 can be purified.

なお、図1では、一対の放電電極は触媒を挟む形で反応管内に配置されているが、触媒上に放電場を形成できれば、図1のような配置構成に限定されない。また、放電の方式としては、例えば沿面放電、パルス放電、バリア放電が挙げられる。   In FIG. 1, the pair of discharge electrodes are arranged in the reaction tube with the catalyst interposed therebetween, but the arrangement is not limited to that shown in FIG. 1 as long as a discharge field can be formed on the catalyst. Examples of the discharge method include creeping discharge, pulse discharge, and barrier discharge.

(第2の実施形態):請求項2に対応
図2は、本発明の第2の実施形態におけるCNTの製造方法の概略的な説明図を示す。但し、図1と同部材は同符番を付して説明を省略する。
図2は、一対の放電電極14a,14bを炉11の外で且つ反応管11内の上流側に配置したことを特徴とする。電源16から供給された電力により、放電電極14a,14b間に放電場17が形成されることは、図1の場合と同様である。
(Second Embodiment): Corresponding to Claim 2
FIG. 2 is a schematic explanatory view of a CNT manufacturing method according to the second embodiment of the present invention. However, the same members as those in FIG.
FIG. 2 is characterized in that a pair of discharge electrodes 14 a and 14 b are arranged outside the furnace 11 and upstream in the reaction tube 11. The discharge field 17 is formed between the discharge electrodes 14a and 14b by the power supplied from the power source 16, as in the case of FIG.

第2の実施形態によれば、放電場17の形成により、放電場17によって精製された反応活性種が原料ガス中に含まれる炭化水素混合物を低分子化して均質化する。その結果、CNT合成雰囲気を安定化させ、CNT18の成長を安定させることができる。
なお、図2では、一対の放電電極は炉の外部に配置されている場合について述べたが、炉内に配置してもよい。
According to the second embodiment, by forming the discharge field 17, the reactive active species purified by the discharge field 17 lowers the molecular weight of the hydrocarbon mixture contained in the source gas and homogenizes it. As a result, the CNT synthesis atmosphere can be stabilized and the growth of CNT 18 can be stabilized.
In addition, although FIG. 2 described the case where the pair of discharge electrodes are arranged outside the furnace, they may be arranged in the furnace.

(第3の実施形態):請求項3に対応
図3は、本発明の第3の実施形態におけるCNTの製造方法の概略的な説明図を示す。但し、図1と同部材は同符番を付して説明を省略する。
図3は、原料ガス19に添加剤(酸素)20を添加したことを特徴とする。
第3の実施形態によれば、原料ガスに添加剤20を添加することにより、酸素分子に由来する反応活性種を生成させ、高品質なCNT18を生成することができる。
(Third embodiment): Corresponding to claim 3
FIG. 3 is a schematic explanatory view of a CNT manufacturing method according to the third embodiment of the present invention. However, the same members as those in FIG.
FIG. 3 is characterized in that an additive (oxygen) 20 is added to the source gas 19.
According to the third embodiment, by adding the additive 20 to the raw material gas, reactive active species derived from oxygen molecules can be generated, and high-quality CNTs 18 can be generated.

なお、図3では、添加剤として酸素を用いた場合について述べたが、これに限らず、水、又は水蒸気、又は酸素と水、又は酸素と水蒸気、又は水と酸素と水蒸気のいずれかを用いてもよい。また、添加剤は炉の外部で添加した場合について述べたが、これに限らず、炉内で添加剤を添加してもよい。   In FIG. 3, the case where oxygen is used as the additive is described. However, the present invention is not limited thereto, and water, water vapor, oxygen and water, oxygen and water vapor, or water, oxygen, and water vapor are used. May be. Moreover, although the case where the additive was added outside the furnace was described, the present invention is not limited to this, and the additive may be added inside the furnace.

