JP2008050238A - Nanocarbon paste and method for producing nanocarbon emitter - Google Patents

Nanocarbon paste and method for producing nanocarbon emitter Download PDF

Info

Publication number
JP2008050238A
JP2008050238A JP2006231315A JP2006231315A JP2008050238A JP 2008050238 A JP2008050238 A JP 2008050238A JP 2006231315 A JP2006231315 A JP 2006231315A JP 2006231315 A JP2006231315 A JP 2006231315A JP 2008050238 A JP2008050238 A JP 2008050238A
Authority
JP
Japan
Prior art keywords
nanocarbon
paste
emitter
fine particles
diamond fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006231315A
Other languages
Japanese (ja)
Other versions
JP4967535B2 (en
Inventor
Hisahiro Ando
寿浩 安藤
Kiyoharu Nakagawa
清晴 中川
Mika Gamo
美香 蒲生
Shusuke Gamo
秀典 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Toppan Inc
Original Assignee
National Institute for Materials Science
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Toppan Printing Co Ltd filed Critical National Institute for Materials Science
Priority to JP2006231315A priority Critical patent/JP4967535B2/en
Publication of JP2008050238A publication Critical patent/JP2008050238A/en
Application granted granted Critical
Publication of JP4967535B2 publication Critical patent/JP4967535B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nanocarbon paste based on a nanocarbon material and having high dispersedness and a uniform composition and to provide a nanocarbon emitter using the same. <P>SOLUTION: The nanocarbon paste 1 is prepared by mixing a nanocarbon material composite material 4 composed of diamond microparticles 2 each of which is surrounded by a nanocarbon material 3 directly or through a metal or a metal compound, an inorganic binder 5, an organic binder 6, and an organic solvent 7. The diamond microparticles 2 can function as nuclei because of their particle diameters less than 1 μm and can contribute to forming the nanocarbon paste 1 having high dispersedness and a uniform composition. The nanocarbon emitter is produced by applying the nanocarbon paste 1 to an electroconductive layer 12 on a substrate 11. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ダイヤモンド微粒子を核に持つナノ炭素材料複合体を主成分とするナノカーボンペーストと、このナノカーボンペーストを用いたナノカーボンエミッタの製造方法に関する。   The present invention relates to a nanocarbon paste mainly composed of a nanocarbon material composite having diamond fine particles as a core, and a method for producing a nanocarbon emitter using the nanocarbon paste.

カーボンナノチューブなどのナノ炭素材料は、炭素のsp混成軌道で構成された、ナノメーター(nm)サイズの微細形状を有する。よって、ナノ炭素材料は、バルクな物質として知られているダイヤモンドやグラファイトとは異なる構造や優れた性質を有することから、次世代の強度補強材料、ナノカーボンエミッタ材料、電池の電極材料、電磁波吸収材料、触媒材料または光学材料としての応用が期待されている。 Nanocarbon materials, such as carbon nanotubes, have a nanometer (nm) size fine shape composed of carbon sp 2 hybrid orbitals. Therefore, nanocarbon materials have a different structure and superior properties from diamond and graphite, which are known as bulk materials, so next-generation strength reinforcing materials, nanocarbon emitter materials, battery electrode materials, electromagnetic wave absorption Applications as materials, catalyst materials or optical materials are expected.

カーボンナノチューブなどのナノ炭素材料の合成方法としては、アーク放電法、レーザーアブレーション法、プラズマ化学気相成長法、熱化学気相成長法などが知られている(非特許文献1及び2)。これらのうち、アーク放電法、レーザーアブレーション法やプラズマ化学気相成長法は非平衡反応であるため、非晶質成分を生成しやすく、一般に生成するカーボンナノチューブの収率が低く、また、生成したカーボンナノチューブの直径や種類が一様でないことが知られている。   Known methods for synthesizing nanocarbon materials such as carbon nanotubes include arc discharge, laser ablation, plasma chemical vapor deposition, and thermal chemical vapor deposition (Non-Patent Documents 1 and 2). Of these, the arc discharge method, laser ablation method, and plasma chemical vapor deposition method are non-equilibrium reactions, so they tend to generate amorphous components, and the yield of carbon nanotubes is generally low. It is known that the diameter and type of carbon nanotubes are not uniform.

