JP2007199682A - 光偏向器および光ビーム走査装置 - Google Patents

光偏向器および光ビーム走査装置 Download PDF

Info

Publication number
JP2007199682A
JP2007199682A JP2006329201A JP2006329201A JP2007199682A JP 2007199682 A JP2007199682 A JP 2007199682A JP 2006329201 A JP2006329201 A JP 2006329201A JP 2006329201 A JP2006329201 A JP 2006329201A JP 2007199682 A JP2007199682 A JP 2007199682A
Authority
JP
Japan
Prior art keywords
control element
optical deflector
vibrating body
drive
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006329201A
Other languages
English (en)
Inventor
Shinya Matsuda
伸也 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2006329201A priority Critical patent/JP2007199682A/ja
Priority to US11/640,681 priority patent/US7619798B2/en
Publication of JP2007199682A publication Critical patent/JP2007199682A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

【課題】温度変化等の種々の要因による共振周波数の変動を一定に補正して共振スキャナの振幅を一定にすることにより、振幅、速度の安定化した光偏向器および光ビーム走査装置を提供すること。
【解決手段】電気−機械変換素子を制御素子に用い、光偏向器の回転振動によって制御素子に発生する電荷に起因する電位差を制御することで、温度変化等の種々の要因による共振周波数の変動を一定に補正して共振スキャナの振幅を一定にすることができ、振幅、速度の安定化した光偏向器および光ビーム走査装置を提供することができる。
【選択図】図2

