JP2007332131A - Gradually disintegrating antibacterial agent, antibacterial liquid by using the same and device for forming the antibacterial liquid - Google Patents

Gradually disintegrating antibacterial agent, antibacterial liquid by using the same and device for forming the antibacterial liquid Download PDF

Info

Publication number
JP2007332131A
JP2007332131A JP2007064943A JP2007064943A JP2007332131A JP 2007332131 A JP2007332131 A JP 2007332131A JP 2007064943 A JP2007064943 A JP 2007064943A JP 2007064943 A JP2007064943 A JP 2007064943A JP 2007332131 A JP2007332131 A JP 2007332131A
Authority
JP
Japan
Prior art keywords
antibacterial
liquid
antibacterial agent
water
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007064943A
Other languages
Japanese (ja)
Other versions
JP5238973B2 (en
Inventor
Yoshiharu Okamoto
芳晴 岡本
Minoru Morimoto
稔 森本
Shinji Kawasaki
眞治 川▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tottori University NUC
Original Assignee
Tottori University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori University NUC filed Critical Tottori University NUC
Priority to JP2007064943A priority Critical patent/JP5238973B2/en
Publication of JP2007332131A publication Critical patent/JP2007332131A/en
Application granted granted Critical
Publication of JP5238973B2 publication Critical patent/JP5238973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antibacterial agent capable of forming antibacterial liquid exhibiting an excellent antibacterial activity, only by immersing the agent in water or the other liquid. <P>SOLUTION: This antibacterial agent 3 obtained by mixing, kneading and forming a metal-loaded inorganic compound by carrying silver or copper with titanium dioxide and a fine inflammable substance, and then calcining at a relatively low temperature is provided by gradually disintegrating on immersing it in the liquid such as water 4, eluting Ag ion, Cu ion, etc., into the liquid from the metal-loaded inorganic compound, also dispersing titanium oxide in the liquid and continuously exhibiting an antibacterial property by exchanging or supplementing the water, etc. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ペットの消臭目的で使用したり、車内、靴、生ごみ、トイレ、洗面場、風呂場などにおいて除菌、消臭などを目的として使用する抗菌剤およびそれを用いた抗菌液と抗菌液生成装置に関する。   The present invention relates to an antibacterial agent used for the purpose of deodorization of pets, and for the purpose of sterilization, deodorization and the like in a car, shoes, garbage, toilets, washrooms, bathrooms, and the like, and an antibacterial liquid using the same And an antibacterial liquid generator.

従来から、AgイオンまたはCuイオンを担持したゼオライトと二酸化チタンを配合してなる、抗菌作用を有する多孔質焼結体が提案されている(例えば、特許文献1および特許文献2参照。)   Conventionally, a porous sintered body having an antibacterial action, which is formed by blending a zeolite carrying Ag ions or Cu ions and titanium dioxide, has been proposed (see, for example, Patent Document 1 and Patent Document 2).

しかしながら、前記多孔質焼結体は、粉末状として、浄化対象である気体や液体中に直接添加して用いるものであり、該多孔質焼結体を水に浸漬した抗菌液とする用途のものではない。   However, the porous sintered body is used in the form of powder, directly added to the gas or liquid to be purified, and used as an antibacterial liquid in which the porous sintered body is immersed in water. is not.

また、AgおよびTiを含む混合材料を燃焼合成することにより得られる銀イオン水生成用材料が提案されている(例えば、特許文献3参照。)。   In addition, a silver ion water generating material obtained by combustion synthesis of a mixed material containing Ag and Ti has been proposed (see, for example, Patent Document 3).

前記銀イオン水生成用材料は、燃焼合成する際に、前記AgおよびTiを含む混合材料を空気中で着火することにより、2000℃以上の高温反応が連鎖的に進行する燃焼合成反応が起こり、数秒程度で銀イオン水生成用のセラミック多孔質体材料が得られるというものである。   When the material for generating silver ion water is subjected to combustion synthesis, by igniting the mixed material containing Ag and Ti in the air, a combustion synthesis reaction in which a high-temperature reaction of 2000 ° C. or more proceeds in a chain occurs. A ceramic porous material for producing silver ion water can be obtained in several seconds.

しかしながら、高温で燃焼合成することにより製造される前記銀イオン水生成用材料では、該材料を用いて銀イオン水としたときに、該材料表面から十分な量のAgイオンを放出させるためには、超音波発振装置などを用いて超音波を照射するなど煩雑な工程を経る必要があった。また、前記材料を用いた銀イオン水においては、銀イオン濃度は10〜200ppb程度であり、Agイオン放出量に改善の余地があった。   However, in the material for generating silver ion water produced by combustion synthesis at high temperature, in order to release a sufficient amount of Ag ions from the surface of the material when the material is used as silver ion water, In addition, it has been necessary to go through complicated processes such as irradiating ultrasonic waves using an ultrasonic oscillator or the like. Moreover, in the silver ion water using the said material, the silver ion density | concentration is about 10-200ppb, and there was room for improvement in Ag ion discharge | release amount.

特開平8−26851号公報JP-A-8-26851 特開平8−310881号公報JP-A-8-310881 特開2006−69935号公報JP 2006-69935 A

本発明が、前述の状況に鑑み、解決しようとするところは、水などに浸漬したときに、超音波を照射する等といった煩雑な工程を経ることなく、AgまたはCu等の金属担持無機化合物及び二酸化チタンを高濃度で放出でき、優れた抗菌性能を発揮するとともに、水などの分散媒を交換又は補充するだけで高濃度での放出性能を保持でき、何回も繰り返し使用可能な抗菌剤およびそれを用いた抗菌液と抗菌液生成装置を提供することである。   In view of the above-described situation, the present invention intends to solve the problem when a metal-supported inorganic compound such as Ag or Cu and the like without passing through a complicated process such as irradiation with ultrasonic waves when immersed in water or the like. Titanium dioxide can be released at a high concentration, exhibiting excellent antibacterial performance, and can be maintained at a high concentration by simply replacing or supplementing a dispersion medium such as water. It is to provide an antibacterial liquid and an antibacterial liquid generating apparatus using the same.

本発明に係る抗菌剤は、前述の課題解決のために、AgおよびCuのうち少なくとも一方の金属を担持してなる金属担持無機化合物(A)と、シリカおよびアルミナのうち少なくとも一方を含有する粘土(B)と、二酸化チタン(C)と、微細可燃物(D)とを含有してなる組成物を混練、成形した後に焼成してなり、水に浸漬したときに徐々に崩壊する性質を有することを特徴とするが、金属担持無機化合物(A)を50〜74重量%、シリカおよびアルミナの少なくとも一方を含有する粘土(B)を20〜44重量%、二酸化チタン(C)を1〜10重量%、さらに微細可燃物(D)を5〜10重量%の範囲で含有してなる組成物を用いることが好ましい。   In order to solve the above-mentioned problems, the antibacterial agent according to the present invention is a clay containing at least one of silica and alumina, and a metal-supporting inorganic compound (A) formed by supporting at least one of Ag and Cu. A composition comprising (B), titanium dioxide (C), and a fine combustible material (D) is kneaded, molded and then fired, and has a property of gradually disintegrating when immersed in water. The metal-supporting inorganic compound (A) is 50 to 74% by weight, the clay (B) containing at least one of silica and alumina is 20 to 44% by weight, and titanium dioxide (C) is 1 to 10%. It is preferable to use a composition containing 5% by weight and further 5 to 10% by weight of a fine combustible material (D).

ここで、前記抗菌剤は、水に浸漬したときに、部分的に徐々に崩壊する性質を有することが好ましい。   Here, it is preferable that the antibacterial agent has a property of partially gradually disintegrating when immersed in water.

また、前記抗菌剤は、前記組成物を500〜800℃の雰囲気温度で2〜8時間焼成してなることで好ましい徐崩壊型のものが得られる。   Moreover, the said antibacterial agent can obtain a preferable slow decay type thing by baking the said composition for 2 to 8 hours at the atmospheric temperature of 500-800 degreeC.

