JP2007144536A - Method for manufacturing substrate - Google Patents

Method for manufacturing substrate Download PDF

Info

Publication number
JP2007144536A
JP2007144536A JP2005340160A JP2005340160A JP2007144536A JP 2007144536 A JP2007144536 A JP 2007144536A JP 2005340160 A JP2005340160 A JP 2005340160A JP 2005340160 A JP2005340160 A JP 2005340160A JP 2007144536 A JP2007144536 A JP 2007144536A
Authority
JP
Japan
Prior art keywords
polishing
substrate
less
acid
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005340160A
Other languages
Japanese (ja)
Other versions
JP4640981B2 (en
Inventor
Yoshiaki Ooshima
良暁 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2005340160A priority Critical patent/JP4640981B2/en
Publication of JP2007144536A publication Critical patent/JP2007144536A/en
Application granted granted Critical
Publication of JP4640981B2 publication Critical patent/JP4640981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a substrate, which method can remarkably reduce nano-scratches on the substrate after polishing, and further to provide a method for reducing the nano-scratches. <P>SOLUTION: The method for manufacturing the substrate comprises a step of polishing the substrate by supplying a polishing fluid composition containing colloidal silica and acid or its salt to the substrate or a polishing pad, wherein the polishing fluid composition to be supplied to the substrate or the polishing pad has an aluminum concentration of 50 ppm or less. In addition, the method for reducing the nano-scratches comprises a step of polishing the substrate by supplying the polishing fluid composition containing colloidal silica and acid or its salt to the substrate or a polishing pad, wherein the polishing fluid composition to be supplied to the substrate or the polishing pad has an aluminum concentration of 50 ppm or less. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、基板の製造方法及びナノスクラッチの低減方法に関する。   The present invention relates to a method for manufacturing a substrate and a method for reducing nanoscratches.

近年のメモリーハードディスクドライブには、高容量・小径化が求められ、記録密度を上げるために磁気ヘッドの浮上量を低下させて、単位記録面積を小さくすることが求められている。それに伴い、磁気ディスク用基板の製造工程においても研磨後に要求される表面品質は年々厳しくなってきており、ヘッドの低浮上化に対応して、表面粗さ、微小うねり、ロールオフ及びピットや突起を低減する必要があり、また、単位記録面積の減少に対応して、許容される基板面当たりのスクラッチ数は少なく、その大きさと深さはますます小さくなってきている。   Recent memory hard disk drives are required to have a high capacity and a small diameter, and in order to increase the recording density, the flying height of the magnetic head is reduced to reduce the unit recording area. Along with this, the surface quality required after polishing in the manufacturing process of magnetic disk substrates has become stricter year by year, and the surface roughness, micro waviness, roll-off, pits and protrusions correspond to the low flying height of the head. In addition, the number of scratches per substrate surface that can be tolerated is small, and the size and depth thereof are becoming smaller and smaller corresponding to the decrease in the unit recording area.

また、半導体分野においても、高集積化と高速化が進んでおり、特に高集積化では配線の微細化が要求されている。その結果、半導体基板の製造プロセスにおいては、フォトレジストの露光の際の焦点深度が浅くなり、より一層欠陥の少ない表面品質が望まれている。   Also in the semiconductor field, high integration and high speed are advancing. In particular, miniaturization of wiring is required for high integration. As a result, in the manufacturing process of a semiconductor substrate, the depth of focus at the time of exposure of a photoresist becomes shallow, and surface quality with fewer defects is desired.

このような要求に対して、メモリーハードディスク基板のピットや突起を低減することにより表面平滑性を向上させる研磨液組成物が知られている(特許文献1)。
特開2004−167670号公報
In response to such demands, a polishing composition that improves surface smoothness by reducing pits and protrusions on a memory hard disk substrate is known (Patent Document 1).
JP 2004-167670 A

しかし、メモリーハードディスク基板や半導体基板等の精密部品基板の高密度化又は高集積化に必要な表面品質を達成するためには、ピットや突起の低減の他、ナノスクラッチの低減も重要な課題となっている。   However, in order to achieve the surface quality required for high density or high integration of precision component substrates such as memory hard disk substrates and semiconductor substrates, in addition to reducing pits and protrusions, reducing nanoscratches is also an important issue. It has become.

従って、本発明の目的は、研磨後の基板のナノスクラッチを顕著に低減できる基板の製造方法及びナノスクラッチの低減方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for manufacturing a substrate and a method for reducing nanoscratches that can significantly reduce nanoscratches of a substrate after polishing.

即ち、本発明の要旨は、
[1] コロイダルシリカと、酸又はその塩とを含有する研磨液組成物を基板又は研磨パッドに供給して該基板を研磨する工程を有する基板の製造方法であって、基板又は研磨パッドに供給される際の研磨液組成物中のアルミニウム濃度が50ppm以下である基板の製造方法、及び
[2] コロイダルシリカと、酸又はその塩とを含有する研磨液組成物を基板又は研磨パッドに供給して該基板を研磨する工程を有するナノスクラッチの低減方法であって、基板又は研磨パッドに供給される際の研磨液組成物中のアルミニウム濃度が50ppm以下であるナノスクラッチの低減方法
に関する。
That is, the gist of the present invention is as follows.
[1] A substrate manufacturing method comprising a step of supplying a polishing composition containing colloidal silica and an acid or a salt thereof to a substrate or polishing pad and polishing the substrate, and supplying the substrate or polishing pad to the substrate or polishing pad A method for producing a substrate having an aluminum concentration of 50 ppm or less in the polishing liquid composition and [2] a polishing liquid composition containing colloidal silica and an acid or a salt thereof is supplied to the substrate or the polishing pad. The present invention relates to a method for reducing nanoscratches comprising a step of polishing the substrate, wherein the aluminum concentration in the polishing composition when supplied to the substrate or polishing pad is 50 ppm or less.

本発明の基板の製造方法及びナノスクラッチの低減方法により、ナノスクラッチが顕著に低減された基板を得ることができるという効果が奏される。   According to the substrate manufacturing method and the nano scratch reducing method of the present invention, it is possible to obtain a substrate in which nano scratches are remarkably reduced.