Description

本発明は、光偏向器および光ビーム走査装置に関し、特に、光学素子の回転振動に同期して振動する電気−機械変換素子を備えた光偏向器および光ビーム走査装置に関する。
光偏向器は、光学素子を用いてレーザ光などの光線の向きを走査するもので、デジタル複写機やレーザプリンタなどの書き込み系、レーザディスプレイや網膜ディスプレイなどの表示系のほか、バーコードリーダ、レーザ顕微鏡、レーザ加工装置、三次元計測器など種々の用途に用いられるもので、多面鏡を回転させるポリゴンスキャナ(例えば、特許文献1参照)や、単一のミラーを回転振動させるガルバノスキャナ等が用いられている。また、その他に、半導体の製造技術(ウェハプロセス)を用いた薄板状の共振スキャナが提案されている。
共振スキャナは、ねじり梁と単一のミラーを組み合わせて、ねじり梁の復元力とミラーの慣性モーメントでねじれ振動系を形成し、この系の共振周波数で駆動を行うことにより、高い偏向速度と大きな偏向角を両立させており、可動部の質量が小さいため必要なエネルギーが少ない、軸受けなどの摺動部分がないため寿命が長い、などの特徴を備えている。
共振スキャナのねじり梁は、一般にシリコンなどの板状材料をエッチング等で加工して作成するが、温度変化による膨張、収縮等により外形寸法が変化すると、復元力が変化する。一方、温度変化による膨張、収縮等による外形寸法の変化程度では慣性モーメントはほとんど変化しないため、結果として系の共振周波数が変動する。また、この他にも、ねじり梁の繰り返し疲労によるバネ定数の変化や、空気抵抗など周囲の特性変化によっても共振周波数が変動する可能性がある。
共振周波数の近傍では、駆動信号の周波数に対して振幅は急激に変化する。そのため、駆動信号の周波数を固定していると、共振周波数の変動により、共振スキャナの振幅が大きく変動する。これに対処するため、駆動信号の周波数を共振周波数の変動に追従させる方法が考えられる。この方法を用いることで振幅は一定に保てるが、駆動周波数が変動するため、例えば映像表示等の二次元に同期して走査する用途には、縦横比が変化してしまい、適用が難しい。
そこで、共振周波数の変動を補正して共振スキャナの振幅を一定にする方法として、ヒータを用いて共振スキャナの温度を一定に調節する方法(例えば、特許文献2参照)、ねじり梁を引っ張る機構を備えて、張力を一定に調節する方法(例えば、特許文献3参照)、振幅の変動を電力で補正する方法(例えば、特許文献4参照)等が提案されている。
特公平6−52196号公報 特許第2711158号公報 特開平8−146334号公報 特開平5−45603号公報
しかしながら、特許文献2の方法では、温度の制御は応答性が悪く、また、加熱に余分な電力が必要であり、実用性に欠ける。また、特許文献3の方法では、伸び変形による張力の制御は、機構が複雑、かつ変動に敏感なために調節が難しく実用性に欠ける。さらに、特許文献4の方法でも、振幅の変動が急峻かつ非線形なために調節が難しく、かつ余分な電力が必要で実用性に欠ける。
本発明は、上記事情に鑑みてなされたもので、温度変化等の種々の要因による共振周波数の変動を一定に補正して共振スキャナの振幅を一定にすることにより、振幅、速度の安定化した光偏向器および光ビーム走査装置を提供することを目的とする。
本発明の目的は、下記構成により達成することができる。
1.光学素子を回転軸のまわりに回転振動させて光線を走査する光偏向器において、
前記光学素子を有する振動体と、
前記振動体の上に配置され、前記回転軸に対して垂直方向を長手方向とした矩形形状をした、前記振動体を変形させて振動させるための電気−機械変換素子からなる駆動素子と、
前記振動体の上に配置され、前記回転軸に対して垂直方向を長手方向とした矩形形状をした、前記振動体の変形により電荷を発生する電気−機械変換素子からなる制御素子と、
前記制御素子に発生した電荷に起因する電位差を制御する電位差制御素子とを備えたことを特徴とする光偏向器。
2.前記駆動素子と前記制御素子とは、前記振動体を挟んでその表裏において互いに対向する位置に配置され、さらに、2組の前記駆動素子と前記制御素子の組が、前記回転軸に対して回転対称な位置に配置されていることを特徴とする1に記載の光偏向器。
3.前記2組の前記駆動素子と前記制御素子の組を1対として、2対の前記2組の前記駆動素子と前記制御素子の組が、前記回転軸に対して垂直方向を対称軸方向として、前記光学素子を中心にして線対称に配置されていることを特徴とする2に記載の光偏向器。
4.前記電位差制御素子は、前記振動体の変形により前記制御素子に発生した電荷に起因する電位差を制御することにより、前記制御素子の剛性を変化させて前記振動体の共振周波数を調整することを特徴とする1乃至3の何れか1項に記載の光偏向器。
5.前記電位差制御素子は、前記制御素子の電極間に接続されたインピーダンス素子であることを特徴とする1乃至4の何れか1項に記載の光偏向器。
6.前記制御素子の動作を制御する制御回路を備え、
前記制御回路は、前記振動体の回転振動の変形量を検出する検出部を有することを特徴とする1乃至5の何れか1項に記載の光偏向器。
7.前記検出部は、前記振動体の変形により前記制御素子に発生した電荷に起因する電位差を測定することにより、前記振動体の回転振動の変形量を検出することを特徴とする6に記載の光偏向器。
8.前記制御回路は、前記制御素子に前記振動体を駆動するための駆動信号を印加する制御素子駆動部を有することを特徴とする6または7に記載の光偏向器。
9.前記制御回路は、前記制御素子駆動部による前記制御素子への駆動信号の印加を所定のタイミングで停止させるとともに、前記検出部に前記振動体の回転振動の変形量を検出させることを特徴とする8に記載の光偏向器。
10.前記制御回路は、前記検出部による前記振動体の回転振動の変形量の検出結果に基づき、前記制御素子駆動部により前記制御素子に印加される駆動信号を制御することにより、前記振動体の共振周波数を調節することを特徴とする8または9に記載の光偏向器。
11.前記振動体の近傍の温度を検出する温度センサを備え、
前記所定のタイミングは、前記温度センサにより検出された前記振動体の近傍の温度変化が所定値以上になった時であることを特徴とする9に記載の光偏向器。
12.前記駆動素子および前記制御素子は、圧電素子であることを特徴とする1乃至11の何れか1項に記載の光偏向器。
13.9に記載の光偏向器を備え、
前記光偏向器によって光ビームを1次元または2次元に走査する光ビーム走査装置において、
前記所定のタイミングは、前記振動体の回転振動の方向が切り替わる時であることを特徴とする光ビーム走査装置。
14.9に記載の光偏向器を備え、
前記光偏向器によって光ビームを1次元または2次元に走査する光ビーム走査装置において、
前記所定のタイミングは、光ビームの走査を停止している時であることを特徴とする光ビーム走査装置。
本発明によれば、電気−機械変換素子を制御素子に用い、光偏向器の回転振動によって制御素子に発生する電荷に起因する電位差を制御することで、温度変化等の種々の要因による共振周波数の変動を一定に補正して共振スキャナの振幅を一定にすることができ、振幅、速度の安定化した光偏向器および光ビーム走査装置を提供することができる。
以下、本発明を図示の実施の形態に基づいて説明するが、本発明は該実施の形態に限られない。なお、図中、同一あるいは同等の部分には同一の番号を付与し、重複する説明は省略する。
まず、本発明の第1の実施の形態について、図1乃至図10を用いて説明する。図1は、本発明における光偏向器の構成の一例を示すブロック図である。
図1において、光偏向器1は、共振スキャナ100、電位差制御素子であるインピーダンス素子153および制御回路200等で構成されている。共振スキャナ100およびインピーダンス素子153については、図2および図3の説明で詳述する。制御回路200は、光偏向器1の動作を制御する制御部210、共振スキャナ100の振動状態を検出する検出部220、共振スキャナ100を駆動するための駆動信号を印加する駆動部230および共振スキャナ100近傍の温度を検出する温度センサ240等で構成されている。
図2は、光偏光器1を構成する共振スキャナ100の構成を示す模式図であり、図2(a)は正面図、図2(b)は、図2(a)のA方向から見た側面図である。
図2において、共振スキャナ100は、光学素子であるミラー101、ねじり梁102、駆動片103、突起部104、保持部105、電気−機械変換素子である圧電素子111により構成されており、ミラー101を中心に左右対称の形状をしている。ミラー101は、回転軸121のまわりに回転振動する。ここに、ミラー101、ねじり梁102、駆動片103および突起部104は、本発明における振動体として機能する。
駆動片103は、回転軸121に垂直な方向を長手方向とした矩形形状をしている。圧電素子111も同様に回転軸121に垂直な方向を長手方向とした矩形の薄板形状をしており、薄板の表面および裏面に全面電極あるいは部分電極を有し、両面の電極間に電圧を印加することで電気−機械変換作用を行う。