(第4の実施形態):請求項4に対応
図4は、本発明の第4の実施形態におけるCNTの製造方法の概略的な説明図を示す。但し、図1と同部材は同符番を付して説明を省略する。
図4は、第1の実施形態の放電電極14a,14b間にポーラス状の誘電体22を配置し、該誘電体22に触媒18を担持させたことを特徴とする。なお、図4では、便宜上、触媒18が誘電体22の一部の表面に担持されているように描かれているが、本来は誘電体22の全ての表面及びその表面近くの内部に担持されている。
第4の実施形態によれば、放電電極14a,14ba間に誘電体22を配置してCNT18を製造することにより、放電を安定化させることができる。また、誘電体22に触媒18を担持させることにより、誘電体22に触媒としての機能を持たせることができる。
(Fourth Embodiment): Corresponding to Claim 4
FIG. 4 is a schematic explanatory view of a CNT manufacturing method according to the fourth embodiment of the present invention. However, the same members as those in FIG.
FIG. 4 is characterized in that a porous dielectric 22 is disposed between the discharge electrodes 14 a and 14 b of the first embodiment, and a catalyst 18 is supported on the dielectric 22. In FIG. 4, for convenience, the catalyst 18 is depicted as being supported on a part of the surface of the dielectric 22, but is originally supported on the entire surface of the dielectric 22 and the interior near the surface. ing.
According to the fourth embodiment, the discharge can be stabilized by arranging the dielectric 22 between the discharge electrodes 14a and 14ba to manufacture the CNT 18. In addition, by supporting the catalyst 18 on the dielectric 22, the dielectric 22 can have a function as a catalyst.

(第5の実施形態):請求項4に対応
図5は、本発明の第5の実施形態におけるCNTの製造方法の概略的な説明図を示す。但し、図1と同部材は同符番を付して説明を省略する。
図5は、第2の実施形態において、放電電極14a,14b間にポーラス状の誘電体22を配置し、該誘電体22の表面及びその近くの内部に触媒18を担持させたことを特徴とする。
第5の実施形態によれば、第4の実施形態と同様な効果が得られる。
(Fifth Embodiment): Corresponding to Claim 4
FIG. 5 is a schematic explanatory view of a CNT manufacturing method according to the fifth embodiment of the present invention. However, the same members as those in FIG.
FIG. 5 is characterized in that, in the second embodiment, a porous dielectric 22 is arranged between the discharge electrodes 14a and 14b, and the catalyst 18 is supported on the surface of the dielectric 22 and in the vicinity thereof. To do.
According to the fifth embodiment, the same effect as in the fourth embodiment can be obtained.

(第6の実施形態):請求項5に対応
図6は、本発明の第6の実施形態におけるCNTの製造方法の概略的な説明図を示す。但し、図1と同部材は同符番を付して説明を省略する。
(Sixth Embodiment): Corresponding to Claim 5
FIG. 6 shows a schematic explanatory view of a CNT manufacturing method in the sixth embodiment of the present invention. However, the same members as those in FIG.

図6は、第5の実施形態において、誘電体の代わりに吸着剤23を放電電極14a,14b間に配置し、反応ガス中の吸着能の高い炭化水素又は濃度の低い炭化水素を吸着剤23に吸着させることを特徴とする。   FIG. 6 shows that, in the fifth embodiment, an adsorbent 23 is disposed between the discharge electrodes 14a and 14b in place of the dielectric, and a hydrocarbon having a high adsorption capacity or a low concentration in the reaction gas is adsorbed 23. It is made to adsorb | suck to.

第6の実施形態によれば、放電電極14a,14b間の吸着剤23に放電場17を形成することにより、吸着能の高い炭化水素又は濃度の低い炭化水素の放電場17内での滞在時間が増大し、効率よく低分子化が可能となる。   According to the sixth embodiment, by forming the discharge field 17 in the adsorbent 23 between the discharge electrodes 14a and 14b, the residence time in the discharge field 17 of a hydrocarbon having a high adsorption capacity or a hydrocarbon having a low concentration is obtained. Increase, and low molecular weight can be efficiently reduced.

なお、本発明は、上記実施形態そのままに限定されるものではなく、その実施の段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   Note that the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the spirit of the invention in the stage of implementation. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