さらに、前記微細可燃物(D)が、粉末状若しくは粒状とした合成高分子、粉末状若しくは粒状とした天然木質材、粉末状若しくは粒状とした種子、合成繊維、天然繊維、活性炭繊維よりなる群から選ばれる少なくとも1種からなるものが好ましいものとして用いられる。   Further, the fine combustible material (D) is a powdery or granular synthetic polymer, powdered or granular natural wood material, powdered or granular seed, synthetic fiber, natural fiber, activated carbon fiber Those consisting of at least one selected from the above are preferably used.

前記抗菌剤の大きさは、1個当たりの重量が1〜3g程度の範囲内であることが、その徐崩壊性から好ましい。   The size of the antibacterial agent is preferably in the range of about 1 to 3 g per unit weight because of its slow disintegration.

また、本発明に係る抗菌液は、前記のような抗菌剤を液体に浸漬することにより得られることを特徴とする。   The antibacterial liquid according to the present invention is obtained by immersing the antibacterial agent as described above in a liquid.

さらに、本発明に係る抗菌液生成装置は、スプレー式容器中に、前記のような抗菌剤と液体とを充填してなることを特徴とする。   Furthermore, the antibacterial liquid production apparatus according to the present invention is characterized in that a spray container is filled with the antibacterial agent and the liquid as described above.

前記溶液としては、水又は水溶液が好ましく、更に前記水溶液が食塩水であることが好ましい。   The solution is preferably water or an aqueous solution, and the aqueous solution is preferably a saline solution.

以上にしてなる本発明に係る抗菌剤およびそれを用いた抗菌液によれば、超音波を照射する等といった煩雑な工程を経ることなく、抗菌剤を水などの液体に浸漬することで全体又は部分的に徐々に崩壊してAgまたはCu等の金属担持無機化合物と酸化チタン(TiO2)を水その他の液中に分散し、Ag、Cuは液中にイオン化した状態で溶出され、更に、前記液体として食塩水を用いることで溶出効果が促進され、より優れた抗菌性能を発揮するとともに、水などの分散媒の交換又は補充のみで、高濃度でのイオン放出性能を保持できる。従って、例えば、安全な材料でかつ高い抗菌性能が要求されるペット用途に使用した場合には、取り扱いが簡便であるとともに、安全性を確保しつつ、優れた抗菌性能を発現することができる。また、この抗菌剤を水などとともにスプレー式容器に入れておくだけで、簡単に抗菌液を作ることができるだけでなく、ペットなどの臭いの発生しやすい個所にスプレーするだけで、抗菌効果が発揮される。 According to the antibacterial agent according to the present invention and the antibacterial solution using the same as described above, the whole or by immersing the antibacterial agent in a liquid such as water without passing through complicated steps such as irradiation with ultrasonic waves. It disintegrates gradually and disperses a metal-supporting inorganic compound such as Ag or Cu and titanium oxide (TiO 2 ) in water or other liquid, and Ag and Cu are eluted in an ionized state in the liquid. By using saline as the liquid, the elution effect is promoted, and more excellent antibacterial performance is exhibited. At the same time, the ion release performance at a high concentration can be maintained only by exchanging or supplementing a dispersion medium such as water. Therefore, for example, when used in pet applications that are safe materials and require high antibacterial performance, it is easy to handle and can exhibit excellent antibacterial performance while ensuring safety. In addition, by simply putting this antibacterial agent in a spray-type container together with water etc., you can not only make an antibacterial solution easily, but also by spraying it on areas where odors are likely to occur such as pets, the antibacterial effect is demonstrated. Is done.

本発明に係る抗菌剤は、前述のとおり、AgおよびCuのうち少なくとも一方の金属を担持してなる金属担持無機化合物(A)と、シリカおよびアルミナのうち少なくとも一方を含有する粘土(B)と、二酸化チタン(C)と、微細可燃物(D)とを含有してなる抗菌性組成物を混練、成形したのち焼成してなり、水などの液体に浸漬したときに、徐々に崩壊する性質を有することを特徴とする。   As described above, the antibacterial agent according to the present invention includes a metal-supporting inorganic compound (A) that supports at least one of Ag and Cu, and a clay (B) that includes at least one of silica and alumina. In addition, the antibacterial composition containing titanium dioxide (C) and the fine combustible material (D) is kneaded, molded, fired, and gradually disintegrated when immersed in a liquid such as water. It is characterized by having.

前記金属担持無機化合物(A)は、抗菌性能を発現するもととなるAg若しくはCuまたはその両方を担持してなり、AgイオンやCuイオンの放出源となるものである。担体となる無機化合物としては、例えば、金属酸化物や金属リン酸塩等を主成分とする無機化合物材料が挙げられ、AgまたはCuを担持することができる機能を有するものであれば、特に制限されるものではなく、前記以外にも、例えばセメント、石こう、ガラス系材料といった無機系の材料も挙げられる。これらのうちでも、金属担持無機化合物(A)としては、銀イオンを強固に長期間保持できることから、難溶性オルトリン酸塩に銀を担持してなる材料(例えば、特開平5−294808号公報、および特開平7−316008号公報参照。)などを好適に用いることができるが、これらに限定されるものではない。金属担持無機化合物(A)におけるAgまたはCuの含有割合は、安定的にこれらの金属を担持させることができ、かつ十分な抗菌性能を発現することができる量に適宜調整すればよく、特に制限されるものではない。金属担持無機化合物(A)は、混練するその他の材料成分(B)、(C)および(D)との均一混合性や、抗菌剤としたときのAgイオンやCuイオンの放出性能の観点から、粉末状であることが好ましい。   The metal-supported inorganic compound (A) supports Ag and / or Cu, which are the basis for developing antibacterial performance, and serves as a release source of Ag ions and Cu ions. Examples of the inorganic compound that serves as a carrier include inorganic compound materials mainly composed of metal oxides, metal phosphates, and the like, and are particularly limited as long as they have a function capable of supporting Ag or Cu. In addition to the above, inorganic materials such as cement, gypsum, and glass-based materials are also included. Among these, as the metal-supported inorganic compound (A), since silver ions can be held firmly for a long period of time, a material obtained by supporting silver on a hardly soluble orthophosphate (for example, JP-A-5-294808, And JP-A-7-316008) can be preferably used, but is not limited thereto. The content ratio of Ag or Cu in the metal-supported inorganic compound (A) may be appropriately adjusted to an amount capable of stably supporting these metals and exhibiting sufficient antibacterial performance, and is particularly limited. Is not to be done. The metal-supported inorganic compound (A) is from the viewpoint of uniform mixing with other material components (B), (C) and (D) to be kneaded, and the release performance of Ag ions and Cu ions when used as an antibacterial agent. The powder form is preferred.

前記粘土(B)は、シリカおよびアルミナのうち少なくとも一方を含有する無機天然物であり、焼成することによって固まり、抗菌剤の骨格を形成する殻体となる成分である。粘土(B)としては、例えば、木節粘土、蛙目粘土などが挙げられるが、これらに限定されるものではない。粘土(B)は、その他の材料成分(A)、(C)および(D)との均一混合性の観点から、粉末状であることが好ましい。   The clay (B) is an inorganic natural product containing at least one of silica and alumina, and is a component that becomes a shell body that is hardened by firing and forms a skeleton of an antibacterial agent. Examples of the clay (B) include, but are not limited to, Kibushi clay and Sasame clay. The clay (B) is preferably in a powder form from the viewpoint of uniform mixing with the other material components (A), (C) and (D).