本発明の基板の製造方法は、コロイダルシリカと、酸又はその塩とを含有する研磨液組成物を基板又は研磨パッドに供給して該基板を研磨する工程を有する基板の製造方法であって、基板又は研磨パッドに供給される際の研磨液組成物中のアルミニウム(Al)濃度が50ppm以下であることを特徴とする。基板又は研磨パッドに供給される際の研磨液組成物中のAl濃度を特定値以下に調節することは、従来全く考慮されていなかったが、驚くべきことに、上記のような特徴を有する本発明の基板の製造方法を用いることにより、ナノスクラッチが顕著に低減された基板を得ることができるという優れた効果が奏される。その作用機構については明らかではないが、Al濃度を特定値以下に調節することによりコロイダルシリカの凝集が抑えられ、それによりナノスクラッチが低減されると推定される。   The method for producing a substrate of the present invention is a method for producing a substrate comprising a step of supplying a polishing composition containing colloidal silica and an acid or a salt thereof to the substrate or a polishing pad and polishing the substrate, The aluminum (Al) concentration in the polishing composition when supplied to the substrate or polishing pad is 50 ppm or less. Adjusting the Al concentration in the polishing composition when supplied to the substrate or polishing pad to a specific value or less has not been considered at all in the past, but surprisingly, the book having the above-described features By using the substrate manufacturing method of the invention, an excellent effect is obtained that a substrate with significantly reduced nanoscratches can be obtained. Although the mechanism of action is not clear, it is presumed that the aggregation of colloidal silica is suppressed by adjusting the Al concentration below a specific value, thereby reducing nanoscratches.

本発明において、Alの濃度は、被験試料をフッ化水素酸、硝酸等で溶解し、シリカ等のAl定量に妨害となる元素を除去した後、4重極型誘導結合プラズマ質量分析装置(ICP質量分析装置)にて定量を行うことで求めることができる。ICP質量分析装置としては、商品名:SPQ−8000(セイコーインスツルメンツ(株)製)等が挙げられる。   In the present invention, the concentration of Al is determined by dissolving a test sample with hydrofluoric acid, nitric acid, etc., and removing elements such as silica that interfere with Al determination, and then inductively coupled plasma mass spectrometer (ICP). It can be obtained by performing quantification with a mass spectrometer. Examples of the ICP mass spectrometer include trade name: SPQ-8000 (manufactured by Seiko Instruments Inc.).

また、本発明におけるナノスクラッチとは、深さが10nm以上、100nm未満、幅が5nm以上500nm未満、長さが100μm以上の基板表面の微細な傷である。ナノスクラッチは、例えば研磨液組成物や環境に由来する粗大粒子又は研磨中に生成する研磨粒子の凝集体により生じると推測される。ナノスクラッチは、原子間力顕微鏡(AFM)で検出することができ、後述の実施例に記載の目視検査装置である「MicroMax」による測定でナノスクラッチ本数として定量評価できる。   The nano scratch in the present invention is a fine scratch on the substrate surface having a depth of 10 nm or more and less than 100 nm, a width of 5 nm or more and less than 500 nm, and a length of 100 μm or more. Nano scratches are presumed to be caused by, for example, coarse particles derived from the polishing composition or the environment, or aggregates of abrasive particles generated during polishing. Nanoscratches can be detected with an atomic force microscope (AFM), and can be quantitatively evaluated as the number of nanoscratches by measurement with “MicroMax” which is a visual inspection apparatus described in Examples described later.

本発明で使用される研磨液組成物に含有されるコロイダルシリカは、珪酸ナトリウムや珪酸カリウム等の珪酸塩を原料とする、所謂珪酸塩法により製造されたコロイダルシリカである。かかるコロイダルシリカの態様としては、特に限定されないが、例えば、ゾル又はゲル状態である。
珪酸塩法としては、珪酸塩を原料とし、縮合反応させシリカ粒子を生成させる方法(水ガラス法)等が挙げられる。
本発明においては、かかる珪酸塩法により製造されたコロイダルシリカを用いることで、従来のアルコキシシラン法で得られるコロイダルシリカや乾式法で得られるヒュームドシリカを使用する場合に比べて、ナノスクラッチを顕著に低減することができるという利点がある。
The colloidal silica contained in the polishing composition used in the present invention is colloidal silica produced by a so-called silicate method using a silicate such as sodium silicate or potassium silicate as a raw material. Although it does not specifically limit as an aspect of this colloidal silica, For example, it is a sol or gel state.
Examples of the silicate method include a method (water glass method) in which silicate is used as a raw material and a condensation reaction is performed to produce silica particles.
In the present invention, by using colloidal silica produced by such a silicate method, compared to the case of using colloidal silica obtained by a conventional alkoxysilane method or fumed silica obtained by a dry method, nanoscratches can be used. There is an advantage that it can be remarkably reduced.

コロイダルシリカの一次粒子の平均粒径は、研磨速度を向上させる観点から、好ましくは1nm以上、より好ましくは2nm以上、さらに好ましくは5nm以上であり、ナノスクラッチを低減する観点から、好ましくは200nm以下、より好ましくは150nm以下、さらに好ましくは120nm以下、さらにより好ましくは100nm以下である。該一次粒子の平均粒径は、好ましくは1〜200nm、より好ましくは1〜150nm、さらに好ましくは2〜120nm、さらにより好ましくは5〜100nmである。なお、該シリカ粒子の粒径は透過型電子顕微鏡で観察して(好適には3000倍〜500000倍)画像解析を行い、2軸平均径を測定することにより求めることができる。また、平均粒径は、小粒径側からの積算粒径分布(個数基準)が50%となる粒径(D50)とする。   The average particle size of the primary particles of colloidal silica is preferably 1 nm or more, more preferably 2 nm or more, further preferably 5 nm or more from the viewpoint of improving the polishing rate, and from the viewpoint of reducing nanoscratches, preferably 200 nm or less. More preferably, it is 150 nm or less, More preferably, it is 120 nm or less, More preferably, it is 100 nm or less. The average particle size of the primary particles is preferably 1 to 200 nm, more preferably 1 to 150 nm, still more preferably 2 to 120 nm, and even more preferably 5 to 100 nm. The particle size of the silica particles can be determined by observing with a transmission electron microscope (preferably 3000 times to 500000 times) and performing image analysis to measure the biaxial average diameter. Further, the average particle diameter is a particle diameter (D50) at which the cumulative particle diameter distribution (number basis) from the small particle diameter side is 50%.

