JP2007171895A - レジスト下層膜材料及びパターン形成方法 - Google Patents

レジスト下層膜材料及びパターン形成方法 Download PDF

Info

Publication number
JP2007171895A
JP2007171895A JP2006120120A JP2006120120A JP2007171895A JP 2007171895 A JP2007171895 A JP 2007171895A JP 2006120120 A JP2006120120 A JP 2006120120A JP 2006120120 A JP2006120120 A JP 2006120120A JP 2007171895 A JP2007171895 A JP 2007171895A
Authority
JP
Japan
Prior art keywords
group
layer
resist
film
photoresist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006120120A
Other languages
English (en)
Other versions
JP4666166B2 (ja
Inventor
Jun Hatakeyama
畠山  潤
Toshihiko Fujii
俊彦 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2006120120A priority Critical patent/JP4666166B2/ja
Priority to US11/604,337 priority patent/US7510820B2/en
Priority to KR1020060117681A priority patent/KR101070548B1/ko
Priority to TW095144036A priority patent/TWI381250B/zh
Publication of JP2007171895A publication Critical patent/JP2007171895A/ja
Application granted granted Critical
Publication of JP4666166B2 publication Critical patent/JP4666166B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Paints Or Removers (AREA)

Abstract

【課題】多層レジストプロセス用、特には2層レジストプロセス用又は3層レジストプロセス用のレジスト下層膜材料であって、特に短波長の露光に対して、優れた反射防止膜として機能し、即ち透明性が高く、最適なn値、k値を有し、しかも基板加工におけるエッチング耐性に優れたレジスト下層膜材料を提供する。
【解決手段】リソグラフィーで用いられる多層レジスト膜のレジスト下層膜材料であって、少なくとも、ヒドロキシ基を有するビニルナフタレンとヒドロキシ基を有さない特定のオレフィン類の繰り返し単位とを共重合してなる重合体を含むものであることを特徴とするレジスト下層膜材料。
【選択図】なし

Description

本発明は、半導体素子などの製造工程における微細加工に用いられる反射防止膜材料として有効なレジスト下層膜材料に関し、特に、遠紫外線、KrFエキシマレーザー光(248nm)、ArFエキシマレーザー光(193nm)、F2レーザー光(157nm)、Kr2レーザー光(146nm)、Ar2レーザー光(126nm)、軟X線(EUV、13.5nm)、電子線(EB)等での露光に好適な多層レジスト膜のレジスト下層膜材料に関する。更に、本発明は、これを用いてリソグラフィーにより基板にパターンを形成する方法に関する。
近年、LSIの高集積化と高速度化に伴い、パターンルールの微細化が求められている中、現在汎用技術として用いられている光露光を用いたリソグラフィーにおいては、光源の波長に由来する本質的な解像度の限界に近づきつつある。
レジストパターン形成の際に使用するリソグラフィー用の光源として、水銀灯のg線(436nm)もしくはi線(365nm)を光源とする光露光が広く用いられており、更なる微細化のための手段として、露光光を短波長化する方法が有効とされてきた。このため、64MビットDRAM加工方法の量産プロセスには、露光光源としてi線(365nm)に代わって短波長のKrFエキシマレーザー(248nm)が利用された。しかし、更に微細な加工技術(加工寸法が0.13μm以下)を必要とする集積度1G以上のDRAMの製造には、より短波長の光源が必要とされ、特にArFエキシマレーザー(193nm)を用いたリソグラフィーが検討されてきている。
一方、従来、段差基板上に高アスペクト比のパターンを形成するには2層レジスト法が優れていることが知られており、更に、2層レジスト膜を一般的なアルカリ現像液で現像するためには、ヒドロキシ基やカルボキシル基等の親水基を有する高分子シリコーン化合物が必要である。
シリコーン系化学増幅ポジ型レジスト材料としては、安定なアルカリ可溶性シリコーンポリマーであるポリヒドロキシベンジルシルセスキオキサンのフェノール性水酸基の一部をt−Boc基で保護したものをベース樹脂として使用し、これと酸発生剤とを組み合わせたKrFエキシマレーザー用シリコーン系化学増幅ポジ型レジスト材料が提案された(特許文献1:特開平6−118651号公報、非特許文献1:SPIE vol.1925(1993)p377等参照)。また、ArFエキシマレーザー用としては、シクロヘキシルカルボン酸を酸不安定基で置換したタイプのシルセスキオキサンをベースにしたポジ型レジスト材料が提案されている(特許文献2,3:特開平10−324748号公報、特開平11−302382号公報、非特許文献2:SPIE vol.3333(1998)p62参照)。更に、F2レーザー用としては、ヘキサフルオロイソプロパノールを溶解性基として持つシルセスキオキサンをベースにしたポジ型レジスト材料が提案されている(特許文献4:特開2002−55456号公報)。上記ポリマーは、トリアルコキシシシラン、又はトリハロゲン化シランの縮重合によるラダー骨格を含むポリシルセスキオキサンを主鎖に含むものである。
珪素が側鎖にペンダントされたレジスト用ベースポリマーとしては、珪素含有(メタ)アクリルエステル系ポリマーが提案されている(特許文献5:特開平9−110938号公報、非特許文献3:J.Photopolymer Sci. and Technol.Vol.9 No.3(1996)p435−446参照)。
2層レジスト法の下層膜としては、酸素ガスによるエッチングが可能な炭化水素化合物であり、更にその下の基板をエッチングする場合におけるマスクになるため、高いエッチング耐性を有することが必要である。酸素ガスエッチングにおいては、珪素原子を含まない炭化水素のみで構成される必要がある。また、上層の珪素含有レジスト膜の線幅制御性を向上させ、定在波によるパターン側壁の凹凸とパターンの崩壊を低減させるためには、反射防止膜としての機能も有し、具体的には下層膜からレジスト膜内への反射率を1%以下に抑える必要がある。
ここで、最大500nmの膜厚までの反射率を計算した結果を図1,2に示す。露光波長は193nm、上層レジスト膜のn値を1.74、k値を0.02と仮定し、図1では下層膜のk値を0.3に固定し、縦軸にn値を1.0〜2.0、横軸に膜厚0〜500nmの範囲で変動させたときの基板反射率を示す。膜厚が300nm以上の2層レジスト用下層膜を想定した場合、上層レジスト膜と同程度かあるいはそれよりも少し屈折率が高い1.6〜1.9の範囲で反射率を1%以下にできる最適値が存在する。
図2では、下層膜のn値を1.5に固定し、k値を0.1〜0.8の範囲で変動させたときの反射率を示す。k値が0.24〜0.15の範囲で反射率を1%以下にすることが可能である。一方、40nm程度の薄膜で用いられる単層レジスト用の反射防止膜の最適k値は0.4〜0.5であり、300nm以上で用いられる2層レジスト用下層の最適k値とは異なる。2層レジスト用下層では、より低いk値、即ちより高透明な下層膜が必要であることが示されている。
ここで、193nm用の下層膜形成材料として、SPIE vol.4345(2001)p50(非特許文献4)に紹介されているようにポリヒドロキシスチレンとアクリル酸エステルの共重合体が検討されている。ポリヒドロキシスチレンは193nmに非常に強い吸収を持ち、そのもの単独ではk値が0.6前後と高い値である。そこで、k値が殆ど0であるアクリル酸エステルと共重合させることによって、k値を0.25前後に調整しているのである。
しかしながら、ポリヒドロキシスチレンに対して、アクリル酸エステルの基板エッチングにおけるエッチング耐性は弱く、しかもk値を下げるためにかなりの割合のアクリル酸エステルを共重合せざるを得ず、結果的に基板エッチングの耐性はかなり低下する。エッチングの耐性は、エッチング速度だけでなく、エッチング後の表面ラフネスの発生にも現れてくる。アクリル酸エステルの共重合によってエッチング後の表面ラフネスの増大が深刻なほど顕著になっている。
ベンゼン環よりも193nmにおける透明性が高く、エッチング耐性が高いものの一つにナフタレン環がある。特開2002−14474号公報(特許文献8)にナフタレン環、アントラセン環を有する下層膜が提案されている。しかしながら、ナフトール共縮合ノボラック樹脂、ポリビニルナフタレン樹脂のk値は0.3〜0.4の間であり、目標の0.1〜0.3の透明性には未達であり、更に透明性を上げなくてはならない。また、ナフトール共縮合ノボラック樹脂、ポリビニルナフタレン樹脂の193nmにおけるn値は低く、本発明者らの測定した結果では、ナフトール共縮合ノボラック樹脂で1.4、ポリビニルナフタレン樹脂に至っては1.2である。特開2001−40293号(特許文献9)、特開2002−214777号公報(特許文献10)で示されるアセナフチレン重合体においても、波長248nmに比べて193nmにおけるn値が低く、k値は高く、共に目標値には達していない。n値が高く、k値が低く透明でかつエッチング耐性が高い下層膜が求められている。
一方、珪素を含まない単層レジストを上層、その下に珪素を含有する中間層、更にその下に有機膜を積層する3層プロセスが提案されている(非特許文献4:J.Vac.Sci.Technol.,16(6),Nov./Dec.1979参照)。
一般的には珪素含有レジストより単層レジストの方が解像性に優れ、3層プロセスでは高解像な単層レジストを露光イメージング層として用いることができる。
中間層としては、スピンオングラス(SOG)膜が用いられ、多くのSOG膜が提案されている。
ここで3層プロセスにおける基板反射を抑えるための最適な下層膜の光学定数は2層プロセスにおけるそれとは異なっている。
基板反射をできるだけ抑え、具体的には1%以下にまで低減させる目的は2層プロセスも3層プロセスも変わらないのであるが、2層プロセスは下層膜だけに反射防止効果を持たせるのに対して、3層プロセスは中間層と下層のどちらか一方あるいは両方に反射防止効果を持たせることができる。
反射防止効果を付与させた珪素含有層材料が、米国特許第6506497号明細書(特許文献6)、米国特許第6420088号明細書(特許文献7)に提案されている。
一般的に単層の反射防止膜よりも多層反射防止膜の方が反射防止効果が高く、光学材料の反射防止膜として広く工業的に用いられている。
中間層と下層の両方に反射防止効果を付与させることによって高い反射防止効果を得ることができる。
3層プロセスにおいて珪素含有中間層に反射防止膜としての機能を持たせることができれば、下層膜に反射防止膜としての最高の効果は特に必要がない。
3層プロセスの場合の下層膜としては、反射防止膜としての効果よりも基板加工における高いエッチング耐性が要求される。
そのために、エッチング耐性が高く、芳香族基を多く含有するノボラック樹脂を3層プロセス用下層膜として用いることが必要である。
ここで、図3に中間層のk値を変化させたときの基板反射率を示す。
中間層のk値として0.2以下の低い値と、適切な膜厚設定によって、1%以下の十分な反射防止効果を得ることができる。
通常反射防止膜として、膜厚100nm以下で反射を1%以下に抑えるためにはk値が0.2以上が必要であるが(図2参照)、下層膜である程度の反射を抑えることができる3層構造の中間層としては0.2より低い値のk値が最適値となる。
次に下層膜のk値が0.2の場合と0.6の場合の、中間層と下層の膜厚を変化させたときの反射率変化を図4と5に示す。
k値が0.2の下層は、2層プロセスに最適化された下層膜を想定しており、k値が0.6の下層は、193nmにおけるノボラックやポリヒドロキシスチレンのk値に近い値である。
下層膜の膜厚は基板のトポグラフィーによって変動するが、中間層の膜厚はほとんど変動せず、設定した膜厚で塗布できると考えられる。
ここで、下層膜のk値が高い方(0.6の場合)が、より薄膜で反射を1%以下に抑えることができる。
下層膜のk値が0.2の場合、250nm膜厚では反射を1%にするために中間層の膜厚を厚くしなければならない。
中間層の膜厚を上げると、中間層を加工するときのドライエッチング時に最上層のレジストに対する負荷が大きく、好ましいことではない。
下層膜を薄膜で用いるためには、高いk値だけでなく、より強いエッチング耐性が必要である。
特開平6−118651号公報 特開平10−324748号公報 特開平11−302382号公報 特開2002−55456号公報 特開平9−110938号公報 米国特許第6506497号明細書 米国特許第6420088号明細書 特開2002−14474号公報 特開2001−40293号公報 特開2002−214777号公報 SPIE vol.1925(1993)p377 SPIE vol.3333(1998)p62 J.Photopolymer Sci. and Technol.Vol.9 No.3(1996)p435−446 J.Vac.Sci.Technol.,16(6),Nov./Dec.1979
本発明はこのような問題点に鑑みてなされたもので、例えばレジスト上層膜が珪素を含有するものといった多層レジストプロセス用、特には2層レジストプロセス用のレジスト下層膜材料であって、特に短波長の露光に対して優れた反射防止膜として機能し、即ちポリヒドロキシスチレン、クレゾールノボラック、ナフトールノボラックなどよりも透明性が高く、最適なn値、k値を有し、しかも基板加工におけるエッチング耐性に優れたレジスト下層膜材料、及びこれを用いてリソグラフィーにより基板にパターンを形成する方法を提供することを目的とする。
本発明は、上記課題を解決するためになされたもので、リソグラフィーで用いられる多層レジスト膜のレジスト下層膜材料であって、少なくとも、ヒドロキシ基を有するビニルナフタレンとヒドロキシ基を含まないオレフィンとの共重合体を含むものであることを特徴とするレジスト下層膜材料を提供する(請求項1)。
ここで、レジスト下層膜材料として、ヒドロキシ基を含まないオレフィンは、インデン類、アセナフチレン類、ノルトリシクレン類、炭素数7〜30のビニルエーテル、(メタ)アクリレート、カルボン酸ビニル、(メタ)アクリルアミド、ビニル基を持つ炭素数13〜30の縮合炭化水素から選ばれるものであることが好ましい(請求項2)。
そして、この場合、前記共重合体が、下記一般式(1)で示される繰り返し単位を有するものであるのが好ましい(請求項3)。

