JP4104335B2 - Method for reducing microprojections - Google Patents

Method for reducing microprojections Download PDF

Info

Publication number
JP4104335B2
JP4104335B2 JP2002005943A JP2002005943A JP4104335B2 JP 4104335 B2 JP4104335 B2 JP 4104335B2 JP 2002005943 A JP2002005943 A JP 2002005943A JP 2002005943 A JP2002005943 A JP 2002005943A JP 4104335 B2 JP4104335 B2 JP 4104335B2
Authority
JP
Japan
Prior art keywords
polishing
substrate
acid
polished
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002005943A
Other languages
Japanese (ja)
Other versions
JP2003211351A (en
Inventor
良暁 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2002005943A priority Critical patent/JP4104335B2/en
Publication of JP2003211351A publication Critical patent/JP2003211351A/en
Application granted granted Critical
Publication of JP4104335B2 publication Critical patent/JP4104335B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原子間力顕微鏡(AFM)を用いた表面解析における微小突起を低減する方法、該方法を用いて得られる磁気ディスク用基板及び前記方法を用いる基板の製造方法に関する。
【0002】
【従来の技術】
近年のメモリーハードディスクドライブには、高容量・小径化が求められ記録密度を上げるために磁気ヘッドの浮上量を低下させたり、単位記録面積を小さくすることが強いられている。それに伴い、磁気ディスク用基板の製造工程においても研磨後に要求される表面品質は年々厳しくなってきており、ヘッドの低浮上に対応して、表面粗さ、微小うねり、ロールオフ、突起の低減や単位記録面積の減少に対応して許容されるスクラッチ、ピットの大きさと深さがますます小さくなってきている。
【0003】
また、半導体分野においても、高集積化、高速化に伴って配線の微細化が進んでいる。半導体デバイスの製造プロセスにおいても、フォトレジストの露光の際、配線の微細化に伴い焦点深度が浅くなるため、パターン形成面のより一層の平滑化が望まれている。
【0004】
特に、メモリーハードディスクドライブの高記録密度化を実現するため、ヘッドとディスク間のスペーシングが年々狭くなってきた結果、これまで問題にされなかった原子間力顕微鏡(AFM)を用いた表面形状解析で検知される微小突起(高さ:1〜30nm、幅:1〜100nm)が問題となってきた。
【0005】
【発明が解決しようとする課題】
本発明の目的は、メモリーハードディスクの仕上げ研磨や半導体素子用の研磨用として、研磨後の被研磨物の表面粗さが小さく、かつ突起や研磨傷等の表面欠陥、特に原子間力顕微鏡を用いた表面形状解析で検知される微小突起を経済的に高速に低減することが可能である被研磨基板の微小突起の低減方法、該方法を用いて得られる磁気ディスク用基板及び前記方法を用いる基板の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
即ち、本発明の要旨は、
〔1〕水、研磨材、酸化合物を含有してなり、pHが酸性かつ研磨材の濃度が10重量%未満である研磨液組成物を用いて研磨機により被研磨基板の研磨を行う工程を有する、原子間力顕微鏡(AFM)を用いた表面解析により検知される被研磨基板の微小突起を低減する方法であって、該研磨液組成物を被研磨基板1m 2 当たり0.15〜1.5L/分の流量で研磨面に供給し、4.9〜9.8kPaの一定圧力を加えながら、研磨機に備えられた上定盤又は下定盤と被研磨基板との相対速度が定盤中央部で0.3〜1m/秒となるようにして被研磨基板の研磨を行う工程を有する、微小突起を低減する方法
〔2〕前記〔1〕記載の方法を用いて得られる磁気ディスク用基板、並びに
〔3〕前記〔1〕記載の方法を用いて原子間力顕微鏡(AFM)を用いた表面解析により検知される微小突起を低減した磁気ディスク用基板を製造する方法
に関する。
【0007】
【発明の実施の形態】
本発明において、原子間力顕微鏡を用いた表面形状解析で検知される微小突起(以下、単に微小突起ともいう)は、高さ1〜30nm、幅1〜100nmの大きさを有する突起を意味する。ここで、原子間力顕微鏡を用いた表面形状解析方法としては、後述の実施例に記載の方法が挙げられる。
【0008】
本発明の微小突起の低減方法は、前記のように、水、研磨材、酸化合物を含有してなり、pHが酸性かつ研磨材の濃度が10重量%未満である研磨液組成物を用いて、被研磨基板の研磨を行う工程を有するものである。
【0009】
本発明に使用される研磨材には、研磨用に一般に使用されている研磨材を使用することができる。該研磨材として、金属;金属又は半金属の炭化物、窒化物、酸化物、ホウ化物;ダイヤモンド等が挙げられる。金属又は半金属元素は、周期律表(長周期型)の2A、2B、3A、3B、4A、4B、5A、6A、7A又は8A族由来のものである。研磨材の具体例として、酸化アルミニウム、炭化珪素、ダイヤモンド、酸化マグネシウム、酸化亜鉛、酸化チタン、酸化セリウム、酸化ジルコニウム、シリカ等が挙げられ、これらを1種以上使用することは研磨速度を向上させる観点から好ましい。中でも、酸化アルミニウム、シリカ、酸化セリウム、酸化ジルコニウム、酸化チタン等が、半導体ウェハや半導体素子、磁気記録媒体用基板等の精密部品用基板の研磨に適している。酸化アルミニウムについては、α、θ、γ等種々の結晶系が知られているが、用途に応じ適宜選択、使用することができる。この内、シリカ、特にコロイダルシリカは、より高度な平滑性を必要とする高記録密度メモリー磁気ディスク用基板の最終仕上げ研磨用途や半導体デバイス基板の研磨用途に適している。
【0010】
研磨材の一次粒子の平均粒径は、研磨速度を向上させる観点から、好ましくは0.001 〜3 μm、より好ましくは0.01〜3 μm、さらに好ましくは0.02〜0.8 μm、特に好ましくは0.05〜0.5 μmである。さらに、一次粒子が凝集して二次粒子を形成している場合は、同様に研磨速度を向上させる観点及び被研磨物の表面粗さを低減させる観点から、その二次粒子の平均粒径は、好ましくは0.05〜3μm、さらに好ましくは0.1 〜1.5 μm、特に好ましくは0.2 〜1.2 μmである。研磨材の一次粒子の平均粒径は、走査型電子顕微鏡で観察(好適には3000〜30000 倍)して画像解析を行い、2軸平均粒径を測定することにより求めることができる。また、二次粒子の平均粒径はレーザー光回折法を用いて体積平均粒径として測定することができる。
【0011】
また、本発明においては、微小突起、表面粗さ(Ra)を低減させて、表面品質を向上させる観点から、研磨材としてシリカ粒子を用いることがより好ましい。シリカ粒子としては、コロイダルシリカ粒子、ヒュームドシリカ粒子、表面修飾したシリカ粒子等が挙げられ、中でも、コロイダルシリカ粒子が好ましい。なお、コロイダルシリカ粒子は、例えば、ケイ酸水溶液から生成させる製法により得ることができる。
【0012】
シリカ粒子の一次粒子の平均粒径は、研磨速度を向上させる観点から、好ましくは0.001 μm以上、より好ましくは0.01μm以上、さらに好ましくは0.02μm以上であり、表面粗さ(Ra)を低減する観点から、好ましくは0.6 μm以下、より好ましくは0.5 μm以下、さらに好ましくは0.3 μm以下、特に好ましくは0.2 μm以下である。該平均粒径は、好ましくは0.001 〜0.6 μm、より好ましくは0.001 〜0.5 μm、さらに好ましくは0.01〜0.3 μm、特に好ましくは0.02〜0.2 μmである。なお、該粒径は走査型電子顕微鏡で観察して(好適には3000倍〜100000倍)画像解析を行い、2軸平均径を測定することにより求めることができる。
【0013】
さらにシリカ粒子は、微小突起の発生を防止する観点から、小粒径側からの積算粒径分布(個数基準)が50%となる粒径(D50) に対する小粒径側からの積算粒径分布(個数基準)が90%となる粒径(D90) の比(D90/D50) が1.0 〜1.5 で、且つD50が10〜200 nmとなる粒径分布を示すことが好ましい。なお、前記粒径分布は、全体的なシリカ粒子の粒径分布を示すものであり、例えば、2種以上のシリカ粒子を併用した場合、それらを混合したシリカ粒子について測定したものである。