一方、特許文献1及び2には、触媒を用いて炭化水素ガスを熱分解しカーボンナノチューブを製造する熱化学気相成長法が開示されており、化学平衡反応を利用するため、収率が比較的高いことが知られている。この方法では、超微粒の鉄やニッケルなどの触媒粒子を核として成長した炭素繊維が得られる。得られた炭素繊維は、炭素網層が同心状、中空状に成長したものも含まれる。しかしながら、この方法においても、触媒となる金属の粒径や化学状態を制御することが困難であり、ナノ炭素材料の構造を制御して合成することができない。よって、実用化の際に要求される、所望の構造の材料を作り分けて得ることができず、結果的に収率が低下することは避けられなかった。   On the other hand, Patent Documents 1 and 2 disclose a thermal chemical vapor deposition method in which a hydrocarbon gas is pyrolyzed using a catalyst to produce carbon nanotubes, and the yield is compared because a chemical equilibrium reaction is used. It is known to be expensive. In this method, carbon fibers grown using catalyst particles such as ultrafine iron and nickel as nuclei can be obtained. The obtained carbon fibers include those in which the carbon network layer grows concentrically and hollowly. However, even in this method, it is difficult to control the particle size and chemical state of the metal serving as a catalyst, and the structure of the nanocarbon material cannot be controlled and synthesized. Accordingly, it is impossible to obtain a material having a desired structure that is required for practical use, and it is inevitable that the yield is lowered as a result.

しかも、従来のナノ炭素材料では、合成したナノ炭素材料を使用形態に加工する際、例えば電池の電極の形状に加工する際には、黒鉛粒子や不定形炭素などのナノ炭素材料以外の炭素不純物を含んだ反応生成物中からナノ炭素材料を精製したり、基板上に成長したカーボンナノチューブを掻き落とすことで、必要な量のカーボンナノチューブを収集することが必要であり、低コストで大量に、かつ所望の構造を持つナノ炭素材料を使用した部材を製造することができなかった。   Moreover, in the conventional nanocarbon material, when processing the synthesized nanocarbon material into a usage form, for example, when processing into the shape of a battery electrode, carbon impurities other than the nanocarbon material such as graphite particles and amorphous carbon are used. It is necessary to collect the required amount of carbon nanotubes by purifying the nanocarbon material from the reaction product containing, and scraping off the carbon nanotubes grown on the substrate. In addition, a member using a nanocarbon material having a desired structure could not be manufactured.

さらに、従来のナノ炭素材料は、個々は結晶性を持ち、繊維状の形態を持つ材料は得られているが、例えばグラム単位でみた集合体は無秩序な集まりであって、かつ、密度が低いパウダー状あるいはクラスター状の固体である。このようなナノ炭素材料を実用的な材料として適用するため、ペースト化または樹脂などの他の材料と混合しても、無秩序で低密度の集合体であるので、組成を均一化することができない、という課題がある。   In addition, conventional nanocarbon materials are individually crystalline and have a fibrous form, but for example, aggregates in gram units are disordered aggregates and have a low density. It is a powdery or clustered solid. In order to apply such a nanocarbon material as a practical material, even if it is made into a paste or mixed with other materials such as a resin, it is a disordered and low-density assembly, so the composition cannot be made uniform There is a problem.

特開2002−255519号公報JP 2002-255519 A 特開2002−285334号公報JP 2002-285334 A 独立行政法人 産業技術研究所 ナノカーボン研究センター編 「ナノカーボン料」 丸善株式会社 平成16年5月25日発行、p.187−191National Institute of Advanced Industrial Science and Technology, Nanocarbon Research Center “Nanocarbon Fee” Maruzen Co., Ltd. May 25, 2004, p. 187-191 独立行政法人 産業技術研究所 ナノカーボン研究センター編 「ナノカーボン料」 丸善株式会社 平成16年5月25日発行、p.191−192National Institute of Advanced Industrial Science and Technology, Nanocarbon Research Center “Nanocarbon Fee” Maruzen Co., Ltd. May 25, 2004, p. 191-192

上記したように、ナノ炭素材料は従来にない極めて優れた特徴を有しており、この優れた特徴を生かした実用デバイスを実現するためには、ナノ炭素材料が均一に分散したペーストが必要不可欠であるが、従来ではナノ炭素材料をペースト化しても無秩序で低密度の集合体であるため、高分散性で均質なペーストを得ることができないという課題がある。   As described above, nanocarbon materials have unprecedented characteristics, and in order to realize practical devices that make use of these excellent characteristics, a paste in which nanocarbon materials are uniformly dispersed is indispensable. However, there is a problem that even if a nanocarbon material is pasted, it is a disordered and low-density assembly, and thus a highly dispersible and homogeneous paste cannot be obtained.

このため、現状では、ナノ炭素材料が均一に分散して均質な組成で大面積のエミッタを有するナノカーボンエミッタを得ることができない。   For this reason, under the present circumstances, it is not possible to obtain a nanocarbon emitter having a large area emitter with a homogeneous composition by uniformly dispersing the nanocarbon material.