ミラー101、ねじり梁102、駆動片103、突起部104および保持部105は、シリコン薄板を半導体ウェハプロセスにより加工して作成する。駆動片103は、図の左右のねじり梁102の上下にそれぞれ1対づつあり、図2(a)の右上部に例示するように、駆動片103の表裏には、それぞれ、圧電素子111が接着等により貼り付けられている。突起部104は、駆動片103のねじれ変形を防止するための突起である。保持部105は、共振スキャナ100を外部筐体に固定するための保持部である。
図3は、共振スキャナ100の駆動時の駆動片103の形状を図2(a)のB−B’断面で示した模式図で、図3(a)は静止状態、図3(b)は変形状態を示す。
図3(a)において、4つの圧電素子111のうち、図の右上と左下の圧電素子を駆動素子151、左上と右下の圧電素子を制御素子152と呼ぶことにする。駆動素子151は、単板の圧電素子を駆動片103に貼り付けた所謂ユニモルフ構造で、上述したように、ねじり梁102をはさんだ上下に回転対称に配置されており、図3(b)に示すように、駆動部230によって同位相の駆動信号Vinが与えられることによって曲げ変形を生じ、この曲げ変形によって、ねじり梁102を回転振動させる。この回転振動の周波数が共振スキャナ100の全系の共振周波数ωと一致するときに、ミラー101の回転振動の振幅が最大となる。
制御素子152は、駆動片103を挟んで駆動素子151に対向して配置され、駆動素子151による曲げ変形力を受けて発生する電荷により電位差Voutを生ずる。制御素子152は、駆動素子151と同じ寸法で表裏、線対称に配置されているため、仮に制御素子152側の端子をオープンにして電位差Voutを測定した場合、同じ変形量で駆動信号Vinと電位差Voutの位相が反転する関係となる。制御素子152の変形量Dと、発生する電荷量Eoutとは、図4の説明で後述するように、若干のヒステリシスはあるが略線形の関係にあるため、電荷量Eoutまたは該電荷に起因する電位差Voutを検出することにより、変形量Dを検出することができる。
そして制御素子152の少なくともどちらか一方にはこの電位差Voutを測定するための検出部220が接続され、また、図8で詳述するインピーダンス素子153が接続される。図3では簡略化のため2つの制御素子152が1つの検出部220と1つのインピーダンス素子153に並列に接続されているが、これらは、それぞれを独立のものとして2つの制御素子152に別個に接続しても、或いはどちらかの制御素子152だけに接続する形態でも適宜選択され得る。
図4は圧電素子111からなる制御素子152の変形量Dを横軸に、発生する電荷量Eoutを縦軸にとった場合の、両者の略線形の関係を示すグラフである。
図4において、圧電素子は、十分に歪みが除去された状態(グラフの原点)から変形量Dが加えられる(グラフの点W)と、変形量Dとほぼ正比例の関係で電荷が発生し、変形量Dが0(ゼロ)に戻される(グラフの点X)と若干のヒステリシスが発生して正の電荷が残り、点Wと正反対の変形量Dが加えられる(グラフの点Y)と、点Wと正反対の電荷が発生し、変形量Dが0(ゼロ)に戻される(グラフの点Z)と若干のヒステリシスが発生して負の電荷が残る。発生したヒステリシスは、十分に時間をかけて放電されることで除去される。
また、逆に、横軸を圧電素子に印加する印加電圧Vin、縦軸を変形量Dと読み替えると、上述したと同様の関係が成り立ち、圧電素子は、十分に歪みが除去された状態(グラフの原点)から電圧Vinが印加される(グラフの点W)と、印加電圧Vinとほぼ正比例の関係で変形量Dが発生し、印加電圧Vinが0(ゼロ)に戻される(グラフの点X)と若干のヒステリシスが発生して正の変形量Dが残り、点Wと正反対の印加電圧Vinが加えられる(グラフの点Y)と、点Wと正反対の変形量Dが発生し、印加電圧Vinが0(ゼロ)に戻される(グラフの点Z)と若干のヒステリシスが発生して負の変形量Dが残る。発生したヒステリシスは、十分に時間をかけて放電されることで除去される。
つまり、印加電圧Vinに対して、若干のヒステリシスはあるが略線形の変形量Dを得ることができる。一方、制御素子152の変形量Dとミラー101の偏向角εも所定の関係にあるため、結局、制御素子152に発生する電荷に起因する電位差Voutを検出することにより、ミラー101の偏向角εを検出することができる。
図5は、共振スキャナ100における駆動素子151の駆動周波数fとミラー101の偏向角εの関係を示す模式図である。
図5に示したように、共振周波数ωにおいてミラー101の偏向角ε即ち振幅は最大になり、そこから駆動周波数fが例えばf2にずれたり、或いは共振スキャナ100の共振周波数がω2にずれることにより、偏向角は最大値ε1からε2へと小さくなる。従ってミラー101の振幅を常に最大に或いは一定に保つためには、共振スキャナ100の共振周波数ω或いは共振周波数ωと一定の差のある周波数で常に駆動し続ける必要がある。
次に、本発明の課題である共振周波数の変動について、温度変化による共振周波数の変化を例にとって、図6を用いて説明する。図6は、ねじり梁102の回転振動の状態を示す模式図で、図6(a)は静止状態、図6(b)はねじれ状態を示す。
図6(a)において、ねじり梁102は、長さl、幅a、厚さbのシリコンの平板で、回転軸121の回りに回転振動する。図6(b)において、ねじり梁102のバネ定数は、次の(1式)におけるねじれ角φの係数として定義される。
Figure 2007199682
ここに、Mtはねじり梁のねじりモーメント、Gは横弾性係数、αは形状にかかわる係数、φはねじれ角である。
周囲の温度が変化すると、シリコンが膨張、収縮して外形寸法が変化する。例えば温度が上昇して膨張すると、長さlも伸びるが断面の寸法(a×b)も大きくなるため、ねじり梁102のバネ定数は大きくなる。一方、ねじり梁102によって回転振動させられるミラー101の質量は変化しないため、結果として、温度の影響により共振周波数ωが変動する。この変動を、図7に示す。
図7は、温度Tと共振周波数ωの変化Δωとの関係を示す模式的なグラフである。
図7において、各温度Tでの共振周波数ωの常温T0での共振周波数ω0からの変化Δωは、基本的には温度Tの3次式となる。共振スキャナ100が実際に用いられる温度範囲を、最大Tmax、最少Tminとし、Tmaxでの共振周波数変化Δωをω1、Tminでの共振周波数変化Δωをω2とすると、少なくとも共振周波数の変化(ω1−ω2)分の調整幅CWが必要である。
上述の通り、圧電素子に変形を加えると電荷が発生するが、この時の圧電素子は、変形により発生した電荷に起因する電位差により自身のみかけの剛性が変化するという性質も併せ持つ。具体的には、発生した電荷に起因する電位差が小さいほどみかけの剛性が低下し、逆に電位差が大きいほどみかけの剛性は高くなる。即ち、圧電素子の端子間にインピーダンス素子を接続し、そのインピーダンスを制御して圧電素子の端子間の電位差を制御することにより、みかけの剛性を変化させることができる。
更に、共振スキャナ100の一部をなす制御素子152としての圧電素子111のみかけの剛性が変化することより、共振スキャナの共振周波数も変化する。従って、上記のインピーダンスを制御することにより、共振スキャナの共振周波数を制御することが可能となる。具体的な実現方法としては、例えば制御素子152と並列に交流抵抗(リアクタンス)素子を挿入し、制御素子152に発生した電荷に起因する電位差Voutを温度変化に応じて制御することにより、制御素子152の見かけの剛性を変化させる。図8にその回路を示す。
図8は、制御素子152を構成する圧電素子の等価回路と、共振周波数ωの調整方法を示す回路図である。
図8において、制御素子(圧電素子)152は、容量成分Cp2と、容量成分Cp1、インダクタンス成分Lpおよび抵抗成分Rpが直列に繋がった抵抗成分との並列接続として表される。この制御素子152に、発生した電荷に起因する電位差Voutを制御するインピーダンス素子153として、例えば可変容量キャパシタVCを並列に接続して、その容量を温度変化に応じて最適に調整することで、駆動素子151の駆動による変形によって制御素子152に発生する電荷に起因する電位差Voutを制御することができる。インピーダンス素子153としては、それ以外にも容量可変のインダクタンス等を用いてもよい。
図7に示したように、インピーダンス素子153は、共振スキャナ100が実際に用いられる温度範囲における共振周波数の変化の幅CWを一定に制御できるだけの調節代を備えている必要がある。
次に、上述したような方法で共振周波数を一定にする上で共振スキャナ100が備えるべき要件について、図9を用いて説明する。図9は、共振スキャナ100が備えるべき要件を説明するための振動系の模式図である。
図9(a)に示すように、ねじり梁102とミラー101とは、ねじり梁102の復元力とミラー101の慣性モーメントにより第2の振動系VS2を形成している。一方、駆動片103も復元力と慣性モーメントを備えており、第1の振動系VS1を形成している。
従って、共振スキャナ100の振動系は二自由度の振動系であり、図9(b)に示すように、バネ定数k1のバネと質量m1の錘と、バネ定数k2のバネと質量m2の錘の二組のバネと錘が直列につながった合成振動系として表すことができる。この合成振動系には、図9(b)に示すように、それぞれの錘が同じ位相で振動する同位相モード(共振周波数f1)と、逆の位相で振動する逆位相モード(共振周波数f2)の二種類の固有振動が存在する。合成振動系の共振周波数は前者(f1)<後者(f2)で、質量m2の錘の変位は前者>後者となり、用途に応じて使い分けることができる。