【0014】
前記粒径分布において、D90/D50は1.0 〜1.5 が好ましく、より好ましくは1.0 〜1.45、さらに好ましくは1.0 〜1.4 、特に好ましくは1.0 〜1.35である。
【0015】
また、粒径分布において、D50は、10〜200 nmが好ましく、より好ましくは20〜180 nm、さらに好ましくは、30〜150 nm、特に好ましくは50〜100 nmである。該D50は、高い研磨速度を得る観点から、10nm以上が好ましく、また、微小突起等の表面欠陥の発生を防ぎ、良好な表面平滑性を得る観点から、200 nm以下が好ましい。
【0016】
また、本発明に使用されるシリカ粒子の粒径は、走査型電子顕微鏡(以下SEMという)を用いて以下の方法により求めることができる。即ち、シリカ粒子を含有する研磨液組成物をシリカ粒子濃度が0.5 重量%になるようにエタノールで希釈する。この希釈した溶液を約50℃に加温したSEM用の試料台に均一に塗布する。その後、過剰の溶液を濾紙で吸い取り溶液が凝集しないように均一に自然乾燥させる。
【0017】
自然乾燥させたシリカ粒子にPt−Pdを蒸着させて、日立製作所(株)製電界放射型走査電子顕微鏡(FE−SEM:S−4000型)を用いて、視野中に500個程度のシリカ粒子が観察されるように倍率を3000倍〜10万倍に調節し、一つの試料台について2点観察し写真を撮影する。撮影された写真(10.16 cm×12.7cm)をコピー機等によりA4サイズに拡大して、撮影されたすべてのシリカ粒子の粒径をノギス等により計測し集計する。この操作を数回繰り返して、計測するシリカ粒子の数が2000個以上になるようにする。SEMによる測定点数を増やすことは、正確な粒径分布を求める観点からより好ましい。測定した粒径を集計し、小さい粒径から順にその頻度(%)を加算してその値が50%となる粒径をD50、90%となる粒径をD90として本発明における個数基準の粒径分布を求めることができる。尚、ここでいう粒径分布は一次粒子の粒径分布として求められる。但し、酸化アルミニウム、酸化セリウム、ヒュームドシリカ等の一次粒子が融着した二次粒子が存在している場合においては、その二次粒子の粒径に基づいて、粒径分布を求めることができる。
【0018】
また、シリカ粒子の粒径分布を調整する方法としては、特に限定されないが、例えば、シリカ粒子がコロイダルシリカの場合、その製造段階における粒子の成長過程で新たな核となる粒子を加えることにより最終製品に粒径分布を持たせる方法、異なる粒径分布を有する2つ以上のシリカ粒子を混合する方法等で達成することも可能である。
【0019】
これらの研磨材の含有量は、研磨液組成物中において10重量%未満である。かかる濃度範囲に調整することで、AFMを用いた表面解析により検知される被研磨基板の微小突起を著しく低減できる。また、前記研磨材の含有量は、微小突起を低減する観点、及び経済性の観点から、好ましくは9重量%以下、より好ましくは8重量%以下、さらに好ましくは7重量%以下である。また、該含有量は、研磨速度を向上させる観点から、好ましくは0.5 重量%以上、より好ましくは1重量%以上、さらに好ましくは2重量%以上、特に好ましくは3重量%以上である。
【0020】
すなわち、該含有量は、好ましくは0.5 重量%以上、10重量%未満、より好ましくは1〜9重量%、さらに好ましくは2〜8重量%、特に好ましくは3〜7重量%である。
【0021】
本発明において酸化合物は、pK1が7以下の酸性を示す化合物である。微小突起を低減する観点から、pK1が3以下の化合物が好ましい。研磨速度向上の観点では、pK1が7以下の化合物で被研磨物表面に含有される金属をキレートする能力を有する化合物が好ましい。具体的には、エチレンジアミンテトラ酢酸等のアミノポリカルボン酸及びその塩や、クエン酸、リンゴ酸、酒石酸、シュウ酸、マロン酸、コハク酸、マレイン酸、イタコン酸、スルホサリチル酸等の有機カルボン酸及びその塩がある。微小スクラッチを低減する観点から、pK1が3以下の化合物が好ましく、より好ましくはpK1が2.5以下、さらに好ましくはpK1が2.0以下、特に好ましくはpK1が1.5以下の化合物であり、pK1が1以下の化合物(即ち、pK1で表せない程の強い酸性を示す化合物)が最も好ましい。具体的には、硝酸、硫酸、亜硫酸、過硫酸、塩酸、過塩素酸、リン酸、ホスホン酸、ホスフィン酸、ピロリン酸、シュウ酸、アミド硫酸、アスパラギン酸、2−アミノエチルホスホン酸、グルタミン酸、ピコリン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸(以下、HEDPともいう)等が挙げられる。これらの中でも、微小突起の低減の観点から、硝酸、HEDP、硫酸、過塩素酸及び塩酸が好ましく、硝酸、HEDP及び硫酸が特に好ましい。これらの酸は単独で又は2種以上を混合して用いてもよい。ここで、pK1とは有機化合物又は無機化合物の酸解離定数(25℃)の逆数の対数値を通常pKaと表し、そのうちの第一酸解離定数の逆数の対数値をpK1としている。各化合物のpK1は例えば改訂4版化学便覧(基礎編)II、pp316−325(日本化学会編)等に記載されている。
【0022】
酸化合物の研磨液組成物中における含有量は、充分な研磨速度を発揮する観点及び表面品質を向上させる観点から、0.0001〜20重量%が好ましく、より好ましくは、0.0003〜10重量%であり、さらに好ましくは、0.001 〜5 重量%、特に好ましくは、0.0025〜3 重量%である。
【0023】
研磨液組成物は、研磨速度を向上させる観点から酸化剤を含有することが好ましい。酸化剤としては、過酸化物、過マンガン酸又はその塩、クロム酸又はその塩、硝酸又はその塩、ペルオキソ酸又はその塩、酸素酸又はその塩、金属塩類、硫酸類等が挙げられる。
【0024】
より具体例には、過酸化物としては、過酸化水素、過酸化ナトリウム、過酸化バリウム等;過マンガン酸塩としては、過マンガン酸カリウム等;クロム酸塩としては、クロム酸金属塩、重クロム酸金属塩等;硝酸塩としては、硝酸鉄(III)、硝酸アンモニウム等;ペルオキソ酸又はその塩としては、ペルオキソ二硫酸、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸金属塩、ペルオキソリン酸、ペルオキソ硫酸、ペルオキソホウ酸ナトリウム、過ギ酸、過酢酸、過安息香酸、過フタル酸等;酸素酸又はその塩としては、次亜塩素酸、次亜臭素酸、次亜ヨウ素酸、塩素酸、臭素酸、ヨウ素酸、過塩素酸、次亜塩素酸ナトリウム、次亜塩素酸カルシウム等;金属塩類としては、塩化鉄(III)、硫酸鉄(III)、クエン酸鉄(III)、硫酸アンモニウム鉄(III)等が挙げられる。好ましい酸化剤としては、過酸化水素、硝酸鉄(III)、過酢酸、ペルオキソ二硫酸アンモニウム硫酸鉄(III)及び硫酸アンモニウム鉄(III)等が挙げられる。特に、表面に金属イオンが付着せず汎用に使用され安価であるという観点から過酸化水素が好ましい。これらの酸化剤は、単独で又は2種以上を混合して使用してもよい。
【0025】
研磨速度を向上させる観点から、研磨液組成物中の酸化剤の含有量は、好ましくは0.002 重量%以上、より好ましくは0.005 重量%以上、さらに好ましくは0.007 重量%以上、特に好ましくは0.01重量%以上であり、表面粗さを低減し、微小突起等の表面欠陥を減少させて表面品質を向上させる観点及び経済性の観点から、好ましくは20重量%以下、より好ましくは15重量%以下、さらに好ましくは10重量%以下、特に好ましくは5 重量%以下である。該含有量は、好ましくは0.002 〜20重量%、より好ましくは0.005 〜15重量%、さらに好ましくは、0.007 〜10重量%、特に好ましくは0.01〜5重量%である。
【0026】
研磨液組成物中の水は、媒体として使用されるものであり、その含有量は、被研磨物を効率よく研磨する観点から、好ましくは50重量%以上であり、より好ましくは66重量%以上であり、さらに好ましくは77重量%以上であり、特に好ましくは85重量%以上であり、また、好ましくは99.4979 重量%以下、より好ましくは98.9947 重量%以下、さらに好ましくは96.992重量%以下、特に好ましくは、94.9875 重量%以下である。該含有量は、好ましくは55〜99.4979 重量%、より好ましくは67〜98.9947 重量%、さらに好ましくは75〜96.992重量%、特に好ましくは84〜94.9875 重量%である。
【0027】
尚、前記研磨液組成物中の各成分の濃度は、該組成物製造時の濃度及び使用時の濃度のいずれであってもよい。通常、濃縮液として研磨液組成物は製造され、これを使用時に希釈して用いる場合が多い。
【0028】
また、前記研磨液組成物には、必要に応じて他の成分を配合することができる。該他の成分としては、増粘剤、分散剤、防錆剤、塩基性物質、界面活性剤等が挙げられる。
【0029】
研磨液組成物は、研磨材、酸化合物、水、必要であれば酸化剤、他の成分等を公知の方法で混合することにより調製することができる。