本発明は上記課題に鑑み、ナノ炭素材料を主成分とし、高分散性を持ち、組成が均一なナノカーボンペーストを提供することを第一の目的としている。
本発明の第二の目的は、エミッタ材料となるナノ炭素材料を基体に容易にかつ大面積に均一に形成することで、製造コストが低減できる、ナノカーボンエミッタの製造方法を提供することにある。
In view of the above problems, the first object of the present invention is to provide a nanocarbon paste having a nanocarbon material as a main component, high dispersibility, and a uniform composition.
A second object of the present invention is to provide a method for producing a nanocarbon emitter that can reduce the production cost by easily and uniformly forming a nanocarbon material as an emitter material on a substrate in a large area. .

上記の第一の目的を達成するために、本発明のナノカーボンペーストは、ダイヤモンド微粒子に直接または金属若しくは金属化合物を介してナノ炭素材料が形成されてなるナノ炭素材料複合体と、バインダー材料と、溶剤と、を混合してなることを特徴とする。
上記ダイヤモンド微粒子は、好ましくは1μmより小さい粒径を有する。
In order to achieve the first object, the nanocarbon paste of the present invention comprises a nanocarbon material composite in which a nanocarbon material is formed directly on diamond fine particles or via a metal or a metal compound, a binder material, And a solvent.
The diamond fine particles preferably have a particle size of less than 1 μm.

上記構成によれば、ナノ炭素材料とダイヤモンド微粒子とを一体化した複合体とすることで、ナノ炭素材料を集合体として扱うことが容易となり、ペースト化したり、他の物質と混合しても不均一化したり飛散したりすることがなく、高分散で高い均一組成のペーストを得ることができる。また、ダイヤモンドは化学的に極めて安定な物質であるため、様々なプロセスにおいても高い耐性を持つので、実用用途における特性に悪影響を及ぼすことがない。   According to the above configuration, the nanocarbon material and the diamond fine particles are integrated into a composite body, which makes it easy to handle the nanocarbon material as an aggregate, and it can be used as a paste or mixed with other substances. A paste having a high dispersion and a high uniform composition can be obtained without being homogenized or scattered. In addition, since diamond is a chemically very stable substance, it has high resistance in various processes, so that it does not adversely affect the properties in practical use.

本発明では、ダイヤモンド微粒子をナノサイズで構成したナノダイヤモンド微粒子とすることで、ナノ炭素材料と同等の粒径を持つため、ダイヤモンドとナノ炭素材料との結合を形成でき、核として十分な機能を果たす。これより、分散性が高く均一なペーストを得ることができる。また、核がナノサイズの微小粒径であるため、物性的にダイヤモンドの影響はなくナノ炭素材料の性能を最大限生かすことができる。   In the present invention, since the diamond fine particles are nano-diamond fine particles composed of nano-size particles, they have a particle size equivalent to that of the nano-carbon material. Fulfill. Thereby, a highly dispersible and uniform paste can be obtained. Further, since the core has a nano-sized fine particle size, there is no influence of diamond on the physical properties, and the performance of the nano-carbon material can be utilized to the maximum.

第二の目的を達成するために、本発明のナノカーボンエミッタの製造方法は、基体に導電層を形成する工程と、ダイヤモンド微粒子に直接または金属若しくは金属化合物を介してナノ炭素材料が形成されてなるナノ炭素材料複合体とバインダー材料と溶剤とを混合してなるナノカーボンペーストを、導電層上に塗布することで、導電層上にナノ炭素材料複合体を配置する工程と、を含むことを特徴とする。
上記ダイヤモンド微粒子は、好ましくは1μmより小さい粒径を有する。
In order to achieve the second object, a method for producing a nanocarbon emitter according to the present invention comprises a step of forming a conductive layer on a substrate, and a nanocarbon material is formed directly on diamond fine particles or via a metal or metal compound. Applying a nanocarbon paste formed by mixing a nanocarbon material composite, a binder material, and a solvent onto the conductive layer, thereby disposing the nanocarbon material composite on the conductive layer. Features.
The diamond fine particles preferably have a particle size of less than 1 μm.

上記構成により、ナノ炭素材料複合体を主成分とし分散性が高くかつ均一性のよいペーストを、導電層に塗布してナノ炭素材料複合体を導電層上に固定するので、エミッタ材料としてのナノカーボン材料が、均一に分散した均質な組成を持つ電子放出部を大面積に亘って得られ、性能の均一性や製造コストの削減を図ることができる。   With the above configuration, the nanocarbon material composite is the main component, and a highly dispersible and uniform paste is applied to the conductive layer to fix the nanocarbon material composite on the conductive layer. The electron emission part having a homogeneous composition in which the carbon material is uniformly dispersed can be obtained over a large area, so that the performance uniformity and the manufacturing cost can be reduced.