研磨液組成物中におけるコロイダルシリカの含有量は、研磨速度を向上させる観点から、好ましくは0.5重量%以上、より好ましくは1重量%以上、さらに好ましくは3重量%以上、さらにより好ましくは5重量%以上であり、また、表面品質を向上させる観点、及び経済性の観点から、好ましくは20重量%以下、より好ましくは15重量%以下、さらに好ましくは13重量%以下、さらにより好ましくは10重量%以下である。すなわち、該含有量は、好ましくは0.5〜20重量%、より好ましくは1〜15重量%、さらに好ましくは3〜13重量%、さらにより好ましくは5〜10重量%である。   The content of colloidal silica in the polishing composition is preferably 0.5% by weight or more, more preferably 1% by weight or more, still more preferably 3% by weight or more, and still more preferably from the viewpoint of improving the polishing rate. From the viewpoint of improving surface quality and economy, it is preferably 20% by weight or less, more preferably 15% by weight or less, still more preferably 13% by weight or less, and even more preferably. 10% by weight or less. That is, the content is preferably 0.5 to 20% by weight, more preferably 1 to 15% by weight, still more preferably 3 to 13% by weight, and even more preferably 5 to 10% by weight.

本発明で使用される研磨液組成物に含有される酸としては、pK1が7以下の化合物が好ましく、ナノスクラッチを低減する観点から、より好ましくはpK1が3以下、さらに好ましくは2.5以下、さらにより好ましくは2以下、さらにより好ましくは1.5以下、さらにより好ましくはpK1で表せない程の強い酸性を示す化合物が望ましい。その例としては、硝酸、硫酸、亜硫酸、過硫酸、塩酸、過塩素酸、リン酸、ホスホン酸、ホスフィン酸、ピロリン酸、シュウ酸、アミド硫酸、アスパラギン酸、2−アミノエチルホスホン酸、グルタミン酸、ピコリン酸等が挙げられる。中でも、ナノスクラッチを低減する観点から、硝酸、硫酸、塩酸及び過塩素酸が好ましい。これらの酸は単独で又は2種以上を混合して用いてもよい。ここで、pK1とは有機化合物または無機化合物の酸解離定数(25℃)の逆数の対数値を通常pKaと表し、そのうちの第一酸解離定数の逆数の対数値をpK1としている。各化合物のpK1は例えば改訂4版化学便覧(基礎編)II、pp316−325(日本化学会編)等に記載されている。なお、本発明においては、ナノスクラッチの低減と研磨速度の向上の両立の観点から、pK1が2以下の酸を用いることが特に好ましい。   The acid contained in the polishing composition used in the present invention is preferably a compound having a pK1 of 7 or less, and more preferably has a pK1 of 3 or less, more preferably 2.5 or less, from the viewpoint of reducing nanoscratches. Even more preferably, it is 2 or less, still more preferably 1.5 or less, and still more preferably a compound exhibiting strong acidity that cannot be expressed by pK1. Examples include nitric acid, sulfuric acid, sulfurous acid, persulfuric acid, hydrochloric acid, perchloric acid, phosphoric acid, phosphonic acid, phosphinic acid, pyrophosphoric acid, oxalic acid, amidosulfuric acid, aspartic acid, 2-aminoethylphosphonic acid, glutamic acid, Examples include picolinic acid. Among these, nitric acid, sulfuric acid, hydrochloric acid, and perchloric acid are preferable from the viewpoint of reducing nanoscratches. These acids may be used alone or in admixture of two or more. Here, pK1 represents the logarithm of the reciprocal of the acid dissociation constant (25 ° C.) of an organic compound or inorganic compound, usually pKa, and the logarithm of the reciprocal of the first acid dissociation constant is pK1. The pK1 of each compound is described in, for example, the revised 4th edition, Chemical Handbook (Basic Edition) II, pp316-325 (Edited by Chemical Society of Japan). In the present invention, it is particularly preferable to use an acid having a pK1 of 2 or less from the viewpoint of achieving both reduction of nanoscratches and improvement of the polishing rate.

また、本発明においては、前記酸の塩を酸のかわりに使用することができる。塩の対イオンとしては、イオン化傾向がNiより大きい金属元素の陽イオン、アンモニウムイオン等が挙げられ、中でも、ナトリウムイオン、ニッケルイオン、カリウムイオン、鉄イオン、アンモニウムイオン等が好ましい。   In the present invention, the acid salt may be used in place of the acid. Examples of the counter ion of the salt include a cation of a metal element having an ionization tendency larger than that of Ni, an ammonium ion, and the like. Among them, sodium ion, nickel ion, potassium ion, iron ion, ammonium ion, and the like are preferable.

酸又はその塩の研磨液組成物中における含有量は、充分な研磨速度を発揮する観点および表面品質を向上させる観点から、0.0001〜5重量%が好ましく、より好ましくは0.0003〜3重量%であり、さらに好ましくは0.001〜2重量%、さらにより好ましくは0.0025〜1重量%である。   The content of the acid or its salt in the polishing composition is preferably 0.0001 to 5% by weight, more preferably 0.0003 to 3% from the viewpoint of exhibiting a sufficient polishing rate and improving the surface quality. % By weight, more preferably 0.001 to 2% by weight, still more preferably 0.0025 to 1% by weight.

本発明で使用される研磨液組成物は、媒体として水を含有する。研磨液組成物中における水の含有量は、被研磨物を効率よく研磨する観点から、好ましくは75重量%以上であり、より好ましくは82重量%以上であり、さらに好ましくは85重量%以上であり、さらにより好ましくは89重量%以上であり、また、好ましくは99.4重量%以下であり、より好ましくは98.9重量%以下であり、さらに好ましくは96.9重量%以下であり、さらにより好ましくは94.9重量%以下である。すなわち、該含有量は、好ましくは75〜99.4重量%であり、より好ましくは82〜98.9重量%であり、さらに好ましくは85〜96.9重量%であり、さらにより好ましくは89〜94.9重量%である。   The polishing composition used in the present invention contains water as a medium. The content of water in the polishing composition is preferably 75% by weight or more, more preferably 82% by weight or more, and still more preferably 85% by weight or more from the viewpoint of efficiently polishing the object to be polished. More preferably 89% by weight or more, preferably 99.4% by weight or less, more preferably 98.9% by weight or less, still more preferably 96.9% by weight or less, Even more preferably, it is 94.9% by weight or less. That is, the content is preferably 75 to 99.4% by weight, more preferably 82 to 98.9% by weight, still more preferably 85 to 96.9% by weight, and even more preferably 89. ~ 94.9% by weight.