【0030】
研磨液組成物のpHは酸性であるが、具体的なpHの値は、被加工物の種類や要求性能に応じて適宜決定することが好ましい。被研磨物の材質により一概に限定はできないが、一般に金属材料では研磨速度を向上させる観点からpHは、7.0 未満が好ましく、より好ましくは6.0 以下、さらに好ましくは5.0 以下、特に好ましくは4.0 以下である。また、人体への影響や機械の腐食性の観点から、pHは1.0 以上であることが好ましく、より好ましくは1.2 以上、さらに好ましくは1.4 以上特に好ましくは1.6 以上である。特にニッケル−リン(Ni−P)メッキされたアルミニウム合金基板等の金属を主対象とした精密部品基板においては、pHは、研磨速度を向上させる観点から、4.5 以下が好ましく、より好ましくは4.0 以下、さらに好ましくは3.5 以下、特に好ましくは3.0 以下である。従って、重視する目的に合わせてpHを設定すればよいが、特にNi−Pメッキされたアルミニウム合金基板等の金属を対象とした精密部品基板においては、前記観点を総合して、pHは1.0 〜4.5 が好ましく、より好ましくは1.2 〜4.0 、さらに好ましくは1.4 〜3.5 、特に好ましくは1.6 〜3.0 である。pHは硝酸、硫酸等の無機酸やシュウ酸等の有機酸、アンモニウム塩、アンモニア水、水酸化カリウム、水酸化ナトリウム、アミン等の塩基性物質を適宜、所望量で配合することにより調整することができる。
【0031】
本発明の微小突起の低減方法は、例えば、前記のような研磨液組成物を用いて、あるいは前記研磨液組成物の組成となるように各成分を混合して研磨液を調製して被研磨基板を研磨する工程を有しており、特に精密部品用基板を好適に製造することができる。その具体例としては、不織布状の有機高分子系研磨布等、好ましくはポリウレタン系研磨布を貼り付けた研磨盤で基板を挟み込み、研磨液組成物を流量として被研磨基板1m2 当たり0.076〜3.8L/分、好ましくは0.15〜1.5L/分で研磨面に供給し、荷重として2.9〜19.6kPa、好ましくは4.9〜9.8kPaの一定圧力を加えながら、上定盤又は下定盤と被研磨基板との相対速度が定盤中央部で0.1〜2m/秒、好ましくは0.3〜1m/秒となるように研磨盤や基板を動かすことにより研磨する方法が挙げられる。
【0032】
このように本発明の微小突起の低減方法を用いることにより、微小突起を効率よく除去するだけでなく、研磨速度を向上させ、微小スクラッチやピット等の表面欠陥の発生が抑制され、表面粗さ(Ra)等の表面平滑性を向上させることができるという効果が発現される。
【0033】
本発明の微小突起の低減方法が対象とする被研磨基板としては、例えば、シリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン等の金属又は半金属及びこれらの合金、並びにガラス、ガラス状カーボン、アモルファスカーボン等のガラス状物質、アルミナ、二酸化珪素、窒化珪素、窒化タンタル、炭化チタン等のセラミック材料、ポリイミド樹脂等の樹脂等を材質とする基板が挙げられる。これらの中では、アルミニウム、ニッケル、タングステン、銅等の金属及びこれらの金属を主成分とする合金が被研磨物であるか、又は、半導体素子等の半導体基板のような、それらが金属を含んだ被研磨物であるのが好ましく、例えば、Ni−Pメッキされたアルミニウム合金基板や結晶化ガラス、強化ガラス等のガラス基板がより好ましく、Ni−Pメッキされたアルミニウム合金基板が特に好ましい。
【0034】
被研磨基板の形状には特に制限がなく、例えば、ディスク状、プレート状、スラブ状、プリズム状等の平面部を有する形状や、レンズ等の曲面部を有する形状が本発明の対象となる。その中でも、ディスク状の被研磨基板の研磨に特に優れている。
【0035】
本発明の微小突起の低減方法は、精密部品基板の研磨に好適に用いられる。例えば、磁気ディスク、光ディスク、光磁気ディスク等の磁気記録媒体の基板、フォトマスク基板、光学レンズ、光学ミラー、光学プリズム、半導体基板等の精密部品基板の研磨に適している。半導体基板の研磨は、シリコンウェハ(ベアウェハ)のポリッシング工程、埋め込み素子分離膜の形成工程、層間絶縁膜の平坦化工程、埋め込み金属配線の形成工程、埋め込みキャパシタ形成工程等において行われる。本発明の微小突起の低減方法は、特に、磁気ディスク用基板の研磨に適している。さらに、表面粗さ(Ra)0.3nm以下の磁気ディスク用基板を得るのに適している。
【0036】
本明細書では、表面粗さ(Ra)は、一般に言われる中心線粗さとして求められ、80μm以下の波長成分を持つ粗さ曲線から得られる中心線平均粗さをRaと表す。このRaは、以下のように測定することができる。
【0037】
中心線平均粗さ:Ra
ランク・テーラーホブソン社製タリーステップ(「タリデータ2000」)(以下、かぎ括弧内の用語は商品名を示す)を用いて、以下の条件で測定する。
触針先端サイズ :2.5μm×2.5μm
ハイパスフィルター :80μm
測定長さ :0.64mm
【0038】
本発明の磁気ディスク用基板の製造方法は、本発明の微小突起の低減方法を用いた研磨工程を有し、該研磨工程は、複数の研磨工程の中でも2工程目以降に行われるのが好ましく、最終研磨工程に行われるのが特に好ましい。例えば、1工程又は2工程の研磨工程によって表面粗さ(Ra)0.5nm〜1.5nmにしたNi−Pメッキされたアルミニウム合金基板を、本発明の微小突起の低減方法を用いた研磨工程によって研磨して、表面粗さ(Ra)0.3nm以下の磁気ディスク用基板を、好ましくは表面粗さ(Ra)0.25nm以下の磁気ディスク用基板を製造することができる。特に、本発明の微小突起の低減方法は、2工程の研磨で表面粗さ(Ra)0.3nm以下の磁気ディスク用基板を、好ましくは表面粗さ(Ra)0.25nm以下の磁気ディスク用基板を製造する際の2工程目に用いられるのに適している。
【0039】
製造された磁気ディスク用基板は、微小突起が極めて少なく、表面平滑性に優れたものである。その表面平滑性として、表面粗さ(Ra)0.3nm以下、好ましくは0.25nm以下が望ましい。
【0040】
以上のように、本発明の微小突起の低減方法を用いることで、微小突起を効率良く除去することができ、さらに研磨速度を向上させると共に、スクラッチ、ピット等の表面欠陥が少なく、表面粗さ(Ra)及びうねり(Wa)等の平滑性が向上した、表面性状に優れた高品質の磁気ディスク用基板を生産効率よく製造することができる。
【0041】
なお、本発明の微小突起の低減方法は、ボリッシング工程において特に効果があるが、これ以外の研磨工程、例えば、ラッピング工程等にも同様に適用することができる。
【0042】
【実施例】
(被研磨物)
被研磨基板として、Ni−Pメッキされた基板をアルミナ研磨材を含有する研磨液であらかじめ粗研磨し、基板表面粗さ1nmとした、厚さ0.8 mmの95mmφのアルミニウム合金基板を用いて研磨評価を行った。
【0043】
実施例1〜7、比較例1〜3
表1に示すような一次粒子の平均粒径を有するコロイダルシリカ、35% 過酸化水素(旭電化製)、1−ヒドロキシエチリデン−1,1−ジホスホン酸(HEDP、ソルーシア・ジャパン(株)製、pK1は1以下)又はエチレンジアミン四酢酸鉄塩(EDTA−Fe)を所定量と、残りを水として合計100 重量% となるように調製した。混合する順番は、まずHEDP又はEDTA−Feを水で希釈した水溶液に過酸化水素を混合し、最後にコロイダルシリカスラリーをゲル化しないように撹拌しながらすばやく加え、pHを所定値に調整して、研磨液組成物を調製した。得られた研磨液組成物を用いて、以下の研磨条件にて被研磨物を研磨し、研磨速度、表面粗さ(Ra)及び微小突起の個数を以下の方法に基づいて測定・評価した。得られた結果を表1に示す。
【0044】
(研磨条件)
研磨試験機:スピードファム社製「両面9B研磨機」
研磨パッド:鐘紡製「Belatrix N0058」
定盤回転数:35r/min
スラリー供給量:40ml/min
研磨時間:4分
研磨荷重:7.8kPa
投入した基板の枚数:10枚
【0045】
(研磨速度)
研磨試験前後の基板の重量差(g)に比重(8.4g/cm3)をかけ、さらにディスクの表面積(65.97cm2)と研磨時間で割ることにより、単位時間当たりの両面研磨量を算出している。
【0046】
(表面粗さ(Ra))
被研磨基板の裏表の120°おきに各3点で計6点を原子間力顕微鏡(デジタルインスツルメント社製「Nanoscope III 」)を用いて、ScanRateを1.0Hz で2 μm×2 μmの範囲を測定したときの平均値をとった。なお、Raは中心線平均粗さを示す。
【0047】
(微小突起の個数)
被研磨基板の裏表の120°おきに各3点で計6点を原子間力顕微鏡(デジタルインスツルメント社製「Nanoscope III 」)を用いて、ScanRateを1.0Hz で2 μm×2 μmの範囲に含まれる微小突起(高さ1〜30nm、幅1〜100nmの突起)の一基板当たりの平均値を求めた。
【0048】
【表1】