図1は本発明の第1の実施形態に係るCNTの製造方法を示す説明図である。FIG. 1 is an explanatory view showing a CNT manufacturing method according to the first embodiment of the present invention. 図2は本発明の第2の実施形態に係るCNTの製造方法を示す説明図である。FIG. 2 is an explanatory view showing a CNT manufacturing method according to the second embodiment of the present invention. 図3は本発明の第3の実施形態に係るCNTの製造方法を示す説明図である。FIG. 3 is an explanatory view showing a CNT manufacturing method according to the third embodiment of the present invention. 図4は本発明の第4の実施形態に係るCNTの製造方法を示す説明図である。FIG. 4 is an explanatory view showing a CNT manufacturing method according to the fourth embodiment of the present invention. 図5は本発明の第5の実施形態に係るCNTの製造方法を示す説明図である。FIG. 5 is an explanatory view showing a CNT manufacturing method according to the fifth embodiment of the present invention. 図6は本発明の第6の実施形態に係るCNTの製造方法を示す説明図である。FIG. 6 is an explanatory view showing a CNT manufacturing method according to the sixth embodiment of the present invention. 図7は従来のCNTの製造方法を示す説明図である。FIG. 7 is an explanatory view showing a conventional CNT manufacturing method.

符号の説明Explanation of symbols

11…炉、12…反応管、13…カーボンナノチューブ(CNT)、14a,14b…放電電極、16…電源、17…放電場、18…触媒、21…添加剤、22…誘電体、23…吸着剤。   DESCRIPTION OF SYMBOLS 11 ... Furnace, 12 ... Reaction tube, 13 ... Carbon nanotube (CNT), 14a, 14b ... Discharge electrode, 16 ... Power source, 17 ... Discharge field, 18 ... Catalyst, 21 ... Additive, 22 ... Dielectric, 23 ... Adsorption Agent.

Claims (5)

触媒成長法を用いたカーボンナノチューブの製造方法において、
カーボンナノチューブの成長時に、反応管内において放電を行うことにより反応活性種を生成させ、生成した反応活性種によってカーボンナノチューブ以外の炭素材及び/又はカーボンナノチューブの結晶欠陥部分の除去を行うことを特徴とするカーボンナノチューブの製造方法。
In the carbon nanotube production method using the catalyst growth method,
It is characterized in that during the growth of carbon nanotubes, reactive active species are generated by performing discharge in a reaction tube, and carbon materials other than carbon nanotubes and / or crystal defect portions of carbon nanotubes are removed by the generated reactive active species. A method for producing carbon nanotubes.
組成変動のある炭化水素混合物を原料の少なくとも一部としたカーボンナノチューブの製造方法において、
カーボンナノチューブを成長させる触媒の上流側、又は触媒内において放電を行うことにより、炭化水素混合物を均質・低分子化してカーボンナノチューブ成長を安定化させることを特徴とするカーボンナノチューブの製造方法。
In the method of producing a carbon nanotube using a hydrocarbon mixture having a composition variation as at least a part of the raw material,
A method for producing a carbon nanotube, characterized by stabilizing the growth of a carbon nanotube by performing a discharge on the upstream side of the catalyst for growing the carbon nanotube or in the catalyst to make the hydrocarbon mixture homogeneous and low molecular.
前記反応管内に酸素、水或いは水蒸気の少なくともいずれか1つを添加し、酸素分子及び/又は水分子に由来する反応活性種を利用することを特徴とする請求項1又は請求項2記載のカーボンナノチューブの製造方法。 The carbon according to claim 1 or 2, wherein at least one of oxygen, water, and water vapor is added to the reaction tube, and a reactive species derived from oxygen molecules and / or water molecules is used. Nanotube manufacturing method. 前記反応管は放電電極を備え、この放電電極内に誘電体を配置することにより放電を安定化させることを特徴とする請求項1乃至3いずれか記載のカーボンナノチューブの製造方法。 4. The method of manufacturing a carbon nanotube according to claim 1, wherein the reaction tube includes a discharge electrode, and the discharge is stabilized by disposing a dielectric in the discharge electrode. 炭化水素混合物を触媒内に導入する前に吸着剤に吸着させ、該吸着剤内で放電することにより、吸着能の高い炭化水素又は濃度の低い炭化水素の少なくともいずれか一方の炭化水素を低分子化して、炭化水素混合物を均質・低分子化することを特徴とする請求項2乃至4いずれか記載のカーボンナノチューブの製造方法。 Before the hydrocarbon mixture is introduced into the catalyst, it is adsorbed by an adsorbent and discharged in the adsorbent, thereby reducing at least one of hydrocarbons having high adsorption capacity or low concentration hydrocarbons to low molecular weight. The method for producing carbon nanotubes according to any one of claims 2 to 4, wherein the hydrocarbon mixture is homogenized and reduced in molecular weight.
JP2006284233A 2006-10-18 2006-10-18 Method for producing carbon nanotube Pending JP2008100869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006284233A JP2008100869A (en) 2006-10-18 2006-10-18 Method for producing carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006284233A JP2008100869A (en) 2006-10-18 2006-10-18 Method for producing carbon nanotube

Publications (1)

Publication Number Publication Date
JP2008100869A true JP2008100869A (en) 2008-05-01

Family

ID=39435498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006284233A Pending JP2008100869A (en) 2006-10-18 2006-10-18 Method for producing carbon nanotube

Country Status (1)

Country Link
JP (1) JP2008100869A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018163957A1 (en) * 2017-03-09 2018-09-13 大陽日酸株式会社 Carbon nanotube, carbon-based fine structure, and base member having carbon nanotubes attached thereto, and methods respectively for producing these products
JP2018145080A (en) * 2017-03-09 2018-09-20 大陽日酸株式会社 Manufacturing method of carbon nanotube, carbon nanotube, and substrate with oriented carbon nanotube
JP2018184319A (en) * 2017-04-26 2018-11-22 大陽日酸株式会社 Carbon-based microstructure and method for producing carbon-based microstructure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018163957A1 (en) * 2017-03-09 2018-09-13 大陽日酸株式会社 Carbon nanotube, carbon-based fine structure, and base member having carbon nanotubes attached thereto, and methods respectively for producing these products
JP2018145080A (en) * 2017-03-09 2018-09-20 大陽日酸株式会社 Manufacturing method of carbon nanotube, carbon nanotube, and substrate with oriented carbon nanotube
TWI733002B (en) * 2017-03-09 2021-07-11 日商大陽日酸股份有限公司 Carbon nanotube, carbon-based fine structure, and substrate with carbon nanotube and methods of manufacturing the same
JP2018184319A (en) * 2017-04-26 2018-11-22 大陽日酸株式会社 Carbon-based microstructure and method for producing carbon-based microstructure
JP7015641B2 (en) 2017-04-26 2022-02-15 大陽日酸株式会社 Carbon-based microstructures and methods for manufacturing carbon-based microstructures

Similar Documents

Publication Publication Date Title
Park et al. High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing
KR20010066815A (en) Massive purification method of carbon nanotubes
Yoshihara et al. Chemistry of water-assisted carbon nanotube growth over Fe− Mo/MgO catalyst
JP2006188393A (en) Method of processing carbon material
CN1946635A (en) Method for preparing carbon nano structure
US9868638B2 (en) Methods of making and purifying carbon nanotubes
JP2006188389A (en) Method for production of high-purity two- to five-walled carbon nanotube, and composition containing the same
Zhao et al. Study on purification and tip-opening of CNTs fabricated by CVD
Liu et al. Advances of microwave plasma-enhanced chemical vapor deposition in fabrication of carbon nanotubes: a review
Hussain et al. Growth and plasma functionalization of carbon nanotubes
JP2008100869A (en) Method for producing carbon nanotube
JP6192042B2 (en) Carbon nanotube aggregate and method for producing the same
JP2007284336A (en) Method for growing carbon nanotube and method for manufacturing carbon nanotube structure
JP4724828B2 (en) Boron-doped double-walled carbon nanotubes, linked double-walled carbon nanotubes, and method for producing the same
JP2006298684A (en) Carbon-based one-dimensional material and method for synthesizing the same, catalyst for synthesizing carbon-based one-dimensional material and method for synthesizing the catalyst, and electronic element and method for manufacturing the element
JP2005306681A (en) Method for removing catalyst metal
JP4049097B2 (en) Gas storage material and gas storage device
Qian et al. Preferential growth of semiconducting single-walled carbon nanotubes on substrate by europium oxide
JP3095013B1 (en) Purification method of carbon tube
JP5007513B2 (en) Carbon nanotube purification method and purification apparatus
JP2005001938A (en) Method of manufacturing carbon nanotube
JP6455988B2 (en) Carbon nanotube manufacturing apparatus and manufacturing method
Pornsunthorntawee et al. Purification of single-walled carbon nanotubes (SWNTs) by acid leaching, NaOH dissolution, and froth flotation
JP2007210808A (en) Dwcnt complex and its manufacturing method
Fang et al. Single-chirality separation of ultra-thin semiconducting arc discharge single-walled carbon nanotubes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025