(上記一般式(1)中、R1、R6は水素原子又はメチル基である。R2、R3、R4は水素原子、炭素数1〜4のアルキル基、アルコキシ基、ヒドロキシ基、アセトキシキ基又はアルコキシカルボニル基、又は炭素数6〜10のアリール基であり、R5は炭素数13〜30の縮合多環式炭化水素基、−O−R7、−C(=O)−O−R7、−O−C(=O)−R7、又は−C(=O)−NR8−R7であり、mは1又は2、nは0〜4の整数、pは0〜6の整数である。R7は炭素数7〜30の有機基、R8は水素原子、又は炭素数1〜6の炭化水素基である。a、b、c、d、eは、それぞれ0<a<1.0、0≦b≦0.8、0≦c≦0.8、0≦d≦0.8、0≦e≦0.8、0<b+c+d+e<1.0の範囲である。)
このように、ヒドロキシ基を有するビニルナフタレンの繰り返し単位を共重合してなる重合体、特には上記一般式(1)で示される繰り返し単位を有する重合体を含むレジスト下層膜材料は、特に短波長の露光に対して、優れた反射防止膜として機能し、即ち透明性が高く、最適なn値、k値を有し、しかも基板加工時におけるエッチング耐性に優れたものである。
そして、本発明は、前記レジスト下層膜材料が、更に有機溶剤、酸発生剤、架橋剤のうちいずれか1つ以上のものを含有するものであることを特徴とする請求項1、2又は3記載のレジスト下層膜材料を提供する(請求項4)。
このように、本発明のレジスト下層膜材料が、更に有機溶剤、架橋剤、酸発生剤のうちいずれか1つ以上のものを含有することで、該材料の基板等への塗布性を向上させたり、基板等への塗布後にベーク等により、レジスト下層膜内での架橋反応を促進することができる。従って、このようなレジスト下層膜は、膜厚均一性がよく、レジスト上層膜とのインターミキシングのおそれが少なく、レジスト上層膜への低分子成分の拡散が少ないものとなる。
このように、本発明のレジスト下層膜材料を用いてリソグラフィーによりパターンを形成すれば、高精度で基板にパターンを形成することができる。
この場合、本発明は、更に、上記のフォトレジスト下層膜形成材料を被加工基板上に適用し、得られた下層膜の上にフォトレジスト組成物の層を適用し、このフォトレジスト層の所用領域に放射線を照射し、現像液で現像してフォトレジストパターンを形成し、次にドライエッチング装置でこのフォトレジストパターン層をマスクにしてフォトレジスト下層膜層及び被加工基板を加工することを特徴とするパターン形成方法を提供する(請求項5)。
このように、本発明のレジスト下層膜材料を用いて形成したレジスト下層膜は、レジスト上層膜として、珪素原子を含有したものを用い、レジスト上層膜をマスクにした下層膜のエッチングを、酸素ガス又は水素ガスを主体とするドライエッチングで行うことでパターンを形成するのに特に適したものとなっている。従って、この多層レジスト膜をマスクにして基板をエッチングし、基板にパターンを形成すれば、高精度のパターンを形成することができる(請求項6)。
また、本発明のレジスト下層膜材料を用いて形成したレジスト下層膜を被加工基板上に適用し、得られた下層膜の上に珪素原子を含有する中間層を適用し、該中間層の上にフォトレジスト組成物の層を適用し、このフォトレジスト層の所用領域に放射線を照射し、現像液で現像してフォトレジストパターンを形成し、ドライエッチング装置でこのフォトレジストパターン層をマスクにして中間膜層を加工し、フォトレジストパターン層を除去後、上記加工した中間膜層をマスクにして下層膜層、次いで被加工基板を加工することができる(請求項7)。
この場合、フォトレジスト組成物が珪素原子を含有しないポリマーを含み、中間層膜をマスクにして下層膜を加工するドライエッチングを、酸素ガス又は水素ガスを主体とするエッチングガスを用いて行うことが好ましい(請求項8)。
本発明によれば、例えばレジスト上層膜が珪素を含有するものといった多層レジストプロセス用、特には2層レジストプロセス用のレジスト下層膜材料であって、特に短波長の露光に対して、優れた反射防止膜として機能し、即ちポリヒドロキシスチレン、クレゾールノボラック、ナフトールノボラックなどよりも透明性が高く、最適なn値(屈折率)、k値(消光係数)を有し、しかも基板加工におけるエッチング耐性に優れたレジスト下層膜材料を得ることができる。
以下、本発明を実施するための最良の形態について説明するが、本発明はこれらに限定されるものではない。
本発明者らは、上記目的を達成するために鋭意検討を行った結果、ヒドロキシ基を有するビニルナフタレンの繰り返し単位からなる重合体が、例えば波長193nmといった短波長の露光において、最適なn値、k値を有し、かつエッチング耐性にも優れ、珪素含有2層レジストプロセス、あるいは珪素含有中間層による3層レジストプロセスといった多層レジストプロセス用レジスト下層膜として有望な材料であることを見出し、本発明をなすに至った。
このような本発明のレジスト下層膜材料から形成したレジスト下層膜は、珪素含有2層レジストプロセス、珪素含有中間層を有する3層レジストプロセスといった多層レジストプロセスに適用可能な新規なレジスト下層膜である。特に、波長193nmといった短波長での露光において膜厚150nm以上、特に200〜600nmとした時に反射防止効果に優れ、かつ基板エッチングの条件におけるエッチング耐性に優れるものである。
また、レジスト下層膜材料に、更に有機溶剤、架橋剤、酸発生剤のうちいずれか1つ以上のものを含有させることで、該材料の基板等への塗布性を向上させたり、基板等への塗布後にベーク等により、レジスト下層膜内での架橋反応を促進することができる。従って、このようなレジスト下層膜は、膜厚均一性がよく、レジスト上層膜とのインターミキシングのおそれが少なく、レジスト上層膜への低分子成分の拡散が少ないものとなる。
即ち、本発明のレジスト下層膜材料は、リソグラフィーで用いられる多層レジスト膜のレジスト下層膜材料であって、少なくとも、ヒドロキシ基を有するビニルナフタレンとヒドロキシ基を含まないオレフィンとの共重合からなる共重合体を含むものであることを特徴とする。このヒドロキシ基を含まないオレフィンとしては、インデン類、アセナフチレン類、ノルトリシクレン類、炭素数7〜30のビニルエーテル、(メタ)アクリレート、炭素数7〜30のカルボン酸ビニル、(メタ)アクリルアミド、ビニル基を持つ炭素数13〜30の縮合炭化水素から選ぶことができる。
そして、この場合、前記共重合体が、下記一般式(1)で示される繰り返し単位を有するものであるのが好ましい。