Figure 0004104335
【0049】
表1の結果より、実施例1〜7では、比較例1〜3に比べ、いずれも微小突起がなく、且つ表面粗さが低い基板を高速で得ることができることがわかる。
【0050】
【発明の効果】
本発明の微小突起の低減方法により、高速研磨と高精度な表面品質、特に原子間力顕微鏡(AFM)を用いた表面形状解析における微小突起の発生を防止する基板を製造できるという効果が奏される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for reducing microprojections in surface analysis using an atomic force microscope (AFM), a magnetic disk substrate obtained using the method, and a method for manufacturing a substrate using the method.
[0002]
[Prior art]
Memory hard disk drives in recent years are required to have a high capacity and a small diameter, and in order to increase the recording density, the flying height of the magnetic head is reduced or the unit recording area is reduced. Along with this, the surface quality required after polishing in the manufacturing process of magnetic disk substrates has become stricter year by year, corresponding to the low flying height of the head, surface roughness, micro waviness, roll-off, reduction of protrusions and The size and depth of scratches and pits allowed in response to the decrease in unit recording area are becoming increasingly smaller.
[0003]
Also in the semiconductor field, the miniaturization of wiring is progressing with higher integration and higher speed. Also in the manufacturing process of a semiconductor device, when the photoresist is exposed, the depth of focus becomes shallow as the wiring becomes finer, and therefore, further smoothing of the pattern formation surface is desired.
[0004]
In particular, the surface shape analysis using an atomic force microscope (AFM), which has not been a problem so far, is the result of the spacing between the head and the disk becoming narrower year by year in order to achieve higher recording density in memory hard disk drives. The microprotrusions (height: 1 to 30 nm, width: 1 to 100 nm) detected at 1 are becoming a problem.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to use a surface defect such as a protrusion or a polishing flaw, particularly an atomic force microscope, for finishing polishing of a memory hard disk or polishing for a semiconductor element, and the surface roughness of a polished object is small. A method for reducing microprojections on a substrate to be polished, which can economically and rapidly reduce microprojections detected by surface shape analysis, a substrate for a magnetic disk obtained by using the method, and a substrate using the method It is in providing the manufacturing method of.
[0006]
[Means for Solving the Problems]
That is, the gist of the present invention is as follows.
[1] A step of polishing a substrate to be polished by a polishing machine using a polishing composition comprising water, an abrasive and an acid compound, having an acidic pH and an abrasive concentration of less than 10% by weight. A method of reducing minute projections of a substrate to be polished detected by surface analysis using an atomic force microscope (AFM) , the polishing composition being applied to the substrate to be polished 1 m 2 An upper surface plate or a lower surface plate provided in a polishing machine and a substrate to be polished while supplying a constant pressure of 4.9 to 9.8 kPa while supplying to the polishing surface at a flow rate of 0.15 to 1.5 L / min. A method of reducing fine protrusions, comprising a step of polishing a substrate to be polished such that the relative speed of the substrate is 0.3 to 1 m / sec at the center of the surface plate ,
[2] Magnetic disk substrate obtained using the method described in [1], and [3] Detected by surface analysis using an atomic force microscope (AFM) using the method described in [1]. The present invention relates to a method of manufacturing a magnetic disk substrate with reduced microprojections.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a microprotrusion (hereinafter also simply referred to as a microprotrusion) detected by surface shape analysis using an atomic force microscope means a protrusion having a height of 1 to 30 nm and a width of 1 to 100 nm. . Here, as a surface shape analysis method using an atomic force microscope, a method described in Examples described later can be given.
[0008]
As described above, the method for reducing microprojections of the present invention uses a polishing composition comprising water, an abrasive and an acid compound, having an acidic pH and an abrasive concentration of less than 10% by weight. And a step of polishing the substrate to be polished.
[0009]
As the abrasive used in the present invention, an abrasive generally used for polishing can be used. Examples of the abrasive include metal; metal or metalloid carbide, nitride, oxide, boride; diamond and the like. The metal or metalloid element is derived from the 2A, 2B, 3A, 3B, 4A, 4B, 5A, 6A, 7A or 8A group of the periodic table (long period type). Specific examples of the abrasive include aluminum oxide, silicon carbide, diamond, magnesium oxide, zinc oxide, titanium oxide, cerium oxide, zirconium oxide, and silica. The use of one or more of these improves the polishing rate. It is preferable from the viewpoint. Among these, aluminum oxide, silica, cerium oxide, zirconium oxide, titanium oxide, and the like are suitable for polishing precision component substrates such as semiconductor wafers, semiconductor elements, and magnetic recording medium substrates. As for aluminum oxide, various crystal systems such as α, θ, and γ are known, but can be appropriately selected and used according to the application. Of these, silica, particularly colloidal silica, is suitable for final finishing polishing for high recording density memory magnetic disk substrates that require higher smoothness and for polishing semiconductor device substrates.
[0010]
The average particle size of the primary particles of the abrasive is preferably 0.001 to 3 μm, more preferably 0.01 to 3 μm, further preferably 0.02 to 0.8 μm, and particularly preferably 0.05 to 0.5 μm from the viewpoint of improving the polishing rate. is there. Furthermore, when primary particles are aggregated to form secondary particles, the average particle size of the secondary particles is similarly from the viewpoint of improving the polishing rate and reducing the surface roughness of the object to be polished. The thickness is preferably 0.05 to 3 μm, more preferably 0.1 to 1.5 μm, and particularly preferably 0.2 to 1.2 μm. The average particle size of the primary particles of the abrasive can be determined by observing with a scanning electron microscope (preferably 3000 to 30000 times), analyzing the image, and measuring the biaxial average particle size. The average particle size of the secondary particles can be measured as a volume average particle size using a laser beam diffraction method.
[0011]
Moreover, in this invention, it is more preferable to use a silica particle as an abrasive from the viewpoint of reducing minute protrusions and surface roughness (Ra) and improving surface quality. Examples of the silica particles include colloidal silica particles, fumed silica particles, and surface-modified silica particles. Among them, colloidal silica particles are preferable. The colloidal silica particles can be obtained, for example, by a production method in which the colloidal silica particles are generated from a silicic acid aqueous solution.
[0012]
From the viewpoint of improving the polishing rate, the average particle size of the primary particles of the silica particles is preferably 0.001 μm or more, more preferably 0.01 μm or more, and further preferably 0.02 μm or more to reduce the surface roughness (Ra). From the viewpoint, it is preferably 0.6 μm or less, more preferably 0.5 μm or less, still more preferably 0.3 μm or less, and particularly preferably 0.2 μm or less. The average particle diameter is preferably 0.001 to 0.6 μm, more preferably 0.001 to 0.5 μm, still more preferably 0.01 to 0.3 μm, and particularly preferably 0.02 to 0.2 μm. The particle size can be determined by observing with a scanning electron microscope (preferably 3000 to 100000 times) and performing image analysis to measure the biaxial average diameter.
[0013]
Further, from the viewpoint of preventing the occurrence of fine protrusions, the silica particles have an integrated particle size distribution from the small particle size side to a particle size (D50) where the integrated particle size distribution (number basis) from the small particle size side is 50%. It is preferable that the ratio (D90 / D50) of the particle diameter (D90) at which (number basis) is 90% is 1.0 to 1.5 and the particle diameter distribution is such that D50 is 10 to 200 nm. In addition, the said particle size distribution shows the particle size distribution of the whole silica particle, for example, when using 2 or more types of silica particles together, it measures about the silica particle which mixed them.
[0014]
In the particle size distribution, D90 / D50 is preferably 1.0 to 1.5, more preferably 1.0 to 1.45, still more preferably 1.0 to 1.4, and particularly preferably 1.0 to 1.35.
[0015]
In the particle size distribution, D50 is preferably 10 to 200 nm, more preferably 20 to 180 nm, still more preferably 30 to 150 nm, and particularly preferably 50 to 100 nm. The D50 is preferably 10 nm or more from the viewpoint of obtaining a high polishing rate, and is preferably 200 nm or less from the viewpoint of preventing the occurrence of surface defects such as fine protrusions and obtaining good surface smoothness.
[0016]
Moreover, the particle size of the silica particle used for this invention can be calculated | required with the following method using a scanning electron microscope (henceforth SEM). That is, the polishing composition containing silica particles is diluted with ethanol so that the silica particle concentration is 0.5% by weight. This diluted solution is uniformly applied to a sample stage for SEM heated to about 50 ° C. Thereafter, the excess solution is blotted with a filter paper and uniformly dried naturally so that the solution does not aggregate.
[0017]