本発明で使用される研磨液組成物は、必要に応じて、さらに過酸化水素、過ヨウ素酸塩、過マンガン酸塩等の酸化剤、ラジカル捕捉剤、包摂化合物、防錆剤、消泡剤、抗菌剤等を添加剤として含有することができる。これらの添加剤の含有量としては、ナノスクラッチ低減の観点から、研磨液組成物中、0.001〜5重量%が好ましく、0.01〜1重量%がより好ましい。   The polishing liquid composition used in the present invention may further include, if necessary, oxidizing agents such as hydrogen peroxide, periodate, and permanganate, radical scavengers, inclusion compounds, rust inhibitors, and antifoaming agents. Further, an antibacterial agent or the like can be contained as an additive. The content of these additives is preferably 0.001 to 5% by weight, more preferably 0.01 to 1% by weight in the polishing composition from the viewpoint of reducing nanoscratches.

本発明で使用される研磨液組成物は、コロイダルシリカ、酸又はその塩、水、及び必要であれば前記の添加剤等の他の成分を公知の方法で混合することにより調製することができる。尚、前記の研磨液組成物中の各成分の濃度は、該組成物製造時の濃度及び使用時の濃度のいずれであってもよい。通常、濃縮液として研磨液組成物は製造され、これを使用時に希釈して用いる場合が多い。   The polishing composition used in the present invention can be prepared by mixing colloidal silica, an acid or a salt thereof, water, and, if necessary, other components such as the aforementioned additives by a known method. . The concentration of each component in the polishing composition may be either the concentration at the time of manufacturing the composition or the concentration at the time of use. Usually, a polishing composition is produced as a concentrated liquid, and it is often used after being diluted at the time of use.

前記の研磨液組成物を用いた基板の研磨方法としては、例えば、研磨液組成物を希釈し、次いで不織布状の有機高分子系研磨パッド等を貼り付けた研磨盤で基板を挟み込み、基板又は研磨パッドに前記希釈された研磨液組成物をポンプ等で汲み上げ配管を通して供給し、一定圧力を加えながら研磨盤や基板を動かすことにより研磨する方法等が挙げられる。   As a method for polishing a substrate using the above polishing liquid composition, for example, the polishing liquid composition is diluted, and then the substrate is sandwiched between polishing boards on which a nonwoven organic polymer polishing pad or the like is attached. Examples include a method in which the diluted polishing liquid composition is pumped up to a polishing pad by a pump or the like and supplied through a piping, and polishing is performed by moving a polishing plate or a substrate while applying a constant pressure.

前記の研磨方法において、基板又は研磨パッドに供給される際の研磨液組成物中のAl濃度は、ナノスクラッチを低減する観点から、50ppm以下であり、好ましくは40ppm以下、より好ましくは30ppm以下、さらに好ましくは25ppm以下、さらにより好ましくは20ppm以下、さらにより好ましくは15ppm以下である。   In the polishing method, the Al concentration in the polishing composition when supplied to the substrate or polishing pad is 50 ppm or less, preferably 40 ppm or less, more preferably 30 ppm or less, from the viewpoint of reducing nanoscratches. More preferably, it is 25 ppm or less, still more preferably 20 ppm or less, and still more preferably 15 ppm or less.

したがって、前記の研磨方法は、前記の研磨液組成物を基板又は研磨パッドに供給して該基板を研磨する方法であって、基板又は研磨パッドに供給される際の研磨液組成物中のアルミニウムの濃度が50ppm以下である研磨方法である。かかる方法を用いることにより、ナノスクラッチの発生をより効果的に抑制し、かつ研磨速度を向上させることができる。即ち、前記の研磨方法はまた、基板のナノスクラッチを低減する方法であり、具体的には、前記の研磨液組成物を基板又は研磨パッドに供給して該基板を研磨する工程を有するナノスクラッチの低減方法であって、基板又は研磨パッドに供給される際の研磨液組成物中のアルミニウム濃度が50ppm以下であるナノスクラッチの低減方法である。   Therefore, the polishing method is a method of polishing the substrate by supplying the polishing composition to the substrate or the polishing pad, and the aluminum in the polishing composition when supplied to the substrate or the polishing pad. Is a polishing method having a concentration of 50 ppm or less. By using such a method, it is possible to more effectively suppress the generation of nano scratches and improve the polishing rate. That is, the polishing method is also a method for reducing nano scratches on a substrate, and specifically, a nano scratch having a step of polishing the substrate by supplying the polishing composition to the substrate or polishing pad. This is a method for reducing nanoscratches in which the aluminum concentration in the polishing composition when supplied to the substrate or polishing pad is 50 ppm or less.

ナノスクラッチを低減する観点から、基板又は研磨パッドに供給される際の研磨液組成物中のコロイダルシリカに対するアルミニウムの含有量比(アルミニウム重量/コロイダルシリカ重量)は、5/10000以下であることが好ましく、より好ましくは4/10000以下、さらに好ましくは3/10000以下、さらにより好ましくは2.5/10000以下、さらにより好ましくは2/10000以下、さらにより好ましくは1.5/10000以下である。   From the viewpoint of reducing nanoscratches, the aluminum content ratio (aluminum weight / colloidal silica weight) to colloidal silica in the polishing composition when supplied to the substrate or polishing pad is 5/10000 or less. Preferably, it is 4/10000 or less, more preferably 3/10000 or less, even more preferably 2.5 / 10000 or less, even more preferably 2/10000 or less, and even more preferably 1.5 / 10000 or less. .