(上記一般式(1)中、R1、R6は水素原子又はメチル基である。R2、R3、R4は水素原子、炭素数1〜4のアルキル基、アルコキシ基、ヒドロキシ基、アセトキシキ基又はアルコキシカルボニル基、又は炭素数6〜10のアリール基であり、R5は炭素数13〜30の縮合多環式炭化水素基、−O−R7、−C(=O)−O−R7、−O−C(=O)−R7、又は−C(=O)−NR8−R7であり、mは1又は2、nは0〜4の整数、pは0〜6の整数である。R7は炭素数7〜30の有機基、R8は水素原子、又は炭素数1〜6の炭化水素基である。a、b、c、d、eは、それぞれ0<a<1.0、0≦b≦0.8、0≦c≦0.8、0≦d≦0.8、0≦e≦0.8、0<b+c+d+e<1.0の範囲である。)
この場合、炭素数13〜30の縮合多環式炭化水素基としては、アントラセン、ピレン、フルオレン、フェナントレン、クリセン、ナフタセン、ペンタセン基等が挙げられる。
ここで、本発明のレジスト下層膜材料に含まれる共重合体中の繰り返し単位で、ヒドロキシ基を有するビニルナフタレンに由来する繰り返し単位aは、具体的には下記に例示することができる。
一般式(1)中の繰り返し単位bはインデン類、ベンゾフラン類、ベンゾチオフェン類から選ばれるものに由来し、繰り返し単位cはアセナフチレン類に由来し、繰り返し単位dはノルトリシクレン類に由来し、繰り返し単位eはビニル基を持つ炭素数13〜30の縮合炭化水素に由来する。
ビニル基を持つ炭素数13〜30の縮合炭化水素は、具体的にはビニルアントラセン、ビニルピレン、ビニルフルオレン、ビニルフェナントレン、ビニルクリセン、ビニルナフタセン、ビニルペンタセン、ビニルアセナフテン、ビニルフルオレンが挙げられる。
一般式(1)中のR5が−O−R7である場合は、R7を有するビニルエーテル類を共重合して得られる繰り返し単位であり、R7は炭素数7〜30の有機基である。なお、R7
を含んでいてもよく、R7
を含む場合、ビニルエーテルは2個のビニル基を持つビニルエーテル(ジビニルエーテル)であり、両ビニル基がそれぞれ他のモノマーのビニル基と共重合して架橋を形成する。R5が−O−R7であるビニルエーテルは下記に例示することができる。
一般式(1)中のR5が−C(=O)−O−R7である場合は、R7を有する(メタ)アクリル類を共重合して得られる繰り返し単位であり、R7は炭素数7〜30の有機基であり、具体的には下記に例示することができる。なお、R5が−C(=O)−NR8−R7である場合は、下記例示の化合物の−C(=O)−O−の部分を−C(=O)−NR8−に置き換えた化合物を例示することができる。また、R8は水素原子又は炭素数1〜6の1価炭化水素基(アルキル基、フェニル基等)である。下記式中、R6は水素原子又はメチル基である。
一般式(1)中のR5が−O−C(=O)−R7である場合は、R7を有するビニルエステル類を共重合して得られる繰り返し単位であり、R7は炭素数7〜30の有機基である。このビニルエステルは下記に例示することができる。下記式中、R6は水素原子又はメチル基である。
ヒドロキシビニルナフタレンは、b、c、d、eに示されるヒドロキシ基を有さないオレフィンとの共重合だけでなく、(メタ)アクリレート類、ビニルエーテル類、スチレン類、ビニルナフタレン、無水マレイン酸、無水イタコン酸、マレイミド類、ビニルピロリドン、ビニルエーテル類、ジビニルエーテル類、ジ(メタ)アクリレート類、ジビニルベンゼン類などの他のオレフィン化合物と共重合することもできる。
更に、下記に示される他のヒドロキシ基含有の繰り返し単位と共重合、含有することもできる。
ここで、a〜eは上記の通りであるが、より好ましくは、0.1≦a≦0.9、0≦b≦0.7、0≦c≦0.7、0≦d≦0.7、0≦e≦0.7、0.1≦b+c+d+e≦0.9、更に好ましくは0.15≦a≦0.8、0≦b≦0.6、0≦c≦0.6、0≦d≦0.6、0≦e≦0.6、0.2≦b+c+d+e≦0.8である。
また、上記他のオレフィン化合物に由来する繰り返し単位fは、0≦f≦0.8、特に0≦f≦0.7とすることができ、上記他のヒドロキシ基含有の繰り返し単位gは、0≦g≦0.8、特に0≦g≦0.7とすることができる。
なお、a+b+c+d+e+f+g=1であることが好ましいが、a+b+c+d+ef+g=1とは、繰り返し単位a、b、c、d、e、f、gを含む高分子化合物(共重合体)において、繰り返し単位a、b、c、d、e、f、gの合計量が全繰り返し単位の合計量に対して100モル%であることを示す。
上記一般式(1)で示される繰り返し単位aを得るためのモノマーは、ヒドロキシビニルナフタレンであり、ヒドロキシ基の水素原子が重合時にはアセチル基やホルミル基、ピバロイル基、アセタール基、炭素数が4〜16の3級アルキル基、トリメチルシリル基などで置換されていてもよい。
これら本発明のレジスト下層膜材料に含まれる共重合体を合成するには、1つの方法としてはヒドロキシビニルナフタレンとヒドロキシ基を有さないオレフィンモノマーを有機溶剤中、ラジカル開始剤あるいはカチオン重合開始剤を加え加熱重合を行う。ヒドロキシ基を含むモノマーのヒドロキシ基をアセチル基で置換させておき、得られた高分子化合物を有機溶剤中アルカリ加水分解を行い、アセチル基を脱保護することもできる。重合時に使用する有機溶剤としては、トルエン、ベンゼン、テトラヒドロフラン、ジエチルエーテル、ジオキサン等が例示できる。ラジカル重合開始剤としては、2,2’−アゾビスイソブチロニトリル(AIBN)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル2,2−アゾビス(2−メチルプロピオネート)、ベンゾイルパーオキシド、ラウロイルパーオキシド等が例示でき、好ましくは50〜80℃に加熱して重合できる。カチオン重合開始剤としては、硫酸、燐酸、塩酸、硝酸、次亜塩素酸、トリクロロ酢酸、トリフルオロ酢酸、メタンスルホン酸、トリフルオロメタンスルホン酸、カンファースルホン酸、トシル酸などの酸、BF3、AlCl3、TiCl4、SnCl4などのフリーデルクラフツ触媒のほか、I2、(C653CClのようにカチオンを生成しやすい物質が使用される。
反応時間としては2〜100時間、好ましくは5〜20時間である。アルカリ加水分解時の塩基としては、アンモニア水、トリエチルアミン等が使用できる。また反応温度としては−20〜100℃、好ましくは0〜60℃であり、反応時間としては0.2〜100時間、好ましくは0.5〜20時間である。
本発明に係る共重合体のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量は、1,500〜200,000の範囲が好ましく、より好ましくは2,000〜100,000の範囲である。分子量分布は特に制限がなく、分画によって低分子体及び高分子体を除去し、分散度を小さくすることも可能であり、分子量、分散度が異なる2つ以上の一般式(1)の重合体の混合、あるいは組成比の異なる2種以上の一般式(1)の重合体を混合してもかまわない。
本発明のレジスト下層膜材料に含まれる共重合体、特には一般式(1)で示される繰り返し単位を有する共重合体の波長193nmにおける透明性を更に向上させるために、水素添加を行うことができる。好ましい水素添加の割合は、芳香族基の80モル%以下、より好ましくは60モル%以下である。この場合、その下限は0モル%でもよいが、水素添加の効果を与える点から5モル%以上、特に10モル%以上であることが好ましい。
本発明のレジスト下層膜材料用のベース樹脂は、ヒドロキシビニルナフタレン類の繰り返し単位と、ヒドロキシ基を含まないオレフィンの繰り返し単位とを共重合してなる重合体を含むことを特徴とするが、前述の反射防止膜材料として挙げられている従来のポリマーとブレンドすることもできる。ポリアセナフチレンのガラス転移点は150℃以上であり、このもの単独ではビアホールなどの深いホールの埋め込み特性が劣る場合がある。ホールをボイドを発生させずに埋め込むためには、ガラス転移点の低いポリマーを用い、架橋温度よりも低い温度で熱フローさせながらホールの底にまで樹脂を埋め込む手法がとられる(例えば、特開2000−294504号公報参照)。ガラス転移点の低いポリマー、特にガラス転移点が180℃以下、とりわけ100〜170℃のポリマー、例えばアクリル誘導体、ビニルアルコール、ビニルエーテル類、アリルエーテル類、スチレン誘導体、アリルベンゼン誘導体、エチレン、プロピレン、ブタジエンなどのオレフィン類から選ばれる1種あるいは2種以上の共重合ポリマー、メタセシス開環重合などによるポリマー、ノボラックレジン、ジシクロペンタジエンレジン、フェノール類の低核体、カリックスアレーン類、フラーレン類とブレンドすることによってガラス転移点を低下させ、ビアホールの埋め込み特性を向上させることができる。
レジスト下層膜に要求される性能の一つとして、レジスト上層膜とのインターミキシングがないこと、レジスト上層膜ヘの低分子成分の拡散がないことが挙げられる(例えば、「Proc. SPIE vol.2195、p225−229(1994)」参照)。これらを防止するために、一般的にレジスト下層膜をスピンコート法などで基板に形成後、ベークで熱架橋するという方法がとられている。そのため、レジスト下層膜材料の成分として架橋剤を添加する方法、ポリマーに架橋性の置換基を導入する方法がある。ポリマーに架橋性の置換基を導入する方法としては、一般式(1)で示されるヒドロキシビニルナフタレンのヒドロキシ基をグリシジルエーテル化する方法が挙げられる。
本発明で使用可能な架橋剤の具体例を列挙すると、メチロール基、アルコキシメチル基、アシロキシメチル基から選ばれる少なくとも一つの基で置換されたメラミン化合物、グアナミン化合物、グリコールウリル化合物又はウレア化合物、エポキシ化合物、イソシアネート化合物、アジド化合物、アルケニルエーテル基などの2重結合を含む化合物等を挙げることができる。これらは添加剤として用いてもよいが、ポリマー側鎖にペンダント基として導入してもよい。また、ヒドロキシ基を含む化合物も架橋剤として用いることができる。
前記架橋剤の具体例のうち、更にエポキシ化合物を例示すると、トリス(2,3−エポキシプロピル)イソシアヌレート、トリメチロールメタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリエチロールエタントリグリシジルエーテルなどが例示される。メラミン化合物を具体的に例示すると、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1〜6個のメチロール基がメトキシメチル化した化合物又はその混合物、ヘキサメトキシエチルメラミン、ヘキサアシロキシメチルメラミン、ヘキサメチロールメラミンのメチロール基の1〜6個がアシロキシメチル化した化合物又はその混合物が挙げられる。グアナミン化合物としては、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメチロールグアナミンの1〜4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルグアナミン、テトラアシロキシグアナミン、テトラメチロールグアナミンの1〜4個のメチロール基がアシロキシメチル化した化合物又はその混合物が挙げられる。グリコールウリル化合物としては、テトラメチロールグリコールウリル、テトラメトキシグリコールウリル、テトラメトキシメチルグリコールウリル、テトラメチロールグリコールウリルのメチロール基の1〜4個がメトキシメチル化した化合物、又はその混合物、テトラメチロールグリコールウリルのメチロール基の1〜4個がアシロキシメチル化した化合物又はその混合物が挙げられる。ウレア化合物としてはテトラメチロールウレア、テトラメトキシメチルウレア、テトラメチロールウレアの1〜4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルウレアなどが挙げられる。
イソシアネート化合物としては、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート等が挙げられ、アジド化合物としては、1,1’−ビフェニル−4,4’−ビスアジド、4,4’−メチリデンビスアジド、4,4’−オキシビスアジドが挙げられる。
アルケニルエーテル基を含む化合物としては、エチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,2−プロパンジオールジビニルエーテル、1,4−ブタンジオールジビニルエーテル、テトラメチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ヘキサンジオールジビニルエーテル、1,4−シクロヘキサンジオールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ソルビトールテトラビニルエーテル、ソルビトールペンタビニルエーテル、トリメチロールプロパントリビニルエーテルなどが挙げられる。
本発明のレジスト下層膜材料に含まれる重合体、例えば一般式(1)で示される繰り返し単位を有する重合体のヒドロキシ基がグリシジル基で置換されている場合は、ヒドロキシ基を含む化合物の添加が有効である。特に分子内に2個以上のヒドロキシ基を含む化合物が好ましい。ヒドロキシ基を含む化合物としては、例えば、ナフトールノボラック、m−及びp−クレゾールノボラック、ナフトール−ジシクロペンタジエンノボラック、m−及びp−クレゾール−ジシクロペンタジエンノボラック、4,8−ビス(ヒドロキシメチル)トリシクロ[5.2.1.02,6]−デカン、ペンタエリトリトール、1,2,6−ヘキサントリオール、4,4’,4’’−メチリデントリスシクロヘキサノール、4,4’−[1−[4−[1−(4−ヒドロキシシクロヘキシル)−1−メチルエチル]フェニル]エチリデン]ビスシクロヘキサノール、[1,1’−ビシクロヘキシル]−4,4’−ジオール、メチレンビスシクロヘキサノール、デカヒドロナフタレン−2,6−ジオール、[1,1’−ビシクロヘキシル]−3,3’,4,4’−テトラヒドロキシなどのアルコール基含有化合物、ビスフェノール、メチレンビスフェノール、2,2’−メチレンビス[4−メチルフェノール]、4,4’−メチリデン−ビス[2,6−ジメチルフェノール]、4,4’−(1−メチル−エチリデン)ビス[2−メチルフェノール]、4,4’−シクロヘキシリデンビスフェノール、4,4’−(1,3−ジメチルブチリデン)ビスフェノール、4,4’−(1−メチルエチリデン)ビス[2,6−ジメチルフェノール]、4,4’−オキシビスフェノール、4,4’−メチレンビスフェノール、ビス(4−ヒドロキシフェニル)メタノン、4,4’−メチレンビス[2−メチルフェノール]、4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビスフェノール、4,4’−(1,2−エタンジイル)ビスフェノール、4,4’−(ジエチルシリレン)ビスフェノール、4,4’−[2,2,2−トリフルオロ−1−(トリフルオロメチル)エチリデン]ビスフェノール、4,4’,4’’−メチリデントリスフェノール、4,4’−[1−(4−ヒドロキシフェニル)−1−メチルエチル]フェニル]エチリデン]ビスフェノール、2,6−ビス[(2−ヒドロキシ−5−メチルフェニル)メチル]−4−メチルフェノール、4,4’,4’’−エチリジントリス[2−メチルフェノール]、4,4’,4’’−エチリジントリスフェノール、4,6−ビス[(4−ヒドロキシフェニル)メチル]1,3−ベンゼンジオール、4,4’−[(3,4−ジヒドロキシフェニル)メチレン]ビス[2−メチルフェノール]、4,4’,4’’,4’’’−(1,2−エタンジイリデン)テトラキスフェノール、4,4’,4’’,4’’’−エタンジイリデン)テトラキス[2−メチルフェノール]、2,2’−メチレンビス[6−[(2−ヒドロキシ−5−メチルフェニル)メチル]−4−メチルフェノール]、4,4’,4’’,4’’’−(1,4−フェニレンジメチリジン)テトラキスフェノール、2,4,6−トリス(4−ヒドロキシフェニルメチル)1,3−ベンゼンジオール、2,4’,4’’−メチリデントリスフェノール、4,4’,4’’’−(3−メチル−1−プロパニル−3−イリデン)トリスフェノール、2,6−ビス[(4−ヒドロキシ−3−フロロフェニル)メチル]−4−フルオロフェノール、2,6−ビス[4−ヒドロキシ−3−フルオロフェニル]メチル]−4−フルオロフェノール、3,6−ビス[(3,5−ジメチル−4−ヒドロキシフェニル)メチル]1,2−ベンゼンジオール、4,6−ビス[(3,5−ジメチル−4−ヒドロキシフェニル)メチル]1,3−ベンゼンジオール、p−メチルカリックス[4]アレン、2,2’−メチレンビス[6−[(2,5/3,6−ジメチル−4/2−ヒドロキシフェニル)メチル]−4−メチルフェノール、2,2’−メチレンビス[6−[(3,5−ジメチル−4−ヒドロキシフェニル)メチル]−4−メチルフェノール、4,4’,4’’,4’’’−テトラキス[(1−メチルエチリデン)ビス(1,4−シクロヘキシリデン)]フェノール、6,6’−メチレンビス[4−(4−ヒドロキシフェニルメチル)−1,2,3−ベンゼントリオール、3,3’,5,5’−テトラキス[(5−メチル−2−ヒドロキシフェニル)メチル]−[(1,1’−ビフェニル)−4,4’−ジオール]などのフェノール低核体が挙げられる。
本発明のレジスト下層膜材料における架橋剤の配合量は、ベースポリマー(全樹脂分)100部(質量部、以下同じ)に対して5〜50部が好ましく、特に10〜40部が好ましい。5部未満であるとレジスト膜とミキシングを起こす場合があり、50部を超えると反射防止効果が低下したり、架橋後の膜にひび割れが入ることがある。
本発明のレジスト下層膜材料においては、熱などによる架橋反応を更に促進させるための酸発生剤を添加することができる。酸発生剤は熱分解によって酸を発生するものや、光照射によって酸を発生するものがあるが、いずれのものも添加することができる。
本発明のレジスト下層膜材料で使用される酸発生剤としては、
i.下記一般式(P1a−1)、(P1a−2)、(P1a−3)又は(P1b)のオニウム塩、
ii.下記一般式(P2)のジアゾメタン誘導体、
iii.下記一般式(P3)のグリオキシム誘導体、
iv.下記一般式(P4)のビススルホン誘導体、
v.下記一般式(P5)のN−ヒドロキシイミド化合物のスルホン酸エステル、
vi.β−ケトスルホン酸誘導体、
vii.ジスルホン誘導体、
viii.ニトロベンジルスルホネート誘導体、
ix.スルホン酸エステル誘導体
等が挙げられる。

(式中、R101a、R101b、R101cはそれぞれ炭素数1〜12の直鎖状、分岐状又は環状のアルキル基、アルケニル基、オキソアルキル基又はオキソアルケニル基、炭素数6〜20のアリール基、又は炭素数7〜12のアラルキル基又はアリールオキソアルキル基を示し、これらの基の水素原子の一部又は全部がアルコキシ基等によって置換されていてもよい。また、R101bとR101cとは環を形成してもよく、環を形成する場合には、R101b、R101cはそれぞれ炭素数1〜6のアルキレン基を示す。K-は非求核性対向イオンを表す。R101d、R101e、R101f、R101gは、R101a、R101b、R101cに水素原子を加えて示される。R101dとR101e、R101dとR101eとR101fとは環を形成してもよく、環を形成する場合には、R101dとR101e及びR101dとR101eとR101fは炭素数3〜10のアルキレン基、又は図中の窒素原子を環の中に有する複素芳香族環を示す。)
上記R101a、R101b、R101c、R101d、R101e、R101f、R101gは互いに同一であっても異なっていてもよく、具体的にはアルキル基として、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロプロピルメチル基、4−メチルシクロヘキシル基、シクロヘキシルメチル基、ノルボルニル基、アダマンチル基等が挙げられる。アルケニル基としては、ビニル基、アリル基、プロぺニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等が挙げられる。オキソアルキル基としては、2−オキソシクロペンチル基、2−オキソシクロヘキシル基等が挙げられ、2−オキソプロピル基、2−シクロペンチル−2−オキソエチル基、2−シクロヘキシル−2−オキソエチル基、2−(4−メチルシクロヘキシル)−2−オキソエチル基等を挙げることができる。オキソアルケニル基としては、2−オキソ−4−シクロヘキセニル基、2−オキソ−4−プロペニル基等が挙げられる。アリール基としては、フェニル基、ナフチル基等や、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基、メチルナフチル基、エチルナフチル基等のアルキルナフチル基、メトキシナフチル基、エトキシナフチル基等のアルコキシナフチル基、ジメチルナフチル基、ジエチルナフチル基等のジアルキルナフチル基、ジメトキシナフチル基、ジエトキシナフチル基等のジアルコキシナフチル基等が挙げられる。アラルキル基としてはベンジル基、フェニルエチル基、フェネチル基等が挙げられる。アリールオキソアルキル基としては、2−フェニル−2−オキソエチル基、2−(1−ナフチル)−2−オキソエチル基、2−(2−ナフチル)−2−オキソエチル基等の2−アリール−2−オキソエチル基等が挙げられる。K-の非求核性対向イオンとしては塩化物イオン、臭化物イオン等のハライドイオン、トリフレート、1,1,1−トリフルオロエタンスルホネート、ノナフルオロブタンスルホネート等のフルオロアルキルスルホネート、トシレート、ベンゼンスルホネート、4−フルオロベンゼンスルホネート、1,2,3,4,5−ペンタフルオロベンゼンスルホネート等のアリールスルホネート、メシレート、ブタンスルホネート等のアルキルスルホネート、ビス(トリフルオロメチルスルホニル)イミド、ビス(パーフルオロエチルスルホニル)イミド、ビス(パーフルオロブチルスルホニル)イミド等のイミド酸、トリス(トリフルオロメチルスルホニル)メチド、トリス(パーフルオロエチルスルホニル)メチド等のメチド酸、更には下記一般式(K−1)で示されるα位がフルオロ置換されたスルホネート、下記一般式(K−2)で示されるα,β位がフルオロ置換されたスルホネートが挙げられる。

(上記式(K−1)中、R102は水素原子、炭素数1〜20の直鎖状、分岐状又は環状のアルキル基又はアシル基、炭素数2〜20のアルケニル基、又は炭素数6〜20のアリール基又はアリーロキシ基である。式(K−2)中、R103は水素原子、炭素数1〜20の直鎖状、分岐状又は環状のアルキル基、炭素数2〜20のアルケニル基、又は炭素数6〜20のアリール基である。)
また、R101d、R101e、R101f、R101gが式中の窒素原子を環の中に有する複素芳香族環は、イミダゾール誘導体(例えばイミダゾール、4−メチルイミダゾール、4−メチル−2−フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えばピロリン、2−メチル−1−ピロリン等)、ピロリジン誘導体(例えばピロリジン、N−メチルピロリジン、ピロリジノン、N−メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えばピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4−(1−ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3−メチル−2−フェニルピリジン、4−tert−ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1−メチル−2−ピリドン、4−ピロリジノピリジン、1−メチル−4−フェニルピリジン、2−(1−エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H−インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えばキノリン、3−キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10−フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が例示される。
(P1a−1)と(P1a−2)は光酸発生剤、熱酸発生剤の両方の効果があるが、(P1a−3)は熱酸発生剤として作用する。

(式中、R102a、R102bはそれぞれ炭素数1〜8の直鎖状、分岐状又は環状のアルキル基を示す。R103は炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基を示す。R104a、R104bはそれぞれ炭素数3〜7の2−オキソアルキル基を示す。K-は非求核性対向イオンを表す。)
上記R102a、R102bのアルキル基として具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロプロピルメチル基、4−メチルシクロヘキシル基、シクロヘキシルメチル基等が挙げられる。R103のアルキレン基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、へプチレン基、オクチレン基、ノニレン基、1,4−シクロへキシレン基、1,2−シクロへキシレン基、1,3−シクロペンチレン基、1,4−シクロオクチレン基、1,4−シクロヘキサンジメチレン基等が挙げられる。R104a、R104bの2−オキソアルキル基としては、2−オキソプロピル基、2−オキソシクロペンチル基、2−オキソシクロヘキシル基、2−オキソシクロヘプチル基等が挙げられる。K-は式(P1a−1)、(P1a−2)及び(P1a−3)で説明したものと同様のものを挙げることができる。