二酸化チタン(C)は、AgイオンやCuイオンとともに、抗菌性能を発現するものである。即ち、前記AgイオンやCuイオンのみでは、例えば、ベロ毒素、エンテロトキシン等といった菌放出毒素に対しては充分な抗菌効果を発現しにくかったが、前記抗菌剤に二酸化チタンをも含有させることにより、紫外線が当たることで光触媒効果が発現し、前記菌放出毒素をも分解無害化することができる。二酸化チタン(C)は、光触媒用として一般的に用いられる微粒子状のものが好ましい。   Titanium dioxide (C) exhibits antibacterial performance together with Ag ions and Cu ions. That is, only the Ag ion and Cu ion, for example, it was difficult to express a sufficient antibacterial effect against bacteria-release toxins such as verotoxin and enterotoxin, but by adding titanium dioxide to the antibacterial agent, When exposed to ultraviolet rays, a photocatalytic effect is exhibited, and the fungus-release toxin can be decomposed and detoxified. Titanium dioxide (C) is preferably in the form of fine particles generally used for photocatalysts.

前記微細可燃物(D)は、前記(A)〜(C)成分とともに混練、成形した組成物を焼成した際に、焼失し、そのあとが空隙となることで、抗菌剤を多孔質体とする機能を有するものである。微細可燃物(D)としては、焼成により焼失するものであれば、特に制限されるものではないが、粉末状若しくは粒状とした合成高分子、粉末状若しくは粒状とした天然木質材、粉末状若しくは粒状とした種子、合成繊維、天然繊維、活性炭繊維などが好適に用いることができる。前記粉末状もしくは粒状とした種子としては、例えば、胡桃を粉末状若しくは粒状にしたものなどを挙げることができるが、これらに限定されるものではない。更なる高いレベルの安全性を確保し、より安心して使用するためには、天然繊維または粉末状もしくは粒状の種子などを用いることが特に好ましい。微細可燃物(D)は、抗菌剤に偏りのない空隙を生じさせて均一な多孔質体とするために、粉末状若しくは粒状又は繊維状であることが好ましい。(D)成分の粒径には特に限定はないが、50〜500μm程度であることが徐崩壊性の観点から好ましい。   The fine combustible material (D) is burned down when the composition kneaded and molded together with the components (A) to (C) is fired, and then becomes voids, so that the antibacterial agent and the porous body It has the function to do. The fine combustible material (D) is not particularly limited as long as it is burned off by firing, but is not limited to a synthetic polymer in powder form or granular form, natural wood material in powder form or granular form, powder form or Granulated seeds, synthetic fibers, natural fibers, activated carbon fibers and the like can be suitably used. Examples of the powdered or granular seeds include, but are not limited to, those in which walnuts are powdered or granular. In order to ensure a further high level of safety and to use it with more peace of mind, it is particularly preferable to use natural fibers or powdered or granular seeds. The fine combustible material (D) is preferably in the form of powder, granules, or fibers in order to create a uniform porous body by generating uniform voids in the antibacterial agent. The particle size of the component (D) is not particularly limited, but is preferably about 50 to 500 μm from the viewpoint of slow disintegration.

前記(A)〜(D)成分を含有してなる組成物は、抗菌剤に求められる適度な強度と優れた抗菌性能を付与するために、各成分の混合割合を以下のような割合とする。すなわち、前記金属担持無機化合物(A)は、AgイオンやCuイオンを放出して消臭抗菌性能を発現する抗菌剤における主要成分であり、抗菌剤の単位体積当りの抗菌性能を優れたものとするために、前記組成物中に、50〜74重量%とする。また、前記粘土(B)は、抗菌剤の骨格を形成する成分であり、抗菌剤に求められる徐崩壊性を付与するために、前記組成物中に20〜44重量%とする。さらに、前記二酸化チタン(C)は、前記(A)成分とともに、抗菌性能を発現する成分であり、前記組成物中に1〜10重量%とする。また、前記微細可燃物(D)は、抗菌剤に偏りのない空隙を生じさせて多孔質体とするために、前記組成物中に5〜10重量%とする。さらに、前記(A)〜(D)成分を含有してなる組成物には、例えば、CMC、メチルセルロースおよびアラビアガム等といったバインダー成分および水を少量加えてもよく、その添加量は、混練、成形時の取り扱い性を考慮して適宜決定すればよいが、前記バインダー成分は前記組成物中に0.5〜2重量%とするのが好ましい。   The composition comprising the components (A) to (D) has a mixing ratio of each component as described below in order to impart appropriate strength required for the antibacterial agent and excellent antibacterial performance. . That is, the metal-supported inorganic compound (A) is a main component in an antibacterial agent that releases Ag ions and Cu ions and exhibits deodorant antibacterial performance, and has excellent antibacterial performance per unit volume of the antibacterial agent. In order to do so, it is made into 50 to 74 weight% in the said composition. Moreover, the clay (B) is a component that forms a skeleton of the antibacterial agent, and is 20 to 44% by weight in the composition in order to impart the slow disintegration required for the antibacterial agent. Furthermore, the said titanium dioxide (C) is a component which expresses antibacterial performance with the said (A) component, and is 1 to 10 weight% in the said composition. Further, the fine combustible material (D) is contained in the composition in an amount of 5 to 10% by weight in order to produce a uniform void in the antibacterial agent. Furthermore, a small amount of binder components such as CMC, methylcellulose, gum arabic and the like may be added to the composition comprising the components (A) to (D), and the amount added may be kneaded or molded. The binder component may be appropriately determined in consideration of handling at the time, but the binder component is preferably 0.5 to 2% by weight in the composition.

前記(A)〜(D)成分を含有してなる組成物を混練するには、一般的な混練機を用いることができる。また、混練したものを成形する際の形状は、抗菌剤の用途に応じて適宜定めればよく、特に制限されるものではないが、成形体の表面積をより大きくして水との接触面積を確保しつつ、強度も損なわないものとするために、例えば、図1(a)〜(e)に示すような形状とすることが好ましい。例えば、図1(a)に示すように、両端面の略中央部に半球状の凹部を有する円柱型に成形することで、焼成前と焼成後の取り扱い時に保形力を確保でき、抗菌剤を持ち運ぶ際などに衝撃を受けるようなことがあっても、崩れにくいものにできる。また、図1(b)に示すものは円筒体状であるが、このような筒状とすることで、抗菌剤の表面積が増大するうえに、図4に示し、後述するように、スプレー式容器2の吸液管5に抗菌剤3を挿着することができる。さらに、図1(c)はタブレット状、(d)は各面に半球状の凹部を有する四角形状、また図1(e)は球状のものである。前記図1(e)のように球状の抗菌剤とすることで、多数の抗菌剤を互いに接触した状態で充填して使用する場合にも、抗菌剤同士の接触による過剰な崩壊を防ぐことができる。   In order to knead the composition comprising the components (A) to (D), a general kneader can be used. Further, the shape of the kneaded product when it is molded may be appropriately determined according to the use of the antibacterial agent, and is not particularly limited, but the surface area of the molded body is increased to increase the contact area with water. In order to ensure the strength while maintaining the strength, for example, it is preferable to have a shape as shown in FIGS. For example, as shown in FIG. 1 (a), by forming a cylindrical shape having a hemispherical concave portion at the substantially central portion of both end faces, it is possible to ensure a shape retaining force during handling before and after firing, and an antibacterial agent Even if you carry a shock when carrying it, you can make it hard to collapse. Moreover, although what is shown in FIG.1 (b) is a cylindrical body shape, in addition to the surface area of an antibacterial agent increasing by making such a cylindrical shape, as shown in FIG. 4 and mentioning later, it is a spray type. The antibacterial agent 3 can be inserted into the liquid absorption tube 5 of the container 2. Further, FIG. 1C is a tablet shape, FIG. 1D is a quadrangular shape having hemispherical concave portions on each surface, and FIG. 1E is a spherical shape. By using a spherical antibacterial agent as shown in FIG. 1 (e), even when many antibacterial agents are filled and used in contact with each other, excessive collapse due to contact between the antibacterial agents can be prevented. it can.