Pt-Pd is vapor-deposited on naturally dried silica particles, and about 500 silica particles in the field of view using a field emission scanning electron microscope (FE-SEM: S-4000 type) manufactured by Hitachi, Ltd. The magnification is adjusted to 3000 times to 100,000 times so as to be observed, and two points are observed on one sample stage and a photograph is taken. The photographed photograph (10.16 cm × 12.7 cm) is enlarged to A4 size with a copy machine or the like, and the particle diameters of all photographed silica particles are measured and counted with a caliper or the like. This operation is repeated several times so that the number of silica particles to be measured is 2000 or more. Increasing the number of measurement points by SEM is more preferable from the viewpoint of obtaining an accurate particle size distribution. The measured particle diameters are aggregated, and the frequency (%) is added in order from the smallest particle diameter. The particle diameter at which the value is 50% is D50, and the particle diameter at 90% is D90. The diameter distribution can be determined. In addition, the particle size distribution here is calculated | required as a particle size distribution of a primary particle. However, when there are secondary particles in which primary particles such as aluminum oxide, cerium oxide, and fumed silica are fused, the particle size distribution can be obtained based on the particle size of the secondary particles. .
[0018]
In addition, the method for adjusting the particle size distribution of the silica particles is not particularly limited. For example, when the silica particles are colloidal silica, the final particles are added by adding new core particles in the particle growth process in the production stage. It can also be achieved by a method of giving the product a particle size distribution, a method of mixing two or more silica particles having different particle size distributions, and the like.
[0019]
The content of these abrasives is less than 10% by weight in the polishing composition. By adjusting to such a concentration range, the fine protrusions of the substrate to be polished detected by surface analysis using AFM can be remarkably reduced. Further, the content of the abrasive is preferably 9% by weight or less, more preferably 8% by weight or less, and still more preferably 7% by weight or less, from the viewpoints of reducing microprojections and economical efficiency. The content is preferably 0.5% by weight or more, more preferably 1% by weight or more, still more preferably 2% by weight or more, and particularly preferably 3% by weight or more from the viewpoint of improving the polishing rate.
[0020]
That is, the content is preferably 0.5% by weight or more and less than 10% by weight, more preferably 1 to 9% by weight, still more preferably 2 to 8% by weight, and particularly preferably 3 to 7% by weight.
[0021]
In the present invention, the acid compound is a compound having an acidity of pK1 of 7 or less. From the viewpoint of reducing microprojections, a compound having a pK1 of 3 or less is preferable. From the viewpoint of improving the polishing rate, a compound having a capability of chelating a metal contained on the surface of the object to be polished with a compound having a pK1 of 7 or less is preferable. Specifically, aminopolycarboxylic acids such as ethylenediaminetetraacetic acid and salts thereof, organic carboxylic acids such as citric acid, malic acid, tartaric acid, oxalic acid, malonic acid, succinic acid, maleic acid, itaconic acid, sulfosalicylic acid, and the like There is that salt. From the viewpoint of reducing minute scratches, a compound having a pK1 of 3 or less is preferable, more preferably a compound having a pK1 of 2.5 or less, still more preferably a pK1 of 2.0 or less, and particularly preferably a compound having a pK1 of 1.5 or less. A compound having a pK1 of 1 or less (that is, a compound exhibiting a strong acidity that cannot be expressed by pK1) is most preferable. Specifically, nitric acid, sulfuric acid, sulfurous acid, persulfuric acid, hydrochloric acid, perchloric acid, phosphoric acid, phosphonic acid, phosphinic acid, pyrophosphoric acid, oxalic acid, amidosulfuric acid, aspartic acid, 2-aminoethylphosphonic acid, glutamic acid, Examples include picolinic acid and 1-hydroxyethylidene-1,1-diphosphonic acid (hereinafter also referred to as HEDP). Among these, nitric acid, HEDP, sulfuric acid, perchloric acid and hydrochloric acid are preferable from the viewpoint of reducing microprojections, and nitric acid, HEDP and sulfuric acid are particularly preferable. These acids may be used alone or in admixture of two or more. Here, pK1 represents the logarithm of the reciprocal of the acid dissociation constant (25 ° C.) of an organic compound or an inorganic compound usually as pKa, and the logarithm of the reciprocal of the first acid dissociation constant is pK1. The pK1 of each compound is described in, for example, the revised 4th edition, Chemical Handbook (Basic Edition) II, pp316-325 (Edited by Chemical Society of Japan).
[0022]
The content of the acid compound in the polishing liquid composition is preferably 0.0001 to 20% by weight, more preferably 0.0003 to 10% by weight, from the viewpoint of exerting a sufficient polishing rate and improving the surface quality. More preferably, it is 0.001 to 5% by weight, and particularly preferably 0.0025 to 3% by weight.
[0023]
The polishing composition preferably contains an oxidizing agent from the viewpoint of improving the polishing rate. Examples of the oxidizing agent include peroxide, permanganic acid or a salt thereof, chromic acid or a salt thereof, nitric acid or a salt thereof, peroxo acid or a salt thereof, oxygen acid or a salt thereof, metal salt, sulfuric acid, and the like.
[0024]
More specific examples include peroxides such as hydrogen peroxide, sodium peroxide, barium peroxide, etc .; permanganates such as potassium permanganate; chromates such as metal chromates, heavy salts Chromic acid metal salts and the like; nitrates such as iron (III) nitrate and ammonium nitrate; Sodium acid, performic acid, peracetic acid, perbenzoic acid, perphthalic acid, etc .; oxygen acid or its salts include hypochlorous acid, hypobromous acid, hypoiodous acid, chloric acid, bromic acid, iodic acid, Perchloric acid, sodium hypochlorite, calcium hypochlorite, etc .; metal salts include iron (III) chloride, iron (III) sulfate, iron (III) citrate, iron iron sulfate (III) etc. are mentioned. Preferable oxidizing agents include hydrogen peroxide, iron (III) nitrate, peracetic acid, ammonium iron (III) peroxodisulfate, and iron (III) ammonium sulfate. In particular, hydrogen peroxide is preferable from the viewpoint that metal ions do not adhere to the surface and are generally used and inexpensive. These oxidizing agents may be used alone or in admixture of two or more.
[0025]
From the viewpoint of improving the polishing rate, the content of the oxidizing agent in the polishing composition is preferably 0.002% by weight or more, more preferably 0.005% by weight or more, further preferably 0.007% by weight or more, and particularly preferably 0.01% by weight. From the viewpoint of reducing the surface roughness and improving the surface quality by reducing surface defects such as microprotrusions and from the economical viewpoint, it is preferably 20% by weight or less, more preferably 15% by weight or less, The amount is preferably 10% by weight or less, particularly preferably 5% by weight or less. The content is preferably 0.002 to 20% by weight, more preferably 0.005 to 15% by weight, still more preferably 0.007 to 10% by weight, and particularly preferably 0.01 to 5% by weight.
[0026]
Water in the polishing composition is used as a medium, and the content thereof is preferably 50% by weight or more, more preferably 66% by weight or more from the viewpoint of efficiently polishing the object to be polished. More preferably 77% by weight or more, particularly preferably 85% by weight or more, preferably 99.4979% by weight or less, more preferably 98.9947% by weight or less, still more preferably 96.992% by weight or less, particularly preferably Is 94.9875% by weight or less. The content is preferably 55 to 99.4979% by weight, more preferably 67 to 98.9947% by weight, still more preferably 75 to 96.992% by weight, and particularly preferably 84 to 94.9875% by weight.
[0027]
The concentration of each component in the polishing liquid composition may be any of the concentration during production of the composition and the concentration during use. Usually, a polishing composition is produced as a concentrated liquid, and it is often used after being diluted at the time of use.
[0028]
Moreover, another component can be mix | blended with the said polishing liquid composition as needed. Examples of the other components include a thickener, a dispersant, a rust inhibitor, a basic substance, and a surfactant.
[0029]
The polishing composition can be prepared by mixing an abrasive, an acid compound, water, an oxidizing agent if necessary, other components, and the like by a known method.
[0030]
The pH of the polishing composition is acidic, but the specific pH value is preferably determined as appropriate according to the type of workpiece and the required performance. Although it cannot be generally limited depending on the material of the object to be polished, in general, from the viewpoint of improving the polishing rate for metal materials, the pH is preferably less than 7.0, more preferably 6.0 or less, even more preferably 5.0 or less, and particularly preferably 4.0 or less. is there. Further, from the viewpoint of the influence on the human body and the corrosiveness of the machine, the pH is preferably 1.0 or more, more preferably 1.2 or more, still more preferably 1.4 or more, particularly preferably 1.6 or more. Particularly in precision component substrates mainly made of metal such as nickel-phosphorus (Ni-P) plated aluminum alloy substrate, the pH is preferably 4.5 or less, more preferably 4.0 or less, from the viewpoint of improving the polishing rate. More preferably, it is 3.5 or less, particularly preferably 3.0 or less. Accordingly, the pH may be set in accordance with the purpose to be emphasized, but in the case of precision component substrates targeting metals such as aluminum alloy substrates plated with Ni-P, the pH is 1.0 to 4.5 is preferable, more preferably 1.2 to 4.0, still more preferably 1.4 to 3.5, and particularly preferably 1.6 to 3.0. The pH is adjusted by appropriately mixing inorganic acids such as nitric acid and sulfuric acid, organic acids such as oxalic acid, ammonium salts, aqueous ammonia, potassium hydroxide, sodium hydroxide, amines, etc., in appropriate amounts. Can do.