(式中、R105、R106は炭素数1〜12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6〜20のアリール基又はハロゲン化アリール基、又は炭素数7〜12のアラルキル基を示す。)
105、R106のアルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、アミル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、ノルボルニル基、アダマンチル基等が挙げられる。ハロゲン化アルキル基としてはトリフルオロメチル基、1,1,1−トリフルオロエチル基、1,1,1−トリクロロエチル基、ノナフルオロブチル基等が挙げられる。アリール基としてはフェニル基、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基が挙げられる。ハロゲン化アリール基としてはフルオロフェニル基、クロロフェニル基、1,2,3,4,5−ペンタフルオロフェニル基等が挙げられる。アラルキル基としてはベンジル基、フェネチル基等が挙げられる。

(式中、R107、R108、R109は炭素数1〜12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6〜20のアリール基又はハロゲン化アリール基、又は炭素数7〜12のアラルキル基を示す。R108、R109は互いに結合して環状構造を形成してもよく、環状構造を形成する場合、R108、R109はそれぞれ炭素数1〜6の直鎖状又は分岐状のアルキレン基を示す。R105は(P2)式のものと同様である。)
107、R108、R109のアルキル基、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、アラルキル基としては、R105、R106で説明したものと同様の基が挙げられる。なお、R108、R109のアルキレン基としてはメチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基等が挙げられる。

(式中、R101a、R101bは前記と同様である。)