前記(A)〜(D)成分を含有してなる抗菌性組成物を混練、成形したものを焼成するときの条件としては、500〜800℃の雰囲気温度において2〜8時間焼成することが好ましい。ここでいう焼成とは、成形した材料に直接着火させ反応させるものではなく、炉内において高温でじっくりと処理することをいう。とくに本発明では徐崩壊性を与えるために、この温度管理に注意する必要があり、高温度、例えば900℃以上で焼成したものは徐崩壊性を失い、また500℃未満で焼成した時には脆くなりすぎる恐れがある。なお、前記焼成温度と焼成時間との関係は、焼成炉の熱容量との関係もあり、一概に規定することはできないが、前記温度および時間の範囲内で、焼成温度が500℃に近くなる低い温度で焼成する場合には焼成時間を長くとり、反対に焼成温度が800℃に近くなる高い温度で焼成する場合には焼成時間は短めにすることが、焼成後の抗菌剤の強度と崩壊性との兼ね合いの観点から好ましい。   As a condition for firing the kneaded and molded antibacterial composition containing the components (A) to (D), firing is preferably performed at an ambient temperature of 500 to 800 ° C. for 2 to 8 hours. . Firing here does not directly ignite and react the molded material, but means that the material is carefully treated at a high temperature in a furnace. In particular, in the present invention, it is necessary to pay attention to this temperature control in order to give slow disintegration, and those that are fired at a high temperature, for example, 900 ° C. or more lose their slow disintegration, and become brittle when fired at less than 500 ° C. There is a risk of too much. The relationship between the firing temperature and the firing time is also related to the heat capacity of the firing furnace, and cannot be generally specified, but within the range of the temperature and time, the firing temperature is close to 500 ° C. When firing at a temperature, the firing time should be longer, and conversely, when firing at a higher temperature where the firing temperature is close to 800 ° C., the firing time should be shorter. From the viewpoint of balance.

本発明に係る抗菌剤は、水などの、媒体となる液体に浸漬したときに徐々に崩壊する性質を有することを特徴とする。さらに、水などの液体に浸漬したときに、部分的に徐々に崩壊する性質を有することが好ましい。このように、徐々に崩壊する性質を本発明では「徐崩壊性」というが、このような性質を有することによる効果は、後述するとおりである。   The antibacterial agent according to the present invention is characterized in that it has a property of gradually disintegrating when immersed in a liquid such as water. Furthermore, it is preferable to have a property of partially gradually disintegrating when immersed in a liquid such as water. As described above, the property of gradually disintegrating is referred to as “gradual disintegration” in the present invention. The effect of having such a property is as described later.

以上にしてなる抗菌剤は、水などの液体に浸漬したときに、超音波を照射する等といった煩雑な工程を経ることなく、その徐崩壊性により金属担持無機化合物とTiO2を液中に分散させ、更に該無機化合物からはAgイオンやCuイオンを高濃度で液中に溶出し、優れた抗菌性能を発揮できる。また、この抗菌剤は、水などに浸漬したときに、徐々に崩壊する性質を有することで、水などの溶媒のみを交換又は補充することによる繰り返し使用においても、前記金属担持無機化合物の分散や高濃度でのイオン放出性能を保持できる。   The antibacterial agent formed as described above disperses the metal-supported inorganic compound and TiO2 in the liquid due to its slow disintegration without passing through a complicated process such as irradiation with ultrasonic waves when immersed in a liquid such as water. Furthermore, Ag ions and Cu ions can be eluted from the inorganic compound at a high concentration in the liquid, and excellent antibacterial performance can be exhibited. In addition, this antibacterial agent has a property of gradually disintegrating when immersed in water or the like, so that the metal-supported inorganic compound can be dispersed or used even in repeated use by replacing or supplementing only a solvent such as water. Ion release performance at high concentration can be maintained.

また、本発明に係る抗菌液は、前記のような徐崩壊性を有する本発明の抗菌剤を、例えば水や水溶液などの液体に浸漬することにより得られる。   Further, the antibacterial liquid according to the present invention is obtained by immersing the antibacterial agent of the present invention having the above-described slow disintegration property in a liquid such as water or an aqueous solution.

前記抗菌剤を浸漬させる水としては、例えば、純水、水道水、井戸水等といった水を用いることができる。   As water in which the antibacterial agent is immersed, for example, water such as pure water, tap water, and well water can be used.

また、本発明に係る抗菌液は、前記のような徐崩壊性を有する本発明の抗菌剤をアルコール水溶液や他の殺菌、抗菌効果のある成分を溶解した水溶液、その他の溶液に浸漬することでも得られる。   In addition, the antibacterial liquid according to the present invention may be obtained by immersing the antibacterial agent of the present invention having the above-described slow disintegration in an aqueous alcohol solution, an aqueous solution in which other antibacterial and antibacterial components are dissolved, or other solutions. can get.

前記溶液としては、AgイオンまたはCuイオンとTiO2が存在し得るものであれば特に制限されるものではないが、前記溶液として食塩水を用いることにより、水を用いた場合と比較して、イオン濃度、特に分散した金属担持無機化合物からのAgイオンやCuイオンの溶出量を3〜5倍程度に高めることができる。食塩水を用いる場合のNaCl濃度としては、0.25重量%以上とすることが好ましく、より好ましくは1.0重量%以上、さらに好ましくは2.0重量%以上とする。前記抗菌剤と、水などの液体との割合は、特に制限されるものではないが、例えば、図1(a)に示すような外径が15mmの成形体1個を、水などの液体500ml程度に浸漬して用いることができる。 The solution is not particularly limited as long as Ag ions or Cu ions and TiO 2 can exist, but by using saline as the solution, compared to the case of using water, The ion concentration, in particular, the elution amount of Ag ions and Cu ions from the dispersed metal-supported inorganic compound can be increased to about 3 to 5 times. In the case of using a saline solution, the NaCl concentration is preferably 0.25% by weight or more, more preferably 1.0% by weight or more, and further preferably 2.0% by weight or more. The ratio between the antibacterial agent and the liquid such as water is not particularly limited. For example, one molded body having an outer diameter of 15 mm as shown in FIG. It can be used by immersing to the extent.

前記抗菌剤の使用方法、抗菌液の生成方法としては、例えば、図2に示すようなスプレー式容器2に、前記抗菌剤3と、適量の水若しくは水溶液などの液体4とを充填してなる抗菌液生成装置1として、前記抗菌液を対象物に吹き付けるなどして使用することができる。また、前記抗菌液は、有機系の抗菌剤を含有させないことにより、安全性の高いものとなり、うがい用としても用いることができる。   As a method for using the antibacterial agent and a method for producing an antibacterial solution, for example, a spray container 2 as shown in FIG. 2 is filled with the antibacterial agent 3 and a liquid 4 such as an appropriate amount of water or an aqueous solution. As the antibacterial liquid production | generation apparatus 1, it can be used by spraying the said antibacterial liquid on a target object. In addition, the antibacterial liquid has high safety by not containing an organic antibacterial agent and can be used for gargle.

本発明に係る抗菌液は、液中のAgイオンやCuイオン濃度とTiO2濃度を、高濃度とすることができるものである。このように、液中のAgイオンやCuイオンとTiO2濃度を、高濃度とすることができるのは、抗菌剤を水その他の液体に浸漬したときに徐々に崩壊し、AgイオンやCuイオンなどの抗菌成分を含有する微粒子状の無機化合物やTiO2を液中に分散させるためである。水その他の液体に浸漬した抗菌剤が、徐々に崩壊する性質を有することは、図3に示すように、微粒子状の無機化合物3’が、抗菌液中に分散し、その一部が容器2の底2aに堆積する現象により確認できる。ちなみに、このような徐々に崩壊する性質を有する抗菌剤を、水などの液体に浸漬してなる抗菌液は、抗菌成分が液中に拡散していくことで、該液中のAgイオンやCuイオンとTiO2濃度をより高くすることができるとともに、水などの液体のみを交換または補充することによる繰り返し使用においても高い濃度を保持でき、より製品寿命の長いものとなる。 The antibacterial liquid according to the present invention can increase the concentration of Ag ions and Cu ions and the TiO 2 concentration in the liquid. As described above, the concentration of Ag ions, Cu ions and TiO 2 in the liquid can be increased because the antibacterial agent gradually disintegrates when immersed in water or other liquid, and Ag ions or Cu ions. This is because fine inorganic compounds containing particles such as antibacterial components and TiO 2 are dispersed in the liquid. The antibacterial agent immersed in water or other liquid has the property of gradually disintegrating, as shown in FIG. 3, the fine inorganic compound 3 ′ is dispersed in the antibacterial liquid, and a part of the container 2 This can be confirmed by the phenomenon of depositing on the bottom 2a of the glass. By the way, an antibacterial liquid obtained by immersing an antibacterial agent having such a property of gradually disintegrating in a liquid such as water has an antibacterial component diffused in the liquid, so that Ag ions and Cu in the liquid The concentration of ions and TiO 2 can be increased, and a high concentration can be maintained even in repeated use by exchanging or replenishing only a liquid such as water, resulting in a longer product life.