ここで、図9(c)に示すように第1の振動系VS1と第2の振動系VS2とを個別の孤立系と考えた場合に、各々の孤立系での共振周波数(g1とg2)の差が大きいと、合成系での同位相モードの共振周波数f1は孤立系の低い方の共振周波数に近くなり、逆位相モードの共振周波数f2は孤立系の高い方の共振周波数に近くなる。そして、この場合には、合成系の共振周波数に近い孤立系の振動の方が振幅が大きくなる。
例えば、駆動片(第1の振動系VS1)103の共振周波数g1<<ねじり梁(第2の振動系VS2)102の共振周波数g2である場合、同位相モードでは駆動片103が、逆位相モードではねじり梁102が、それぞれ振幅が大きくなる。
本発明においては、制御素子152による共振周波数調節の感度を高め、かつ、ねじり梁102の振幅を大きくするためには、駆動片103の振動の振幅とねじり梁102の振動の振幅とを共に大きくすることが望ましい。そのためには、孤立系での両者の振動周波数を近づけること、すなわち駆動片103の共振周波数g1とねじり梁102の共振周波数g2とを一致させることが望ましい。両者が一致する場合の同位相モードの共振周波数f1および逆位相モードの共振周波数f2は、次の(2式)で表される。
Figure 2007199682
ここに、f0は孤立系の共振周波数(f0=g1=g2)、f1,f2は、それぞれ同位相モードおよび逆位相モードでの共振周波数である。
次に、共振スキャナ100の共振周波数ωを制御する方法について、図10を用いて説明する。図10は、共振スキャナ100の共振周波数ωの制御の動作の流れを示すフローチャートである。
図10において、ステップS101で、まず、所定の周波数で駆動素子への駆動信号Vinの印加が開始される。ステップS102で、駆動素子151の動作が安定するまでの所定の時間が経過したか否かが確認される。所定時間が経過するまで、ステップS102で待機する。所定時間経過後(ステップS102;YES)、ステップS103で、ミラー101の偏向角εが演算される。具体的には制御素子152の端子間のインピーダンス素子153のインピーダンスが所定値の時の電位差Voutが測定され、図4で説明したように、電位差Voutからミラー101の偏向角εが求められる。
ステップS104で、偏向角εが所定の範囲に入っているか否かが確認される。所定の範囲に入っている場合(ステップS104;YES)には動作が終了され、印字や表示等の実際の利用段階に進む。これについての説明は省略する。所定の範囲に入っていない場合(ステップS104;NO)、共振スキャナ100の全系の共振周波数ωがずれているものと判断し、これを変化させて所定の範囲内に入れるように制御する。
具体的には、ステップS105で、初回の共振周波数制御であるか否かが確認される。初回の制御である場合(ステップS105;YES)、ステップS106で、インピーダンス素子153のインピーダンスを所定値だけ増加させる。次に、ステップS107で、駆動素子151の動作が安定するまでの所定の時間が経過したか否かが確認される。所定時間が経過するまで、ステップS107で待機する。所定時間経過後(ステップS107;YES)ステップS103に戻って、上述の動作を繰り返す。
ステップS105で初回の制御ではない場合(ステップS105;NO)、ステップS108で、前回の制御時と比べてミラー101の偏向角εが所定範囲に近づいているか否かが確認される。前回よりも所定範囲に近づいている場合(ステップS108;YES)には、ステップS109で、引き続きインピーダンス素子153のインピーダンスを所定値だけ増加させて、ステップS107に進む。以降は、上述した動作を繰り返す。
ステップS108で、ミラー101の偏向角εが前回よりも所定範囲から遠ざかっている場合(ステップS108;NO)には、ステップS110で、インピーダンス素子153のインピーダンスを所定値だけ減少させて、ステップS107に進む。以降は、上述した動作を繰り返す。
共振周波数ωの制御は、共振スキャナ100の駆動による共振スキャナ100自体の温度上昇や、プリンタやディスプレイなど共振スキャナ100が組み込まれている装置内の温度上昇、さらには装置の置かれている周囲温度の変動などに対応する必要があるため、以上の制御は、動作中定期的に行われる必要がある。
例えば装置がプリンタであれば、前後の印刷用紙の間で印字していない期間等、ディスプレイでは、走査線が一番下の行から一番上の行に移動する回帰期間等を利用して制御を行うと良い。また、共振スキャナ100の近傍に温度センサ240を設けて、所定期間における温度変化が所定以上になったら制御を行う構成としても良い。なお、インピーダンス素子153のインピーダンスを調整してもミラー101の偏向角εが所定の範囲内に達しない場合は、異常が発生したと判断し、機器を停止して修理を促す。
上述した第1の実施の形態では、ミラー101の偏向角εは、制御素子152に発生した電荷に起因する電位差Voutの測定値から演算するとしたが、これに限るものではなく、例えば実際に光の走査範囲を光検出器等で検出しても良い。図11および図12に、この例を示す。
図11は、共振スキャナ100をプリンタや複写機の感光ドラムへの光ビーム走査装置である1次元の主走査装置10として用いた例を示す模式図である。半導体レーザ181から出力されたレーザ光182は、コリメータレンズ183を介して共振スキャナ100で偏向され、主走査レンズ185を介して主走査ビーム187として感光ドラム171上を水平方向に主走査される。
一方、感光ドラム171が回転軸173の回りに回転されることで主走査と直交する方向に副走査が行われ、主走査と合わせて面の走査が実現される。プリンタや複写機においては、主走査方向のデータ出力タイミングの同期をとるために、感光ドラム171の書込範囲外に光検出器161が設けられているものがあり、これを併用することでコストやスペースの新たな負荷無しにミラー101の偏向角εを直接検出することができる。
図12は、共振スキャナを水平と垂直に組み合わせた2次元共振スキャナ800を光ビーム走査装置として用いて、例えばレーザディスプレイ等の面走査に用いる例を示す模式図である。RGB各色の半導体レーザ851から出力されたレーザービーム束841は、コリメータレンズ853を介して2次元共振スキャナ800で偏向され、走査レンズ855を介して2次元走査ビーム843としてディスプレイ画面871上を2次元走査される。データ出力タイミングの同期をとるために、ディスプレイ画面871の表示範囲外に光検出器161が設けられ、これを用いることでミラー801の偏向角εを直接検出することができる。
また、図10に示した例では、インピーダンス素子153のインピーダンスを一旦増加させてミラー101の偏向角εの変化する方向を確認することで、インピーダンス素子153の制御の方向を決定したが、温度センサ240を備えて共振スキャナ100近傍の温度を測定してインピーダンス素子153の制御の方向を決定しても良い。この場合、図10のステップS106で、検出された温度に従ってインピーダンス素子153のインピーダンスの増減の方向が決められるため、制御に必要な時間を短縮することができる。
上述したように、本発明の第1の実施の形態によれば、電気−機械変換素子を制御素子に用い、光偏向器の回転振動によって制御素子に発生する電荷に起因する電位差を制御することで、温度変化等の種々の要因による共振周波数の変動を一定に補正して共振スキャナの振幅を一定にすることができ、振幅、速度の安定化した光偏向器を提供することができる。
次に、本発明の第2の実施の形態について、図13を用いて説明する。上述した第1の実施の形態においては、駆動素子151と制御素子152とは、それぞれ駆動と制御のみに使われたのに対し、本第2の実施の形態では、制御素子152の回路を切り替えることにより、ミラー101の偏向角εの測定時以外は制御素子152にも駆動信号Vinを印加して、駆動素子として機能させ、駆動力の向上を図る。
即ち、図2あるいは図3に示したように、制御素子152を駆動素子151と同じ材料、大きさおよび形状で作成すれば、駆動片103の両面に圧電素子が貼り付けられた所謂バイモルフ構成となり、駆動力が倍増する。その結果、ミラー101が同じ大きさなら、より小さい圧電素子111で共振スキャナ100の構成が可能となり、装置全体の小型化が可能となる。また、圧電素子111が同じ大きさなら、より大きなミラー101或いはミラー精度を重視したより厚くて重いミラー101の搭載が可能となる。
そこで、制御素子152を駆動にも利用するための方法について、図13を用いて説明する。図13は、制御素子152を駆動にも利用するための制御回路200の回路構成の一例を示す模式図である。
図13において、制御素子152を駆動する制御回路200は、制御素子152に印加される駆動信号Vinを発生する駆動源261と制御素子152を駆動する駆動電流を調節する電流調節器263、制御素子152の駆動と検出を切り替える切替器250、制御素子152の共振状態を検出する電位差検出器からなる検出部220、およびこれらを制御する制御部210等からなる。