基板又は研磨パッドに供給される際の研磨液組成物中のAl濃度を特定値以下に低減するための手段としては、前記のAl濃度及び含有量比を満たすように予め調製された研磨液組成物を用いる手段や、 研磨液組成物をイオン交換樹脂で処理する手段等が挙げられる。なかでも、操作性の観点から、後述のように研磨液組成物の製造設備及び供給配管等からのAlの汚染を防止した上で、前記のAl濃度及び含有量比を満たすように予め調製された研磨液組成物を用いることが好ましい。   As a means for reducing the Al concentration in the polishing composition when supplied to the substrate or polishing pad to a specific value or less, a polishing composition prepared in advance so as to satisfy the Al concentration and the content ratio. And means for treating the polishing composition with an ion exchange resin. Among them, from the viewpoint of operability, it is prepared in advance so as to satisfy the above Al concentration and content ratio after preventing contamination of Al from the manufacturing equipment and supply piping of the polishing composition as described later. It is preferable to use a polishing composition.

Al濃度が特定値以下に低減された研磨液組成物を調製するためには、研磨液組成物を調製するそれぞれの原料のAl含有量を低減することが好ましい。例えば、Al含有量が低濃度に管理された原料を選定することが好ましく、また研磨液組成物の製造においては、各原料中のAlの除去、製造後の精製そして製造設備からの汚染防止対策等が講じられることが好ましい。例えば、研磨材として使用されるコロイダルシリカの原料となるシリカカレット等の製造においても、原石の選定、精製が十分なものであることが好ましく、製造装置、設備に至るまでAlの汚染を防止する種々の対策が講じられたものであることが好ましい。   In order to prepare a polishing liquid composition in which the Al concentration is reduced to a specific value or less, it is preferable to reduce the Al content of each raw material for preparing the polishing liquid composition. For example, it is preferable to select a raw material whose Al content is controlled at a low concentration, and in the production of polishing composition, removal of Al in each raw material, purification after production, and measures for preventing contamination from production equipment Etc. are preferably taken. For example, in the production of silica cullet as a raw material for colloidal silica used as an abrasive, it is preferable that the selection and purification of the raw stone is sufficient, and it prevents Al contamination up to the production equipment and facilities. It is preferable that various measures are taken.

Alは、研磨液組成物を構成する後述のコロイダルシリカや酸又はその塩等の添加剤、水の各成分から持ち込まれたり、研磨液組成物を製造する装置等から持ち込まれる。そのために、本発明で使用される研磨液組成物においては、Alの含有量の少ない成分を用いたり、研磨液組成物を製造する装置は、Alを含む部材を使用しないようにして、研磨液組成物中のAlの含有量が前記範囲を越えないようにすることが好ましい。たとえば、研磨液組成物の調製、保管、又は輸送のための容器からの金属元素、特にAlの持ち込みに注意を払う必要があり、樹脂容器、又はポリプロピレン、ポリエチレン等の樹脂でコーティング若しくは内袋された金属製容器を使用することが好ましい。   Al is brought in from an additive such as colloidal silica or acid or salt thereof described later constituting the polishing liquid composition, water, or from an apparatus for producing the polishing liquid composition. Therefore, in the polishing composition used in the present invention, a component containing a small amount of Al or an apparatus for producing a polishing composition is used so that a member containing Al is not used. It is preferable that the Al content in the composition does not exceed the above range. For example, it is necessary to pay attention to bringing metal elements, particularly Al, from containers for the preparation, storage, or transportation of polishing liquid compositions, and they are coated or encased in resin containers or resins such as polypropylene and polyethylene. It is preferable to use a metal container.

Alは、研磨液組成物を供給する配管等からも持ち込まれ得るため、基板又は研磨パッドに供給される際の研磨液組成物中のAl濃度を特定値以下に低減するためには、研磨液組成物を供給する配管等についても上記と同様の対策を講じることが好ましい。具体的には、研磨液組成物を希釈するための容器やタンク、配管、ポンプ等の研磨液組成物と接触する部材は、金属元素、特にAlの混入を避けるために、テフロン(登録商標:ポリテトラフルオロエチレン)等の樹脂でコートされた金属、あるいはポリシリコン等の樹脂製の部材を使用することが好ましい。   Since Al can also be brought in from a pipe or the like that supplies the polishing liquid composition, in order to reduce the Al concentration in the polishing liquid composition when supplied to the substrate or polishing pad to a specific value or less, the polishing liquid It is preferable to take the same measures as described above for the piping for supplying the composition. Specifically, the member in contact with the polishing liquid composition such as a container, tank, pipe, or pump for diluting the polishing liquid composition is made of Teflon (registered trademark: It is preferable to use a metal coated with a resin such as polytetrafluoroethylene) or a resin member such as polysilicon.

本発明の基板の製造方法は、前記研磨液組成物を用いた研磨工程を有する。研磨工程としては、前記研磨方法を用いるものであればよく、具体的には、コロイダルシリカと、酸又はその塩とを含有する前記の研磨液組成物を基板又は研磨パッドに供給して該基板を研磨する工程であって、基板又は研磨パッドに供給される際の研磨液組成物中のアルミニウム濃度が50ppm以下である工程が挙げられる。   The manufacturing method of the board | substrate of this invention has a grinding | polishing process using the said polishing liquid composition. Any polishing process may be used as long as the polishing method is used. Specifically, the polishing composition containing colloidal silica and an acid or a salt thereof is supplied to a substrate or a polishing pad, and then the substrate is polished. And a step in which the aluminum concentration in the polishing liquid composition when supplied to the substrate or polishing pad is 50 ppm or less.

本発明の基板の製造方法では、前記研磨工程は、複数の研磨工程の中でも第2工程以降に行われるのが好ましく、最終研磨工程に行われるのが特に好ましい。中でも、基板の腐食量が少なく、表面欠陥が発生しにくい観点から、本発明の基板の製造方法においては、研磨工程の中でも前記研磨液組成物を表面研磨の仕上げ工程に用いることが好ましい。   In the substrate manufacturing method of the present invention, the polishing step is preferably performed after the second step among the plurality of polishing steps, and particularly preferably performed in the final polishing step. Among these, from the viewpoint that the amount of corrosion of the substrate is small and surface defects are less likely to occur, it is preferable to use the polishing composition in the polishing step in the polishing step in the substrate manufacturing method of the present invention.