前記スプレー式容器2を用いた抗菌液生成装置1においては、崩壊した抗菌剤成分によるノズルの目詰まりを防止するために、吸液管5の先端が容器2の底2aより上方に位置するようにしたり、吸液管5の先端を斜に形成したりすることも好ましい実施形態である。   In the antibacterial liquid production apparatus 1 using the spray type container 2, the tip of the liquid suction pipe 5 is positioned above the bottom 2 a of the container 2 in order to prevent clogging of the nozzle due to the collapsed antibacterial agent component. It is also a preferred embodiment to make the tip of the liquid absorption pipe 5 slanted.

更に、図4に示すものは、スプレー式容器を用いた本発明にかかる抗菌液生成装置の他の実施の形態を示すものであり、図4(a)に示すように、スプレー式容器2の吸収管5の吸液口側先端部にフランジ部5aを設けておき、この吸液管3に筒状の抗菌剤3を挿着したうえで、これを図5(b)、(c)に示すようにスプレー式容器2に装着して抗菌液生成装置1とすれば、図5(d)に示すように、容器2が揺すられても抗菌剤3が容器内面に衝突して必要以上に崩壊することを防止できる。また、前記のように吸液管5に抗菌剤3を、容器内面との衝突による崩壊を防止した状態で予めスプレー容器2内にセットした製品として製造、運搬、販売に供することで、使用時には水などを容器2内に注入するだけでよく、使用者の手間がかからず簡便に使用できる。   Furthermore, what is shown in FIG. 4 shows other embodiment of the antibacterial liquid production | generation apparatus concerning this invention using the spray type container, and as shown to Fig.4 (a), of the spray type container 2 is shown. A flange portion 5a is provided at the tip of the liquid absorption port side of the absorption tube 5, and after the cylindrical antibacterial agent 3 is inserted into the liquid absorption tube 3, this is shown in FIGS. 5 (b) and 5 (c). As shown in FIG. 5 (d), the antibacterial agent 3 collides with the inner surface of the container more than necessary as shown in FIG. 5 (d). It can be prevented from collapsing. Further, as described above, the antibacterial agent 3 is applied to the liquid absorption pipe 5 as a product set in the spray container 2 in a state in which it is prevented from collapsing due to collision with the inner surface of the container. It is only necessary to inject water or the like into the container 2, and it can be used conveniently without user trouble.

また、図5に示すものは、本発明に係る抗菌液生成装置1における吸液管5の更に他の実施の形態を示すものである。この実施の形態では、スプレー式容器の吸液管5における吸液口側先端部に、放射状に外側に拡がる複数の係止片5b・・・を設けたものであり、これら係止片5bにより、前記フランジ部5aの場合と同様に、筒状の抗菌剤3を吸液管5に挿着し、先端に保持可能とするものである。   Moreover, what is shown in FIG. 5 shows other embodiment of the liquid absorption pipe | tube 5 in the antibacterial liquid production | generation apparatus 1 which concerns on this invention. In this embodiment, a plurality of locking pieces 5b... Radially extending outward are provided at the liquid suction port side tip of the liquid suction pipe 5 of the spray type container. As in the case of the flange portion 5a, the cylindrical antibacterial agent 3 is inserted into the liquid absorption tube 5 and can be held at the tip.

更に、図6に示すものは、スプレー式容器2を用いた抗菌液生成装置1における吸液管5の更に他の実施の形態を示すものである。この実施の形態は、吸液管3の吸液口に格子5c(図6a参照。)を設けたり、不織布5dで覆う(図6b参照。)ことにより、崩壊した抗菌剤のかたまりによるスプレーのノズル詰まりを防止するようにしたものである。なお、この場合、前記フランジ5aや係止片5bを併設してもよいことは、いうまでもない。   Furthermore, what is shown in FIG. 6 shows still another embodiment of the liquid suction pipe 5 in the antibacterial liquid production apparatus 1 using the spray type container 2. In this embodiment, a nozzle for spraying a lump of disintegrated antibacterial agent by providing a lattice 5c (see FIG. 6a) at the liquid suction port of the liquid suction pipe 3 or covering it with a nonwoven fabric 5d (see FIG. 6b). It is designed to prevent clogging. In this case, it goes without saying that the flange 5a and the locking piece 5b may be provided side by side.

以下、実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in more detail, this invention is not limited to these Examples at all.

(1)抗菌剤の製造例1
2種以上の金属の難溶性オルトリン酸塩に銀を10重量%担持してなる材料である金属担持無機化合物(太平化学産業株式会社製、シルバーエース)(A)60重量%と、木節粘土(B)30重量%と、二酸化チタン(テイカ株式会社製、AMT−100)(C)1重量%と、微細可燃物として活性炭粉末(太平化学産業株式会社製、ヤシコールSS(粒径75〜250μmのもの約97重量%))(D)9重量%とからなる組成物を混練し、図1(a)に示した円筒型(外径15mm、内径7mm、高さ15mm)に成形した後に、700℃前後の雰囲気温度において約2時間焼成することにより、1個あたりの重量が約2gの抗菌剤を作製した。
(1) Antibacterial agent production example 1
60% by weight of a metal-supported inorganic compound (Silver Ace, manufactured by Taihei Chemical Sangyo Co., Ltd.) (A), which is a material obtained by supporting 10% by weight of silver on a slightly soluble orthophosphate of two or more metals, Kibushi clay (B) 30% by weight, titanium dioxide (manufactured by Teika Co., Ltd., AMT-100) (C) 1% by weight, activated carbon powder (manufactured by Taihei Chemical Sangyo Co., Ltd., cocool SS (particle size 75-250 μm) as a fine combustible material (D) about 9% by weight) and (D) after kneading and forming into a cylindrical shape (outer diameter 15 mm, inner diameter 7 mm, height 15 mm) shown in FIG. By baking for about 2 hours at an ambient temperature of around 700 ° C., an antibacterial agent weighing about 2 g per piece was produced.

(2)抗菌性の評価
(銀イオン濃度の経時的変化)
容器に水道水500mlを入れ、さらに前記製造例で作製した抗菌剤を1個投入した時間を0時間として、2時間ごとに抗菌液を攪拌後、10mlをサンプリングして、銀イオン溶出の経時変化を測定した(n数=3)。測定は、ICP−AES分光装置(「RIGAKU CIROS CCD」、(株)リガク製)を用い、室温で行った。結果を表1に示す。
(2) Evaluation of antibacterial properties (Changes in silver ion concentration over time)
Put 500 ml of tap water in a container and add 1 antibacterial agent prepared in the above production example to 0 hour. Stir the antibacterial solution every 2 hours, sample 10 ml, and change silver ion elution over time. (N number = 3). The measurement was performed at room temperature using an ICP-AES spectrometer (“RIGAKU CIROS CCD”, manufactured by Rigaku Corporation). The results are shown in Table 1.

表1に示す通り、銀イオン濃度は、投入後2時間後には0.0873ppmとなり、その後も上昇を続け、18時間後には0.2582ppmとなった。   As shown in Table 1, the silver ion concentration became 0.0873 ppm after 2 hours from the addition, continued to increase thereafter, and reached 0.2582 ppm after 18 hours.