(式中、R110は炭素数6〜10のアリーレン基、炭素数1〜6のアルキレン基又は炭素数2〜6のアルケニレン基を示し、これらの基の水素原子の一部又は全部は更に炭素数1〜4の直鎖状又は分岐状のアルキル基又はアルコキシ基、ニトロ基、アセチル基、又はフェニル基で置換されていてもよい。R111は炭素数1〜8の直鎖状、分岐状又は置換のアルキル基、アルケニル基又はアルコキシアルキル基、フェニル基、又はナフチル基を示し、これらの基の水素原子の一部又は全部は更に炭素数1〜4のアルキル基又はアルコキシ基;炭素数1〜4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基;炭素数3〜5のヘテロ芳香族基;又は塩素原子、フッ素原子で置換されていてもよい。)
ここで、R110のアリーレン基としては、1,2−フェニレン基、1,8−ナフチレン基等が、アルキレン基としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、フェニルエチレン基、ノルボルナン−2,3−ジイル基等が、アルケニレン基としては、1,2−ビニレン基、1−フェニル−1,2−ビニレン基、5−ノルボルネン−2,3−ジイル基等が挙げられる。R111のアルキル基としては、R101a〜R101cと同様のものが、アルケニル基としては、ビニル基、1−プロペニル基、アリル基、1−ブテニル基、3−ブテニル基、イソプレニル基、1−ペンテニル基、3−ペンテニル基、4−ペンテニル基、ジメチルアリル基、1−ヘキセニル基、3−ヘキセニル基、5−ヘキセニル基、1−ヘプテニル基、3−ヘプテニル基、6−ヘプテニル基、7−オクテニル基等が、アルコキシアルキル基としては、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、ペンチロキシメチル基、ヘキシロキシメチル基、ヘプチロキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、ペンチロキシエチル基、ヘキシロキシエチル基、メトキシプロピル基、エトキシプロピル基、プロポキシプロピル基、ブトキシプロピル基、メトキシブチル基、エトキシブチル基、プロポキシブチル基、メトキシペンチル基、エトキシペンチル基、メトキシヘキシル基、メトキシヘプチル基等が挙げられる。
なお、更に置換されていてもよい炭素数1〜4のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基等が、炭素数1〜4のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、tert−ブトキシ基等が、炭素数1〜4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基としては、フェニル基、トリル基、p−tert−ブトキシフェニル基、p−アセチルフェニル基、p−ニトロフェニル基等が、炭素数3〜5のヘテロ芳香族基としては、ピリジル基、フリル基等が挙げられる。
酸発生剤は、具体的には、オニウム塩としては、例えばトリフルオロメタンスルホン酸テトラメチルアンモニウム、ノナフルオロブタンスルホン酸テトラメチルアンモニウム、ノナフルオロブタンスルホン酸トリエチルアンモニウム、ノナフルオロブタンスルホン酸ピリジニウム、カンファースルホン酸トリエチルアンモニウム、カンファースルホン酸ピリジニウム、ノナフルオロブタンスルホン酸テトラn−ブチルアンモニウム、ノナフルオロブタンスルホン酸テトラフェニルアンモニウム、p−トルエンスルホン酸テトラメチルアンモニウム、トリフルオロメタンスルホン酸ジフェニルヨードニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、p−トルエンスルホン酸ジフェニルヨードニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、ノナフルオロブタンスルホン酸トリフェニルスルホニウム、ブタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸トリメチルスルホニウム、p−トルエンスルホン酸トリメチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、p−トルエンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸ジメチルフェニルスルホニウム、p−トルエンスルホン酸ジメチルフェニルスルホニウム、トリフルオロメタンスルホン酸ジシクロヘキシルフェニルスルホニウム、p−トルエンスルホン酸ジシクロヘキシルフェニルスルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸(2−ノルボニル)メチル(2−オキソシクロヘキシル)スルホニウム、エチレンビス[メチル(2−オキソシクロペンチル)スルホニウムトリフルオロメタンスルホナート]、1,2’−ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート、トリエチルアンモニウムノナフレート、トリブチルアンモニウムノナフレート、テトラエチルアンモニウムノナフレート、テトラブチルアンモニウムノナフレート、トリエチルアンモニウムビス(トリフルオロメチルスルホニル)イミド、トリエチルアンモニウムトリス(パーフルオロエチルスルホニル)メチド等のオニウム塩を挙げることができる。
ジアゾメタン誘導体としては、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(キシレンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(シクロペンチルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン、ビス(n−アミルスルホニル)ジアゾメタン、ビス(イソアミルスルホニル)ジアゾメタン、ビス(sec−アミルスルホニル)ジアゾメタン、ビス(tert−アミルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−アミルスルホニル)ジアゾメタン、1−tert−アミルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体を挙げることができる。
グリオキシム誘導体としては、ビス−O−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−トルエンスルホニル)−α−ジフェニルグリオキシム、ビス−O−(p−トルエンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−O−(p−トルエンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−O−(p−トルエンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジフェニルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−O−(n−ブタンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−O−(n−ブタンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−O−(メタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(トリフルオロメタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(1,1,1−トリフルオロエタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(tert−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(パーフルオロオクタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(シクロヘキサンスルホニル)−α−ジメチルグリオキシム、ビス−O−(ベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−フルオロベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−tert−ブチルベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(キシレンスルホニル)−α−ジメチルグリオキシム、ビス−O−(カンファースルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体を挙げることができる。
ビススルホン誘導体としては、ビスナフチルスルホニルメタン、ビストリフルオロメチルスルホニルメタン、ビスメチルスルホニルメタン、ビスエチルスルホニルメタン、ビスプロピルスルホニルメタン、ビスイソプロピルスルホニルメタン、ビス−p−トルエンスルホニルメタン、ビスベンゼンスルホニルメタン等のビススルホン誘導体を挙げることができる。
β−ケトスルホン酸誘導体としては、2−シクロヘキシルカルボニル−2−(p−トルエンスルホニル)プロパン、2−イソプロピルカルボニル−2−(p−トルエンスルホニル)プロパン等のβ−ケトスルホン酸誘導体を挙げることができる。
ジスルホン誘導体としては、ジフェニルジスルホン、ジシクロヘキシルジスルホン等のジスルホン誘導体を挙げることができる。
ニトロベンジルスルホネート誘導体としては、p−トルエンスルホン酸2,6−ジニトロベンジル、p−トルエンスルホン酸2,4−ジニトロベンジル等のニトロベンジルスルホネート誘導体を挙げることができる。
スルホン酸エステル誘導体としては、1,2,3−トリス(メタンスルホニルオキシ)ベンゼン、1,2,3−トリス(トリフルオロメタンスルホニルオキシ)ベンゼン、1,2,3−トリス(p−トルエンスルホニルオキシ)ベンゼン等のスルホン酸エステル誘導体を挙げることができる。
N−ヒドロキシイミド化合物のスルホン酸エステル誘導体としては、N−ヒドロキシスクシンイミドメタンスルホン酸エステル、N−ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシスクシンイミドエタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド2−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ペンタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−オクタンスルホン酸エステル、N−ヒドロキシスクシンイミドp−トルエンスルホン酸エステル、N−ヒドロキシスクシンイミドp−メトキシベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド2−クロロエタンスルホン酸エステル、N−ヒドロキシスクシンイミドベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド−2,4,6−トリメチルベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ナフタレンスルホン酸エステル、N−ヒドロキシスクシンイミド2−ナフタレンスルホン酸エステル、N−ヒドロキシ−2−フェニルスクシンイミドメタンスルホン酸エステル、N−ヒドロキシマレイミドメタンスルホン酸エステル、N−ヒドロキシマレイミドエタンスルホン酸エステル、N−ヒドロキシ−2−フェニルマレイミドメタンスルホン酸エステル、N−ヒドロキシグルタルイミドメタンスルホン酸エステル、N−ヒドロキシグルタルイミドベンゼンスルホン酸エステル、N−ヒドロキシフタルイミドメタンスルホン酸エステル、N−ヒドロキシフタルイミドベンゼンスルホン酸エステル、N−ヒドロキシフタルイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシフタルイミドp−トルエンスルホン酸エステル、N−ヒドロキシナフタルイミドメタンスルホン酸エステル、N−ヒドロキシナフタルイミドベンゼンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドメタンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドp−トルエンスルホン酸エステル等のN−ヒドロキシイミド化合物のスルホン酸エステル誘導体が挙げられる。
特に、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸(2−ノルボニル)メチル(2−オキソシクロヘキシル)スルホニウム、1,2’−ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体、ビス−O−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体、ビスナフチルスルホニルメタン等のビススルホン誘導体、N−ヒドロキシスクシンイミドメタンスルホン酸エステル、N−ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド2−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ペンタンスルホン酸エステル、N−ヒドロキシスクシンイミドp−トルエンスルホン酸エステル、N−ヒドロキシナフタルイミドメタンスルホン酸エステル、N−ヒドロキシナフタルイミドベンゼンスルホン酸エステル等のN−ヒドロキシイミド化合物のスルホン酸エステル誘導体が好ましく用いられる。
なお、上記酸発生剤は1種を単独で又は2種以上を組み合わせて用いることができる。
酸発生剤の添加量は、ベースポリマー100部に対して好ましくは0.1〜50部、より好ましくは0.5〜40部である。0.1部より少ないと酸発生量が少なく、架橋反応が不十分な場合があり、50部を超えると上層レジストへ酸が移動することによるミキシング現象が起こる場合がある。
更に、本発明のレジスト下層膜材料には、保存安定性を向上させるための塩基性化合物を配合することができる。
塩基性化合物は、保存中等に酸発生剤より微量に発生した酸が架橋反応を進行させるのを防ぐための、酸に対するクエンチャーの役割を果たす。
このような塩基性化合物としては、第一級、第二級、第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられる。
具体的には、第一級の脂肪族アミン類として、アンモニア、メチルアミン、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミン、sec−ブチルアミン、tert−ブチルアミン、ペンチルアミン、tert−アミルアミン、シクロペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、セチルアミン、メチレンジアミン、エチレンジアミン、テトラエチレンペンタミン等が例示され、第二級の脂肪族アミン類として、ジメチルアミン、ジエチルアミン、ジ−n−プロピルアミン、ジイソプロピルアミン、ジ−n−ブチルアミン、ジイソブチルアミン、ジ−sec−ブチルアミン、ジペンチルアミン、ジシクロペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジドデシルアミン、ジセチルアミン、N,N−ジメチルメチレンジアミン、N,N−ジメチルエチレンジアミン、N,N−ジメチルテトラエチレンペンタミン等が例示され、第三級の脂肪族アミン類として、トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリイソプロピルアミン、トリ−n−ブチルアミン、トリイソブチルアミン、トリ−sec−ブチルアミン、トリペンチルアミン、トリシクロペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、トリドデシルアミン、トリセチルアミン、N,N,N’,N’−テトラメチルメチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−テトラメチルテトラエチレンペンタミン等が例示される。
また、混成アミン類としては、例えばジメチルエチルアミン、メチルエチルプロピルアミン、ベンジルアミン、フェネチルアミン、ベンジルジメチルアミン等が例示される。
芳香族アミン類及び複素環アミン類の具体例としては、アニリン誘導体(例えばアニリン、N−メチルアニリン、N−エチルアニリン、N−プロピルアニリン、N,N−ジメチルアニリン、2−メチルアニリン、3−メチルアニリン、4−メチルアニリン、エチルアニリン、プロピルアニリン、トリメチルアニリン、2−ニトロアニリン、3−ニトロアニリン、4−ニトロアニリン、2,4−ジニトロアニリン、2,6−ジニトロアニリン、3,5−ジニトロアニリン、N,N−ジメチルトルイジン等)、ジフェニル(p−トリル)アミン、メチルジフェニルアミン、トリフェニルアミン、フェニレンジアミン、ナフチルアミン、ジアミノナフタレン、ピロール誘導体(例えばピロール、2H−ピロール、1−メチルピロール、2,4−ジメチルピロール、2,5−ジメチルピロール、N−メチルピロール等)、オキサゾール誘導体(例えばオキサゾール、イソオキサゾール等)、チアゾール誘導体(例えばチアゾール、イソチアゾール等)、イミダゾール誘導体(例えばイミダゾール、4−メチルイミダゾール、4−メチル−2−フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えばピロリン、2−メチル−1−ピロリン等)、ピロリジン誘導体(例えばピロリジン、N−メチルピロリジン、ピロリジノン、N−メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えばピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4−(1−ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3−メチル−2−フェニルピリジン、4−tert−ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1−メチル−2−ピリドン、4−ピロリジノピリジン、1−メチル−4−フェニルピリジン、2−(1−エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H−インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えばキノリン、3−キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10−フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が例示される。
更に、カルボキシ基を有する含窒素化合物としては、例えばアミノ安息香酸、インドールカルボン酸、アミノ酸誘導体(例えばニコチン酸、アラニン、アルギニン、アスパラギン酸、グルタミン酸、グリシン、ヒスチジン、イソロイシン、グリシルロイシン、ロイシン、メチオニン、フェニルアラニン、スレオニン、リジン、3−アミノピラジン−2−カルボン酸、メトキシアラニン)等が例示され、スルホニル基を有する含窒素化合物として3−ピリジンスルホン酸、p−トルエンスルホン酸ピリジニウム等が例示され、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物としては、2−ヒドロキシピリジン、アミノクレゾール、2,4−キノリンジオール、3−インドールメタノールヒドレート、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N−エチルジエタノールアミン、N,N−ジエチルエタノールアミン、トリイソプロパノールアミン、2,2’−イミノジエタノール、2−アミノエタノ−ル、3−アミノ−1−プロパノール、4−アミノ−1−ブタノール、4−(2−ヒドロキシエチル)モルホリン、2−(2−ヒドロキシエチル)ピリジン、1−(2−ヒドロキシエチル)ピペラジン、1−[2−(2−ヒドロキシエトキシ)エチル]ピペラジン、ピペリジンエタノール、1−(2−ヒドロキシエチル)ピロリジン、1−(2−ヒドロキシエチル)−2−ピロリジノン、3−ピペリジノ−1,2−プロパンジオール、3−ピロリジノ−1,2−プロパンジオール、8−ヒドロキシユロリジン、3−クイヌクリジノール、3−トロパノール、1−メチル−2−ピロリジンエタノール、1−アジリジンエタノール、N−(2−ヒドロキシエチル)フタルイミド、N−(2−ヒドロキシエチル)イソニコチンアミド等が例示される。
アミド誘導体としては、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、プロピオンアミド、ベンズアミド等が例示される。
イミド誘導体としては、フタルイミド、サクシンイミド、マレイミド等が例示される。
塩基性化合物の配合量は全ベースポリマー100部に対して0.001〜2部、特に0.01〜1部が好適である。配合量が0.001部より少ないと配合効果が少なく、2部を超えると熱で発生した酸を全てトラップして架橋しなくなる場合がある。
本発明のレジスト下層膜材料において使用可能な有機溶剤としては、前記のベースポリマー、酸発生剤、架橋剤、その他添加剤等が溶解するものであれば特に制限はない。その具体例を列挙すると、シクロヘキサノン、メチル−2−アミルケトン等のケトン類;3−メトキシブタノール、3−メチル−3−メトキシブタノール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール等のアルコール類;プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸エチル、ピルビン酸エチル、酢酸ブチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、酢酸tert−ブチル,プロピオン酸tert−ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノtert−ブチルエーテルアセテート等のエステル類が挙げられ、これらの1種又は2種以上を混合使用できるが、これらに限定されるものではない。本発明のレジスト下層膜材料においては、これら有機溶剤の中でもジエチレングリコールジメチルエーテルや1−エトキシ−2−プロパノール、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート及びこれらの混合溶剤が好ましく使用される。
有機溶剤の配合量は、全ベースポリマー100部に対して200〜10,000部が好ましく、特に300〜5,000部とすることが好ましい。
更に、本発明は、リソグラフィーにより基板にパターンを形成する方法であって、少なくとも、前記本発明のレジスト下層膜材料を用いてレジスト下層膜を基板上に形成し、該下層膜の上にフォトレジスト組成物のレジスト上層膜を形成して、多層レジスト膜とし、該多層レジスト膜のパターン回路領域を露光した後、現像液で現像してレジスト上層膜にレジストパターンを形成し、該パターンが形成されたレジスト上層膜をマスクにしてレジスト下層膜をエッチングし、更にパターンが形成された多層レジスト膜をマスクにして基板をエッチングして基板にパターンを形成することを特徴とするパターン形成方法を提供する。
この場合、フォトレジスト下層膜形成材料を被加工基板上に適用し、得られた下層膜の上に珪素原子を含有する中間層を適用し、該中間層の上にフォトレジスト組成物の層を適用し、このフォトレジスト層の所用領域に放射線を照射し、現像液で現像してフォトレジストパターンを形成し、ドライエッチング装置でこのフォトレジストパターン層をマスクにして中間膜層を加工し、フォトレジストパターン層を除去後、上記加工した中間膜層をマスクにして下層膜層、次いで被加工基板を加工することもできる。
以下、図6,7を参照して、本発明のパターン形成方法について説明する。
図6は2層レジスト加工プロセス、図7は3層レジスト加工プロセスの説明図である。
被加工基板11は、図示したように、被加工層11aとベース層11bとで構成されてもよい。基板11のベース層11bとしては、特に限定されるものではなく、Si、アモルファスシリコン(α−Si)、p−Si、SiO2、SiN、SiON、W、TiN、Al等で被加工層11aと異なる材質のものが用いられてもよい。被加工層11aとしては、Si、SiO2、SiON、SiN、p−Si、α−Si、W、W−Si、Al、Cu、Al−Si等及び種々の低誘電膜及びそのエッチングストッパー膜が用いられ、通常50〜10,000nm、特に100〜5,000nm厚さに形成し得る。
まず、図6の2層レジスト加工プロセスについて説明すると、レジスト下層膜12は、通常のフォトレジスト膜の形成法と同様にスピンコート法などで基板11上に形成することが可能である。スピンコート法などでレジスト下層膜12を形成した後、有機溶剤を蒸発させ、レジスト上層膜13とのミキシング防止のため、架橋反応を促進させるためにベークをすることが望ましい。ベーク温度は80〜300℃の範囲内で、10〜300秒の範囲内が好ましく用いられる。なお、このレジスト下層膜12の厚さは適宜選定されるが、100〜20,000nm、特に150〜15,000nmとすることが好ましい。レジスト下層膜12を形成した後、その上にレジスト上層膜13を形成する(図6(A)参照)。
この場合、このレジスト上層膜13を形成するためのフォトレジスト組成物としては公知のものを使用することができる。酸素ガスエッチング耐性等の点から、ベースポリマーとしてポリシルセスキオキサン誘導体又はビニルシラン誘導体等の珪素原子含有ポリマーを使用し、更に有機溶剤、酸発生剤、必要により塩基性化合物等を含むポジ型等のフォトレジスト組成物が使用される。なお、珪素原子含有ポリマーとしては、この種のレジスト組成物に用いられる公知のポリマーを使用することができる。
なお、レジスト上層膜13の厚さは特に制限されないが、30〜500nm、特に50〜400nmが好ましい。
上記フォトレジスト組成物によりレジスト上層膜13を形成する場合、前記レジスト下層膜を形成する場合と同様に、スピンコート法などが好ましく用いられる。レジスト上層膜13をスピンコート法などで形成後、プリベークを行うが、80〜180℃で、10〜300秒の範囲で行うのが好ましい。
その後、常法に従い、多層レジスト膜のパターン回路領域の露光を行い(図6(B)参照)、ポストエクスポジュアーベーク(PEB)、現像を行い、レジストパターンを得る(図6(C)参照)。なお、図6(B)において、13’は露光部分である。
現像は、アルカリ水溶液を用いたパドル法、ディップ法などが用いられ、特にはテトラメチルアンモニウムヒドロキシドの2.38質量%水溶液を用いたパドル法が好ましく用いられ、室温で10秒〜300秒の範囲で行われ、その後純水でリンスし、スピンドライあるいは窒素ブロー等によって乾燥される。
次に、レジストパターンが形成されたレジスト上層膜13をマスクにして酸素ガスを主体とするドライエッチングなどで、レジスト下層膜12のエッチングを行う(図6(D)参照)。このエッチングは常法によって行うことができる。酸素ガスを主体とするドライエッチングの場合、酸素ガスに加えて、He、Arなどの不活性ガスや、CO、CO2、NH3、SO2、N2、NO2ガスを加えることも可能である。特に後者のガスはパターン側壁のアンダーカット防止のための側壁保護のために用いられる。
次の基板11のエッチングも、常法によって行うことができ、例えば基板がSiO2、SiNであればフロン系ガスを主体としたエッチング、ポリシリコン(p−Si)やAl、Wでは塩素系、臭素系ガスを主体としたエッチングを行う(図6(E)参照)。本発明のレジスト下層膜は、これら基板のエッチング時のエッチング耐性に優れる特徴がある。この時、レジスト上層膜は必要に応じ、除去した後に基板のエッチングをしてもよいし、レジスト上層膜をそのまま残して基板のエッチングを行うこともできる。
3層レジスト加工プロセスの場合は、図7に示したように、レジスト下層膜12とレジスト上層膜13との間に珪素原子を含有する中間層14を介在させる(図7(A)参照)。この場合、中間層14を形成する材料としては、ポリシルセスキオキサンをベースとするシリコーンポリマーあるいはテトラオルソシリケートガラス(TEOS)のようなスピンコートによって作製される膜や、CVDで作製されるSiO2、SiN、SiON膜を用いることができる。
この中間層14の厚さとしては、10〜1,000nmが好ましい。
なお、その他の構成は、図6の2層レジスト加工プロセスの場合と同様である。
次に、図6の場合と同様にしてレジストパターンを形成する(図7(B),(C)参照)。
次いで、レジストパターンが形成されたレジスト上層膜13をマスクにしてフロン系ガスを主体とするドライエッチングなどで、中間層14のエッチングを行う(図7(D)参照)。このエッチングは常法によって行うことができる。フロン系ガスを主体とするドライエッチングの場合、CF4、CHF3、C26、C38、C410などを一般的に用いることができる。
更に、中間層14をエッチングした後、O2又はH2を主体とするドライエッチングなどで、レジスト下層膜のエッチングを行う(図7(E)参照)。この場合、O2、H2ガスに加えて、He、Arなどの不活性ガスや、CO、CO2、NH3、SO2、N2、NO2ガスを加えることも可能である。特に後者のガスはパターン側壁のアンダーカット防止のための側壁保護のために用いられる。
次の基板11のエッチングも、常法によって行うことができ、図6の場合と同様に、例えば基板がSiO2、SiNであればフロン系ガスを主体としたエッチング、ポリシリコン(p−Si)やAl、Wでは塩素系、臭素系ガスを主体としたエッチングを行う(図7(F)参照)。本発明のレジスト下層膜は、これら基板のエッチング時のエッチング耐性に優れる特徴がある。この時、レジスト上層膜は必要に応じ、除去した後に基板のエッチングをしてもよいし、レジスト上層膜をそのまま残して基板のエッチングを行うこともできる。
以下、合成例、比較合成例、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらの記載によって限定されるものではない。
なお、下記の例で重量平均分子量Mw及び数平均分子量Mnは、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン基準の測定値である。
[合成例1]
200mLのフラスコにアセナフチレンを9.1g、5−ヒドロキシ−1−ビニルナフタレン6.9g、溶媒として1,2−ジクロロエタンを20g添加した。この反応容器を窒素雰囲気下、重合開始剤としてトリフルオロホウ素を0.5g加え、60℃まで昇温後、15時間反応させた。この反応溶液を1/2まで濃縮し、メタノール2.5L、水0.2Lの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
5−ヒドロキシ−1−ビニルナフタレン:アセナフチレン=40:60
重量平均分子量(Mw)=6,800
分子量分布(Mw/Mn)=1.72
この重合体をポリマー1とする。
[合成例2]
200mLのフラスコにアセナフチレンを9.1g、6−ヒドロキシ−2−ビニルナフタレン6.9g、溶媒として1,2−ジクロロエタンを20g添加した。この反応容器を窒素雰囲気下、重合開始剤としてトリフルオロホウ素を0.5g加え、60℃まで昇温後、15時間反応させた。この反応溶液を1/2まで濃縮し、メタノール2.5L、水0.2Lの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
6−ヒドロキシ−2−ビニルナフタレン:アセナフチレン=40:60
重量平均分子量(Mw)=7,400
分子量分布(Mw/Mn)=1.83
この重合体をポリマー2とする。
[合成例3]
200mLのフラスコにインデンを7.0g、6−ヒドロキシ−2−ビニルナフタレン6.9g、溶媒として1,2−ジクロロエタンを20g添加した。この反応容器を窒素雰囲気下、重合開始剤としてトリフルオロホウ素を0.5g加え、60℃まで昇温後、15時間反応させた。この反応溶液を1/2まで濃縮し、メタノール2.5L、水0.2Lの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
6−ヒドロキシ−2−ビニルナフタレン:インデン=40:60
重量平均分子量(Mw)=15,000
分子量分布(Mw/Mn)=1.92
この重合体をポリマー3とする。
[合成例4]
500mLのフラスコに6−ヒドロキシ−2−ビニルナフタレンを11.0g、2,5−ノルボルナジエン3.2g、溶媒としてトルエンを20g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを1.5g加え、80℃まで昇温後、24時間反応させた。この反応溶液を1/2まで濃縮し、メタノール300mL、水50mLの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
6−ヒドロキシ−2−ビニルナフタレン:2,5−ノルボルナジエン=0.68:0.32
重量平均分子量(Mw)=10,500
分子量分布(Mw/Mn)=1.71
この重合体をポリマー4とする。
[合成例5]
500mLのフラスコに5−ヒドロキシ−1−ビニルナフタレンを5.9g、1−ビニルナフタレンを5.4g、2,5−ノルボルナジエン3.2g、溶媒としてトルエンを20g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを1.5g加え、80℃まで昇温後、24時間反応させた。この反応溶液を1/2まで濃縮し、メタノール300mL、水50mLの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
5−ヒドロキシ−1−ビニルナフタレン:1−ビニルナフタレン:2,5−ノルボルナジエン=0.35:0.35:0.30
重量平均分子量(Mw)=11,600
分子量分布(Mw/Mn)=1.78
この重合体をポリマー5とする。
[合成例6]
500mLのフラスコに6−ヒドロキシ−2−ビニルナフタレンを9.4g、9−ビニルフェナントレン9.2g、溶媒としてトルエンを20g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを1.5g加え、80℃まで昇温後、24時間反応させた。この反応溶液を1/2まで濃縮し、メタノール300mL、水50mLの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
6−ヒドロキシ−2−ビニルナフタレン:9−ビニルフェナントレン=0.55:0.45
重量平均分子量(Mw)=8,300
分子量分布(Mw/Mn)=1.78
この重合体をポリマー6とする。
[合成例7]
500mLのフラスコに6−ヒドロキシ−2−ビニルナフタレンを12.0g、1−ビニルピレン11.3g、溶媒としてトルエンを20g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを1.5g加え、80℃まで昇温後、24時間反応させた。この反応溶液を1/2まで濃縮し、メタノール300mL、水50mLの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
6−ヒドロキシ−2−ビニルナフタレン:1−ビニルピレン=0.68:0.32
重量平均分子量(Mw)=7,200
分子量分布(Mw/Mn)=1.68
この重合体をポリマー7とする。
[合成例8]
200mLのフラスコに6−ヒドロキシ−2−ビニルナフタレン8.5g、下記ビニルエーテルモノマー1を8.9g、溶媒として1,2−ジクロロエタンを20g添加した。この反応容器を窒素雰囲気下、重合開始剤としてトリフルオロホウ素を0.5g加え、60℃まで昇温後、15時間反応させた。この反応溶液を1/2まで濃縮し、メタノール2.5L、水0.2Lの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
6−ヒドロキシ−2−ビニルナフタレン:ビニルエーテルモノマー1=0.50:0.50
重量平均分子量(Mw)=9,100
分子量分布(Mw/Mn)=1.63
この重合体をポリマー8とする。
[合成例9]
200mLのフラスコに6−ヒドロキシ−2−ビニルナフタレン8.5g、下記ビニルエーテルモノマー2を9.8g、溶媒として1,2−ジクロロエタンを20g添加した。この反応容器を窒素雰囲気下、重合開始剤としてトリフルオロホウ素を0.5g加え、60℃まで昇温後、15時間反応させた。この反応溶液を1/2まで濃縮し、メタノール2.5L、水0.2Lの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
6−ヒドロキシ−2−ビニルナフタレン:ビニルエーテルモノマー2=0.50:0.50
重量平均分子量(Mw)=6,100
分子量分布(Mw/Mn)=1.44
この重合体をポリマー9とする。
[合成例10]
200mLのフラスコに6−ヒドロキシ−2−ビニルナフタレン8.5g、下記ビニルエーテルモノマー3を12.2g、溶媒として1,2−ジクロロエタンを20g添加した。この反応容器を窒素雰囲気下、重合開始剤としてトリフルオロホウ素を0.5g加え、60℃まで昇温後、15時間反応させた。この反応溶液を1/2まで濃縮し、メタノール2.5L、水0.2Lの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
6−ヒドロキシ−2−ビニルナフタレン:ビニルエーテルモノマー3=0.50:0.50
重量平均分子量(Mw)=9,600
分子量分布(Mw/Mn)=1.66
この重合体をポリマー10とする。
[合成例11]
200mLのフラスコに6−ヒドロキシ−2−ビニルナフタレン8.5g、1−アダマンチルビニルエーテル8.9g、溶媒として1,2−ジクロロエタンを20g添加した。この反応容器を窒素雰囲気下、重合開始剤としてトリフルオロホウ素を0.5g加え、60℃まで昇温後、15時間反応させた。この反応溶液を1/2まで濃縮し、メタノール2.5L、水0.2Lの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
6−ヒドロキシ−2−ビニルナフタレン:1−アダマンチルビニルエーテル=0.50:0.50
重量平均分子量(Mw)=8,600
分子量分布(Mw/Mn)=1.78
この重合体をポリマー11とする。
[合成例12]
200mLのフラスコに6−ヒドロキシ−2−ビニルナフタレン5.1g、上記ビニルエーテルモノマー1を8.9g、アセナフチレン3.2g、溶媒として1,2−ジクロロエタンを20g添加した。この反応容器を窒素雰囲気下、重合開始剤としてトリフルオロホウ素を0.5g加え、60℃まで昇温後、15時間反応させた。この反応溶液を1/2まで濃縮し、メタノール2.5L、水0.2Lの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
6−ヒドロキシ−2−ビニルナフタレン:ビニルエーテルモノマー1:アセナフチレン=0.30:0.50:0.20
重量平均分子量(Mw)=6,900
分子量分布(Mw/Mn)=1.82
この重合体をポリマー12とする。
[合成例13]
200mLのフラスコに6−ヒドロキシ−2−ビニルナフタレン5.1g、下記ビニルエーテルモノマー4を2.2g、アセナフチレン9.9g、溶媒として1,2−ジクロロエタンを20g添加した。この反応容器を窒素雰囲気下、重合開始剤としてトリフルオロホウ素を0.5g加え、60℃まで昇温後、15時間反応させた。この反応溶液を1/2まで濃縮し、メタノール2.5L、水0.2Lの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
6−ヒドロキシ−2−ビニルナフタレン:ビニルエーテルモノマー4:アセナフチレン=0.30:0.10:0.60
重量平均分子量(Mw)=17,900
分子量分布(Mw/Mn)=2.33
この重合体をポリマー13とする。
[合成例14]
200mLのフラスコに6−ヒドロキシ−2−ビニルナフタレン5.1g、下記アクリルモノマー1を10.3g、アセナフチレン3.2g、溶媒として1,2−ジクロロエタンを20g添加した。この反応容器を窒素雰囲気下、重合開始剤としてトリフルオロホウ素を0.5g加え、60℃まで昇温後、15時間反応させた。この反応溶液を1/2まで濃縮し、メタノール2.5L、水0.2Lの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
6−ヒドロキシ−2−ビニルナフタレン:アクリルモノマー1:アセナフチレン=0.30:0.50:0.20
重量平均分子量(Mw)=8,200
分子量分布(Mw/Mn)=1.66
この重合体をポリマー14とする。
[比較合成例1]
500mLのフラスコに4−ヒドロキシスチレンを40g、2−メタクリル酸−1−アダマンタンを160g、溶媒としてトルエンを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを4.1g加え、80℃まで昇温後、24時間反応させた。この反応溶液を1/2まで濃縮し、メタノール300mL、水50mLの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体188gを得た。
得られた重合体を1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:2−メタクリル酸−1−アダマンタン
=0.32:0.68
重量平均分子量(Mw)=10,900
分子量分布(Mw/Mn)=1.77
この重合体を比較例ポリマー1とする。
[比較合成例2]
500mLのフラスコに5−ヒドロキシ−1−ビニルナフタレンを45g、溶媒としてトルエンを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを4.1g加え、80℃まで昇温後、24時間反応させた。この反応溶液を1/2まで濃縮し、メタノール300mL、水50mLの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
5−ヒドロキシ−1−ビニルナフタレン=1.0
重量平均分子量(Mw)=10,500
分子量分布(Mw/Mn)=1.66
この重合体を比較ポリマー2とする。
[比較合成例3]
500mLのフラスコに5−ヒドロキシ−1−ビニルナフタレン20g、1−ビニルナフタレン15gを溶媒としてトルエンを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを4.1g加え、80℃まで昇温後、24時間反応させた。この反応溶液を1/2まで濃縮し、メタノール300mL、水50mLの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
5−ヒドロキシ−1−ビニルナフタレン:1−ビニルナフタレン=0.6:0.4
重量平均分子量(Mw)=11,000
分子量分布(Mw/Mn)=1.74
この重合体を比較ポリマー3とする。
[実施例、比較例]
[レジスト下層膜材料の調製]
上記ポリマー1〜14で示される樹脂、比較ポリマー1〜3で示される樹脂、下記ブレンドオリゴマー1、ブレンドフェノール低核体1〜3、下記AG1,2で示される酸発生剤、下記CR1,2で示される架橋剤を、FC−430(住友スリーエム社製)0.1質量%を含む有機溶剤中に表1に示す割合で溶解させ、0.1μmのフッ素樹脂製のフィルターで濾過することによってレジスト下層膜材料(実施例1〜20、比較例1〜3)をそれぞれ調製した。
ポリマー1〜14:上記合成例1〜14で得たポリマー
比較ポリマー1〜3:比較合成例1〜3で得たポリマー
ブレンドオリゴマー1(下記構造式参照)
ブレンドフェノール低核体1〜3(下記構造式参照)
酸発生剤:AG1,2(下記構造式参照)
架橋剤:CR1,2(下記構造式参照)