前記の研磨液組成物を用いた研磨工程における研磨廃液、即ち、研磨機より排出された直後の研磨液組成物のpHは、研磨速度向上及びナノスクラッチの低減の観点から、好ましくは4以下、より好ましくは3以下、さらに好ましくは2.5以下、さらにより好ましくは2以下である。また、研磨機腐食防止の観点から、該pHは、好ましくは1以上、より好ましくは1.2以上、さらに好ましくは1.4以上である。即ち、該pHは、好ましくは1〜4、より好ましくは1.2〜3、さらに好ましくは1.4〜2.5、さらにより好ましくは1.4〜2である。研磨廃液のpHは、例えば、研磨液組成物の供給流量を増減させたり、研磨液組成物中の酸の量や種類を調整することにより、上記の範囲内に調整され得る。   The polishing waste liquid in the polishing step using the polishing liquid composition, that is, the pH of the polishing liquid composition immediately after being discharged from the polishing machine, is preferably 4 or less from the viewpoint of improving the polishing rate and reducing nanoscratches. More preferably, it is 3 or less, More preferably, it is 2.5 or less, More preferably, it is 2 or less. Further, from the viewpoint of preventing corrosion of the polishing machine, the pH is preferably 1 or more, more preferably 1.2 or more, and still more preferably 1.4 or more. That is, the pH is preferably 1 to 4, more preferably 1.2 to 3, still more preferably 1.4 to 2.5, and still more preferably 1.4 to 2. The pH of the polishing waste liquid can be adjusted within the above range by, for example, increasing or decreasing the supply flow rate of the polishing liquid composition, or adjusting the amount and type of acid in the polishing liquid composition.

本発明の基板の製造方法が対象とする被研磨物(基板)の材質としては、例えば、シリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン等の金属又は半金属およびこれらの合金、及びガラス、ガラス状カーボン、アモルファスカーボン等のガラス状物質、アルミナ、二酸化珪素、窒化珪素、窒化タンタル、炭化チタン等のセラミック材料、ポリイミド樹脂等の樹脂等が挙げられる。これらの中では、アルミニウム、ニッケル、タングステン、銅等の金属及びこれらの金属を主成分とする合金が被研磨物であるか、又は半導体素子等の半導体基板のような、それらが金属を含んだ被研磨物であるのが好ましく、Ni−Pメッキされたアルミニウム合金基板がより好ましい。   Examples of the material of the object to be polished (substrate) targeted by the substrate manufacturing method of the present invention include metals, metalloids such as silicon, aluminum, nickel, tungsten, copper, tantalum, and titanium, alloys thereof, and glass. And glassy substances such as glassy carbon and amorphous carbon, ceramic materials such as alumina, silicon dioxide, silicon nitride, tantalum nitride, and titanium carbide, and resins such as polyimide resin. Among these, metals such as aluminum, nickel, tungsten, and copper and alloys based on these metals are objects to be polished, or they include metals such as semiconductor substrates such as semiconductor elements. An object to be polished is preferable, and an Ni-P plated aluminum alloy substrate is more preferable.

被研磨物の形状には特に制限がなく、例えば、ディスク状、プレート状、スラブ状、プリズム状等の平面部を有する形状や、レンズ等の曲面部を有する形状が前記の研磨液組成物を用いた研磨の対象となる。その中でも、前記の研磨液組成物は、ディスク状の被研磨物の研磨に特に優れている。   The shape of the object to be polished is not particularly limited. For example, the shape having a flat portion such as a disk shape, a plate shape, a slab shape, or a prism shape, or a shape having a curved surface portion such as a lens can be used for the polishing liquid composition. It becomes the object of polishing used. Among these, the polishing liquid composition is particularly excellent for polishing a disk-shaped workpiece.

本発明で使用される研磨パッドとしては、特に制限はなく、スエードタイプ、不織布タイプ、ポリウレタン独立発泡タイプ、及びこれらを積層した二層タイプ等の研磨パッドを使用することができる。   There is no restriction | limiting in particular as a polishing pad used by this invention, Polishing pads, such as a suede type, a nonwoven fabric type, a polyurethane independent foam type, and the two-layer type which laminated | stacked these, can be used.

本発明の基板の製造方法は、精密部品基板の製造に好適に用いられる。たとえば、メモリーハードディスク基板等の磁気ディスク、光ディスク、光磁気ディスク等の磁気記録媒体の基板、フォトマスク基板、光学レンズ、光学ミラー、光学プリズム、半導体基板等の精密部品基板の研磨に適している。中でも、本発明の基板の製造方法は、高密度化、高集積化において重要なナノスクラッチを顕著に低減し得るものであるため、メモリーハードディスク基板等の磁気ディスク基板や半導体基板の研磨により好適である。   The substrate manufacturing method of the present invention is suitably used for manufacturing precision component substrates. For example, it is suitable for polishing a magnetic disk medium such as a memory hard disk substrate, a magnetic recording medium substrate such as an optical disk and a magneto-optical disk, a precision component substrate such as a photomask substrate, an optical lens, an optical mirror, an optical prism, and a semiconductor substrate. Among them, the substrate manufacturing method of the present invention can remarkably reduce nano scratches that are important for higher density and higher integration, and is therefore more suitable for polishing magnetic disk substrates such as memory hard disk substrates and semiconductor substrates. is there.

本発明の製造方法により製造された基板はナノスクラッチが極めて少ないものである。従って、該基板が、たとえば、メモリーハードディスク基板である場合には、記録密度90G/inch2 、さらには120G/inch2 のものにも対応することができ、半導体基板である場合には、配線幅65nm、さらには45nmのものにも対応することができる。 The substrate manufactured by the manufacturing method of the present invention has very few nano scratches. Accordingly, when the substrate is, for example, a memory hard disk substrate, it can also cope with a recording density of 90 G / inch 2 and further 120 G / inch 2 , and when it is a semiconductor substrate, the wiring width 65 nm and even 45 nm can be supported.