(水入れ替え無し時の銀イオン濃度)
容器に水道水500mlを入れ、さらに前記製造例で作製した抗菌剤を1個投入した。水道水を入れ替えずに、1週間ごとに10mlをサンプリングして、前記と同様にして銀イオン濃度を測定した。この操作では抗菌剤として、サンプルAおよびサンプルBの2つそれぞれについて測定を行った。サンプルAについての結果を表2-1に、サンプルBについての結果を表2-2に、それぞれ示す。
(Silver ion concentration without water replacement)
500 ml of tap water was put in a container, and one antibacterial agent prepared in the above production example was further added. Without replacing the tap water, 10 ml was sampled every week, and the silver ion concentration was measured in the same manner as described above. In this operation, two samples A and B were measured as antibacterial agents. The results for sample A are shown in Table 2-1, and the results for sample B are shown in Table 2-2.

表2−1、2−2に示す通り、サンプルAおよびサンプルBの何れにおいても、銀イオン濃度は1週間あたり約0.3ppmづつ増加し続けた。   As shown in Tables 2-1 and 2-2, in both Sample A and Sample B, the silver ion concentration continued to increase by about 0.3 ppm per week.

(水を毎日入れ替えた時の銀イオン濃度)
容器に水道水500mlを入れ、さらに前記製造例で作製した抗菌剤を1個投入した。水道水を毎日交換し、1週間ごとに10mlをサンプリングして、前記と同様にして銀イオン濃度を測定した。この操作を抗菌剤として、サンプルCおよびサンプルDの2つそれぞれについて測定を行った。サンプルCについての結果を表3-1に、サンプルDについての結果を表3-2に、それぞれ示す。
(Silver ion concentration when water is changed daily)
500 ml of tap water was put in a container, and one antibacterial agent prepared in the above production example was further added. The tap water was changed every day, 10 ml was sampled every week, and the silver ion concentration was measured in the same manner as described above. Using this operation as an antibacterial agent, measurement was performed for each of Sample C and Sample D. The results for sample C are shown in Table 3-1, and the results for sample D are shown in Table 3-2.

表3−1、3−2に示す通り、4週間毎日、すなわち28回交換しても、初期とほぼ同程度の濃度の銀イオンが溶出することが明らかとなった。サンプルCおよびサンプルDの何れにおいても、同様の結果となった。   As shown in Tables 3-1 and 3-2, it was revealed that silver ions having almost the same concentration as in the initial stage were eluted even after daily replacement for 4 weeks, that is, 28 times. Similar results were obtained for both Sample C and Sample D.

なお、以上のような銀イオンの濃度の変化は、水中における抗菌剤の徐崩壊、すなわち表面から徐々に脆くなり、徐崩壊することから、その中の無機化合物に担持された銀がイオンとして放出された結果を示し、また同時に徐崩壊によりTiO2も液中に放出され、分散される。 In addition, the change in the concentration of silver ions as described above is the slow disintegration of the antibacterial agent in water, that is, the surface gradually becomes brittle and gradually disintegrates, so that the silver supported on the inorganic compound is released as ions. At the same time, TiO 2 is also released and dispersed in the liquid by slow disintegration.

(抗菌性試験)
標準寒天培地に、(1)大腸菌(E.coli)、(2)黄色ブドウ球菌(S.aureus)、(3)緑膿菌(P.perfuringens)を塗付し、前記製造例で得られた抗菌剤を水に浸漬して生成した抗菌液を1〜4回散布した。72時間経過後に菌の増殖を観察した結果を、それぞれ図7〜図9に示す。
(Antimicrobial test)
(1) Escherichia coli (E. coli), (2) Staphylococcus aureus (S. aureus), (3) P. perfuringens were applied to a standard agar medium, and obtained in the above production example The antibacterial liquid produced by immersing the antibacterial agent in water was sprayed 1 to 4 times. The results of observing the growth of bacteria after 72 hours are shown in FIGS.

図7〜図9に示すように、大腸菌、黄色ブドウ球菌、緑膿菌の何れに対しても、抗菌液を散布することによる抗菌効果が認められた。   As shown in FIGS. 7 to 9, the antibacterial effect by spraying the antibacterial liquid was recognized against any of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa.

(NaCl添加が銀イオン濃度に及ぼす影響)
容器に水道水500mlを入れ、さらに前記製造例で作製した抗菌剤を1個投入した。24時間後10mlをサンプリングし(NaCl濃度0重量%)、その後NaCl濃度1%(ほぼ生理食塩水の濃度)となるようにNaClを5g加えた。NaCl添加後24時間目に10mlをサンプリングして、銀イオン濃度を測定した(n数=3)。結果を表4に示す。
(Effect of NaCl addition on silver ion concentration)
500 ml of tap water was put in a container, and one antibacterial agent prepared in the above production example was further added. After 24 hours, 10 ml was sampled (NaCl concentration 0% by weight), and then 5 g of NaCl was added so that the NaCl concentration became 1% (approximately the concentration of physiological saline). 10 ml was sampled 24 hours after the addition of NaCl, and the silver ion concentration was measured (n number = 3). The results are shown in Table 4.

NaClを添加することにより、銀イオンの溶出は3〜5倍に増加することが判明した。   It was found that by adding NaCl, elution of silver ions was increased 3 to 5 times.

(NaCl濃度が銀イオン濃度に及ぼす影響)
溶媒のNaCl濃度を種々変化させたときの、銀イオン濃度への影響を測定した結果を表5に示す。
(Effect of NaCl concentration on silver ion concentration)
Table 5 shows the results of measuring the influence on the silver ion concentration when the NaCl concentration of the solvent was changed variously.

銀イオンの溶出は、0.25重量%のNaCl濃度下でも促進されることが明らかとなった。NaCl濃度が、2重量%では、急激な溶出促進が見られた。   It was revealed that elution of silver ions was promoted even at a NaCl concentration of 0.25 wt%. When the NaCl concentration was 2% by weight, rapid elution enhancement was observed.

(サンプル遠心後の銀イオン濃度)
容器に水道水500mlを入れ、さらに前記製造例で作製した抗菌剤を1個投入した。さらに、NaCl濃度が2重量%となるように、10gのNaClを添加した。24時間後にサンプリングし、4℃下、毎分16000回転、30分間遠心した。結果を表6に示す。
(Silver ion concentration after sample centrifugation)
500 ml of tap water was put in a container, and one antibacterial agent prepared in the above production example was further added. Further, 10 g of NaCl was added so that the NaCl concentration was 2% by weight. The sample was sampled 24 hours later and centrifuged at 4 ° C. and 16000 rpm for 30 minutes. The results are shown in Table 6.

NaCl存在下では、銀イオンはAgClとなり、沈殿する可能性が考えられる。しかし、銀イオン濃度は遠心により影響を受けなかった。このことより、AgClとして沈殿することはないと考えられる。   In the presence of NaCl, silver ions become AgCl and may be precipitated. However, the silver ion concentration was not affected by centrifugation. From this, it is thought that it does not precipitate as AgCl.

(3)抗菌組成及び焼成条件(製造例2〜7)
前記製造例と同じ金属担持無機化合物(太平化学産業株式会社製、シルバーエース)(A)、木節粘土(B)と、二酸化チタン(C)、及び活性炭粉末(D)を用い、下記表7に示す組成および焼成条件にて、前記製造例と同様にして1個あたりの重量が約2gとなる円柱状の抗菌剤を作製した。得られた抗菌剤をペットボトルに入れた水道水500ml中に浸漬し、24時間静置後、ボトルを軽く振ったのちサンプルを採取し、前記と同様にして銀イオン濃度を測定した。結果を表7に示す。
(3) Antibacterial composition and firing conditions (Production Examples 2 to 7)
Using the same metal-supported inorganic compound (Saihei Chemical Sangyo Co., Ltd., Silver Ace) (A), Kibushi clay (B), titanium dioxide (C), and activated carbon powder (D) as in the above production example, Table 7 below A cylindrical antibacterial agent having a weight of about 2 g was produced in the same manner as in the above production example with the composition and firing conditions shown in FIG. The obtained antibacterial agent was immersed in 500 ml of tap water in a PET bottle, allowed to stand for 24 hours, and the bottle was shaken lightly. A sample was then taken, and the silver ion concentration was measured in the same manner as described above. The results are shown in Table 7.