[0031]
The method for reducing microprojections according to the present invention includes, for example, using the polishing liquid composition as described above, or mixing each component so as to be the composition of the polishing liquid composition, and preparing a polishing liquid to be polished. It has the process of grind | polishing a board | substrate and can manufacture the board | substrate for precision components especially suitably. As a specific example thereof, the substrate is sandwiched between polishing plates with a nonwoven fabric-like organic polymer polishing cloth, preferably a polyurethane polishing cloth, and the polishing composition is used as a flow rate to 0.076 per m 2 of the substrate to be polished. To 3.8 L / min, preferably 0.15 to 1.5 L / min, while supplying a constant pressure of 2.9 to 19.6 kPa, preferably 4.9 to 9.8 kPa as a load. By moving the polishing plate or the substrate so that the relative speed between the upper surface plate or the lower surface plate and the substrate to be polished is 0.1 to 2 m / second, preferably 0.3 to 1 m / second, at the center of the surface plate. A method of polishing is mentioned.
[0032]
Thus, by using the method for reducing microprojections of the present invention, not only the microprojections are efficiently removed, but also the polishing rate is improved, the occurrence of surface defects such as microscratches and pits is suppressed, and the surface roughness is reduced. The effect that the surface smoothness such as (Ra) can be improved is exhibited.
[0033]
Examples of the substrate to be polished targeted by the method for reducing microprojections of the present invention include, for example, metals such as silicon, aluminum, nickel, tungsten, copper, tantalum, and titanium, and alloys thereof, and glass and glassy carbon. And a substrate made of a glassy material such as amorphous carbon, a ceramic material such as alumina, silicon dioxide, silicon nitride, tantalum nitride, or titanium carbide, or a resin such as polyimide resin. Among these, metals such as aluminum, nickel, tungsten and copper and alloys based on these metals are objects to be polished, or they include metals such as semiconductor substrates such as semiconductor elements. For example, a Ni—P plated aluminum alloy substrate, a glass substrate such as crystallized glass, and tempered glass is more preferable, and a Ni—P plated aluminum alloy substrate is particularly preferable.
[0034]
The shape of the substrate to be polished is not particularly limited. For example, a shape having a flat portion such as a disk shape, a plate shape, a slab shape, or a prism shape, or a shape having a curved surface portion such as a lens is an object of the present invention. Among these, it is particularly excellent for polishing a disk-shaped substrate.
[0035]
The method for reducing fine protrusions of the present invention is suitably used for polishing a precision component substrate. For example, it is suitable for polishing a precision component substrate such as a magnetic recording medium substrate such as a magnetic disk, an optical disk, and a magneto-optical disk, a photomask substrate, an optical lens, an optical mirror, an optical prism, and a semiconductor substrate. The polishing of the semiconductor substrate is performed in a polishing process of a silicon wafer (bare wafer), a formation process of a buried element isolation film, a planarization process of an interlayer insulating film, a formation process of a buried metal wiring, a buried capacitor formation process, and the like. The method for reducing microprojections of the present invention is particularly suitable for polishing a magnetic disk substrate. Furthermore, it is suitable for obtaining a magnetic disk substrate having a surface roughness (Ra) of 0.3 nm or less.
[0036]
In the present specification, the surface roughness (Ra) is obtained as a generally-described centerline roughness, and the centerline average roughness obtained from a roughness curve having a wavelength component of 80 μm or less is represented by Ra. This Ra can be measured as follows.
[0037]
Centerline average roughness: Ra
Measurement is performed under the following conditions using a rank tailor Hobson tally step ("Taridata 2000") (hereinafter, the term in brackets indicates a product name).
Tip size of stylus: 2.5 μm × 2.5 μm
High-pass filter: 80 μm
Measurement length: 0.64 mm
[0038]
The method for producing a magnetic disk substrate of the present invention includes a polishing step using the method for reducing microprojections of the present invention, and the polishing step is preferably performed in the second and subsequent steps among a plurality of polishing steps. It is particularly preferable to perform the final polishing step. For example, a polishing process using the Ni-P plated aluminum alloy substrate having a surface roughness (Ra) of 0.5 nm to 1.5 nm by one or two polishing steps, using the method for reducing microprojections of the present invention. Thus, a magnetic disk substrate having a surface roughness (Ra) of 0.3 nm or less, preferably a magnetic disk substrate having a surface roughness (Ra) of 0.25 nm or less can be produced. In particular, the method for reducing microprojections of the present invention is a magnetic disk substrate having a surface roughness (Ra) of 0.3 nm or less, preferably for a magnetic disk having a surface roughness (Ra) of 0.25 nm or less, by two-step polishing. It is suitable for use in the second step when manufacturing a substrate.
[0039]
The manufactured magnetic disk substrate has very few surface protrusions and excellent surface smoothness. The surface smoothness is desirably a surface roughness (Ra) of 0.3 nm or less, preferably 0.25 nm or less.
[0040]
As described above, by using the method for reducing microprojections according to the present invention, microprojections can be efficiently removed, the polishing rate is improved, surface defects such as scratches and pits are few, and the surface roughness is reduced. A high-quality magnetic disk substrate having excellent surface properties and improved smoothness such as (Ra) and waviness (Wa) can be produced with high production efficiency.
[0041]
The method for reducing fine protrusions of the present invention is particularly effective in the boring process, but can be similarly applied to other polishing processes such as a lapping process.
[0042]
【Example】
(Polished object)
Polishing evaluation was performed using a 95 mmφ aluminum alloy substrate with a thickness of 0.8 mm, which was pre-polished with a polishing solution containing an alumina abrasive to obtain a substrate surface roughness of 1 nm. Went.
[0043]
Examples 1-7, Comparative Examples 1-3
Colloidal silica having an average particle size of primary particles as shown in Table 1, 35% hydrogen peroxide (Asahi Denka), 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP, manufactured by Solusia Japan Co., Ltd.) pK1 was 1 or less) or ethylenediaminetetraacetic acid iron salt (EDTA-Fe) was prepared in a predetermined amount and the remainder was water so that the total amount was 100% by weight. The mixing order is as follows. First, hydrogen peroxide is mixed with an aqueous solution obtained by diluting HEDP or EDTA-Fe with water, and finally, the colloidal silica slurry is quickly added with stirring so as not to gel, and the pH is adjusted to a predetermined value. A polishing liquid composition was prepared. Using the polishing composition thus obtained, an object to be polished was polished under the following polishing conditions, and the polishing rate, the surface roughness (Ra), and the number of fine protrusions were measured and evaluated based on the following methods. The obtained results are shown in Table 1.
[0044]
(Polishing conditions)
Polishing tester: "Fast double-sided 9B polishing machine" manufactured by Speedfam
Polishing pad: "Belatrix N0058" manufactured by Kanebo
Plate rotation speed: 35r / min
Slurry supply amount: 40ml / min
Polishing time: 4 minutes Polishing load: 7.8 kPa
Number of substrates loaded: 10 [0045]
(Polishing speed)
Multiply the weight difference (g) of the substrate before and after the polishing test by the specific gravity (8.4 g / cm 3 ), and then divide by the disk surface area (65.97 cm 2 ) and the polishing time to calculate the double-side polishing amount per unit time. ing.
[0046]
(Surface roughness (Ra))
Using an atomic force microscope (“Nanoscope III” manufactured by Digital Instruments Co., Ltd.) with a total of 6 points at every 120 ° on the front and back of the substrate to be polished, ScanRate range of 2 μm × 2 μm at 1.0 Hz The average value was measured. Ra represents the center line average roughness.
[0047]
(Number of minute protrusions)
Using an atomic force microscope (“Nanoscope III” manufactured by Digital Instruments Co., Ltd.) with a total of 6 points at every 120 ° on the front and back of the substrate to be polished, ScanRate range of 2 μm × 2 μm at 1.0 Hz The average value per substrate of the fine protrusions (projections having a height of 1 to 30 nm and a width of 1 to 100 nm) included in the substrate was determined.
[0048]
[Table 1]
Figure 0004104335
[0049]
From the results of Table 1, it can be seen that in Examples 1-7, a substrate having no microprojections and low surface roughness can be obtained at a high speed as compared with Comparative Examples 1-3.
[0050]
【The invention's effect】
The method for reducing microprotrusions according to the present invention has the effect of producing a substrate that prevents the generation of microprotrusions in high-speed polishing and high-accuracy surface quality, particularly surface shape analysis using an atomic force microscope (AFM). The