有機溶剤:PGMEA(プロピレングリコールモノメチルエーテルアセテート)、
PGME(プロピレングリコールモノメチルエーテル)
上記で調製したレジスト下層膜材料(実施例1〜20、比較例1〜3)の溶液をシリコン基板上に塗布して、200℃で60秒間ベークしてそれぞれ膜厚500nmのレジスト下層膜を形成した。
レジスト下層膜の形成後、J.A.ウーラム社の入射角度可変の分光エリプソメーター(VASE)で波長193nmにおける屈折率(n,k)を求め、その結果を表1に示した。
表1に示されるように、実施例1〜20では、レジスト下層膜の屈折率のn値が1.4〜1.5、k値が0.19〜0.45の範囲であり、特に200nm以上の膜厚で十分な反射防止効果を発揮できるだけの最適な屈折率(n)と消光係数(k)を有することがわかる。
次いで、ドライエッチング耐性のテストを行った。まず、前記屈折率測定に用いたものと同じ下層膜(実施例1〜20、比較例1〜3)を作製し、これらの下層膜のCF4/CHF3系ガスでのエッチング試験として下記(1)の条件で試験した。この場合、東京エレクトロン株式会社製ドライエッチング装置TE−8500Pを用い、エッチング前後の下層膜及びレジストの膜厚差を測定した。結果を表2に示す。
(1)CF4/CHF3系ガスでのエッチング試験
エッチング条件は下記に示す通りである。
チャンバー圧力 40.0Pa
RFパワー 1,000W
ギヤップ 9mm
CHF3ガス流量 30ml/min
CF4ガス流量 30ml/min
Arガス流量 100ml/min
時間 60sec
更に、上記下層膜(実施例1〜20、比較例1〜3)を用いて、下記(2)の条件でCl2/BCl3系ガスでのエッチング試験を行った。この場合、日電アネルバ株式会社製ドライエッチング装置L−507D−Lを用い、エッチング前後のポリマー膜の膜厚差を求めた。結果を表3に示す。
(2)Cl2/BCl3系ガスでのエッチング試験
エッチング条件は下記に示す通りである。
チャンバー圧力 40.0Pa
RFパワー 300W
ギヤップ 9mm
Cl2ガス流量 30ml/min
BCl3ガス流量 30ml/min
CHF3ガス流量 100ml/min
2ガス流量 2ml/min
時間 60sec
[レジスト上層膜材料の調製]
表4に示す組成でArF単層レジスト材料(ArF用SLレジスト)をFC−430(住友スリーエム社製)0.1質量%を含む有機溶剤中に表4に示す割合で溶解させ、0.1μmのフッ素樹脂製のフィルターで濾過することによってArF単層レジスト材料を調製した。
表5に示す組成でArF珪素含有中間層材料をFC−430(住友スリーエム社製)0.1質量%を含む有機溶剤中に表1に示す割合で溶解させ、0.1μmのフッ素樹脂製のフィルターで濾過することによってArF珪素含有中間層材料を調製した。
下層膜形成材料の溶液(実施例1〜20、比較例1〜3)を膜厚300nmのSiO2基板上に塗布して、200℃で60秒間ベークして膜厚300nmの下層膜を形成した。
その上に珪素含有中間層材料溶液SOGを塗布して200℃で60秒間ベークして膜厚90nmの中間層を形成し、ArF単層レジスト材料溶液を塗布し、110℃で60秒間ベークして膜厚160nmのフォトレジスト層を形成した。
次いで、ArF露光装置((株)ニコン製;S307E、NA0.85、σ0.93、2/3輪体照明、Crマスク)で露光し、110℃で60秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像し、ポジ型のパターンを得た。得られたパターンの80nmラインアンドスペースのパターン形状を観察した。結果を表6に示す。
次に、上記ArF露光と現像後にて得られたレジストパターンをSOG膜に下記条件で転写した。エッチング条件(3)は下記に示す通りである。
チャンバー圧力 40.0Pa
RFパワー 1,000W
ギヤップ 9mm
CHF3ガス流量 20ml/min
CF4ガス流量 60ml/min
Arガス流量 200ml/min
時間 30sec
次に、SOG膜に転写されたパターンを下記酸素ガスを主体とするエッチングで下層膜に転写した。エッチング条件(4)は下記に示す通りである。
チャンバー圧力 450mTorr
RFパワー 600W
2ガス流量 60sccm
2ガス流量 10sccm
ギヤップ 9mm
時間 20sec
最後に(1)に示すエッチング条件で下層膜パターンをマスクにしてSiO2基板を加工した。
パターン断面を(株)日立製作所製電子顕微鏡(S−4700)にて観察し、形状を比較し、表6にまとめた。
表2,3に示すように、本発明の下層膜のCF4/CHF3ガス及びCl2/BCl3系ガスエッチングの速度は、比較例1〜3よりも十分にエッチング速度が遅い。表6に示すように、現像後のレジスト形状、酸素エッチング後、基板加工エッチング後の下層膜の形状も良好であることが認められた。
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
2層プロセスにおける下層膜屈折率k値が0.3固定で、n値を1.0〜2.0の範囲で変化させた下層膜の膜厚と基板反射率の関係を示すグラフである。 2層プロセスにおける下層膜屈折率n値が1.5固定で、k値を0.1〜1.0の範囲で変化させた下層膜の膜厚と基板反射率の関係を示すグラフである。 3層プロセスにおける下層膜屈折率n値が1.5、k値が0.6、膜厚500nm固定で、中間層のn値が1.5、k値を0〜0.3、膜厚を0〜400nmの範囲で変化させたときの基板反射率の関係を示すグラフである。 3層プロセスにおける下層膜屈折率n値が1.5、k値が0.2、中間層のn値が1.5、k値を0.1固定で下層と中間層の膜厚を変化させたときの基板反射率の関係を示すグラフである。 3層プロセスにおける下層膜屈折率n値が1.5、k値が0.6、中間層のn値が1.5、k値を0.1固定で下層と中間層の膜厚を変化させたときの基板反射率の関係を示すグラフである。 2層レジスト加工プロセスの説明図である。 3層レジスト加工プロセスの説明図である。
符号の説明
11 基板
11a 被加工層
11b ベース層
12 下層膜
13 上層膜
13’ 露光部分
14 中間層

Claims (8)

  1. リソグラフィーで用いられる多層レジスト膜のレジスト下層膜材料であって、少なくとも、ヒドロキシ基を有するビニルナフタレンとヒドロキシ基を含まないオレフィンとの共重合体を含むものであることを特徴とするフォトレジスト下層膜材料。
  2. ヒドロキシ基を含まないオレフィンが、インデン類、アセナフチレン類、ノルトリシクレン類、炭素数7〜30のビニルエーテル、(メタ)アクリレート、カルボン酸ビニル、(メタ)アクリルアミド、ビニル基を持つ炭素数13〜30の縮合炭化水素から選ばれる請求項1記載のフォトレジスト下層膜材料。
  3. 前記共重合体が、下記一般式(1)で示される繰り返し単位を有するものであることを特徴とする請求項1記載のレジスト下層膜材料。