表7に示すとおり、本発明の抗菌性組成物を500〜800℃で2〜8時間焼成することで、銀イオン放出能の高い抗菌液を生成しうる抗菌剤が得られる。   As shown in Table 7, the antibacterial agent which can produce | generate an antibacterial liquid with high silver ion release ability is obtained by baking the antibacterial composition of this invention at 500-800 degreeC for 2 to 8 hours.

(4)使用例
前記製造例1で得られた抗菌剤を、ペット(犬、猫)の消臭に用いたモニター試験を行った。抗菌剤についてのモニターの評価結果を以下の表に示す。対象としたペットの種類を表8に、その年齢を表9に、消臭対象箇所毎の効果を表10に、効果の有無を表11に、その効果発現までの時間を表12に、更に、総合評価を表13に示す。
(4) Use example The monitor test which used the antibacterial agent obtained by the said manufacture example 1 for the deodorization of a pet (dog, cat) was done. The evaluation results of the monitor for the antibacterial agent are shown in the following table. Table 8 shows the types of pets targeted, Table 9 shows the age, Table 10 shows the effect of each deodorant target, Table 11 shows the presence or absence of the effect, Table 12 shows the time until the effect appears, Table 13 shows the overall evaluation.

表8〜13の結果から、モニターの9割以上がペットに対する消臭効果有りと答えており、本発明に係る抗菌剤及びそれから生成される抗菌液が、ペットの消臭に有効であることが分かる。   From the results of Tables 8 to 13, 90% or more of the monitors answered that there is a deodorizing effect on pets, and the antibacterial agent according to the present invention and the antibacterial liquid produced therefrom are effective for deodorizing pets. I understand.

(a)〜(e)は、それぞれ本発明の抗菌剤の例を示す斜視図及び断面図。(A)-(e) is the perspective view and sectional drawing which respectively show the example of the antibacterial agent of this invention. 本発明の抗菌液生成装置の例を示す斜視図。The perspective view which shows the example of the antibacterial liquid production | generation apparatus of this invention. 本発明の抗菌剤が徐々に崩壊する様子を示す概略図。Schematic which shows a mode that the antibacterial agent of this invention disintegrates gradually. スプレー式容器を用いた抗菌液生成装置の他の実施形態を示し、(a)〜(e)は抗菌剤の挿着手順を示す斜視図、(d)は抗菌剤挿着後の容器の一部断面図。The other embodiment of the antibacterial liquid production | generation apparatus using a spray-type container is shown, (a)-(e) is a perspective view which shows the insertion procedure of an antibacterial agent, (d) is one of the containers after antibacterial agent insertion. FIG. スプレー式容器を用いた抗菌液生成装置の他実施形態を示す吸液管先端部分の斜視図。The perspective view of the liquid absorption pipe | tube front-end | tip part which shows other embodiment of the antibacterial-liquid production | generation apparatus using a spray type container. (a)、(b)は、いずれもスプレー式容器を用いた抗菌液生成装置の他実施形態を示す吸液管先端部分の断面図。(A), (b) is sectional drawing of the liquid-absorbing-pipe front-end | tip part which shows other embodiment of the antibacterial-liquid production | generation apparatus using a spray type container. 大腸菌に対する抗菌性試験の結果を示す図。The figure which shows the result of the antimicrobial test with respect to colon_bacillus | E._coli. ブドウ球菌に対する抗菌性試験の結果を示す図。The figure which shows the result of the antimicrobial test with respect to staphylococci. 緑膿菌に対する抗菌性試験の結果を示す図。The figure which shows the result of the antimicrobial test with respect to Pseudomonas aeruginosa.

符号の説明Explanation of symbols

1 抗菌液生成装置
2 スプレー式容器
2a 容器の底
3 抗菌剤
3’ 微粒子状の無機化合物
4 水などの液体
5 吸液管
5a 吸液管のフランジ部
5b 吸液管の係止片
5c 吸液管の開口部の格子
5c 吸液管の開口部の不織布
DESCRIPTION OF SYMBOLS 1 Antibacterial liquid production | generation apparatus 2 Spray type container 2a Container bottom 3 Antibacterial agent 3 'Particulate inorganic compound 4 Liquids, such as water 5 Liquid absorption pipe 5a Liquid absorption pipe flange 5b Liquid absorption pipe locking piece 5c Opening grid of pipe 5c Nonwoven fabric of opening of liquid absorption pipe

Claims (11)

AgおよびCuのうち少なくとも一方の金属を担持してなる金属担持無機化合物(A)と、シリカおよびアルミナのうち少なくとも一方を含有する粘土(B)と、二酸化チタン(C)と、微細可燃物(D)とを含有してなる組成物を混練、成形した後に焼成してなり、水に浸漬したときに、徐々に崩壊する性質を有することを特徴とする抗菌剤。   A metal-supporting inorganic compound (A) that supports at least one of Ag and Cu, clay (B) containing at least one of silica and alumina, titanium dioxide (C), and a fine combustible material ( An antibacterial agent characterized by being kneaded and molded after the composition comprising D), calcined and gradually disintegrating when immersed in water. AgおよびCuのうち少なくとも一方の金属を担持してなる金属担持無機化合物(A)50〜74重量%と、シリカおよびアルミナのうち少なくとも一方を含有する粘土(B)20〜44重量%と、二酸化チタン(C)1〜10重量%と、微細可燃物(D)5〜10重量%とを含有してなる組成物を混練、成形した後に焼成してなる請求項1記載の抗菌剤。   50 to 74% by weight of a metal-supported inorganic compound (A) formed by supporting at least one of Ag and Cu, 20 to 44% by weight of clay (B) containing at least one of silica and alumina, The antibacterial agent according to claim 1, which is obtained by kneading and molding a composition containing 1 to 10% by weight of titanium (C) and 5 to 10% by weight of a fine combustible material (D). 水に浸漬したときに、部分的に徐々に崩壊する性質を有する請求項1または2に記載の抗菌剤。   The antibacterial agent according to claim 1 or 2, which has a property of partially gradually disintegrating when immersed in water. 500〜800℃の雰囲気温度で2〜8時間焼成してなる請求項1〜3のいずれかに記載の抗菌剤。   The antibacterial agent according to any one of claims 1 to 3, wherein the antibacterial agent is baked at an atmospheric temperature of 500 to 800 ° C for 2 to 8 hours. 前記微細可燃物(D)が、粉末状若しくは粒状とした合成高分子、粉末状若しくは粒状とした天然木質材、粉末状若しくは粒状とした種子、合成繊維、天然繊維、活性炭繊維よりなる群から選ばれる少なくとも1種からなる請求項1〜4のいずれかに記載の抗菌剤。   The fine combustible material (D) is selected from the group consisting of powdered or granular synthetic polymer, powdered or granular natural wood material, powdered or granular seed, synthetic fiber, natural fiber, activated carbon fiber The antibacterial agent according to any one of claims 1 to 4, comprising at least one kind. 請求項1〜5のいずれかに記載の抗菌剤を液体に浸漬することにより得られる抗菌液。   The antibacterial liquid obtained by immersing the antibacterial agent in any one of Claims 1-5 in a liquid. 前記液体が、水又は水溶液である請求項6に記載の抗菌液。   The antibacterial liquid according to claim 6, wherein the liquid is water or an aqueous solution. 前記水溶液が、食塩水である請求項7に記載の抗菌液。   The antibacterial solution according to claim 7, wherein the aqueous solution is a saline solution. スプレー式容器中に、請求項1〜5のいずれかに記載の抗菌剤と液体とを充填してなる抗菌液生成装置。   The antibacterial liquid production | generation apparatus formed by filling the spray type container with the antibacterial agent and liquid in any one of Claims 1-5. 前記液体が、水又は水溶液である請求項9に記載の抗菌液生成装置。   The antibacterial liquid generating device according to claim 9, wherein the liquid is water or an aqueous solution. 前記水溶液が、食塩水である請求項10に記載の抗菌液生成装置。
The antibacterial liquid generating device according to claim 10, wherein the aqueous solution is a saline solution.
JP2007064943A 2006-05-15 2007-03-14 Slow disintegrating antibacterial agent and antibacterial liquid and antibacterial liquid generator using the same Active JP5238973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007064943A JP5238973B2 (en) 2006-05-15 2007-03-14 Slow disintegrating antibacterial agent and antibacterial liquid and antibacterial liquid generator using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006135374 2006-05-15
JP2006135374 2006-05-15
JP2007064943A JP5238973B2 (en) 2006-05-15 2007-03-14 Slow disintegrating antibacterial agent and antibacterial liquid and antibacterial liquid generator using the same