Claims (3)

水、コロイダルシリカ、酸化剤、並びに1−ヒドロキシエチリデン−1,1−ジホスホン酸及び硫酸からなる群より選ばれる酸化合物のみからなる研磨液組成物であって、pHが1.0〜3.0、かつコロイダルシリカの濃度が10重量%未満である研磨液組成物を用いて研磨機によりNi−Pメッキされたアルミニウム合金基板からなる被研磨基板の研磨を行う工程を有する、原子間力顕微鏡(AFM)を用いた表面解析により検知される被研磨基板の微小突起を低減する方法であって、該研磨液組成物を被研磨基板1m当たり0.15〜1.5L/分の流量で研磨面に供給し、4.9〜9.8kPaの一定圧力を加えながら、研磨機に備えられた上定盤又は下定盤と被研磨基板との相対速度が定盤中央部で0.3〜1m/秒となるようにして被研磨基板の研磨を行う工程を有する、微小突起を低減する方法。A polishing composition comprising only water, colloidal silica, an oxidizing agent, and an acid compound selected from the group consisting of 1-hydroxyethylidene-1,1-diphosphonic acid and sulfuric acid, and having a pH of 1.0 to 3.0 And an atomic force microscope having a step of polishing a substrate to be polished comprising an aluminum alloy substrate plated with Ni-P by a polishing machine using a polishing composition having a colloidal silica concentration of less than 10% by weight ( A method for reducing minute protrusions of a substrate to be polished detected by surface analysis using AFM, and polishing the polishing composition at a flow rate of 0.15 to 1.5 L / min per 1 m 2 of the substrate to be polished. While supplying a constant pressure of 4.9 to 9.8 kPa, the relative speed between the upper or lower surface plate provided in the polishing machine and the substrate to be polished is 0.3 to 1 m at the center of the surface plate. / Sec. Method comprising the step of performing polishing of the substrate, reducing the microprojections in the. 酸化剤が過酸化水素である請求項記載の方法。The method of claim 1 wherein the oxidizing agent is hydrogen peroxide. 請求項1又は2記載の方法を用いて原子間力顕微鏡(AFM)を用いた表面解析により検知される微小突起を低減した磁気ディスク用基板を製造する方法。Method for manufacturing a magnetic disk substrate having reduced microprojections sensed by surface analysis using an atomic force microscope (AFM) using the method of claim 1 or 2, wherein.
JP2002005943A 2002-01-15 2002-01-15 Method for reducing microprojections Expired - Lifetime JP4104335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002005943A JP4104335B2 (en) 2002-01-15 2002-01-15 Method for reducing microprojections

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002005943A JP4104335B2 (en) 2002-01-15 2002-01-15 Method for reducing microprojections

Publications (2)

Publication Number Publication Date
JP2003211351A JP2003211351A (en) 2003-07-29
JP4104335B2 true JP4104335B2 (en) 2008-06-18

Family

ID=27644843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002005943A Expired - Lifetime JP4104335B2 (en) 2002-01-15 2002-01-15 Method for reducing microprojections

Country Status (1)

Country Link
JP (1) JP4104335B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3940111B2 (en) * 2002-10-30 2007-07-04 花王株式会社 Polishing liquid composition
US20050139119A1 (en) * 2003-12-24 2005-06-30 Rader W. S. Polishing composition
JP2005205552A (en) * 2004-01-23 2005-08-04 Bando Chem Ind Ltd Polishing method and polishing film used for this polishing method
JP2008012668A (en) * 2004-04-06 2008-01-24 Kao Corp Polishing-fluid composition
WO2005123857A1 (en) * 2004-06-22 2005-12-29 Asahi Glass Company, Limited Polishing method for glass substrate, and glass substrate
DE112006003221T5 (en) 2005-12-22 2008-10-23 Asahi Glass Co., Ltd. Glass substrate for a mask preform and polishing process for making the same
JP5332249B2 (en) 2007-06-05 2013-11-06 旭硝子株式会社 Glass substrate polishing method
JP2008080486A (en) * 2007-10-04 2008-04-10 Kao Corp Polishing kit for magnetic disk
JP5376934B2 (en) * 2008-12-26 2013-12-25 花王株式会社 Rinse agent composition for magnetic disk substrate
JP6350054B2 (en) * 2014-07-11 2018-07-04 旭硝子株式会社 Polishing pad cleaning method

Also Published As

Publication number Publication date
JP2003211351A (en) 2003-07-29

Similar Documents

Publication Publication Date Title
JP4231632B2 (en) Polishing liquid composition
JP5219886B2 (en) Polishing liquid composition
JP4781693B2 (en) Method for reducing nano scratch on magnetic disk substrate
JP4451347B2 (en) Polishing liquid composition
JP4251516B2 (en) Polishing liquid composition
US6551175B2 (en) Polishing composition
JP4439755B2 (en) Polishing composition and method for producing memory hard disk using the same
JP3997152B2 (en) Polishing liquid composition
JP4213858B2 (en) Polishing liquid composition
JP4104335B2 (en) Method for reducing microprojections
JP4202157B2 (en) Polishing composition
JP4462599B2 (en) Polishing liquid composition
TWI411667B (en) Polishing composition for magnetic disk substrate
JP4286168B2 (en) How to reduce nanoscratches
JP2004253058A (en) Polishing liquid composition
JP2005001019A (en) Method of manufacturing substrate
JP2009144080A (en) Polishing liquid composition
JP2007301721A (en) Polishing liquid composition
JP4156174B2 (en) Polishing liquid composition
JP4255976B2 (en) Polishing liquid composition for magnetic disk substrate
JP4373776B2 (en) Polishing liquid composition
JP4267546B2 (en) Substrate manufacturing method
JP3997154B2 (en) Polishing liquid composition
JP3997153B2 (en) Polishing liquid composition
JP2009160676A (en) Composition of polishing liquid for hard disk substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060727

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060920

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080325

R151 Written notification of patent or utility model registration

Ref document number: 4104335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term