    (上記一般式(1)中、R1、R6は水素原子又はメチル基である。R2、R3、R4は水素原子、炭素数1〜4のアルキル基、アルコキシ基、ヒドロキシ基、アセトキシキ基又はアルコキシカルボニル基、又は炭素数6〜10のアリール基であり、R5は炭素数13〜30の縮合多環式炭化水素基、−O−R7、−C(=O)−O−R7、−O−C(=O)−R7、又は−C(=O)−NR8−R7であり、mは1又は2、nは0〜4の整数、pは0〜6の整数である。R7は炭素数7〜30の有機基、R8は水素原子、又は炭素数1〜6の炭化水素基である。a、b、c、d、eは、それぞれ0<a<1.0、0≦b≦0.8、0≦c≦0.8、0≦d≦0.8、0≦e≦0.8、0<b+c+d+e<1.0の範囲である。)
  4. 前記レジスト下層膜材料が、更に有機溶剤、酸発生剤、架橋剤のうちいずれか1つ以上のものを含有するものであることを特徴とする請求項1、2又は3記載のレジスト下層膜材料。
  5. 請求項1乃至4のいずれか1項に記載のフォトレジスト下層膜形成材料を被加工基板上に適用し、得られた下層膜の上にフォトレジスト組成物の層を適用し、このフォトレジスト層の所用領域に放射線を照射し、現像液で現像してフォトレジストパターンを形成し、次にドライエッチング装置でこのフォトレジストパターン層をマスクにしてフォトレジスト下層膜層及び被加工基板を加工することを特徴とするパターン形成方法。
  6. フォトレジスト組成物が、珪素原子含有ポリマーを含み、フォトレジスト層をマスクにしてフォトレジスト下層膜を加工するドライエッチングを、酸素ガス又は水素ガスを主体とするエッチングガスを用いて行う請求項5記載のパターン形成方法。
  7. 請求項1乃至4のいずれか1項に記載のフォトレジスト下層膜形成材料を被加工基板上に適用し、得られた下層膜の上に珪素原子を含有する中間層を適用し、該中間層の上にフォトレジスト組成物の層を適用し、このフォトレジスト層の所用領域に放射線を照射し、現像液で現像してフォトレジストパターンを形成し、ドライエッチング装置でこのフォトレジストパターン層をマスクにして中間膜層を加工し、フォトレジストパターン層を除去後、上記加工した中間膜層をマスクにして下層膜層、次いで被加工基板を加工することを特徴とするパターン形成方法。
  8. フォトレジスト組成物が珪素原子を含有しないポリマーを含み、中間層膜をマスクにして下層膜を加工するドライエッチングを、酸素ガス又は水素ガスを主体とするエッチングガスを用いて行う請求項7記載のパターン形成方法。
JP2006120120A 2005-11-28 2006-04-25 レジスト下層膜材料及びパターン形成方法 Active JP4666166B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006120120A JP4666166B2 (ja) 2005-11-28 2006-04-25 レジスト下層膜材料及びパターン形成方法
US11/604,337 US7510820B2 (en) 2005-11-28 2006-11-27 Resist undercoat-forming material and patterning process
KR1020060117681A KR101070548B1 (ko) 2005-11-28 2006-11-27 레지스트 하층막 재료 및 패턴 형성 방법
TW095144036A TWI381250B (zh) 2005-11-28 2006-11-28 光阻底層膜材料及圖型之形成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005341386 2005-11-28
JP2006120120A JP4666166B2 (ja) 2005-11-28 2006-04-25 レジスト下層膜材料及びパターン形成方法

Publications (2)

Publication Number Publication Date
JP2007171895A true JP2007171895A (ja) 2007-07-05
JP4666166B2 JP4666166B2 (ja) 2011-04-06

Family

ID=38087941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006120120A Active JP4666166B2 (ja) 2005-11-28 2006-04-25 レジスト下層膜材料及びパターン形成方法

Country Status (4)

Country Link
US (1) US7510820B2 (ja)
JP (1) JP4666166B2 (ja)
KR (1) KR101070548B1 (ja)
TW (1) TWI381250B (ja)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007316188A (ja) * 2006-05-24 2007-12-06 Shin Etsu Chem Co Ltd 反射防止膜材料およびパターン形成方法
JP2009020456A (ja) * 2007-07-13 2009-01-29 Shin Etsu Chem Co Ltd レジスト下層膜材料およびこれを用いたパターン形成方法
JP2009092691A (ja) * 2007-10-03 2009-04-30 Shin Etsu Chem Co Ltd レジスト下層膜材料およびこれを用いたパターン形成方法
JP2009109768A (ja) * 2007-10-30 2009-05-21 Toshiba Corp レジストパターン形成方法
JP2011053652A (ja) * 2009-06-12 2011-03-17 Rohm & Haas Electronic Materials Llc 上塗りフォトレジストと共に使用するのに好適なコーティング組成物
JP2011242751A (ja) * 2010-04-22 2011-12-01 Shin Etsu Chem Co Ltd 近赤外光吸収膜形成材料及び積層膜
US8101341B2 (en) 2009-01-15 2012-01-24 Shin-Etsu Chemical Co., Ltd. Patterning process
US8105764B2 (en) 2007-09-25 2012-01-31 Shin-Etsu Chemical Co., Ltd. Patterning process
US8129086B2 (en) * 2008-06-03 2012-03-06 Shin-Etsu Chemical Co., Ltd. Polymerizable compound, polymer, positive resist composition, and patterning process using the same
US8192921B2 (en) 2009-01-15 2012-06-05 Shin-Etsu Chemical Co., Ltd. Patterning process
US8198016B2 (en) 2008-05-15 2012-06-12 Shin-Etsu Chemical Co., Ltd. Patterning process
US8216774B2 (en) 2009-02-12 2012-07-10 Shin-Etsu Chemical Co., Ltd. Patterning process
US8323536B2 (en) 2010-11-12 2012-12-04 Shin-Etsu Chemical Co., Ltd. Near-infrared absorbing dye, near-infrared absorptive film-forming composition, and near-infrared absorptive film
US8343711B2 (en) 2009-04-24 2013-01-01 Shin-Etsu Chemical Co., Ltd. Patterning process
JP2013515972A (ja) * 2009-12-23 2013-05-09 エイゼット・エレクトロニック・マテリアルズ・ユーエスエイ・コーポレイション 縮合芳香環を含む反射防止コーティング組成物
US8450048B2 (en) 2008-10-20 2013-05-28 Shin-Etsu Chemical Co., Ltd. Method for forming resist underlayer film, patterning process using the same, and composition for the resist underlayer film
US8501384B2 (en) 2010-01-08 2013-08-06 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8574817B2 (en) 2011-10-03 2013-11-05 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8722307B2 (en) 2011-05-27 2014-05-13 International Business Machines Corporation Near-infrared absorptive layer-forming composition and multilayer film comprising near-infrared absorptive layer
US8795955B2 (en) 2010-06-21 2014-08-05 Shin-Etsu Chemical Co., Ltd. Naphthalene derivative, resist bottom layer material, resist bottom layer forming method, and patterning process
US8808966B2 (en) 2011-07-27 2014-08-19 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8841061B2 (en) 2011-10-03 2014-09-23 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8846846B2 (en) 2010-09-10 2014-09-30 Shin-Etsu Chemical Co., Ltd. Naphthalene derivative, resist bottom layer material, and patterning process
EP2813892A2 (en) 2013-06-11 2014-12-17 Shin-Etsu Chemical Co., Ltd. Photoresist underlayer film-forming composition and pattern forming process
EP2813889A2 (en) 2013-06-11 2014-12-17 Shin-Etsu Chemical Co., Ltd. Photoresist underlayer film-forming composition and pattern forming process
EP2813891A2 (en) 2013-06-11 2014-12-17 Shin-Etsu Chemical Co., Ltd. Photoresist underlayer film-forming composition and pattern forming process
EP2813890A2 (en) 2013-06-11 2014-12-17 Shin-Etsu Chemical Co., Ltd. Photoresist underlayer film-forming composition and pattern forming process
US9069245B2 (en) 2010-04-22 2015-06-30 Shin-Etsu Chemical Co., Ltd. Near-infrared absorptive layer-forming composition and multilayer film
US9122147B2 (en) 2013-02-15 2015-09-01 Shin-Estu Chemical Co., Ltd. Pattern forming process
US9146468B2 (en) 2011-10-11 2015-09-29 Shin-Etsu Chemical Co., Ltd. Resist underlayer film composition and patterning process using the same
US9658530B2 (en) 2014-07-08 2017-05-23 Shin-Etsu Chemical Co., Ltd. Process for forming multi-layer film and patterning process
US9785049B2 (en) 2016-01-12 2017-10-10 Shin-Etsu Chemical Co., Ltd. Method for forming multi-layer film and patterning process
US9899218B2 (en) 2015-06-04 2018-02-20 Shin-Etsu Chemical Co., Ltd. Resist under layer film composition and patterning process
US9984878B2 (en) 2015-05-18 2018-05-29 Shin-Etsu Chemical Co., Ltd. Resist under layer film composition and patterning process
US10047244B2 (en) 2014-08-22 2018-08-14 Shin-Etsu Chemical Co., Ltd. Method for producing a composition for forming an organic film
US10156788B2 (en) 2015-07-14 2018-12-18 Shin-Etsu Chemical Co., Ltd. Resist underlayer film composition, patterning process, and compound
JPWO2017191767A1 (ja) * 2016-05-02 2019-03-07 日産化学株式会社 特定の架橋剤を含む保護膜形成組成物及びそれを用いたパターン形成方法
EP3623867A1 (en) 2018-09-13 2020-03-18 Shin-Etsu Chemical Co., Ltd. Patterning process
US10901120B2 (en) 2017-12-05 2021-01-26 Shin-Etsu Chemical Co., Ltd. Transparent antireflective lamination film, method of forming antireflective lamination film, and eyeglass type display
EP4235302A1 (en) 2022-02-25 2023-08-30 Shin-Etsu Chemical Co., Ltd. Planarizing agent for forming organic film, composition for forming organic film, method for forming organic film, and patterning process
EP4239409A1 (en) 2022-03-03 2023-09-06 Shin-Etsu Chemical Co., Ltd. Composition for forming metal oxide film, patterning process, and method for forming metal oxide film
KR20230138442A (ko) 2021-01-26 2023-10-05 닛산 가가쿠 가부시키가이샤 지환식 탄화수소기를 갖는 폴리머를 포함하는 레지스트 하층막 형성 조성물
EP4276535A1 (en) 2022-05-10 2023-11-15 Shin-Etsu Chemical Co., Ltd. Composition for forming metal oxide film, patterning process, and method for forming metal oxide film
EP4303657A2 (en) 2022-07-08 2024-01-10 Shin-Etsu Chemical Co., Ltd. Composition for forming metal oxide film, patterning process, and method for forming metal oxide film
EP4325291A1 (en) 2022-08-10 2024-02-21 Shin-Etsu Chemical Co., Ltd. Wafer edge protection film forming method, patterning process, and composition for forming wafer edge protection film
EP4339702A1 (en) 2022-09-14 2024-03-20 Shin-Etsu Chemical Co., Ltd. Compound for forming metal-containing film, composition for forming metal-containing film, patterning process, and semiconductor photoresist material
EP4369100A1 (en) 2022-11-08 2024-05-15 Shin-Etsu Chemical Co., Ltd. Compound for forming metal-containing film, composition for forming metal-containing film, and patterning process

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7691556B2 (en) 2004-09-15 2010-04-06 Az Electronic Materials Usa Corp. Antireflective compositions for photoresists
US7655378B2 (en) * 2006-07-24 2010-02-02 Shin-Etsu Chemical Co., Ltd. Negative resist composition and patterning process using the same
JP4718390B2 (ja) * 2006-08-01 2011-07-06 信越化学工業株式会社 レジスト下層膜材料並びにそれを用いたレジスト下層膜基板およびパターン形成方法
US7745104B2 (en) * 2006-08-10 2010-06-29 Shin-Etsu Chemical Co., Ltd. Bottom resist layer composition and patterning process using the same
JP5162934B2 (ja) * 2007-03-23 2013-03-13 Jsr株式会社 上層反射防止膜形成用組成物及びレジストパターン形成方法
US20090042133A1 (en) * 2007-08-10 2009-02-12 Zhong Xiang Antireflective Coating Composition
JP4993139B2 (ja) * 2007-09-28 2012-08-08 信越化学工業株式会社 反射防止膜形成材料、反射防止膜及びこれを用いたパターン形成方法
US8221965B2 (en) * 2008-07-08 2012-07-17 Az Electronic Materials Usa Corp. Antireflective coating compositions
US8329387B2 (en) * 2008-07-08 2012-12-11 Az Electronic Materials Usa Corp. Antireflective coating compositions
US20100092894A1 (en) * 2008-10-14 2010-04-15 Weihong Liu Bottom Antireflective Coating Compositions
JP4813537B2 (ja) * 2008-11-07 2011-11-09 信越化学工業株式会社 熱酸発生剤を含有するレジスト下層材料、レジスト下層膜形成基板及びパターン形成方法
JP5407941B2 (ja) * 2009-03-09 2014-02-05 信越化学工業株式会社 ポジ型レジスト材料並びにこれを用いたパターン形成方法
WO2011040340A1 (ja) 2009-09-29 2011-04-07 Jsr株式会社 パターン形成方法及びレジスト下層膜形成用組成物
US8507192B2 (en) * 2010-02-18 2013-08-13 Az Electronic Materials Usa Corp. Antireflective compositions and methods of using same
KR101432605B1 (ko) 2010-12-16 2014-08-21 제일모직주식회사 하드마스크 조성물, 이를 사용한 패턴 형성 방법 및 상기 패턴을 포함하는 반도체 집적회로 디바이스
WO2013054702A1 (ja) * 2011-10-12 2013-04-18 Jsr株式会社 レジスト下層膜形成用組成物、その製造方法、パターン形成方法及びレジスト下層膜
US8697336B2 (en) * 2011-12-15 2014-04-15 Az Electronic Materials Usa Corp. Composition for forming a developable bottom antireflective coating
KR101599961B1 (ko) 2012-12-26 2016-03-04 제일모직 주식회사 모노머, 상기 모노머를 포함하는 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
TWI643902B (zh) * 2013-07-31 2018-12-11 Skc股份有限公司 具有高抗熱性及抗化學性的組成物及使用該組成物製備保護薄膜的方法
JP6378146B2 (ja) 2014-10-16 2018-08-22 信越化学工業株式会社 多層膜形成方法及びパターン形成方法
KR101884447B1 (ko) * 2015-07-06 2018-08-01 삼성에스디아이 주식회사 모노머, 유기막 조성물, 유기막, 및 패턴형성방법
TWI692674B (zh) * 2015-12-31 2020-05-01 日商住友電木股份有限公司 衍生自降莰二烯和馬來酸酐之聚合物及其用途
JP6718406B2 (ja) * 2017-03-31 2020-07-08 信越化学工業株式会社 レジスト下層膜材料、パターン形成方法、及びレジスト下層膜形成方法
JP7295666B2 (ja) * 2019-03-13 2023-06-21 東京応化工業株式会社 感光性樹脂組成物、感光性ドライフィルム、感光性ドライフィルムの製造方法、パターン化されたレジスト膜の製造方法、鋳型付き基板の製造方法、及びめっき造形物の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004205658A (ja) * 2002-12-24 2004-07-22 Shin Etsu Chem Co Ltd パターン形成方法及び下層膜形成材料
JP2005114921A (ja) * 2003-10-06 2005-04-28 Shin Etsu Chem Co Ltd レジスト下層膜材料およびパターン形成方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2657740B2 (ja) 1992-10-08 1997-09-24 日本電信電話株式会社 ポジ型レジスト材料
US5886119A (en) 1995-08-08 1999-03-23 Olin Microelectronic Chemicals, Inc. Terpolymers containing organosilicon side chains
JP3505990B2 (ja) 1997-01-31 2004-03-15 信越化学工業株式会社 高分子シリコーン化合物、化学増幅ポジ型レジスト材料及びパターン形成方法
TW432257B (en) 1997-01-31 2001-05-01 Shinetsu Chemical Co High molecular weight silicone compound, chemically amplified positive resist composition and patterning method
TW546542B (en) 1997-08-06 2003-08-11 Shinetsu Chemical Co High molecular weight silicone compounds, resist compositions, and patterning method
JP3533951B2 (ja) 1997-08-06 2004-06-07 信越化学工業株式会社 高分子シリコーン化合物、レジスト材料及びパターン形成方法
US6303266B1 (en) * 1998-09-24 2001-10-16 Kabushiki Kaisha Toshiba Resin useful for resist, resist composition and pattern forming process using the same
US6316165B1 (en) 1999-03-08 2001-11-13 Shipley Company, L.L.C. Planarizing antireflective coating compositions
US6610808B2 (en) * 1999-03-12 2003-08-26 Arch Specialty Chemicals, Inc. Thermally cured underlayer for lithographic application
US6268457B1 (en) 1999-06-10 2001-07-31 Allied Signal, Inc. Spin-on glass anti-reflective coatings for photolithography
JP4288776B2 (ja) 1999-08-03 2009-07-01 Jsr株式会社 反射防止膜形成組成物
JP3989149B2 (ja) * 1999-12-16 2007-10-10 富士フイルム株式会社 電子線またはx線用化学増幅系ネガ型レジスト組成物
TWI226519B (en) 2000-06-02 2005-01-11 Shinetsu Chemical Co Polymers, resist compositions and patterning process
JP4019247B2 (ja) 2000-06-02 2007-12-12 信越化学工業株式会社 高分子化合物、レジスト材料及びパターン形成方法
US6420088B1 (en) 2000-06-23 2002-07-16 International Business Machines Corporation Antireflective silicon-containing compositions as hardmask layer
JP3971088B2 (ja) 2000-06-30 2007-09-05 株式会社東芝 パターン形成方法
KR100772303B1 (ko) 2000-11-14 2007-11-02 제이에스알 가부시끼가이샤 반사방지막 형성 조성물
JP3852107B2 (ja) 2000-11-14 2006-11-29 Jsr株式会社 反射防止膜形成組成物
JP2002311586A (ja) 2001-04-18 2002-10-23 Fuji Photo Film Co Ltd 電子線又はx線用ネガ型レジスト組成物
JP4056332B2 (ja) * 2002-09-06 2008-03-05 富士フイルム株式会社 レジスト組成物
JP4120599B2 (ja) 2004-02-26 2008-07-16 Jsr株式会社 反射防止膜形成用組成物および反射防止膜
US7629106B2 (en) * 2005-11-16 2009-12-08 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process using the same
US7655378B2 (en) * 2006-07-24 2010-02-02 Shin-Etsu Chemical Co., Ltd. Negative resist composition and patterning process using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004205658A (ja) * 2002-12-24 2004-07-22 Shin Etsu Chem Co Ltd パターン形成方法及び下層膜形成材料
JP2005114921A (ja) * 2003-10-06 2005-04-28 Shin Etsu Chem Co Ltd レジスト下層膜材料およびパターン形成方法