実施例1〜5、比較例1〜4
以下に記載するように、Al濃度の異なる研磨液組成物を調製し、該研磨液組成物を用いて被研磨物を研磨することにより、ナノスクラッチを評価した。
Examples 1-5, Comparative Examples 1-4
As described below, nano scratches were evaluated by preparing polishing liquid compositions having different Al concentrations and polishing the object to be polished using the polishing liquid composition.

《研磨液組成物の調製》
表1に示すコロイダルシリカスラリーA〜D、硫酸(和光純薬工業社製 特級)、硫酸アルミニウム(和光純薬工業社製 特級)及びイオン交換水を表2に示す組成となるように、10L容のポリエチレン製容器に添加・混合し、Al濃度の異なる研磨液組成物を得た。また、研磨液組成物を供給する際の配管には、タイゴン(登録商標)製のものを用いた。
<< Preparation of polishing liquid composition >>
Colloidal silica slurries A to D shown in Table 1, sulfuric acid (special grade manufactured by Wako Pure Chemical Industries, Ltd.), aluminum sulfate (special grade manufactured by Wako Pure Chemical Industries, Ltd.) and ion-exchanged water are prepared in a volume of 10 L so as to have the composition shown in Table 2. Were added to and mixed with a polyethylene container to obtain polishing liquid compositions having different Al concentrations. In addition, a pipe made by Tygon (registered trademark) was used as a pipe for supplying the polishing composition.

《被研磨物》
被研磨物として、Ni−Pメッキされたアルミニウム基板を、アルミナ研磨材を含有する研磨液組成物であらかじめ粗研磨し、Raを1nmとした、厚さ1.27mmのアルミニウム合金基板(外周95mmφ、内周25mm)(以下、Ni−Pメッキした被研磨基板)を用いた。
《Polished object》
As an object to be polished, a Ni-P plated aluminum substrate was coarsely polished in advance with a polishing liquid composition containing an alumina abrasive, and Ra was 1 nm, and an aluminum alloy substrate (outer diameter 95 mmφ, Inner circumference 25 mm) (hereinafter, Ni-P plated substrate to be polished) was used.

《研磨条件》
・研磨試験機:スピードファム社製、両面9B研磨機
・研磨布:フジボウ社製、仕上げ研磨用パッド(厚さ0.9mm、開孔径30μm、ショアA硬度60°)
・定盤回転数:32.5r/min
・研磨液組成物供給量:100mL/min
・研磨時間:4分
・研磨荷重:7.8kPa
・投入した基板の枚数:10枚
<Polishing conditions>
・ Polishing tester: Speed Fam Co., double-sided 9B polishing machine ・ Polishing cloth: Fujibow Co., Ltd. polishing pad (thickness 0.9 mm, aperture diameter 30 μm, Shore A hardness 60 °)
・ Surface plate speed: 32.5r / min
Polishing liquid composition supply amount: 100 mL / min
Polishing time: 4 minutes Polishing load: 7.8 kPa
・ Number of loaded substrates: 10

《ナノスクラッチの測定条件》
・測定機器:VISION PSYTEC製、「MicroMax VMX−2100CSP」
・光源:2Sλ(250W)及び3Pλ(250W)共に100%
・チルト角:−6°
・倍率:最大(視野範囲:全面積の120分の1)
・観察領域:全面積(外周95mmφで内周25mmの基板)
・アイリス:notch
・評価:研磨試験機に投入した基板の中から、無作為に4枚を選択し、その4枚の基板の各々両面にあるナノスクラッチ数(本)の合計を8で除して、基板面当たりのナノスクラッチ数を算出した。
《Nano scratch measurement conditions》
・ Measuring equipment: “MicroMax VMX-2100CSP” manufactured by VISION PSYTEC
-Light source: 100% for both 2Sλ (250W) and 3Pλ (250W)
-Tilt angle: -6 °
・ Magnification: Maximum (Field range: 1/120 of the total area)
・ Observation area: total area (substrate with outer circumference 95mmφ and inner circumference 25mm)
・ Iris: notch
・ Evaluation: 4 substrates were selected at random from the substrates put into the polishing tester, and the total number of nano scratches (both) on both surfaces of each of the 4 substrates was divided by 8. The number of nano scratches per unit was calculated.

《Alの定量方法》
研磨液組成物及び基板又は研磨パッドへの供給直前で採取された研磨液組成物中のAl濃度は、研磨液組成物をフッ化水素酸、硝酸で溶解し、シリカ等のAl定量の妨害となる元素を除去した後、4重極型誘導結合プラズマ質量分析装置(ICP質量分析装置:セイコーインスツルメンツ(株)製、商品名:SPQ−8000)にて定量して求めた。
《Quantitative method of Al》
The Al concentration in the polishing liquid composition and the polishing liquid composition collected immediately before supply to the substrate or the polishing pad is obtained by dissolving the polishing liquid composition with hydrofluoric acid and nitric acid, and hindering the determination of Al such as silica. After the element was removed, it was quantitatively determined using a quadrupole type inductively coupled plasma mass spectrometer (ICP mass spectrometer: Seiko Instruments Inc., trade name: SPQ-8000).

Figure 2007144536
Figure 2007144536

Figure 2007144536
Figure 2007144536

表2に示される通り、実施例1〜5で得られた基板は、Al濃度が高い研磨液組成物を用いた比較例1〜4で得られた基板に比べ、ナノスクラッチが少ないものであることがわかる。
また、研磨液組成物中のコロイダルシリカに対するアルミニウムの含有量比が小さいと、ナノスクラッチが少なくなる傾向にあることがわかる。
また、研磨廃液のpHが低いと、ナノスクラッチが少なくなる傾向にあることがわかる。
As shown in Table 2, the substrates obtained in Examples 1 to 5 have less nano scratches than the substrates obtained in Comparative Examples 1 to 4 using a polishing composition having a high Al concentration. I understand that.
It can also be seen that when the content ratio of aluminum to colloidal silica in the polishing composition is small, nanoscratches tend to decrease.
It can also be seen that when the polishing waste liquid has a low pH, nanoscratches tend to decrease.