電流調節器233は、制御部210からの信号により、駆動信号Vinの駆動周波数に応じて駆動電流を調節して、共振スキャナ100の所定の共振状態を維持するように制御する。駆動源261および電流調節器263は制御素子駆動部260を構成する。制御部210は、切換器250を介して、制御素子152への接続を検出側と駆動側との間で所定のタイミングで切り替える。
駆動状態にある制御素子152を検出に切り替えるタイミングとしては、図10乃至は図12で述べたタイミングが考えられる。即ち、例えば本共振スキャナ100がプリンタに適用された場合であれば、(1)ある行から次の行へ移る時の非印字期間において、1行毎或いは所定行毎に行う、(2)用紙一枚印字後、次の用紙へ移る時の非印字期間に一枚毎或いは所定枚数毎に行う、(3)所定期間休止後の印字開始時に必ず行う、(4)改ページ時には必ず行う、等である。
また、例えば本共振スキャナ100がディスプレイに適用された場合であれば、(1)走査線のあるラインの走査が終わって次のラインへ移る時の非表示期間において、1ライン毎或いは所定ライン毎に行う、(2)一画面分の走査終了後、再び走査開始点へ戻る時の非表示期間に一画面毎或いは所定画面毎に行う、(3)一フレーム分の走査終了後、再び走査開始点へ戻る時の非表示期間に一フレーム毎或いは所定フレーム毎に行う、等である。
また、本共振スキャナ100の適用分野に関係なく、制御素子152近傍の温度を検出する温度センサ240を設けて、所定期間における温度変化が所定値以上になったら検出を行う構成としても良い。
上述した検出時には、制御素子152が駆動ではなく検出に用いられるために、駆動力が低下するが、共振状態では振幅は駆動力が変化しても急激には減少せず、共振スキャナの全系の減衰係数によって決まる時間の経過とともに徐々に減少する。従って、制御素子152による駆動を一時的に停止して検出動作に切り替えても差し支えない。
そして、上述した検出の結果が所定の条件(周波数f、偏向角ε、電位差Vout等)から所定値以上ずれていた場合は、駆動素子151および制御素子152の何れか一方あるいは両方の駆動電流を調節して、検出結果が所定の条件の所定値内に入るように制御する。
上述の検出のタイミングとしては、制御素子152に発生する電荷に起因する電位差Voutを検出する場合には、制御素子152の変形が大きい程発生する電荷量も多く、検出精度が上がるため、偏向角εの大きい状態の方が好ましい。該状態は、プリンタでいえば、主走査方向において最大に近い角度まで偏向された状態で、かかる状態の時には、通常は印字範囲を超えており、もともと印字動作のない領域になるので好都合である。逆に、印字範囲を超えた領域を検出動作可能範囲として、上記の所定タイミング中で、かつ該可能範囲の時に検出動作を行うことにしても良い。
同様に、ディスプレイにおける走査においても、水平方向の走査において最大に近い角度まで偏向された状態は、実際の画面の表示範囲外となる場合が多く、かかる状態の時には表示範囲を超えており、もともと表示に影響しない領域になるので好都合である。この場合も、実際の表示範囲を超えた領域を検出動作可能範囲として、上記の所定タイミング中でかつ該可能範囲の時に検出動作を行うことにしても良い。
上述したように、本発明の第2の実施の形態によれば、第1の実施の形態の効果に加えて、制御素子152を駆動にも兼用することで、駆動力が倍増し、ミラー101が同じ大きさなら、より小さい圧電素子111で共振スキャナ100の構成が可能となり、装置全体の小型化が可能となる。また、圧電素子111が同じ大きさなら、より大きなミラー101或いはミラー精度を重視したより厚くて重いミラー101の搭載が可能となる。
次に、本発明における第3の実施の形態について、図14を用いて説明する。上述した第1及び第2の実施の形態においては、共振スキャナ100の共振状態の検出に、制御素子152に発生する電荷を検出する手法を用いたが、本第3の実施の形態では、その検出を、駆動素子151に印加される駆動信号Vinの位相と、ミラー101の偏向角ε、すなわち制御素子152に発生する電荷に起因する電位差Voutの位相とを比較することにより行う。
図14は、駆動素子151に印加される駆動信号Vinと制御素子152に発生する電位差Vout、つまりミラー101の偏向角εとの位相の関係を示す模式図で、図14(a)は共振状態からずれた中間的な状態、図14(b)は非共振状態、図14(c)は共振状態を示す。
図14において、本発明の共振スキャナ100においては、共振状態からずれた中間的な状態(図14(a))では、駆動信号Vinの位相に対して電位差Voutの位相はθだけずれており、完全に非共振な状態(図14(b))では、位相差θ=90°となり、共振状態(図14(c))では位相差θ=0(ゼロ)となる。従って、駆動信号Vinと電位差Voutの位相差θを求めることにより、共振スキャナ100の共振状態を検出することができる。
具体的には、図13の回路において、検出部220を構成する電位差検出器の代わりに位相検出器を配置し、第1および第2の実施の形態で述べたと同様の検出のタイミングで、制御素子152に発生する電位差Voutの位相を測定する。測定された電位差Voutの位相と、駆動素子151に印加されている駆動信号Vinの位相とを比較し、位相差θが所定値以上であれば共振状態からずれていると判断して、両者の位相が一致する方向へ駆動信号Vinの周波数fを制御する。
位相差の検出は、単に位相がずれていることのみを検出して、駆動信号Vinの周波数fを制御して、トライアンドエラーにより所望の共振状態へ合わせ込んでいく方法でも良いが、位相がどちらにずれているか、即ち位相差の正負まで検出して、それに応じて制御する方向を決定したのちに駆動信号Vinの周波数fを制御した方が、装置は若干複雑になるが、制御の効率の面において、より望ましい。
以上に述べたように、本発明の第3の実施の形態によれば、第1および第2の実施の形態の効果に加えて、駆動信号Vinと電位差Voutとの位相差θを検出することで、より効率的に共振状態への合わせ込みを行うことができる。
本発明における電気−機械変換素子は、磁歪力や電磁力を利用したものであっても良い。前者の場合、変形により生じる磁界の変化を、例えば外部の磁界により制御すれば変形量を調節できる。また後者の場合、変形(変位)により生じる電界や磁界の変化を制御すれば変形量を調節できる。
さらに、本発明を用いて共振周波数ωを能動的に変化させることもできる。例えばレーザプリンタにはトナーと呼ばれる樹脂インクを用紙に加熱定着するプロセスが存在するが、このプロセスを経ることにより、用紙に含まれる水分が減少して一時的に用紙の寸法が小さくなる場合がある。従って、両面印刷の場合には、裏面ではトナー像を縮小する必要がある。本発明を用いて共振周波数ωを表面の印刷時より高めに調節し、駆動周波数をそれに合わせて調節すれば、トナー像を縮小することができる。
最後に、制御素子152は、駆動片上に配置するだけでなく、ミラー101と同期して曲げ変形する位置であればどこに配置しても良い。駆動片103と並べる、ねじり梁102の各辺いずれかの表面に貼り付ける、ミラー101やねじり梁102に専用の振動片を設けて貼り付けるなどが可能である。
以上に述べたように、本発明によれば、電気−機械変換素子を制御素子に用い、光偏向器の回転振動によって制御素子に発生する電荷に起因する電位差を制御することで、温度変化等の種々の要因による共振周波数の変動を一定に補正して共振スキャナの振幅を一定にすることができ、振幅、速度の安定化した光偏向器および光ビーム走査装置を提供することができる。
尚、本発明に係る光偏向器および光ビーム走査装置を構成する各構成の細部構成および細部動作に関しては、本発明の趣旨を逸脱することのない範囲で適宜変更可能である。
本発明における光偏向器の構成の一例を示すブロック図である。 光偏光器を構成する共振スキャナの構成を示す模式図である。 共振スキャナの駆動時の駆動片の形状を示す断面模式図である。 制御素子の変形量と発生する電荷量との略線形の関係を示すグラフである。 共振スキャナにおける駆動素子の駆動周波数とミラーの偏向角の関係を示す模式図である。 ねじり梁の回転振動の状態を示す模式図である。 温度と共振周波数の変化との関係を示す模式的なグラフである。 制御素子を構成する圧電素子の等価回路と、共振周波数の調整方法を示す回路図である。 共振スキャナが備えるべき要件を説明するための振動系の模式図である。 共振スキャナの共振周波数の制御の動作の流れを示すフローチャートである。 共振スキャナをプリンタや複写機の感光ドラムへの1次元の主走査装置として用いた例を示す模式図である。 共振スキャナを水平と垂直に組み合わせた2次元共振スキャナを用いて、例えばレーザディスプレイ等の面走査に用いる例を示す模式図である。 制御素子を駆動にも利用するための制御回路の回路構成の一例を示す模式図である。 駆動素子に印加される駆動信号と制御素子に発生する電位差との位相の関係を示す模式図である。
符号の説明
1 光偏向器
10 主走査装置
100 共振スキャナ
101 ミラー
102 ねじり梁
103 駆動片
104 突起部
105 保持部
111 圧電素子
121 回転軸
151 駆動素子
152 制御素子
153 インピーダンス素子
200 制御回路
210 制御部
220 検出部
230 駆動部
231 駆動源
233 電流調節器
240 温度センサ
250 切替器