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007316188A (ja) * 2006-05-24 2007-12-06 Shin Etsu Chem Co Ltd 反射防止膜材料およびパターン形成方法
JP2009020456A (ja) * 2007-07-13 2009-01-29 Shin Etsu Chem Co Ltd レジスト下層膜材料およびこれを用いたパターン形成方法
US8105764B2 (en) 2007-09-25 2012-01-31 Shin-Etsu Chemical Co., Ltd. Patterning process
JP2009092691A (ja) * 2007-10-03 2009-04-30 Shin Etsu Chem Co Ltd レジスト下層膜材料およびこれを用いたパターン形成方法
US8084192B2 (en) 2007-10-30 2011-12-27 Kabushiki Kaisha Toshiba Method for forming resist pattern
JP2009109768A (ja) * 2007-10-30 2009-05-21 Toshiba Corp レジストパターン形成方法
US8198016B2 (en) 2008-05-15 2012-06-12 Shin-Etsu Chemical Co., Ltd. Patterning process
US8129086B2 (en) * 2008-06-03 2012-03-06 Shin-Etsu Chemical Co., Ltd. Polymerizable compound, polymer, positive resist composition, and patterning process using the same
US8652757B2 (en) 2008-10-20 2014-02-18 Shin-Etsu Chemical Co., Ltd. Method for forming resist underlayer film, patterning process using the same, and composition for the resist underlayer film
US8450048B2 (en) 2008-10-20 2013-05-28 Shin-Etsu Chemical Co., Ltd. Method for forming resist underlayer film, patterning process using the same, and composition for the resist underlayer film
US8101341B2 (en) 2009-01-15 2012-01-24 Shin-Etsu Chemical Co., Ltd. Patterning process
US8192921B2 (en) 2009-01-15 2012-06-05 Shin-Etsu Chemical Co., Ltd. Patterning process
US8216774B2 (en) 2009-02-12 2012-07-10 Shin-Etsu Chemical Co., Ltd. Patterning process
US8343711B2 (en) 2009-04-24 2013-01-01 Shin-Etsu Chemical Co., Ltd. Patterning process
JP2011053652A (ja) * 2009-06-12 2011-03-17 Rohm & Haas Electronic Materials Llc 上塗りフォトレジストと共に使用するのに好適なコーティング組成物
JP2015108840A (ja) * 2009-06-12 2015-06-11 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC 上塗りフォトレジストと共に使用するのに好適なコーティング組成物
JP2013515972A (ja) * 2009-12-23 2013-05-09 エイゼット・エレクトロニック・マテリアルズ・ユーエスエイ・コーポレイション 縮合芳香環を含む反射防止コーティング組成物
US8501384B2 (en) 2010-01-08 2013-08-06 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
JP2011242751A (ja) * 2010-04-22 2011-12-01 Shin Etsu Chem Co Ltd 近赤外光吸収膜形成材料及び積層膜
US9069245B2 (en) 2010-04-22 2015-06-30 Shin-Etsu Chemical Co., Ltd. Near-infrared absorptive layer-forming composition and multilayer film
US8795955B2 (en) 2010-06-21 2014-08-05 Shin-Etsu Chemical Co., Ltd. Naphthalene derivative, resist bottom layer material, resist bottom layer forming method, and patterning process
US9045587B2 (en) 2010-09-10 2015-06-02 Shin-Etsu Chemical Co., Ltd. Naphthalene derivative, resist bottom layer material, and patterning process
US8846846B2 (en) 2010-09-10 2014-09-30 Shin-Etsu Chemical Co., Ltd. Naphthalene derivative, resist bottom layer material, and patterning process
US8323536B2 (en) 2010-11-12 2012-12-04 Shin-Etsu Chemical Co., Ltd. Near-infrared absorbing dye, near-infrared absorptive film-forming composition, and near-infrared absorptive film
US8722307B2 (en) 2011-05-27 2014-05-13 International Business Machines Corporation Near-infrared absorptive layer-forming composition and multilayer film comprising near-infrared absorptive layer
US8808966B2 (en) 2011-07-27 2014-08-19 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8574817B2 (en) 2011-10-03 2013-11-05 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8841061B2 (en) 2011-10-03 2014-09-23 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US9146468B2 (en) 2011-10-11 2015-09-29 Shin-Etsu Chemical Co., Ltd. Resist underlayer film composition and patterning process using the same
US9122147B2 (en) 2013-02-15 2015-09-01 Shin-Estu Chemical Co., Ltd. Pattern forming process
EP2813891A2 (en) 2013-06-11 2014-12-17 Shin-Etsu Chemical Co., Ltd. Photoresist underlayer film-forming composition and pattern forming process
EP2813890A2 (en) 2013-06-11 2014-12-17 Shin-Etsu Chemical Co., Ltd. Photoresist underlayer film-forming composition and pattern forming process
EP2813889A2 (en) 2013-06-11 2014-12-17 Shin-Etsu Chemical Co., Ltd. Photoresist underlayer film-forming composition and pattern forming process
US9136121B2 (en) 2013-06-11 2015-09-15 Shin-Etsu Chemical Co., Ltd. Underlayer film-forming composition and pattern forming process
US9136122B2 (en) 2013-06-11 2015-09-15 Shin-Etsu Chemical Co., Ltd. Underlayer film-forming composition and pattern forming process
EP2813892A2 (en) 2013-06-11 2014-12-17 Shin-Etsu Chemical Co., Ltd. Photoresist underlayer film-forming composition and pattern forming process
US9620363B2 (en) 2013-06-11 2017-04-11 Shin-Etsu Chemical Co., Ltd. Underlayer film-forming composition and pattern forming process
US10228621B2 (en) 2013-06-11 2019-03-12 Shin-Etsu Chemical Co., Ltd. Underlayer film-forming composition and pattern forming process
US9658530B2 (en) 2014-07-08 2017-05-23 Shin-Etsu Chemical Co., Ltd. Process for forming multi-layer film and patterning process
US10047244B2 (en) 2014-08-22 2018-08-14 Shin-Etsu Chemical Co., Ltd. Method for producing a composition for forming an organic film
US9984878B2 (en) 2015-05-18 2018-05-29 Shin-Etsu Chemical Co., Ltd. Resist under layer film composition and patterning process
US9899218B2 (en) 2015-06-04 2018-02-20 Shin-Etsu Chemical Co., Ltd. Resist under layer film composition and patterning process
US10156788B2 (en) 2015-07-14 2018-12-18 Shin-Etsu Chemical Co., Ltd. Resist underlayer film composition, patterning process, and compound
US9785049B2 (en) 2016-01-12 2017-10-10 Shin-Etsu Chemical Co., Ltd. Method for forming multi-layer film and patterning process
JPWO2017191767A1 (ja) * 2016-05-02 2019-03-07 日産化学株式会社 特定の架橋剤を含む保護膜形成組成物及びそれを用いたパターン形成方法
JP7486919B2 (ja) 2016-05-02 2024-05-20 日産化学株式会社 特定の架橋剤を含む保護膜形成組成物及びそれを用いたパターン形成方法
US10901120B2 (en) 2017-12-05 2021-01-26 Shin-Etsu Chemical Co., Ltd. Transparent antireflective lamination film, method of forming antireflective lamination film, and eyeglass type display
EP3623867A1 (en) 2018-09-13 2020-03-18 Shin-Etsu Chemical Co., Ltd. Patterning process
KR20230138442A (ko) 2021-01-26 2023-10-05 닛산 가가쿠 가부시키가이샤 지환식 탄화수소기를 갖는 폴리머를 포함하는 레지스트 하층막 형성 조성물
EP4235302A1 (en) 2022-02-25 2023-08-30 Shin-Etsu Chemical Co., Ltd. Planarizing agent for forming organic film, composition for forming organic film, method for forming organic film, and patterning process
EP4239409A1 (en) 2022-03-03 2023-09-06 Shin-Etsu Chemical Co., Ltd. Composition for forming metal oxide film, patterning process, and method for forming metal oxide film
EP4276535A1 (en) 2022-05-10 2023-11-15 Shin-Etsu Chemical Co., Ltd. Composition for forming metal oxide film, patterning process, and method for forming metal oxide film
EP4303657A2 (en) 2022-07-08 2024-01-10 Shin-Etsu Chemical Co., Ltd. Composition for forming metal oxide film, patterning process, and method for forming metal oxide film
EP4325291A1 (en) 2022-08-10 2024-02-21 Shin-Etsu Chemical Co., Ltd. Wafer edge protection film forming method, patterning process, and composition for forming wafer edge protection film
EP4339702A1 (en) 2022-09-14 2024-03-20 Shin-Etsu Chemical Co., Ltd. Compound for forming metal-containing film, composition for forming metal-containing film, patterning process, and semiconductor photoresist material
EP4369100A1 (en) 2022-11-08 2024-05-15 Shin-Etsu Chemical Co., Ltd. Compound for forming metal-containing film, composition for forming metal-containing film, and patterning process

Also Published As

Publication number Publication date
KR20070055972A (ko) 2007-05-31
KR101070548B1 (ko) 2011-10-05
JP4666166B2 (ja) 2011-04-06
TWI381250B (zh) 2013-01-01
US20070122740A1 (en) 2007-05-31
US7510820B2 (en) 2009-03-31
TW200732848A (en) 2007-09-01

Similar Documents

Publication Publication Date Title
JP4666166B2 (ja) レジスト下層膜材料及びパターン形成方法
JP4388429B2 (ja) レジスト下層膜材料ならびにパターン形成方法
JP4823959B2 (ja) レジスト下層膜材料及びパターン形成方法
JP4482763B2 (ja) フォトレジスト下層膜形成材料及びパターン形成方法
JP4573050B2 (ja) レジスト下層膜形成材料及びパターン形成方法
JP5741518B2 (ja) レジスト下層膜材料及びパターン形成方法
JP4013057B2 (ja) パターン形成方法及び下層膜形成材料
JP4809378B2 (ja) レジスト下層膜材料およびこれを用いたパターン形成方法
JP4496432B2 (ja) フォトレジスト下層膜形成材料及びパターン形成方法
JP3981825B2 (ja) パターン形成方法及び下層膜形成材料
JP5415982B2 (ja) レジスト下層膜材料、パターン形成方法
US7416833B2 (en) Photoresist undercoat-forming material and patterning process
JP3981030B2 (ja) レジスト下層膜材料ならびにパターン形成方法
JP4671046B2 (ja) レジスト下層膜材料ならびにパターン形成方法
KR101162802B1 (ko) 레지스트 하층막 재료 및 패턴 형성 방법
JP4069025B2 (ja) レジスト下層膜材料ならびにパターン形成方法
JP4809376B2 (ja) 反射防止膜材料およびこれを用いたパターン形成方法
JP4826805B2 (ja) フォトレジスト下層膜材料、フォトレジスト下層膜基板及びパターン形成方法
JP4220361B2 (ja) フォトレジスト下層膜形成材料およびパターン形成方法
JP2004354554A (ja) レジスト下層膜材料ならびにパターン形成方法
JP5579553B2 (ja) レジスト下層膜材料、レジスト下層膜形成方法、パターン形成方法
US7427464B2 (en) Patterning process and undercoat-forming material
JP4745298B2 (ja) レジスト下層膜材料およびこれを用いたパターン形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4666166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150