本発明のナノカーボンペーストによれば、ダイヤモンド微粒子とナノ炭素材料とが一体化しているため、集合体として扱い易いナノ炭素材料複合体を含んでいることから、ペースト化や他の材料との混合の際に不均一化や飛散を起こすことがない。よって、本発明のナノカーボンペーストは、均質な組成を持ち、実用化プロセスへの適性に優れている。また、ナノ炭素材料を担持したダイヤモンドは、化学的に安定で、他の材料とは反応を起こすことがないため、実用物性に悪影響を及ぼすことがない。従って、本発明のナノカーボンペーストを、構造材料、電気二重層キャパシタ、燃料電池、または一般的な二次電池の電極材料として、特にエミッタ材料として使用する際には良好なプロセス適性を示す。   According to the nanocarbon paste of the present invention, since the diamond fine particles and the nanocarbon material are integrated, since the nanocarbon material composite that is easy to handle as an aggregate is included, pasting or mixing with other materials There will be no unevenness or scattering during the process. Therefore, the nanocarbon paste of the present invention has a homogeneous composition and is excellent in suitability for a practical process. In addition, diamond carrying a nanocarbon material is chemically stable and does not react with other materials, so it does not adversely affect practical physical properties. Therefore, when the nanocarbon paste of the present invention is used as an electrode material of a structural material, an electric double layer capacitor, a fuel cell, or a general secondary battery, particularly as an emitter material, it exhibits good process suitability.

本発明のナノカーボンエミッタの製造方法によれば、均質な組成のエミッタ材料からなる電子放出部を大面積に形成することができるとともに、製造コストを低減することができる。   According to the method for producing a nanocarbon emitter of the present invention, an electron emission portion made of an emitter material having a uniform composition can be formed in a large area, and the production cost can be reduced.

以下、本発明の最良の形態について図面に基づいて詳細に説明する。
図1は、本発明のナノカーボンペースト1の構成を模式的に示す断面図である。本発明のナノカーボンペースト1は、核となるダイヤモンド微粒子2とダイヤモンド微粒子2上に成長したナノ炭素材料3とからなるナノ炭素材料複合体4と、無機バインダー5と、有機バインダー6と、有機溶剤7とを混合して成る。図1では、ナノ炭素材料3が直接ダイヤモンド微粒子2上に存在する場合を示しているが、ナノ炭素材料3が金属を介在させてダイヤモンド微粒子2上に存在してもよいし、酸化物をはじめとする金属化合物を介在させてダイヤモンド微粒子2上に存在してもよい。
Hereinafter, the best mode of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view schematically showing the configuration of the nanocarbon paste 1 of the present invention. The nanocarbon paste 1 of the present invention includes a nanocarbon material composite 4 composed of diamond fine particles 2 serving as nuclei and a nanocarbon material 3 grown on the diamond fine particles 2, an inorganic binder 5, an organic binder 6, and an organic solvent. 7 and mixed. Although FIG. 1 shows a case where the nanocarbon material 3 is directly present on the diamond fine particles 2, the nanocarbon material 3 may be present on the diamond fine particles 2 with a metal interposed therebetween, or may be an oxide or the like. The metal compound may be present on the diamond fine particles 2 with a metal compound interposed therebetween.

ここで、ダイヤモンド微粒子2として、粒径が1μmより小さいナノサイズのダイヤモンド粒子を用いることで、ナノ炭素材料3の核として、より小さな容積で、効率的に機能することができる。ダイヤモンド微粒子2として、研磨用の市販されているダイヤモンドパウダーを使用してもよい。   Here, by using nano-sized diamond particles having a particle size smaller than 1 μm as the diamond fine particles 2, it can function efficiently as a nucleus of the nanocarbon material 3 with a smaller volume. A commercially available diamond powder for polishing may be used as the diamond fine particles 2.

ナノ炭素材料3は、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、カーボンナノフィラメントなど、各種用途に応じて適切な材料から構成することができる。   The nanocarbon material 3 can be made of an appropriate material according to various uses such as a carbon nanotube, a carbon nanofiber, a carbon nanohorn, and a carbon nanofilament.

無機バインダー5は無機材料からなり、ナノ炭素材料複合体4同士を固着するために機能し、例えば、ガラスフリットなどを用いることができる。   The inorganic binder 5 is made of an inorganic material and functions to fix the nanocarbon material composites 4 together. For example, a glass frit can be used.