Claims (14)

  1. 光学素子を回転軸のまわりに回転振動させて光線を走査する光偏向器において、
    前記光学素子を有する振動体と、
    前記振動体の上に配置され、前記回転軸に対して垂直方向を長手方向とした矩形形状をした、前記振動体を変形させて振動させるための電気−機械変換素子からなる駆動素子と、
    前記振動体の上に配置され、前記回転軸に対して垂直方向を長手方向とした矩形形状をした、前記振動体の変形により電荷を発生する電気−機械変換素子からなる制御素子と、
    前記制御素子に発生した電荷に起因する電位差を制御する電位差制御素子とを備えたことを特徴とする光偏向器。
  2. 前記駆動素子と前記制御素子とは、前記振動体を挟んでその表裏において互いに対向する位置に配置され、さらに、2組の前記駆動素子と前記制御素子の組が、前記回転軸に対して回転対称な位置に配置されていることを特徴とする請求項1に記載の光偏向器。
  3. 前記2組の前記駆動素子と前記制御素子の組を1対として、2対の前記2組の前記駆動素子と前記制御素子の組が、前記回転軸に対して垂直方向を対称軸方向として、前記光学素子を中心にして線対称に配置されていることを特徴とする請求項2に記載の光偏向器。
  4. 前記電位差制御素子は、前記振動体の変形により前記制御素子に発生した電荷に起因する電位差を制御することにより、前記制御素子の剛性を変化させて前記振動体の共振周波数を調整することを特徴とする請求項1乃至3の何れか1項に記載の光偏向器。
  5. 前記電位差制御素子は、前記制御素子の電極間に接続されたインピーダンス素子であることを特徴とする請求項1乃至4の何れか1項に記載の光偏向器。
  6. 前記制御素子の動作を制御する制御回路を備え、
    前記制御回路は、前記振動体の回転振動の変形量を検出する検出部を有することを特徴とする請求項1乃至5の何れか1項に記載の光偏向器。
  7. 前記検出部は、前記振動体の変形により前記制御素子に発生した電荷に起因する電位差を測定することにより、前記振動体の回転振動の変形量を検出することを特徴とする請求項6に記載の光偏向器。
  8. 前記制御回路は、前記制御素子に前記振動体を駆動するための駆動信号を印加する制御素子駆動部を有することを特徴とする請求項6または7に記載の光偏向器。
  9. 前記制御回路は、前記制御素子駆動部による前記制御素子への駆動信号の印加を所定のタイミングで停止させるとともに、前記検出部に前記振動体の回転振動の変形量を検出させることを特徴とする請求項8に記載の光偏向器。
  10. 前記制御回路は、前記検出部による前記振動体の回転振動の変形量の検出結果に基づき、前記制御素子駆動部により前記制御素子に印加される駆動信号を制御することにより、前記振動体の共振周波数を調節することを特徴とする請求項8または9に記載の光偏向器。
  11. 前記振動体の近傍の温度を検出する温度センサを備え、
    前記所定のタイミングは、前記温度センサにより検出された前記振動体の近傍の温度変化が所定値以上になった時であることを特徴とする請求項9に記載の光偏向器。
  12. 前記駆動素子および前記制御素子は、圧電素子であることを特徴とする請求項1乃至11の何れか1項に記載の光偏向器。
  13. 請求項9に記載の光偏向器を備え、
    前記光偏向器によって光ビームを1次元または2次元に走査する光ビーム走査装置において、
    前記所定のタイミングは、前記振動体の回転振動の方向が切り替わる時であることを特徴とする光ビーム走査装置。
  14. 請求項9に記載の光偏向器を備え、
    前記光偏向器によって光ビームを1次元または2次元に走査する光ビーム走査装置において、
    前記所定のタイミングは、光ビームの走査を停止している時であることを特徴とする光ビーム走査装置。
JP2006329201A 2005-12-27 2006-12-06 光偏向器および光ビーム走査装置 Pending JP2007199682A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006329201A JP2007199682A (ja) 2005-12-27 2006-12-06 光偏向器および光ビーム走査装置
US11/640,681 US7619798B2 (en) 2005-12-27 2006-12-18 Optical deflector and light beam scanning apparatus having a control mechanism utilizing electromechanical transducers for adjusting resonant frequency for stable scanning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005374697 2005-12-27
JP2006329201A JP2007199682A (ja) 2005-12-27 2006-12-06 光偏向器および光ビーム走査装置