Publications (2)

Publication Number Publication Date
JP2007332131A true JP2007332131A (en) 2007-12-27
JP5238973B2 JP5238973B2 (en) 2013-07-17

Family

ID=38931931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007064943A Active JP5238973B2 (en) 2006-05-15 2007-03-14 Slow disintegrating antibacterial agent and antibacterial liquid and antibacterial liquid generator using the same

Country Status (1)

Country Link
JP (1) JP5238973B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148726A (en) * 2006-12-14 2008-07-03 Catalysts & Chem Ind Co Ltd Deodorizing and antibacterial composition
JP2012232960A (en) * 2011-05-09 2012-11-29 Tottori Univ High density metal ion water preparation
CN105031752A (en) * 2015-07-27 2015-11-11 江苏诚品生物科技有限公司 Drainage system containing silver bactericide release sleeve
JP2017137448A (en) * 2016-02-05 2017-08-10 国立大学法人徳島大学 Coating composition
WO2023003122A1 (en) * 2021-07-20 2023-01-26 주식회사 벤스랩 Composition for inhibiting coronavirus proliferation

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422361A (en) * 1990-05-17 1992-01-27 Ishizuka Glass Co Ltd Vessel for contact lens solution having antibacterial property
JPH05345010A (en) * 1992-06-15 1993-12-27 Shiraishi Chuo Kenkyusho:Kk Antibacterial bead and its manufacture
JPH07316008A (en) * 1991-12-25 1995-12-05 Taihei Kagaku Sangyo Kk Antibacterial and antifungal ceramic and its production
JPH0826851A (en) * 1994-07-08 1996-01-30 Ohbayashi Corp Sepiolite porous sintered body and its production
WO1996010917A1 (en) * 1994-10-05 1996-04-18 Toto Ltd. Antibacterial solid, process for producing the same, and method of utilizing the same
JPH08157305A (en) * 1994-11-29 1996-06-18 Hiroaki Endo Microbicidal agent
JPH08310881A (en) * 1995-05-18 1996-11-26 Ohbayashi Corp Porous sintered body and its production
JPH09194313A (en) * 1996-01-22 1997-07-29 Hiroaki Endo Microorganism elimination agent dissolving in water system
JPH09249511A (en) * 1996-03-13 1997-09-22 Miyoshi Oil & Fat Co Ltd Antimicrobial agent and its production
JPH09295912A (en) * 1996-04-30 1997-11-18 Harima Ceramic Co Ltd Production of antimicrobial ceramics
JPH1059763A (en) * 1996-08-12 1998-03-03 Aroban:Kk Manufacture of functional biscuit-fired product
JP2006069935A (en) * 2004-08-31 2006-03-16 Osamu Yamada Material for forming silver ion water and method for producing silver ion water by using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422361A (en) * 1990-05-17 1992-01-27 Ishizuka Glass Co Ltd Vessel for contact lens solution having antibacterial property
JPH07316008A (en) * 1991-12-25 1995-12-05 Taihei Kagaku Sangyo Kk Antibacterial and antifungal ceramic and its production
JPH05345010A (en) * 1992-06-15 1993-12-27 Shiraishi Chuo Kenkyusho:Kk Antibacterial bead and its manufacture
JPH0826851A (en) * 1994-07-08 1996-01-30 Ohbayashi Corp Sepiolite porous sintered body and its production
WO1996010917A1 (en) * 1994-10-05 1996-04-18 Toto Ltd. Antibacterial solid, process for producing the same, and method of utilizing the same
JPH08157305A (en) * 1994-11-29 1996-06-18 Hiroaki Endo Microbicidal agent
JPH08310881A (en) * 1995-05-18 1996-11-26 Ohbayashi Corp Porous sintered body and its production
JPH09194313A (en) * 1996-01-22 1997-07-29 Hiroaki Endo Microorganism elimination agent dissolving in water system
JPH09249511A (en) * 1996-03-13 1997-09-22 Miyoshi Oil & Fat Co Ltd Antimicrobial agent and its production
JPH09295912A (en) * 1996-04-30 1997-11-18 Harima Ceramic Co Ltd Production of antimicrobial ceramics
JPH1059763A (en) * 1996-08-12 1998-03-03 Aroban:Kk Manufacture of functional biscuit-fired product
JP2006069935A (en) * 2004-08-31 2006-03-16 Osamu Yamada Material for forming silver ion water and method for producing silver ion water by using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148726A (en) * 2006-12-14 2008-07-03 Catalysts & Chem Ind Co Ltd Deodorizing and antibacterial composition
JP2012232960A (en) * 2011-05-09 2012-11-29 Tottori Univ High density metal ion water preparation
CN105031752A (en) * 2015-07-27 2015-11-11 江苏诚品生物科技有限公司 Drainage system containing silver bactericide release sleeve
JP2017137448A (en) * 2016-02-05 2017-08-10 国立大学法人徳島大学 Coating composition
WO2023003122A1 (en) * 2021-07-20 2023-01-26 주식회사 벤스랩 Composition for inhibiting coronavirus proliferation

Also Published As

Publication number Publication date
JP5238973B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5238973B2 (en) Slow disintegrating antibacterial agent and antibacterial liquid and antibacterial liquid generator using the same
CN105849035B (en) The composition of chlorine dioxide is produced to irradiate visible ray
US20110244012A1 (en) Fungicide, photo catalytic composite material, adsorbent, and depurative
TW498014B (en) A metal oxide layer having oxygen deficit tilting structure
WO2013179805A1 (en) Smoking agent and smoking device
Znak et al. Improved modification of clinoptilolite with silver using ultrasonic radiation
JP2007261906A (en) Porous granule
JP2010280577A (en) Fumigant composition and fumigation apparatus
CN111493094A (en) Air disinfectant and spreading method thereof
Li et al. Ultrasmall Ag clusters in situ encapsulated into Silicalite-1 zeolite with controlled release behavior and enhanced antibacterial activity
JP2014234361A (en) Antibacterial-aromatic agent using aromatic distilled water of wood and metal-carrying calcined product
JP2006232623A (en) Indoor plaster composition
JP2016043038A (en) Deodorizing device and method
JPH1133100A (en) Photocatalyst fine grain containing solid porous silica particle, using method thereof, and photocatalyst containing polymer solid body
JP2021020159A (en) Porous body containing iodine-supporting active carbon, and production method thereof
JP2012254961A (en) Antibacterial composition
JP2000202467A (en) Photocatalyst, its utilization and water treating device
KR20090049965A (en) Filter composition of filter cigarette
JPH10174881A (en) Photocatalyst body and its production
JP5888872B2 (en) High concentration metal ion water production
KR102005567B1 (en) Method for manufacturing antibacterial, antimicrobial and deodorization material
JP7430434B1 (en) Method for producing silicate-coated metal ion compound composite composition containing calcium carbonate
JP2006256880A (en) Method for production of porous fired body
JPH1112024A (en) Production of deodorant and antimicrobial ceramic powder material
JPH05285377A (en) Raschig ring having antimicrobial property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100212

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150