有機バインダー6および有機溶剤7は、一般にペースト化に用いられる材料から選択できる。例えば、有機バインダー6には、電子材料のスクリーン印刷用途に用いられているエチルセルロース(エトセル)を用いることができ、溶剤7にはカルビトールなどを用いることができる。   The organic binder 6 and the organic solvent 7 can be selected from materials generally used for pasting. For example, the organic binder 6 can be ethyl cellulose (Ethosele) used for screen printing of electronic materials, and the solvent 7 can be carbitol or the like.

なお、ダイヤモンド微粒子2とナノ炭素材料3とを一体化させたナノ炭素材料複合体4は、熱化学気相成長法によるナノ炭素材料3の作製条件を制御することにより、不純物がなくかつ所望の構造を有するナノ炭素材料3をダイヤモンド微粒子2に均一に形成することで得ることができる。例えば、ダイヤモンド微粒子2を担体として、触媒成分としてニッケル、コバルト及び鉄の何れかを担持した状態で炭化水素ガスを熱分解する。すると、カーボンナノチューブやカーボンナノファイバーなどのナノ炭素材料が成長する。このとき、ダイヤモンド微粒子2の粒径に応じて、成長するナノ炭素材料3の構造を制御することができる。   The nanocarbon material composite 4 in which the diamond fine particles 2 and the nanocarbon material 3 are integrated is free from impurities by controlling the conditions for producing the nanocarbon material 3 by thermal chemical vapor deposition. The nanocarbon material 3 having a structure can be obtained by uniformly forming the diamond fine particles 2. For example, the hydrocarbon gas is pyrolyzed in a state where any one of nickel, cobalt and iron is supported as a catalyst component using the diamond fine particles 2 as a carrier. Then, nanocarbon materials such as carbon nanotubes and carbon nanofibers grow. At this time, the structure of the growing nanocarbon material 3 can be controlled according to the particle size of the diamond fine particles 2.

本発明のナノカーボンペーストによれば、ダイヤモンド微粒子とナノ炭素材料とが一体化しているため、集合体として扱い易いナノ炭素材料複合体を含んでいるので、ペースト化や他の材料との混合の際に不均一化や飛散を起こすことがない。よって、本発明のナノカーボンペーストは、均質な組成を持ち、実用化プロセスへの適性に優れている。また、ダイヤモンドは、化学的に安定で、他の材料とは反応を起こすことがないため、実用物性に悪影響を及ぼすことがない。従って、本発明のナノカーボンペーストを、構造材料、電気二重層キャパシタ、燃料電池、または一般的な二次電池の電極材料として、特にエミッタ材料として使用する際には良好なプロセス適性を示す。   According to the nanocarbon paste of the present invention, since the diamond fine particles and the nanocarbon material are integrated, the nanocarbon material composite that is easy to handle as an aggregate is included, so that it can be pasted or mixed with other materials. There will be no unevenness or scattering. Therefore, the nanocarbon paste of the present invention has a homogeneous composition and is excellent in suitability for a practical process. In addition, diamond is chemically stable and does not react with other materials, so it does not adversely affect practical physical properties. Therefore, when the nanocarbon paste of the present invention is used as an electrode material of a structural material, an electric double layer capacitor, a fuel cell, or a general secondary battery, particularly as an emitter material, it exhibits good process suitability.

次に、本発明のナノカーボンエミッタの製造方法について説明する。
図2は、本発明のナノカーボンエミッタの製造工程を示す図である。
先ず、図2(a)に示す基体11上に薄膜または厚膜からなる導電層12を成膜する(図2(b)参照)。導電層11が薄膜の場合には、蒸着、スパッタ、イオンプレーティングなどの方法で基体11上に成膜する。その際、必要に応じてリソグラフィー法などを用いることにより所定形状にパターニングする工程を挿入してもよい。一方、導電層12が厚膜の場合には、印刷法などで基体11上に塗布する。所定のパターン形状となるよう同時に成形することもできる。
Next, the manufacturing method of the nanocarbon emitter of this invention is demonstrated.
FIG. 2 is a diagram showing a manufacturing process of the nanocarbon emitter of the present invention.
First, a conductive layer 12 made of a thin film or a thick film is formed on the substrate 11 shown in FIG. 2A (see FIG. 2B). When the conductive layer 11 is a thin film, it is formed on the substrate 11 by a method such as vapor deposition, sputtering, or ion plating. In that case, you may insert the process patterned to a predetermined shape by using a lithography method etc. as needed. On the other hand, when the conductive layer 12 is a thick film, it is applied on the substrate 11 by a printing method or the like. It can also be simultaneously molded so as to have a predetermined pattern shape.