Publications (1)

Publication Number Publication Date
JP2007199682A true JP2007199682A (ja) 2007-08-09

Family

ID=38193352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006329201A Pending JP2007199682A (ja) 2005-12-27 2006-12-06 光偏向器および光ビーム走査装置

Country Status (2)

Country Link
US (1) US7619798B2 (ja)
JP (1) JP2007199682A (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116678A (ja) * 2006-11-02 2008-05-22 Sony Corp 表示装置及び表示方法
JP2008145839A (ja) * 2006-12-12 2008-06-26 Konica Minolta Holdings Inc 光スキャナ装置
JP2008310295A (ja) * 2007-05-15 2008-12-25 Konica Minolta Opto Inc 画像表示装置
WO2009022649A1 (ja) * 2007-08-10 2009-02-19 Dkk-Toa Corporation 油膜検出装置
JP2009101343A (ja) * 2007-10-03 2009-05-14 Canon Inc 揺動体装置、光偏向装置、及びそれを用いた光学機器
WO2009081858A1 (ja) * 2007-12-20 2009-07-02 Konica Minolta Opto, Inc. マイクロスキャナ装置、およびマイクロスキャナ装置の制御方法
JP2009169325A (ja) * 2008-01-21 2009-07-30 Stanley Electric Co Ltd 光偏向器
JP2009169326A (ja) * 2008-01-21 2009-07-30 Stanley Electric Co Ltd 光偏向器
JP2009244799A (ja) * 2008-03-31 2009-10-22 Brother Ind Ltd 画像投影装置
JP2009265625A (ja) * 2008-04-03 2009-11-12 Canon Inc 揺動体装置、及びそれを用いる光偏向装置
JP2009294606A (ja) * 2008-06-09 2009-12-17 Canon Inc 光走査装置
WO2010035759A1 (ja) * 2008-09-25 2010-04-01 コニカミノルタオプト株式会社 光スキャナ
WO2010050495A1 (ja) * 2008-10-28 2010-05-06 シナノケンシ株式会社 光走査装置
JP2011018026A (ja) * 2009-06-09 2011-01-27 Ricoh Co Ltd 光偏向器、光走査装置、画像形成装置及び画像投影装置
JP2011033756A (ja) * 2009-07-31 2011-02-17 Ricoh Co Ltd 光走査装置および画像形成装置
JP2012024808A (ja) * 2010-07-23 2012-02-09 Miyachi Technos Corp スキャニング方式のレーザ加工装置
WO2012032918A1 (ja) * 2010-09-07 2012-03-15 船井電機株式会社 振動ミラー素子
JP2012154989A (ja) * 2011-01-24 2012-08-16 Stanley Electric Co Ltd 光偏向モジュール
JP2012194283A (ja) * 2011-03-15 2012-10-11 Ricoh Co Ltd 光偏向装置、光走査装置、画像形成装置及び画像投影装置
US8451308B2 (en) 2009-07-31 2013-05-28 Ricoh Company, Ltd. Image forming apparatus
JP2014056015A (ja) * 2012-09-11 2014-03-27 Stanley Electric Co Ltd 光偏向器
JP2014089252A (ja) * 2012-10-29 2014-05-15 Denso Corp 光走査装置
JP2014115612A (ja) * 2012-11-15 2014-06-26 Ricoh Co Ltd 光偏向装置及び画像形成装置
JP2014228783A (ja) * 2013-05-24 2014-12-08 株式会社リコー 光走査装置、画像形成装置、画像投影装置
JP2015040928A (ja) * 2013-08-21 2015-03-02 株式会社リコー 光偏向装置、画像形成装置、車両及び光偏向装置の制御方法
JP2015158614A (ja) * 2014-02-25 2015-09-03 株式会社リコー 傾斜動作装置並びにこれを用いた光走査装置及び画像表示装置
US9158108B2 (en) 2010-07-29 2015-10-13 Nec Corporation Optical scanning device and image display device
JP2015184590A (ja) * 2014-03-25 2015-10-22 スタンレー電気株式会社 光偏向器

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8553306B2 (en) * 2007-03-15 2013-10-08 Ricoh Company, Ltd. Optical deflector and optical device
JP5089205B2 (ja) * 2007-03-19 2012-12-05 キヤノン株式会社 画像形成装置、及びその制御方法
JP4277921B2 (ja) * 2007-06-05 2009-06-10 セイコーエプソン株式会社 アクチュエータ、光スキャナおよび画像形成装置
KR101231642B1 (ko) * 2007-08-08 2013-02-08 삼성전자주식회사 화상형성장치 및 그 제어방법
JP5310566B2 (ja) * 2008-01-10 2013-10-09 コニカミノルタ株式会社 マイクロスキャナ装置およびマイクロスキャナ装置の制御方法
JP5157499B2 (ja) * 2008-02-05 2013-03-06 ブラザー工業株式会社 光スキャナ
JP5184909B2 (ja) * 2008-02-13 2013-04-17 キヤノン株式会社 揺動体装置及び光偏向装置
JP2009223113A (ja) * 2008-03-18 2009-10-01 Panasonic Corp 光学反射素子およびこれを用いた画像投影装置
JP5446122B2 (ja) * 2008-04-25 2014-03-19 パナソニック株式会社 ミアンダ形振動子およびこれを用いた光学反射素子
JP5391600B2 (ja) * 2008-07-16 2014-01-15 船井電機株式会社 振動ミラー素子
DE102008049647B4 (de) * 2008-09-30 2011-11-24 Technische Universität Dresden Mikromechanisches Element und Verfahren zum Betreiben eines mikromechanischen Elements
JP5493735B2 (ja) * 2009-01-30 2014-05-14 株式会社リコー 偏向ミラー、光走査装置、画像形成装置、および画像投影装置
CN103518154A (zh) * 2011-04-26 2014-01-15 丰田自动车株式会社 反射镜装置
JP5990917B2 (ja) * 2012-02-03 2016-09-14 船井電機株式会社 Memsデバイスおよびプロジェクタ機能を有する電子機器
JP5916668B2 (ja) 2013-07-17 2016-05-11 富士フイルム株式会社 ミラー駆動装置及びその駆動方法
JP5916667B2 (ja) * 2013-07-17 2016-05-11 富士フイルム株式会社 ミラー駆動装置及びその駆動方法
EP2851733B1 (en) * 2013-08-28 2016-12-21 Ricoh Company Ltd. Optical deflection device and image forming apparatus
DE102015105839A1 (de) * 2015-04-16 2016-10-20 Hella Kgaa Hueck & Co. Lichtmodul mit Mitteln zur Verlagerung wenigstens eines optischen Elementes
US10895713B2 (en) * 2018-10-18 2021-01-19 Microsoft Technology Licensing, Llc Actuator frame for scanning mirror
US11175491B2 (en) * 2019-04-25 2021-11-16 Microsoft Technology Licensing, Llc Non-resonant microelectromechanical systems scanner with piezoelectric actuators