本発明の基板の製造方法は、精密部品基板の製造に好適に用いられる。たとえば、メモリーハードディスク基板等の磁気ディスク、光ディスク、光磁気ディスク等の磁気記録媒体の基板、フォトマスク基板、光学レンズ、光学ミラー、光学プリズム、半導体基板等の精密部品基板の研磨に適している。
The substrate manufacturing method of the present invention is suitably used for manufacturing precision component substrates. For example, it is suitable for polishing a magnetic disk medium such as a memory hard disk substrate, a magnetic recording medium substrate such as an optical disk and a magneto-optical disk, a precision component substrate such as a photomask substrate, an optical lens, an optical mirror, an optical prism, and a semiconductor substrate.

Claims (5)

コロイダルシリカと、酸又はその塩とを含有する研磨液組成物を基板又は研磨パッドに供給して該基板を研磨する工程を有する基板の製造方法であって、基板又は研磨パッドに供給される際の研磨液組成物中のアルミニウム濃度が50ppm以下である基板の製造方法。   A method for producing a substrate, comprising a step of supplying a polishing composition containing colloidal silica and an acid or a salt thereof to a substrate or a polishing pad and polishing the substrate, and supplying the polishing composition to the substrate or the polishing pad. The manufacturing method of the board | substrate whose aluminum concentration in the polishing liquid composition is 50 ppm or less. 基板又は研磨パッドに供給される際の研磨液組成物中のコロイダルシリカに対するアルミニウムの含有量比(アルミニウム重量/コロイダルシリカ重量)が、5/10000以下である請求項1記載の基板の製造方法。   The method for producing a substrate according to claim 1, wherein the content ratio of aluminum to colloidal silica (aluminum weight / colloidal silica weight) in the polishing composition when supplied to the substrate or polishing pad is 5/10000 or less. アルミニウム濃度が50ppm以下であり、コロイダルシリカに対するアルミニウムの含有量比(アルミニウム重量/コロイダルシリカ重量)が、5/10000以下である研磨液組成物を用いる請求項1又は2記載の基板の製造方法。   The method for producing a substrate according to claim 1 or 2, wherein a polishing composition having an aluminum concentration of 50 ppm or less and a content ratio of aluminum to colloidal silica (aluminum weight / colloidal silica weight) of 5/10000 or less is used. 研磨廃液のpHが1〜4である請求項1〜3いずれか記載の基板の製造方法。   The method for producing a substrate according to any one of claims 1 to 3, wherein the polishing waste liquid has a pH of 1 to 4. コロイダルシリカと、酸又はその塩とを含有する研磨液組成物を基板又は研磨パッドに供給して該基板を研磨する工程を有するナノスクラッチの低減方法であって、基板又は研磨パッドに供給される際の研磨液組成物中のアルミニウム濃度が50ppm以下であるナノスクラッチの低減方法。
A method for reducing nanoscratches, which comprises a step of supplying a polishing composition containing colloidal silica and an acid or a salt thereof to a substrate or a polishing pad and polishing the substrate, and the method is supplied to the substrate or the polishing pad. The method for reducing nanoscratches, wherein the aluminum concentration in the polishing composition is 50 ppm or less.
JP2005340160A 2005-11-25 2005-11-25 Substrate manufacturing method Active JP4640981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005340160A JP4640981B2 (en) 2005-11-25 2005-11-25 Substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005340160A JP4640981B2 (en) 2005-11-25 2005-11-25 Substrate manufacturing method

Publications (2)

Publication Number Publication Date
JP2007144536A true JP2007144536A (en) 2007-06-14
JP4640981B2 JP4640981B2 (en) 2011-03-02

Family

ID=38206550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005340160A Active JP4640981B2 (en) 2005-11-25 2005-11-25 Substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP4640981B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014079820A (en) * 2012-10-12 2014-05-08 Fujimi Inc Method for manufacturing polishing composition
WO2023243611A1 (en) * 2022-06-15 2023-12-21 株式会社レゾナック Cmp polishing liquid and polishing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218069A (en) * 2002-01-23 2003-07-31 Fujimi Inc Composition for polishing for selectively polishing silicon used in manufacture of semiconductor device
WO2004048265A1 (en) * 2002-11-22 2004-06-10 Nippon Aerosil Co., Ltd High-concentration silica slurry

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218069A (en) * 2002-01-23 2003-07-31 Fujimi Inc Composition for polishing for selectively polishing silicon used in manufacture of semiconductor device
WO2004048265A1 (en) * 2002-11-22 2004-06-10 Nippon Aerosil Co., Ltd High-concentration silica slurry

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014079820A (en) * 2012-10-12 2014-05-08 Fujimi Inc Method for manufacturing polishing composition
WO2023243611A1 (en) * 2022-06-15 2023-12-21 株式会社レゾナック Cmp polishing liquid and polishing method

Also Published As

Publication number Publication date
JP4640981B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
JP5219886B2 (en) Polishing liquid composition
JP4451347B2 (en) Polishing liquid composition
JP4781693B2 (en) Method for reducing nano scratch on magnetic disk substrate
JP4231632B2 (en) Polishing liquid composition
JP5844135B2 (en) Method for producing polishing composition
JP5576634B2 (en) Abrasive composition and method for polishing magnetic disk substrate
JP6251033B2 (en) Polishing liquid composition for magnetic disk substrate
US8226841B2 (en) Polishing composition for nickel-phosphorous memory disks
JP2007320031A (en) Polishing liquid composition
JP4214093B2 (en) Polishing liquid composition
JP2004263074A (en) Polishing composition
JP4462599B2 (en) Polishing liquid composition
JP2011161599A (en) Polishing liquid composition for magnetic disk substrate
JP4286168B2 (en) How to reduce nanoscratches
JP5377117B2 (en) Method for detecting non-spherical particles in a particle dispersion
JP4104335B2 (en) Method for reducing microprojections
JP4640981B2 (en) Substrate manufacturing method
JP2007301721A (en) Polishing liquid composition
JP4267546B2 (en) Substrate manufacturing method
JP4255976B2 (en) Polishing liquid composition for magnetic disk substrate
JP4637003B2 (en) Manufacturing method of hard disk substrate
US6918938B2 (en) Polishing composition
JP4373776B2 (en) Polishing liquid composition
JP3997154B2 (en) Polishing liquid composition
JP2011134388A (en) Polishing liquid composition for magnetic disk substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101125

R151 Written notification of patent or utility model registration

Ref document number: 4640981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250