続いて、図2(c)に示すように、図2(b)の導電層12上にナノ炭素材料複合体4を積層形成する。
ここで、ナノ炭素材料複合体4は、ダイヤモンド微粒子2を核とし周囲にナノ炭素材料3が形成されてなる。ナノ炭素材料複合体4の積層は、導電層12上に、ナノカーボンペーストを用いて印刷法や転写法などにより塗布することができる。このとき、予め印刷版に所定のパターンを形成しておくことで、パターンニングも同時に行える。次に、酸化雰囲気中で所定の温度で焼成し、有機バインダー6と溶剤7の脱処理を行う。その後、ナノ炭素材料複合体4を固着させるために、ガラスよりなる無機バインダー5を不活性ガス雰囲気で所定の温度で焼成する。
以上の工程により、電界放出型のナノカーボンエミッタとしてのカーボンエミッタが完成する。
Subsequently, as shown in FIG. 2C, the nanocarbon material composite 4 is laminated on the conductive layer 12 of FIG.
Here, the nanocarbon material composite 4 is formed by forming the nanocarbon material 3 around the diamond fine particle 2 as a nucleus. The stack of the nanocarbon material composite 4 can be applied onto the conductive layer 12 by using a nanocarbon paste by a printing method, a transfer method, or the like. At this time, patterning can be performed simultaneously by forming a predetermined pattern on the printing plate in advance. Next, baking is performed at a predetermined temperature in an oxidizing atmosphere, and the organic binder 6 and the solvent 7 are removed. Thereafter, in order to fix the nanocarbon material composite 4, the inorganic binder 5 made of glass is fired at a predetermined temperature in an inert gas atmosphere.
Through the above steps, a carbon emitter as a field emission nanocarbon emitter is completed.

以下、実施例に基づいて本発明をさらに詳細に説明する。
粒径が5〜30nmのダイヤモンド微粒子を担体として、それらに触媒成分としてのニッケルを金属として5wt%含む触媒0.1gを小型の固定床流通系反応管に充填し、触媒層を575℃で一定に保ち、原料ガスとしてメタンを20cm/分の流速で60分間流して反応を行なった。反応終了後に生成物を回収した。図3は、本発明の実施例1により作製された生成物の走査型電子顕微鏡(SEM)像を示す図である。図3から明らかなように、生成物は直径が20〜50nmの繊維状のカーボンナノファイバーであることが判明した。
Hereinafter, the present invention will be described in more detail based on examples.
A small fixed-bed flow system reaction tube is filled with 0.1 g of a catalyst containing 5 wt% of nickel as a catalyst component as a catalyst and diamond fine particles having a particle diameter of 5 to 30 nm as a metal, and the catalyst layer is kept constant at 575 ° C. The reaction was carried out by flowing methane as a raw material gas at a flow rate of 20 cm 3 / min for 60 minutes. The product was recovered after completion of the reaction. FIG. 3 is a diagram showing a scanning electron microscope (SEM) image of the product produced according to Example 1 of the present invention. As apparent from FIG. 3, the product was found to be fibrous carbon nanofibers having a diameter of 20 to 50 nm.

次に、粘度40cPのエチルセルロースをカルビトールに溶かし、ガラスフリットを加え、これに上記反応で得た生成物を入れて十分混練し、実施例1のナノカーボンペーストを得た。   Next, ethyl cellulose having a viscosity of 40 cP was dissolved in carbitol, glass frit was added, and the product obtained by the above reaction was added thereto and kneaded sufficiently to obtain the nanocarbon paste of Example 1.

実施例1で作製したナノカーボンペーストを用いて、実施例2のナノカーボンエミッタを製造した。
最初に、ガラス基板上に導電層としてクロム薄膜をスパッタ法により100nm厚で成膜した。実施例1で得られたナノカーボンペーストを用いて、SUS400メッシュ版を使用してスクリーン印刷法で、スキージを用いて導電層上に印刷して塗布した。
その後、空気中で370℃で30分間焼成することで脱溶剤処理及び脱有機バインダー処理を行い、更に、真空中で420℃で30分間焼成することでガラスフリットを溶融し上記生成物中のナノ炭素材料複合体同士や導電層上に固着した。
これにより、カーボンナノファイバーによるナノカーボンエミッタを製造することができる。
Using the nanocarbon paste produced in Example 1, the nanocarbon emitter of Example 2 was produced.
First, a chromium thin film having a thickness of 100 nm was formed as a conductive layer on a glass substrate by sputtering. Using the nanocarbon paste obtained in Example 1, it was printed on a conductive layer using a SUS400 mesh plate by a screen printing method and applied.
Thereafter, the solvent removal treatment and the deorganic binder treatment are performed by baking at 370 ° C. for 30 minutes in the air, and further, the glass frit is melted by baking at 420 ° C. for 30 minutes in a vacuum, so that the The carbon material composites were fixed to each other or on the conductive layer.
Thereby, the nanocarbon emitter by carbon nanofiber can be manufactured.