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2711158B2 (ja) 1989-11-13 1998-02-10 富士写真フイルム株式会社 共振周波数安定化方法および共振型光偏向器
JPH0545603A (ja) 1991-08-13 1993-02-26 Fujitsu Ltd 共振型スキヤナ
JPH0652196B2 (ja) 1991-11-15 1994-07-06 日本アビオニクス株式会社 赤外線熱画像装置
JPH08146334A (ja) 1994-11-18 1996-06-07 Nec Eng Ltd 光学系の圧電素子による振動制御機構
US5694237A (en) * 1996-09-25 1997-12-02 University Of Washington Position detection of mechanical resonant scanner mirror
US6049407A (en) 1997-05-05 2000-04-11 University Of Washington Piezoelectric scanner
US6331909B1 (en) * 1999-08-05 2001-12-18 Microvision, Inc. Frequency tunable resonant scanner

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116678A (ja) * 2006-11-02 2008-05-22 Sony Corp 表示装置及び表示方法
JP2008145839A (ja) * 2006-12-12 2008-06-26 Konica Minolta Holdings Inc 光スキャナ装置
JP2008310295A (ja) * 2007-05-15 2008-12-25 Konica Minolta Opto Inc 画像表示装置
WO2009022649A1 (ja) * 2007-08-10 2009-02-19 Dkk-Toa Corporation 油膜検出装置
JP5045753B2 (ja) * 2007-08-10 2012-10-10 東亜ディーケーケー株式会社 油膜検出装置
JP2009101343A (ja) * 2007-10-03 2009-05-14 Canon Inc 揺動体装置、光偏向装置、及びそれを用いた光学機器
WO2009081858A1 (ja) * 2007-12-20 2009-07-02 Konica Minolta Opto, Inc. マイクロスキャナ装置、およびマイクロスキャナ装置の制御方法
JP2009169325A (ja) * 2008-01-21 2009-07-30 Stanley Electric Co Ltd 光偏向器
JP2009169326A (ja) * 2008-01-21 2009-07-30 Stanley Electric Co Ltd 光偏向器
JP2009244799A (ja) * 2008-03-31 2009-10-22 Brother Ind Ltd 画像投影装置
JP2009265625A (ja) * 2008-04-03 2009-11-12 Canon Inc 揺動体装置、及びそれを用いる光偏向装置
JP2009294606A (ja) * 2008-06-09 2009-12-17 Canon Inc 光走査装置
WO2010035759A1 (ja) * 2008-09-25 2010-04-01 コニカミノルタオプト株式会社 光スキャナ
JP5423680B2 (ja) * 2008-09-25 2014-02-19 コニカミノルタ株式会社 光スキャナ
US8559089B2 (en) 2008-09-25 2013-10-15 Konica Minolta Opto, Inc. Optical scanner
WO2010050495A1 (ja) * 2008-10-28 2010-05-06 シナノケンシ株式会社 光走査装置
JP2011018026A (ja) * 2009-06-09 2011-01-27 Ricoh Co Ltd 光偏向器、光走査装置、画像形成装置及び画像投影装置
JP2011033756A (ja) * 2009-07-31 2011-02-17 Ricoh Co Ltd 光走査装置および画像形成装置
US8451308B2 (en) 2009-07-31 2013-05-28 Ricoh Company, Ltd. Image forming apparatus
JP2012024808A (ja) * 2010-07-23 2012-02-09 Miyachi Technos Corp スキャニング方式のレーザ加工装置
US9158108B2 (en) 2010-07-29 2015-10-13 Nec Corporation Optical scanning device and image display device
WO2012032918A1 (ja) * 2010-09-07 2012-03-15 船井電機株式会社 振動ミラー素子
JP2012058367A (ja) * 2010-09-07 2012-03-22 Funai Electric Co Ltd 振動ミラー素子
JP2012154989A (ja) * 2011-01-24 2012-08-16 Stanley Electric Co Ltd 光偏向モジュール
JP2012194283A (ja) * 2011-03-15 2012-10-11 Ricoh Co Ltd 光偏向装置、光走査装置、画像形成装置及び画像投影装置
JP2014056015A (ja) * 2012-09-11 2014-03-27 Stanley Electric Co Ltd 光偏向器
JP2014089252A (ja) * 2012-10-29 2014-05-15 Denso Corp 光走査装置
JP2014115612A (ja) * 2012-11-15 2014-06-26 Ricoh Co Ltd 光偏向装置及び画像形成装置
JP2014228783A (ja) * 2013-05-24 2014-12-08 株式会社リコー 光走査装置、画像形成装置、画像投影装置
JP2015040928A (ja) * 2013-08-21 2015-03-02 株式会社リコー 光偏向装置、画像形成装置、車両及び光偏向装置の制御方法
JP2015158614A (ja) * 2014-02-25 2015-09-03 株式会社リコー 傾斜動作装置並びにこれを用いた光走査装置及び画像表示装置
JP2015184590A (ja) * 2014-03-25 2015-10-22 スタンレー電気株式会社 光偏向器

Also Published As

Publication number Publication date
US7619798B2 (en) 2009-11-17
US20070146858A1 (en) 2007-06-28

Similar Documents

Publication Publication Date Title
JP2007199682A (ja) 光偏向器および光ビーム走査装置
US8395834B2 (en) Deflecting mirror for deflecting and scanning light beam
JP5170983B2 (ja) 光偏向器、及びそれを用いた光学機器
KR100901237B1 (ko) 광 편향기 및 이를 이용하는 광학 기구
JP4574396B2 (ja) 光偏向器
US7474165B2 (en) Oscillating device, optical deflector and optical instrument using the same
JP5458837B2 (ja) 光走査装置
JP5500016B2 (ja) 光偏向器、光走査装置、画像形成装置及び画像投影装置
JP6614276B2 (ja) 圧電光偏向器、光走査装置、画像形成装置及び画像投影装置
JP4023442B2 (ja) 光スキャナおよびそれを備えた画像形成装置
JP4172627B2 (ja) 振動ミラー、光書込装置及び画像形成装置
JP2006195290A (ja) 画像読取装置及び画像形成装置
US20100302612A1 (en) Oscillating structure and oscillator device using the same
JP2009031642A (ja) 揺動体装置、光偏向器およびそれを用いた画像形成装置
JP2008009073A (ja) 光走査装置及び画像形成装置
JP5716992B2 (ja) 光偏向装置、光走査装置、画像形成装置及び画像投影装置
JP4973064B2 (ja) アクチュエータ、投光装置、光学デバイス、光スキャナ、および画像形成装置
JP5879175B2 (ja) 画像形成装置
JP2008225041A (ja) 光スキャナ駆動制御方法及び駆動制御装置
JP5806964B2 (ja) 光走査装置及び画像形成装置
JP2005249914A (ja) レーザ光走査装置
US20080192324A1 (en) Optical scanning device and image forming apparatus using the same
JP5810036B2 (ja) 露光装置及び画像形成装置ならびに露光装置の制御方法
JP2011137871A (ja) 光学走査装置及び画像形成装置
JP2006064901A (ja) 光偏向素子と光偏向器と光走査装置及び画像形成装置