本発明のナノカーボンペーストは、ナノ炭素材料複合体を主成分とし分散性が高くかつ均一性がよいので、構造材料、電気二重層キャパシタ、燃料電池、または一般的な二次電池の電極材料として、特にエミッタ材料として好適に使用することができる。   The nanocarbon paste of the present invention has a nanocarbon material composite as a main component and has high dispersibility and good uniformity. Therefore, the nanocarbon paste is used as an electrode material for structural materials, electric double layer capacitors, fuel cells, or general secondary batteries. In particular, it can be suitably used as an emitter material.

本発明のナノカーボンペーストの構成を模式的に示す断面図である。It is sectional drawing which shows the structure of the nanocarbon paste of this invention typically. 本発明のナノカーボンエミッタの製造工程を示す図である。It is a figure which shows the manufacturing process of the nanocarbon emitter of this invention. 本発明の実施例1により作製された生成物の走査型電子顕微鏡像を示す図である。It is a figure which shows the scanning electron microscope image of the product produced by Example 1 of this invention.

符号の説明Explanation of symbols

1:ナノカーボンペースト
2:ダイヤモンド微粒子
3:ナノ炭素材料
4:ナノ炭素材料複合体
5:無機バインダー
6:有機バインダー
7:溶剤
11:基体
12:導電層
1: Nanocarbon paste 2: Diamond fine particles 3: Nanocarbon material 4: Nanocarbon material composite 5: Inorganic binder 6: Organic binder 7: Solvent 11: Substrate 12: Conductive layer

Claims (4)

ダイヤモンド微粒子に直接または金属若しくは金属化合物を介してナノ炭素材料が形成されてなるナノ炭素材料複合体と、バインダー材料と、溶剤と、を混合してなることを特徴とする、ナノカーボンペースト。   A nanocarbon paste comprising a nanocarbon material composite formed by forming a nanocarbon material directly on diamond fine particles or via a metal or a metal compound, a binder material, and a solvent. 前記ダイヤモンド微粒子は、1μmより小さい粒径を有することを特徴とする、請求項1に記載のナノカーボンペースト。   The nano-carbon paste according to claim 1, wherein the diamond fine particles have a particle size of less than 1 µm. 基体に導電層を形成する工程と、
ダイヤモンド微粒子に直接または金属若しくは金属化合物を介してナノ炭素材料が形成されてなるナノ炭素材料複合体とバインダー材料と溶剤とを混合してなるナノカーボンペーストを、上記導電層上に塗布することで、上記導電層上に上記ナノ炭素材料複合体を配置する工程と、
を含むことを特徴とする、ナノカーボンエミッタの製造方法。
Forming a conductive layer on the substrate;
A nanocarbon paste formed by mixing a nanocarbon material composite in which a nanocarbon material is formed directly on diamond fine particles or via a metal or metal compound, a binder material, and a solvent is applied onto the conductive layer. Arranging the nanocarbon material composite on the conductive layer;
A method for producing a nanocarbon emitter, comprising:
前記ダイヤモンド微粒子は、1μmより小さい粒径を有することを特徴とする、請求項3に記載のナノカーボンエミッタの製造方法。   The method for producing a nanocarbon emitter according to claim 3, wherein the diamond fine particles have a particle size of less than 1 μm.
JP2006231315A 2006-08-28 2006-08-28 Nanocarbon paste and method for producing nanocarbon emitter Expired - Fee Related JP4967535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006231315A JP4967535B2 (en) 2006-08-28 2006-08-28 Nanocarbon paste and method for producing nanocarbon emitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006231315A JP4967535B2 (en) 2006-08-28 2006-08-28 Nanocarbon paste and method for producing nanocarbon emitter

Publications (2)

Publication Number Publication Date
JP2008050238A true JP2008050238A (en) 2008-03-06
JP4967535B2 JP4967535B2 (en) 2012-07-04

Family

ID=39234622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006231315A Expired - Fee Related JP4967535B2 (en) 2006-08-28 2006-08-28 Nanocarbon paste and method for producing nanocarbon emitter

Country Status (1)

Country Link
JP (1) JP4967535B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010218773A (en) * 2009-03-13 2010-09-30 National Institute For Materials Science Nano-carbon emitter, its manufacturing method, and plane light-emitting element using the same
KR101912261B1 (en) * 2011-07-28 2018-10-30 삼성전기 주식회사 Conductive paste for internal electrode of multilayer ceramic electronic components and multilayer ceramic electronic components using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001043792A (en) * 1999-07-30 2001-02-16 Futaba Corp Manufacture of electron emitting source, electron emitting source, and fluorescent light emitting type display
JP2003112050A (en) * 2001-10-05 2003-04-15 Japan Science & Technology Corp Method for manufacturing catalytic carbon nanofiber by decomposition of hydrocarbon and catalyst
JP2003303539A (en) * 2002-04-10 2003-10-24 Mitsubishi Electric Corp Electron emission source and its manufacturing method
JP2004277241A (en) * 2003-03-17 2004-10-07 Japan Science & Technology Agency Method of producing carbon fiber, and catalyst for the production
JP2005335968A (en) * 2004-05-24 2005-12-08 National Institute For Materials Science Aegagropila-like carbon, and method and apparatus for producing the same
JP2006182601A (en) * 2004-12-27 2006-07-13 Sumitomo Osaka Cement Co Ltd Paste containing carbon nanotube, method for manufacturing carbon nanotube film, carbon nanotube film and electric field electron emission element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001043792A (en) * 1999-07-30 2001-02-16 Futaba Corp Manufacture of electron emitting source, electron emitting source, and fluorescent light emitting type display
JP2003112050A (en) * 2001-10-05 2003-04-15 Japan Science & Technology Corp Method for manufacturing catalytic carbon nanofiber by decomposition of hydrocarbon and catalyst
JP2003303539A (en) * 2002-04-10 2003-10-24 Mitsubishi Electric Corp Electron emission source and its manufacturing method
JP2004277241A (en) * 2003-03-17 2004-10-07 Japan Science & Technology Agency Method of producing carbon fiber, and catalyst for the production
JP2005335968A (en) * 2004-05-24 2005-12-08 National Institute For Materials Science Aegagropila-like carbon, and method and apparatus for producing the same
JP2006182601A (en) * 2004-12-27 2006-07-13 Sumitomo Osaka Cement Co Ltd Paste containing carbon nanotube, method for manufacturing carbon nanotube film, carbon nanotube film and electric field electron emission element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010218773A (en) * 2009-03-13 2010-09-30 National Institute For Materials Science Nano-carbon emitter, its manufacturing method, and plane light-emitting element using the same
KR101912261B1 (en) * 2011-07-28 2018-10-30 삼성전기 주식회사 Conductive paste for internal electrode of multilayer ceramic electronic components and multilayer ceramic electronic components using the same

Also Published As

Publication number Publication date
JP4967535B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
TW201938484A (en) Structured composite materials
CN101176181B (en) Method of synthesizing small-diameter carbon nanotubes with electron field emission properties
JP2008255003A (en) Carbon nanotube composite utilizing carbide-derived carbon, its production method, electron emission source containing it, and electron emission device provided with the electron emission source
JP2006015342A (en) Method for manufacturing catalyst base for carbon nanotubes production, and method for manufacturing carbon nanotubes using this catalyst base formation method
CN103058172A (en) Preparation method of carbon nanometer tube-graphene composite material
Zeng et al. Synthesis and application of carbon nanotubes
JP2007533581A6 (en) Method for synthesizing small-diameter carbon nanotubes having electron field emission characteristics
JP2004311407A (en) Composite particles for electron emission and their manufacturing method, electron emitting source and its manufacturing method, composition for electron emission emitter formation, and electric field emission display device
US7755264B2 (en) Composition for formatting an electron emission source for use in an electron emission device and an electron emission source fabricated using the same
JP2012214342A (en) Carbon nanotube nanohorn conjugate, and manufacturing method and use of the same
JP3843736B2 (en) Carbon nanotube device, method for producing the same, and method for purifying carbon nanotube
JP5920600B2 (en) Carbon nanotube / carbon nanohorn composite, production method and use of carbon nanotube / carbon nanohorn composite
JP4984131B2 (en) Nanocarbon paste and method for producing nanocarbon emitter
JP2003277029A (en) Carbon nanotube and method for manufacturing the same
JP4967535B2 (en) Nanocarbon paste and method for producing nanocarbon emitter
JP2006294525A (en) Electron emission element, its manufacturing method and image display device using it
JP2008050239A (en) Nanocarbon material composite and method for producing the same
JP5245087B2 (en) Nanocarbon material composite paste and pattern forming method using the same
JP4567319B2 (en) Method for producing carbon nanotube
JP2003115255A (en) Field electron emitting electrode and its manufacturing method
JP5376197B2 (en) Method for producing nanocarbon material composite
US7641884B2 (en) Method for fabricating carbon nanotubes and carbon nano particles
JP5283030B2 (en) Electronic devices using helical nanocarbon material composites
JP2007115495A (en) Electron emission source
JP5099331B2 (en) Nanocarbon material composite, method for producing the same, and electron-emitting device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees