JP5377117B2 - Method for detecting non-spherical particles in a particle dispersion - Google Patents

Method for detecting non-spherical particles in a particle dispersion Download PDF

Info

Publication number
JP5377117B2
JP5377117B2 JP2009156993A JP2009156993A JP5377117B2 JP 5377117 B2 JP5377117 B2 JP 5377117B2 JP 2009156993 A JP2009156993 A JP 2009156993A JP 2009156993 A JP2009156993 A JP 2009156993A JP 5377117 B2 JP5377117 B2 JP 5377117B2
Authority
JP
Japan
Prior art keywords
particle dispersion
polishing
spherical particles
intensity distribution
scattering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009156993A
Other languages
Japanese (ja)
Other versions
JP2011013078A (en
Inventor
寛司 佐藤
良暁 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2009156993A priority Critical patent/JP5377117B2/en
Publication of JP2011013078A publication Critical patent/JP2011013078A/en
Application granted granted Critical
Publication of JP5377117B2 publication Critical patent/JP5377117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、粒子分散液に混在する非球状粒子を検出する方法、及び該方法を用いた粒子分散液の検査方法等に関する。   The present invention relates to a method for detecting non-spherical particles mixed in a particle dispersion, a method for inspecting a particle dispersion using the method, and the like.

従来から、コロイダルシリカや重合体粒子のような球状粒子が、磁気ディスク基板や半導体基板の研磨に使用されている。近年、磁気ディスクドライブを高記録密度化するために、磁気ディスク基板には、磁気ヘッドの低浮上化と記録面積の確保に対応するため、平滑性・平坦性の向上(表面粗さ、うねり、端面ダレの低減)と欠陥低減(スクラッチ、突起、ピット等の低減)が強く求められている。   Conventionally, spherical particles such as colloidal silica and polymer particles have been used for polishing magnetic disk substrates and semiconductor substrates. In recent years, in order to increase the recording density of magnetic disk drives, magnetic disk substrates have improved smoothness and flatness (surface roughness, waviness, There is a strong demand for reduction of edge sagging and defects (reduction of scratches, protrusions, pits, etc.).

基板表面上の平滑性・平坦性や欠陥は、使用される研磨粒子の形状により影響を受けることが知られている。研磨粒子の形状は、研磨剤の分野においては、これまで電子顕微鏡写真観察、動的光散乱法、レーザー回折法などにより評価されてきた(特許文献1〜4)。   It is known that the smoothness / flatness and defects on the substrate surface are affected by the shape of the abrasive particles used. In the field of abrasives, the shape of abrasive particles has been evaluated by electron micrograph observation, dynamic light scattering, laser diffraction, and the like (Patent Documents 1 to 4).

特開2003−133267号公報JP 2003-133267 A 特開2006−80406号公報JP 2006-80406 A 特開2007−137972号公報JP 2007-137972 A 特開2002−141314号公報JP 2002-141314 A

しかしながら、前記従来の粒子形状の評価方法では、粒子全体の平均的な形状を把握することはできるが、球状粒子に混じって存在する微量な非球状粒子を検出することはできない。また、粒子の粒径が小さい場合には、必ずしも正確な測定ができておらず、粒子の形状を厳密に制御することが困難な状況にある。   However, the conventional particle shape evaluation method can grasp the average shape of the whole particle, but cannot detect a small amount of non-spherical particles present in a mixture with spherical particles. In addition, when the particle size of the particles is small, accurate measurement is not always possible, and it is difficult to strictly control the shape of the particles.

さらに、磁気ディスク基板のさらなる大容量化を実現するためには、従来よりも厳密な研磨粒子の形状制御が求められており、球状粒子に混じって存在する非球状粒子の割合をより正確に評価できる測定方法が求められている。   Furthermore, in order to achieve a further increase in capacity of the magnetic disk substrate, stricter shape control of the abrasive particles is required than before, and the proportion of non-spherical particles present in the spherical particles is more accurately evaluated. There is a need for a measurement method that can be used.

そこで、本発明は、粒子分散液中に存在する非球状粒子をより正確に検出できる非球状粒子の検出方法及び該方法を用いた粒子分散液の検査方法等を提供する。   Therefore, the present invention provides a method for detecting non-spherical particles that can more accurately detect non-spherical particles present in the particle dispersion, and a method for inspecting particle dispersion using the method.

本発明は、動的光散乱法により粒子分散液の散乱強度分布の角度依存性を測定することを含む、粒子分散液中の非球状粒子を検出する方法に関する。   The present invention relates to a method for detecting non-spherical particles in a particle dispersion, which includes measuring the angular dependence of the scattering intensity distribution of the particle dispersion by a dynamic light scattering method.

本発明は、その他の態様として、本発明の非球状粒子を検出する方法を用いて粒子分散液を検査する工程を有する粒子分散液の検査方法及び又は製造方法に関する。本発明は、さらにその他の態様として、本発明の検査方法による粒子分散液の検査工程、又は本発明の製造方法による粒子分散液の製造工程を有し、前記粒子分散液が研磨液組成物であり、前記研磨液組成物を用いて被研磨基板を研磨する工程を含む基板の製造方法に関する。   As another aspect, the present invention relates to a particle dispersion inspection method and / or manufacturing method including a step of inspecting a particle dispersion using the method for detecting non-spherical particles of the present invention. The present invention further includes, as another aspect, a particle dispersion inspection process according to the inspection method of the present invention or a particle dispersion manufacturing process according to the manufacturing method of the present invention, wherein the particle dispersion is a polishing liquid composition. Further, the present invention relates to a method for manufacturing a substrate including a step of polishing a substrate to be polished using the polishing composition.

本発明の非球状粒子を検出する方法によれば、好ましくは、従来検出が難しかった球状粒子分散液中に微量に存在する非球状粒子をより正確に検出することができる。   According to the method for detecting non-spherical particles of the present invention, preferably, non-spherical particles present in a minute amount in a spherical particle dispersion, which has been difficult to detect conventionally, can be detected more accurately.

図1は、コロイダルシリカ分散液である研磨液組成物にシリカ粒子I(非球状:ひし形)又はシリカ粒子II(球状:四角形)を添加した場合における、動的光散乱法により測定される散乱強度分布の角度依存性(ΔCV値)の変化を示すグラフである。FIG. 1 shows the scattering intensity measured by the dynamic light scattering method when silica particles I (non-spherical: rhombus) or silica particles II (spherical: square) are added to a polishing liquid composition that is a colloidal silica dispersion. It is a graph which shows the change of the angle dependence ((DELTA) CV value) of distribution. 図2は、シリカA及びシリカBのそれぞれについて、ΔCV値と研磨後の基板表面のスクラッチ数とについて使用したロットをプロットしたグラフである。FIG. 2 is a graph plotting lots used for the ΔCV value and the number of scratches on the substrate surface after polishing for each of silica A and silica B.

[非球状粒子]
本明細書において「非球状粒子」とは、「球状粒子」よりも異形度が大きな粒子をいい、凝集粒子や、一次粒子である「球状粒子」の凝集粒子を含みうる。また、本明細書において「非球状粒子」は、好ましくは異形度が1.55よりも大きい粒子をいう。ここで、異形度とは、動的光散乱法により測定される平均粒子径をBET法により測定される平均粒子径で除した値であり、一般に、粒子が真球状の場合、異形度の値は1に収束し、粒子が真球から乖離するに従い、その値は大きくなる(例えば、特開2007−137972号公報参照)。
[Non-spherical particles]
In this specification, “non-spherical particles” refers to particles having a higher degree of deformity than “spherical particles”, and may include aggregated particles and aggregated particles of “spherical particles” that are primary particles. Further, in the present specification, “non-spherical particles” preferably refer to particles having a degree of irregularity greater than 1.55. Here, the degree of irregularity is a value obtained by dividing the average particle diameter measured by the dynamic light scattering method by the average particle diameter measured by the BET method. In general, when the particles are spherical, the value of the degree of irregularity is obtained. Converges to 1 and increases as the particle deviates from the true sphere (see, for example, JP-A-2007-137972).

また、分散液中の粒子の全体の平均的な形状が球状(真球状)であるか或いは非球状であるかを測定する方法の1つとして、動的散乱法により測定される拡散係数(D=Γ/q2)の角度依存性を指標とする方法がある(例えば、特開平10−195152号公報参照)。具体的には散乱ベクトルq2に対するΓ/q2をプロットしたグラフにおいて示される角度依存性が小さいほどその分散液中の粒子の平均的な形状は真球状であると判断し、角度依存性が大きいほどその分散液中の粒子の平均的な形状は非球状であると判断する方法である。 Further, as one of methods for measuring whether the average shape of the particles in the dispersion is spherical (true spherical) or non-spherical, a diffusion coefficient (D = Γ / q 2 ) as an index (see, for example, Japanese Patent Laid-Open No. 10-195152). Specifically, the smaller the angle dependency shown in the graph plotting Γ / q 2 with respect to the scattering vector q 2, the more the average shape of the particles in the dispersion is judged to be spherical, and the angle dependency is This is a method for determining that the average shape of the particles in the dispersion is non-spherical as the value increases.

本発明者らは、同じ粒径及び粒度分布を示す粒子分散液として製造される研磨液組成物であっても、研磨後の基板表面の品質(スクラッチ数など)が大きく異なることに着目し、その原因が従来の粗大粒子除去(精密フィルターろ過)工程では除去できない200nm以下の非球状粒子が粒子分散液中に微量存在するためであることを見出した。   The inventors of the present invention pay attention to the fact that the quality of the substrate surface after polishing (such as the number of scratches) is greatly different even in a polishing composition produced as a particle dispersion having the same particle size and particle size distribution. It has been found that the cause is that a small amount of non-spherical particles of 200 nm or less that cannot be removed by the conventional coarse particle removal (precise filter filtration) step exists in the particle dispersion.

本発明は、動的光散乱法で測定される拡散係数の角度依存性に基づけば真球状粒子分散液と認められるような試料であっても、動的光散乱法で測定される散乱強度分布の角度依存性に着目すれば、該試料中に存在する非球状粒子の検出が可能になる、すなわち、粒子分散液中の非球状粒子の含有量と動的光散乱法で測定される散乱強度分布の角度依存性とが相関する、という知見に基づく。   The present invention provides a scattering intensity distribution measured by the dynamic light scattering method even for a sample that is recognized as a true spherical particle dispersion based on the angular dependence of the diffusion coefficient measured by the dynamic light scattering method. Focusing on the angular dependence of the sample, it is possible to detect non-spherical particles present in the sample, that is, the content of non-spherical particles in the particle dispersion and the scattering intensity measured by the dynamic light scattering method. Based on the finding that the angular dependence of the distribution correlates.

よって、本発明は、一態様において、粒子分散液中の非球状粒子を検出する方法(以下、「本発明の非球状粒子の検出方法」ともいう。)であって、動的光散乱法により前記粒子分散液の散乱強度分布の角度依存性を測定することを含む非球状粒子の検出方法に関する。本発明の非球状粒子の検出方法によれば、好ましくは、従来検出が難しかった粒子分散液中に微量に存在する非球状粒子をより正確に検出できる。   Therefore, in one aspect, the present invention is a method for detecting non-spherical particles in a particle dispersion (hereinafter, also referred to as “the non-spherical particle detection method of the present invention”), which is based on a dynamic light scattering method. The present invention relates to a method for detecting non-spherical particles, including measuring the angular dependence of the scattering intensity distribution of the particle dispersion. According to the method for detecting non-spherical particles of the present invention, preferably, non-spherical particles present in a minute amount in a particle dispersion, which has been difficult to detect conventionally, can be detected more accurately.

すなわち、本発明の非球状粒子の検出方法は、系全体で均一の粒子が分散していると仮定して粒子の形状や粒径等を検出・測定する従来の方法とは異なり、粒子分散液の一部に存在する非球状粒子を見出すことができる。本発明の非球状粒子の検出方法により従来検出が難しかった粒子分散液中に微量に存在する非球状粒子をより正確に検出できるメカニズムは、以下のように推定される。すなわち、動的光散乱法では、原理的に200nm以下の真球状粒子分散溶液を測定した場合、散乱強度分布は検出角に関係なくほぼ一定の結果が得られるため測定結果は検出角に依存しない。しかし、非球状粒子を含む真球状粒子分散溶液の動的光散乱の散乱強度分布は非球状粒子の存在により検出角によって大きく変化し、低角の検出角ほど散乱強度分布は分布がブロードになる。そのため、動的光散乱の散乱強度分布の測定結果は検出角に依存することとなり、動的光散乱の散乱強度分布の角度依存性を測定することで粒子分散溶液中に存在する非球状粒子を検出できると考えられる。但し、本発明はこのメカニズムに限定されない。   That is, the non-spherical particle detection method of the present invention is different from the conventional method of detecting and measuring the particle shape, particle size, etc., assuming that uniform particles are dispersed throughout the system. Non-spherical particles present in a part of the particle can be found. The mechanism by which the non-spherical particles present in a minute amount in the particle dispersion liquid that has been difficult to detect by the non-spherical particle detection method of the present invention can be detected more accurately is as follows. That is, in the dynamic light scattering method, when measuring a spherical particle dispersion solution of 200 nm or less in principle, the scattering intensity distribution is almost constant regardless of the detection angle, so the measurement result does not depend on the detection angle. . However, the scattering intensity distribution of dynamic light scattering of a spherical dispersion containing non-spherical particles varies greatly depending on the detection angle due to the presence of non-spherical particles, and the distribution of the scattering intensity distribution becomes broader at lower detection angles. . Therefore, the measurement result of the scattering intensity distribution of dynamic light scattering depends on the detection angle. By measuring the angular dependence of the scattering intensity distribution of dynamic light scattering, the non-spherical particles present in the particle dispersion solution are detected. It can be detected. However, the present invention is not limited to this mechanism.

「散乱強度分布」
本明細書において「散乱強度分布」とは、動的光散乱法(DLS:Dynamic Light Scattering)又は準弾性光散乱(QLS:Quasielastic Light Scattering)により求められるサブミクロン以下の粒子の3つの粒径分布(散乱強度、体積換算、個数換算)のうち散乱強度の粒径分布のことをいう。通常、サブミクロン以下の粒子は溶媒中でブラウン運動をしており、レーザー光を照射すると散乱光強度が時間的に変化する(ゆらぐ)。この散乱光強度のゆらぎを、例えば、光子相関法(JIS Z 8826)を用いて自己相関関数を求め、キュムラント(Cumulant)法解析により、ブラウン運動速度を示す拡散係数(D)を算出して、さらにアインシュタイン・ストークスの式を用い、平均粒径(d:流体力学的径)を求めることができる。また、粒径分布解析は、キュムラント法による多分散性指数(Polydispersity Index, PI)のほかに、ヒストグラム法(Marquardt法)、ラプラス逆変換法(CONTIN法)、非負最小2乗法(NNLS法)等がある。
Scattering intensity distribution
In this specification, “scattering intensity distribution” means three particle size distributions of sub-micron or less particles obtained by dynamic light scattering (DLS) or quasielastic light scattering (QLS). It means the particle size distribution of scattering intensity among (scattering intensity, volume conversion, number conversion). Usually, the sub-micron particles have Brownian motion in a solvent, and the intensity of scattered light changes (fluctuates) with time when irradiated with laser light. For this fluctuation of scattered light intensity, for example, an autocorrelation function is obtained using a photon correlation method (JIS Z 8826), and a diffusion coefficient (D) indicating a Brownian motion velocity is calculated by cumulant method analysis. Furthermore, the average particle diameter (d: hydrodynamic diameter) can be obtained using the Einstein-Stokes equation. In addition to polydispersity index (PI) by cumulant method, particle size distribution analysis includes histogram method (Marquardt method), Laplace inverse transformation method (CONTIN method), non-negative least square method (NNLS method), etc. There is.

動的光散乱法の粒径分布解析では、通常、キュムラント法による多分散性指数(Polydispersity Index, PI)が広く用いられている。しかしながら、粒子分散液中にわずかに存在する非球状粒子の検出を可能とする本発明の非球状粒子の検出方法では、ヒストグラム法(Marquardt法)やラプラス逆変換法(CONTIN法)による粒径分布解析から平均粒径(d50)と標準偏差を求め、CV値(Coefficient of variation:標準偏差を平均粒径で割って100をかけた数値)を算出し、その角度依存性(ΔCV)を用いることが好ましい。
(参考資料)
第12回散乱研究会(2000年11月22日開催)テキスト、1.散乱基礎講座「動的光散乱法」(東京大学 柴山充弘教授)
第20回散乱研究会(2008年12月4日開催)テキスト、5.動的光散乱によるナノ粒子の粒径分布測定(同志社大学 森康維先生)
In the particle size distribution analysis of the dynamic light scattering method, the polydispersity index (PI) by the cumulant method is generally widely used. However, in the detection method of non-spherical particles of the present invention that enables detection of non-spherical particles slightly present in the particle dispersion, the particle size distribution by the histogram method (Marquardt method) or the Laplace inverse transformation method (CONTIN method). Obtain the average particle size (d50) and standard deviation from the analysis, calculate the CV value (Coefficient of variation: a value obtained by dividing the standard deviation by the average particle size and multiply by 100), and use its angular dependence (ΔCV) Is preferred.
(Reference material)
Text of the 12th Scattering Study Group (held on November 22, 2000) Scattering Basic Course "Dynamic Light Scattering" (Professor Mitsuhiro Shibayama, University of Tokyo)
Text of the 20th Scattering Study Group (held on December 4, 2008) Measurement of size distribution of nanoparticles by dynamic light scattering (Doshisha University, Professor Yasushi Mori)

「散乱強度分布の角度依存性」
本明細書において「粒子分散液の散乱強度分布の角度依存性」とは、動的光散乱法により異なる検出角で前記粒子分散液の散乱強度分布を測定した場合の、散乱角度に応じた散乱強度分布の変動の大きさをいう。例えば、検出角30°と検出角90°とでの散乱強度分布の差が大きければ、その粒子分散液の散乱強度分布の角度依存性は大きいといえる。よって、本発明において、散乱強度分布の角度依存性の測定は、異なる2つの検出角で測定した散乱強度分布に基づく測定値の差を求めることを含む。前記測定値としては、1つの検出角における測定で得られた散乱強度分布に基づく標準偏差及びCV値などが挙げられる。なお、本明細書において、CV値とは、上述のとおり、1つの検出角における測定で得られた散乱強度分布に基づく標準偏差を、該検出角における散乱強度分布に基づく平均粒径で除して100を掛けた値をいう。非球状粒子の検出の確度向上の点からは、前記測定値はCV値であることが好ましい。したがって、散乱強度分布の角度依存性を示す指標としては、非球状粒子の検出の確度向上の点から、好ましくは、異なる2つの検出角で測定した散乱強度分布に基づく標準偏差の差、及び、異なる2つの検出角で測定した散乱強度分布に基づくCV値の差(ΔCV値)であって、より好ましくは、ΔCV値である。
"Angle dependence of scattering intensity distribution"
In this specification, “angle dependency of the scattering intensity distribution of the particle dispersion” means scattering according to the scattering angle when the scattering intensity distribution of the particle dispersion is measured at different detection angles by the dynamic light scattering method. The magnitude of fluctuation in intensity distribution. For example, if the difference in the scattering intensity distribution between the detection angle of 30 ° and the detection angle of 90 ° is large, it can be said that the angle dependency of the scattering intensity distribution of the particle dispersion is large. Therefore, in the present invention, measurement of the angle dependence of the scattered intensity distribution includes obtaining a difference between measured values based on the scattered intensity distribution measured at two different detection angles. Examples of the measurement value include a standard deviation and a CV value based on a scattering intensity distribution obtained by measurement at one detection angle. In this specification, as described above, the CV value is obtained by dividing the standard deviation based on the scattering intensity distribution obtained by measurement at one detection angle by the average particle diameter based on the scattering intensity distribution at the detection angle. The value multiplied by 100. From the viewpoint of improving the accuracy of detection of non-spherical particles, the measured value is preferably a CV value. Therefore, as an index indicating the angle dependence of the scattered intensity distribution, from the viewpoint of improving the accuracy of detection of non-spherical particles, preferably, the difference in standard deviation based on the scattered intensity distribution measured at two different detection angles, and A difference (ΔCV value) between CV values based on scattering intensity distributions measured at two different detection angles, and more preferably a ΔCV value.

散乱強度分布の角度依存性の測定で用いる2つの検出角の組合せとしては、非球状粒子の検出の確度向上の点からは、前方散乱と側方若しくは後方散乱との組合せが好ましい。前記前方散乱の検出角としては、同様の観点から、0〜80°が好ましく、0〜60°がより好ましく、10〜50°がさらに好ましく、20〜40°がさらにより好ましい。前記側方若しくは後方散乱の検出角としては、同様の観点から、80〜180°が好ましく、85〜175°がより好ましい。   As a combination of the two detection angles used in the measurement of the angle dependence of the scattering intensity distribution, a combination of forward scattering and side or back scattering is preferable from the viewpoint of improving the accuracy of detection of non-spherical particles. From the same viewpoint, the forward scattering detection angle is preferably 0 to 80 °, more preferably 0 to 60 °, still more preferably 10 to 50 °, and still more preferably 20 to 40 °. From the same viewpoint, the side or backscattering detection angle is preferably 80 to 180 °, more preferably 85 to 175 °.

「粒子分散液」
本明細書において「粒子分散液」とは、本発明の非球状粒子の検出方法により非球状粒子の存在の有無を検出される被検試料をいう。また、本明細書において「粒子分散液」は、好ましくは、動的光散乱測定による拡散係数の角度依存性、すなわち、散乱ベクトルq2に対するΓ/q2をプロットしたグラフにおいて示される角度依存性が小さい又は無い試料を含む。このような動的散乱測定による拡散係数の角度依存性が小さい又は無い試料は、従来、球状粒子が分散した粒子分散液であると見なされている。本発明の一態様は、このような動的散乱測定による拡散係数の角度依存性が小さい又は無い試料に存在し得る微量の非球状粒子の検出を、「散乱強度分布の角度依存性」に着目することで可能とする、非球状粒子の検出方法である。
"Particle dispersion"
In the present specification, the “particle dispersion” refers to a test sample in which the presence or absence of non-spherical particles is detected by the method for detecting non-spherical particles of the present invention. Further, in the present specification, the “particle dispersion liquid” is preferably an angle dependency of a diffusion coefficient by dynamic light scattering measurement, that is, an angle dependency shown in a graph plotting Γ / q 2 with respect to a scattering vector q 2 . Includes samples with small or no. A sample having such a small or no angular dependence of the diffusion coefficient by dynamic scattering measurement is conventionally regarded as a particle dispersion in which spherical particles are dispersed. One aspect of the present invention focuses on the detection of a small amount of non-spherical particles that may exist in a sample with little or no angular dependence of the diffusion coefficient by dynamic scattering measurement, focusing on the "angle dependence of the scattering intensity distribution". This is a method for detecting non-spherical particles.

[非球状粒子の検出方法]
本発明の非球状粒子の検出方法は、粒子分散液の散乱強度分布の角度依存性を動的光散乱法により測定することを含む。前述したとおり、散乱強度分布の角度依存性を示す値としては、散乱強度分布に基づく標準偏差の差、及び前記標準偏差を前記平均粒径で除して100を掛けた値であるCV値の差(ΔCV値)などが挙げられる。
[Detection method of non-spherical particles]
The method for detecting non-spherical particles of the present invention includes measuring the angle dependence of the scattering intensity distribution of the particle dispersion by a dynamic light scattering method. As described above, the value indicating the angle dependence of the scattering intensity distribution includes the difference in standard deviation based on the scattering intensity distribution and the CV value obtained by dividing the standard deviation by the average particle diameter and multiplying by 100. Difference (ΔCV value) and the like can be mentioned.

本発明の非球状粒子の検出方法の一実施形態として、非球状粒子を含まないコントロール又は研磨結果等から非球状粒子を実質的に含まないと考えられるコントロールであらかじめ散乱強度分布の角度依存性を測定しておき、試験する粒子分散液の散乱強度分布の角度依存性と比較して、前記粒子分散液が非球状粒子を含むか否かを判断することを含む検出方法が挙げられる。   As an embodiment of the method for detecting non-spherical particles of the present invention, the angle dependence of the scattering intensity distribution is previously determined by a control that does not contain non-spherical particles or a control that is considered to be substantially free of non-spherical particles from the polishing results. There is a detection method that includes measuring and determining whether or not the particle dispersion contains non-spherical particles as compared with the angular dependence of the scattering intensity distribution of the particle dispersion to be tested.

本発明の非球状粒子の検出方法のその他の実施形態として、非球状粒子を含まないコントロール若しくは研磨結果等から非球状粒子を実質的に含まないと考えられるコントロール及び既知の非球状粒子を含むコントロールを用いて散乱強度分布の角度依存性と非球状粒子の含有量との相関関係を示す検量線を作成して、試験する粒子分散液の散乱強度分布の角度依存性から前記粒子分散液中の非球状粒子の含有量を求めることを含む検出方法が挙げられる。前記検量線を作成する場合、散乱強度分布の角度依存性を示す測定値として、ΔCV値(CV値の差)を使用することが好ましい。粒子分散液中の非球状粒子の存在量とΔCV値とはより強い相関を示し、より正確な非球状粒子の検出が可能となるからである。但し、本発明はこれらの実施形態に限定して解釈されない。   As other embodiments of the method for detecting non-spherical particles of the present invention, a control that does not contain non-spherical particles or a control that is considered to be substantially free of non-spherical particles from the polishing results, and a control that contains known non-spherical particles Is used to create a calibration curve indicating the correlation between the angular dependence of the scattering intensity distribution and the content of non-spherical particles, and from the angular dependence of the scattering intensity distribution of the particle dispersion to be tested, The detection method including calculating | requiring content of a non-spherical particle | grain is mentioned. When creating the calibration curve, it is preferable to use a ΔCV value (difference in CV value) as a measured value indicating the angular dependence of the scattering intensity distribution. This is because the abundance of non-spherical particles in the particle dispersion and the ΔCV value show a stronger correlation, and more accurate detection of non-spherical particles becomes possible. However, the present invention is not construed as being limited to these embodiments.

本発明の非球状粒子の検出方法は、好ましくは、粒子分散液中に存在する非球状粒子をより正確に検出できるため、粒子分散液及び又は粒子分散液を含む製品の分析、検査、品質管理、製造に有用である。したがって、本発明は、その態様において、粒子分散液及び若しくは粒子分散液を含む製品の、分析方法、検査方法、品質管理方法、及び又は製造方法に関する。粒子分散液を含む製品の例としては、半導体基板や磁気ディスク基板用の研磨液組成物、化粧品、塗料などが挙げられる。さらに、本発明は、さらにその他の態様において、本発明の検査方法による研磨液組成物の検査工程、又は本発明の製造方法による研磨液組成物の製造工程を有し前記研磨液組成物を用いて被研磨基板を研磨する工程を含む基板の製造方法に関する。   The non-spherical particle detection method of the present invention is preferably capable of more accurately detecting non-spherical particles present in the particle dispersion, so that the analysis, inspection, and quality control of the particle dispersion and / or the product containing the particle dispersion are performed. Useful for manufacturing. Accordingly, the present invention, in its aspect, relates to an analysis method, an inspection method, a quality control method, and / or a manufacturing method for a particle dispersion and / or a product containing the particle dispersion. Examples of the product containing the particle dispersion include polishing liquid compositions for semiconductor substrates and magnetic disk substrates, cosmetics, paints, and the like. Furthermore, this invention has the manufacturing process of the polishing liquid composition by the test | inspection process of the polishing liquid composition by the test | inspection method of this invention, or the manufacturing method of this invention, and uses the said polishing liquid composition in another aspect. The present invention relates to a substrate manufacturing method including a step of polishing a substrate to be polished.

粒子分散液及び若しくは粒子分散液を含む製品の分析方法としては、本発明の非球状粒子の検出方法により粒子分散液及び若しくは粒子分散液を含む製品における非球状粒子の有無及び又は含有量を分析する実施形態が挙げられる。粒子分散液及び若しくは粒子分散液を含む製品の検査方法としては、本発明の非球状粒子の検出方法により、粒子分散液及び若しくは粒子分散液を含む製品における非球状粒子の有無及び又は含有量を検査する実施形態が挙げられる。粒子分散液及び若しくは粒子分散液を含む製品の品質管理方法としては、本発明の非球状粒子の検出方法により、粒子分散液及び若しくは粒子分散液を含む製品における非球状粒子の有無及び又は含有量を検出して品質を管理する実施形態が挙げられる。粒子分散液及び若しくは粒子分散液を含む製品の製造方法としては、本発明の非球状粒子の検出方法により粒子分散液及び若しくは粒子分散液を含む製品における非球状粒子の有無及び又は含有量の検出工程を含む実施形態が挙げられる。   As a method for analyzing a particle dispersion and / or a product containing the particle dispersion, the presence / absence and / or content of the non-spherical particles in the product containing the particle dispersion and / or the particle dispersion is analyzed by the non-spherical particle detection method of the present invention. Embodiment which performs is mentioned. As a method for inspecting a particle dispersion and / or a product containing the particle dispersion, the presence or absence and / or content of the non-spherical particles in the particle dispersion and / or the product containing the particle dispersion are determined by the non-spherical particle detection method of the present invention. An embodiment to inspect is mentioned. As the quality control method of the particle dispersion and / or the product containing the particle dispersion, the presence or absence and / or content of the non-spherical particles in the product containing the particle dispersion and / or the particle dispersion by the non-spherical particle detection method of the present invention. An embodiment in which quality is managed by detecting the above is mentioned. As a method for producing a particle dispersion and / or a product containing the particle dispersion, the presence or absence of non-spherical particles in the product containing the particle dispersion and / or the particle dispersion is detected by the non-spherical particle detection method of the present invention. An embodiment including a process may be mentioned.

[粒子]
本発明の非球状粒子の検出方法に用いる粒子分散液中に存在する粒子としては、特に制限されないが、例えば、平均粒径が1〜200nmの範囲の粒子であってもよい。従来の電子顕微鏡写真観察、動的光散乱法、レーザー回折法などの方法では、上記範囲の平均粒径において球状粒子に混在する非球状粒子を検出することは困難であった。なぜなら、顕微鏡観察では溶液の一部のみの観察であり、また従来の動的光散乱法では溶液系全体を均一であると仮定して粒子を測定・算出しているからである。また、本発明の非球状粒子の検出方法では、前述のとおり、散乱強度分布の角度依存性を動的光散乱法により測定することで粒子分散溶液中に存在する非球状粒子を検出することを可能としている。なお、本明細書において、粒子の「平均粒径」とは、特に記載がない場合、動的光散乱法により検出角90度で測定した散乱強度分布に基づく平均粒径をいう。
[particle]
Although it does not restrict | limit especially as a particle which exists in the particle dispersion liquid used for the detection method of the non-spherical particle | grains of this invention, For example, a particle | grain with an average particle diameter of the range of 1-200 nm may be sufficient. In conventional methods such as electron micrograph observation, dynamic light scattering method, and laser diffraction method, it has been difficult to detect non-spherical particles mixed in spherical particles at an average particle size in the above range. This is because microscopic observation is the observation of only a part of the solution, and the conventional dynamic light scattering method measures and calculates particles on the assumption that the entire solution system is uniform. In the method for detecting non-spherical particles of the present invention, as described above, the non-spherical particles present in the particle dispersion solution are detected by measuring the angular dependence of the scattering intensity distribution by the dynamic light scattering method. It is possible. In the present specification, the “average particle diameter” of particles means an average particle diameter based on a scattering intensity distribution measured at a detection angle of 90 degrees by a dynamic light scattering method, unless otherwise specified.

前記粒子は、非球状粒子の検出の確度向上の点からは、無機粒子であることが好ましい。前記無機粒子としては、例えば、シリカ、アルミナ、ジルコニア、チタニア、マグネシア、酸化モリブデン、酸化タングステン、酸化亜鉛、酸化錫、チタン酸バリウム、チタン酸アルミ、炭化珪素、窒化珪素などの粒子が挙げられ、これら以外の無機酸化物、無機窒化物、難陽性イオン結晶、共有結合性結晶、粘土鉱物などであってもよい。研磨剤組成物への適用の点からは、前記無機粒子としてはシリカ、及びアルミナが好ましく、水ガラス(ケイ酸水溶液)や金属アルコキシドを原料に粒子成長により合成されるコロイダルシリカがより好ましい。   The particles are preferably inorganic particles from the viewpoint of improving the accuracy of detection of non-spherical particles. Examples of the inorganic particles include particles of silica, alumina, zirconia, titania, magnesia, molybdenum oxide, tungsten oxide, zinc oxide, tin oxide, barium titanate, aluminum titanate, silicon carbide, silicon nitride, and the like. Other than these, inorganic oxides, inorganic nitrides, hard-positive ion crystals, covalent bonds, clay minerals, and the like may be used. From the viewpoint of application to an abrasive composition, silica and alumina are preferable as the inorganic particles, and colloidal silica synthesized by particle growth using water glass (silicic acid aqueous solution) or metal alkoxide as a raw material is more preferable.

[磁気ディスク基板用研磨液組成物]
本発明の一実施形態として、磁気ディスク基板用研磨液組成物における非球状粒子の検出方法、前記研磨液組成物の検査方法・品質管理方法・製造方法、及び、前記研磨液組成物を用いて被研磨基板を研磨する工程を含む基板の製造方法を以下に説明する。
[Polishing composition for magnetic disk substrate]
As one embodiment of the present invention, a method for detecting non-spherical particles in a polishing liquid composition for a magnetic disk substrate, an inspection method, a quality control method, a manufacturing method for the polishing liquid composition, and the polishing liquid composition are used. A substrate manufacturing method including a step of polishing a substrate to be polished will be described below.

磁気ディスク基板用研磨液組成物の一例として、コロイダルシリカ、水、酸及び酸化剤を含有し、前記コロイダルシリカの動的光散乱法(検出角90度)で測定した散乱強度分布に基づく平均粒径が1〜40nmである研磨液組成物を用いる。   As an example of a polishing composition for a magnetic disk substrate, an average particle containing colloidal silica, water, an acid and an oxidant and based on a scattering intensity distribution measured by the dynamic light scattering method (detection angle 90 degrees) of the colloidal silica. A polishing composition having a diameter of 1 to 40 nm is used.

前記研磨液組成物に本発明の非球状粒子の検出方法を適用した一例として、以下のように、散乱強度分布に基づく測定値としてCV値を用いた検出方法が挙げられる。まず、動的光散乱法を用いて検出角30°(前方散乱)での散乱強度分布に基づく平均粒径及び標準偏差を求め、前記標準偏差を前記平均粒径で除して100を掛けたCV値(CV30)を求める。次に、動的光散乱法を用いて検出角90°(側方散乱)での散乱強度分布に基づく標準偏差を求め、前記標準偏差を前記平均粒径で除して100を掛けたCV値(CV90)を求める。そして、前記研磨液組成物の散乱強度分布の角度依存性を示す値として、CV30とCV90との差であるΔCV値(ΔCV=CV30−CV90)を求める。前記ΔCV値が高いほど、前記研磨液組成物に非球状シリカ粒子がより多く存在することを示す。また、前記ΔCV値が低いほど(ゼロに近いほど)、前記研磨液組成物における非球状シリカ粒子が少ないことを示す。   As an example of applying the method for detecting non-spherical particles of the present invention to the polishing composition, a detection method using a CV value as a measurement value based on the scattering intensity distribution is given as follows. First, an average particle diameter and a standard deviation based on a scattering intensity distribution at a detection angle of 30 ° (forward scattering) were obtained using a dynamic light scattering method, and the standard deviation was divided by the average particle diameter and multiplied by 100. A CV value (CV30) is obtained. Next, a standard deviation based on a scattering intensity distribution at a detection angle of 90 ° (side scatter) is obtained using a dynamic light scattering method, and the standard deviation is divided by the average particle diameter and multiplied by 100. (CV90) is obtained. Then, a ΔCV value (ΔCV = CV30−CV90) which is a difference between CV30 and CV90 is obtained as a value indicating the angle dependency of the scattering intensity distribution of the polishing liquid composition. A higher ΔCV value indicates that more non-spherical silica particles are present in the polishing liquid composition. Moreover, it shows that there are few non-spherical silica particles in the said polishing liquid composition, so that the said (DELTA) CV value is low (closer to zero).

研磨液組成物においては、被研磨基板を研磨後と基板表面のスクラッチを低減する観点から、ΔCV値(ΔCV=CV30−CV90)は、0〜10%が好ましく、より好ましくは0〜7%、さらに好ましくは0〜5%である。   In the polishing composition, from the viewpoint of reducing scratches on the substrate surface after polishing the substrate to be polished, the ΔCV value (ΔCV = CV30−CV90) is preferably 0 to 10%, more preferably 0 to 7%. More preferably, it is 0 to 5%.

したがって、本発明の研磨液組成物の検査方法としては、研磨液組成物の前記ΔCV値が上記範囲に入るか否かを検査することを含む検査方法が挙げられる。また、本発明の研磨液組成物の品質管理方法としては、研磨液組成物の前記ΔCV値が上記範囲に入るか否かを検査し、上記範囲から外れる場合には製造条件の見直し、前述したΔCV値の調整、又は該研磨液組成物の使用の停止を行うことを含む品質管理方法が挙げられる。さらに、本発明の研磨液組成物の製造方法としては、研磨液組成物の前記ΔCV値が上記範囲に入ることを確認する工程を含む製造方法が挙げられる。また、前記製造方法は、さらに、前述したΔCV値の調整工程を含んでもよい。   Therefore, the inspection method for the polishing composition of the present invention includes an inspection method including inspecting whether or not the ΔCV value of the polishing composition falls within the above range. Further, as a quality control method of the polishing composition of the present invention, whether or not the ΔCV value of the polishing composition is within the above range is inspected. Examples include a quality control method including adjusting the ΔCV value or stopping the use of the polishing composition. Furthermore, as a manufacturing method of the polishing liquid composition of this invention, the manufacturing method including the process of confirming that the said (DELTA) CV value of polishing liquid composition enters the said range is mentioned. The manufacturing method may further include the above-described ΔCV value adjusting step.

本発明の非球状粒子の検出方法を用いて検査、品質管理、及び又は製造した研磨液組成物を用いることにより、基板のスクラッチが低減された磁気ディスク基板、特に垂直磁気記録方式の磁気ディスク基板を製造できるという効果が好ましくは奏される。   A magnetic disk substrate, particularly a perpendicular magnetic recording type magnetic disk substrate, in which scratches of the substrate are reduced by using the polishing composition prepared by inspection, quality control and / or manufacturing using the method for detecting non-spherical particles of the present invention. The effect that can be manufactured is preferably produced.

なお、スクラッチ低減のメカニズムは明らかではないが、コロイダルシリカなどの研磨材の一次粒子が凝集して生じた50〜200nmのシリカ凝集体(非球状シリカ)がスクラッチ発生の原因物質であり、かかる凝集体が少ないためスクラッチが低減されると推定される。但し、本発明はこれらの推定メカニズムに限定されない。   Although the mechanism of reducing scratches is not clear, 50-200 nm silica aggregates (non-spherical silica) produced by agglomeration of primary particles of an abrasive such as colloidal silica are the causative substances for the generation of scratches. It is estimated that scratches are reduced because there are few aggregates. However, the present invention is not limited to these estimation mechanisms.

以下、磁気ディスク基板用研磨液組成物の好ましい実施形態についてさらに説明する。   Hereinafter, preferred embodiments of the polishing composition for a magnetic disk substrate will be further described.

[コロイダルシリカ]
前記研磨液組成物に用いられるコロイダルシリカは、ケイ酸水溶液から生成させる公知の製造方法等により得られたものでもよい。シリカ粒子の使用形態としては、操作性の観点からスラリー状であることが好ましい。
[Colloidal silica]
The colloidal silica used in the polishing composition may be obtained by a known production method or the like produced from an aqueous silicic acid solution. The usage form of the silica particles is preferably a slurry from the viewpoint of operability.

コロイダルシリカの動的光散乱法(検出角90度)により測定される散乱強度分布に基づく平均粒径は、スクラッチを低減する観点から、好ましくは1〜40nmであり、より好ましくは5〜37nm、さらに好ましくは10〜35nmである。   From the viewpoint of reducing scratches, the average particle size based on the scattering intensity distribution measured by the colloidal silica dynamic light scattering method (detection angle 90 degrees) is preferably 1 to 40 nm, more preferably 5 to 37 nm, More preferably, it is 10-35 nm.

コロイダルシリカのCV値(CV30及びCV90)は、スクラッチを低減する観点から、好ましくは1〜35%であり、より好ましくは5〜34%、さらに好ましくは10〜33%である。   The CV value (CV30 and CV90) of colloidal silica is preferably 1 to 35%, more preferably 5 to 34%, and still more preferably 10 to 33% from the viewpoint of reducing scratches.

前記研磨液組成物中におけるコロイダルシリカの含有量は、研磨速度を向上させる観点及び基板表面の平坦性をより向上させる観点から、好ましくは0.5〜20重量%、より好ましくは1〜15重量%、さらに好ましくは3〜13重量%、さらにより好ましくは4〜10重量%である。   The content of colloidal silica in the polishing composition is preferably 0.5 to 20% by weight, more preferably 1 to 15% from the viewpoint of improving the polishing rate and further improving the flatness of the substrate surface. %, More preferably 3 to 13% by weight, even more preferably 4 to 10% by weight.

[水]
前記研磨液組成物中の水は、媒体として使用されるものであり、蒸留水、イオン交換水、超純水等が挙げられる。被研磨基板の表面清浄性の観点からイオン交換水及び超純水が好ましく、超純水がより好ましい。研磨液組成物中の水の含有量は、60〜99.4重量%が好ましく、70〜98.9重量%がより好ましい。また、本発明の効果を阻害しない範囲内でアルコール等の有機溶剤を配合してもよい。
[water]
Water in the polishing composition is used as a medium, and examples thereof include distilled water, ion exchange water, and ultrapure water. From the viewpoint of the surface cleanliness of the substrate to be polished, ion exchange water and ultrapure water are preferable, and ultrapure water is more preferable. The content of water in the polishing composition is preferably 60 to 99.4% by weight, and more preferably 70 to 98.9% by weight. Moreover, you may mix | blend organic solvents, such as alcohol, in the range which does not inhibit the effect of this invention.

[酸]
前記研磨液組成物は、酸及び/又はその塩を含むことが好ましい。酸及び/又はその塩としては、硝酸、硫酸、亜硫酸、過硫酸、塩酸、過塩素酸、リン酸、ホスホン酸、ホスフィン酸、ピロリン酸、トリポリリン酸、アミド硫酸等の無機酸及びその塩、2−アミノエチルホスホン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン−1,1,−ジホスホン酸、エタン−1,1,2−トリホスホン酸、エタン−1−ヒドロキシ−1,1−ジホスホン酸、エタン−1−ヒドロキシ−1,1,2−トリホスホン酸、エタン−1,2−ジカルボキシ−1,2−ジホスホン酸、メタンヒドロキシホスホン酸、2−ホスホノブタン−1,2−ジカルボン酸、1−ホスホノブタン−2,3,4−トリカルボン酸、α−メチルホスホノコハク酸等の有機ホスホン酸及びその塩、グルタミン酸、ピコリン酸、アスパラギン酸等のアミノカルボン酸及びその塩、酢酸、クエン酸、酒石酸、シュウ酸、ニトロ酢酸、マレイン酸、オキサロ酢酸等のカルボン酸及びその塩等が挙げられる。中でも、スクラッチ低減の観点から、無機酸や有機ホスホン酸及びそれらの塩が好ましい。また、無機酸及びその塩の中では、硝酸、硫酸、塩酸、過塩素酸及びそれらの塩がより好ましく、硫酸がさらに好ましい。有機ホスホン酸及びその塩の中では、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)及びそれらの塩がより好ましく、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)がさらに好ましい。これらの酸及びその塩は単独で又は2種以上を混合して用いてもよい。
[acid]
The polishing liquid composition preferably contains an acid and / or a salt thereof. Acids and / or salts thereof include inorganic acids such as nitric acid, sulfuric acid, sulfurous acid, persulfuric acid, hydrochloric acid, perchloric acid, phosphoric acid, phosphonic acid, phosphinic acid, pyrophosphoric acid, tripolyphosphoric acid, amidosulfuric acid, and salts thereof, 2 -Aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid), ethane-1,1, -diphosphonic acid Ethane-1,1,2-triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid, ethane-1,2-dicarboxy-1 , 2-diphosphonic acid, methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phospho Organic phosphonic acids such as honobutane-2,3,4-tricarboxylic acid, α-methylphosphonosuccinic acid and salts thereof, aminocarboxylic acids such as glutamic acid, picolinic acid and aspartic acid and salts thereof, acetic acid, citric acid, tartaric acid, Examples thereof include carboxylic acids such as oxalic acid, nitroacetic acid, maleic acid, and oxaloacetic acid, and salts thereof. Among these, from the viewpoint of reducing scratches, inorganic acids, organic phosphonic acids, and salts thereof are preferable. Among inorganic acids and salts thereof, nitric acid, sulfuric acid, hydrochloric acid, perchloric acid and salts thereof are more preferable, and sulfuric acid is more preferable. Among organic phosphonic acids and salts thereof, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) and their salts are more preferred. 1-hydroxyethylidene-1,1-diphosphonic acid and aminotri (methylenephosphonic acid) are more preferable. These acids and salts thereof may be used alone or in admixture of two or more.

これらの酸の塩を用いる場合の対イオンとしては、特に限定はなく、具体的には、金属、アンモニウム、アルキルアンモニウム等との塩が挙げられる。上記金属の具体例としては、周期律表(長周期型)1A、1B、2A、2B、3A、3B、4A、6A、7A又は8族に属する金属が挙げられる。これらの中でも、スクラッチ低減の観点から1A族に属する金属又はアンモニウムとの塩が好ましい。   The counter ion in the case of using these acid salts is not particularly limited, and specific examples thereof include salts with metals, ammonium, alkylammonium and the like. Specific examples of the metal include metals belonging to the periodic table (long-period type) 1A, 1B, 2A, 2B, 3A, 3B, 4A, 6A, 7A, or Group 8. Among these, a salt with a metal belonging to Group 1A or ammonium is preferable from the viewpoint of reducing scratches.

前記研磨液組成物中における前記酸及びその塩の含有量は、研磨速度向上、表面粗さ及びスクラッチ低減の観点から、0.001〜5重量%が好ましく、より好ましくは0.01〜4重量%であり、さらに好ましくは0.05〜3重量%、さらにより好ましくは0.1〜2.0重量%である。   The content of the acid and its salt in the polishing composition is preferably 0.001 to 5% by weight, more preferably 0.01 to 4% by weight from the viewpoints of improving the polishing rate, surface roughness, and reducing scratches. %, More preferably 0.05 to 3% by weight, still more preferably 0.1 to 2.0% by weight.

[酸化剤]
前記研磨液組成物は、酸化剤を含むことが好ましい。好ましい酸化剤としては、過酸化水素、硝酸鉄(III)、過酢酸、ペルオキソ二硫酸アンモニウム、硫酸鉄(III)及び硫酸アンモニウム鉄(III)等が挙げられる。より好ましい酸化剤としては、表面に金属イオンが付着せず汎用に使用され安価であるという観点から過酸化水素が挙げられる。これらの酸化剤は、単独で又は2種以上を混合して使用してもよい。
[Oxidant]
It is preferable that the polishing composition contains an oxidizing agent. Preferable oxidizing agents include hydrogen peroxide, iron (III) nitrate, peracetic acid, ammonium peroxodisulfate, iron (III) sulfate, and iron (III) ammonium sulfate. As a more preferable oxidizing agent, hydrogen peroxide is mentioned from the viewpoint that metal ions do not adhere to the surface and are generally used and inexpensive. These oxidizing agents may be used alone or in admixture of two or more.

研磨液組成物中における前記酸化剤の含有量は、研磨速度向上の観点並びに表面粗さ、うねり及びスクラッチ低減の観点から、好ましくは0.01〜4重量%、より好ましくは0.05〜2重量%、さらに好ましくは0.1〜1重量%である。   The content of the oxidizing agent in the polishing composition is preferably 0.01 to 4% by weight, more preferably 0.05 to 2% from the viewpoints of improving the polishing rate and reducing the surface roughness, waviness and scratches. % By weight, more preferably 0.1 to 1% by weight.

[その他の成分]
前記研磨液組成物には、必要に応じて他の成分を配合することができる。他の成分としては、増粘剤、分散剤、防錆剤、塩基性物質、界面活性剤等が挙げられる。研磨液組成物中のこれら他の任意成分の含有量は、0〜10重量%が好ましく、0〜5重量%がより好ましい。
[Other ingredients]
Other components can be blended in the polishing composition as necessary. Examples of other components include a thickener, a dispersant, a rust inhibitor, a basic substance, and a surfactant. 0-10 weight% is preferable and, as for content of these other arbitrary components in polishing liquid composition, 0-5 weight% is more preferable.

[研磨液組成物のpH]
前記研磨液組成物のpHは、研磨速度向上の観点及び表面粗さ低減の観点から、0.5〜4.0が好ましく、より好ましくは0.8〜3.0、さらに好ましくは1.0〜2.5である。
[PH of polishing composition]
The pH of the polishing composition is preferably from 0.5 to 4.0, more preferably from 0.8 to 3.0, and even more preferably from the viewpoint of improving the polishing rate and reducing the surface roughness. ~ 2.5.

[研磨液組成物の調製方法]
前記研磨液組成物は、例えば、水と、コロイダルシリカと、さらに所望により、酸及び/又はその塩と、酸化剤と、他の成分とを公知の方法で混合することにより調製できる。この際、コロイダルシリカは、濃縮されたスラリーの状態で混合されてもよいし、水等で希釈してから混合されてもよい。前記研磨液組成物中における各成分の含有量や濃度は、前述した範囲であるが、その他の態様として、前記研磨液組成物を濃縮物として調製してもよい。
[Method for preparing polishing liquid composition]
The polishing liquid composition can be prepared, for example, by mixing water, colloidal silica, and, if desired, an acid and / or salt thereof, an oxidizing agent, and other components by a known method. Under the present circumstances, colloidal silica may be mixed in the state of the concentrated slurry, and may be mixed after diluting with water etc. The content and concentration of each component in the polishing liquid composition are in the ranges described above, but as another aspect, the polishing liquid composition may be prepared as a concentrate.

本発明は、その他の態様として、コロイダルシリカを含む磁気ディスク基板用研磨液組成物の調製方法であって、前記研磨液組成物の散乱強度分布の角度依存性を動的光散乱法により測定することを含む、磁気ディスク基板用研磨液組成物の調製方法である。より詳細には、動的光散乱法において検出角90°で測定される平均粒径が1〜40nmであり、動的光散乱法において検出角90°で測定される標準偏差を平均粒径で除して100を掛けたCV値(CV90)が1〜35%であり、かつ、動的光散乱法において検出角30°で測定される標準偏差を平均粒径で除して100を掛けたCV値(CV30)と前記CV90との差(ΔCV=CV30−CV90)が0〜10%であるコロイダルシリカを選択及び又は確認して使用することを含む磁気ディスク基板用研磨液組成物の調製方法を提供し得る。上記コロイダルシリカを用いた磁気ディスク基板用研磨液組成物であれば、研磨後のスクラッチを低減できる。   In another aspect, the present invention provides a method for preparing a polishing liquid composition for a magnetic disk substrate containing colloidal silica, wherein the angular dependence of the scattering intensity distribution of the polishing liquid composition is measured by a dynamic light scattering method. A method for preparing a polishing liquid composition for a magnetic disk substrate. More specifically, the average particle diameter measured at a detection angle of 90 ° in the dynamic light scattering method is 1 to 40 nm, and the standard deviation measured at the detection angle of 90 ° in the dynamic light scattering method is the average particle diameter. The CV value (CV90) divided by 100 is 1 to 35%, and the standard deviation measured at a detection angle of 30 ° in the dynamic light scattering method is divided by the average particle size and multiplied by 100. A method for preparing a polishing composition for a magnetic disk substrate, comprising selecting and / or confirming and using colloidal silica having a difference between CV value (CV30) and CV90 (ΔCV = CV30−CV90) of 0 to 10% Can provide. The polishing composition for a magnetic disk substrate using the colloidal silica can reduce scratches after polishing.

[磁気ディスク基板の製造方法]
本発明は、その他の態様として、前記研磨液組成物の散乱強度分布の角度依存性を動的光散乱法により測定することを含む、磁気ディスク基板の製造方法に関する。本発明の磁気ディスク基板の製造方法は、本発明の研磨液組成物の検査方法による検査工程、本発明の研磨液組成物の品質管理方法による品質管理工程、又は、本発明の研磨液組成物の製造方法による製造工程を含み、ΔCV値(ΔCV=CV30−CV90)が上記範囲に入る磁気ディスク基板用研磨液組成物を使用することが好ましい。また、本発明の磁気ディスク基板の製造方法は、前記研磨液組成物を用いて被研磨基板を研磨する工程を含むことが好ましい。
[Method of manufacturing magnetic disk substrate]
In another aspect, the present invention relates to a method for manufacturing a magnetic disk substrate, which includes measuring the angular dependence of the scattering intensity distribution of the polishing composition by a dynamic light scattering method. The method for producing a magnetic disk substrate of the present invention includes an inspection step by the polishing liquid composition inspection method of the present invention, a quality control step by the quality control method of the polishing liquid composition of the present invention, or a polishing liquid composition of the present invention. It is preferable to use a polishing composition for a magnetic disk substrate that includes a manufacturing process according to the above manufacturing method and that has a ΔCV value (ΔCV = CV30−CV90) falling within the above range. In addition, the method for manufacturing a magnetic disk substrate of the present invention preferably includes a step of polishing the substrate to be polished using the polishing liquid composition.

本発明の磁気ディスク基板の製造方法によれば、研磨後の基板のスクラッチが低減された磁気ディスク基板を好ましくは提供できる。本発明の製造方法は、とりわけ、垂直磁気記録方式用磁気ディスク基板の製造方法に適している。   According to the method for manufacturing a magnetic disk substrate of the present invention, it is possible to preferably provide a magnetic disk substrate in which scratches on the substrate after polishing are reduced. The manufacturing method of the present invention is particularly suitable for a method for manufacturing a magnetic disk substrate for perpendicular magnetic recording.

研磨液組成物を用いて被研磨基板を研磨する方法の具体例としては、不織布状の有機高分子系研磨布等の研磨パッドを貼り付けた定盤で被研磨基板を挟み込み、研磨液組成物を研磨機に供給しながら、定盤や被研磨基板を動かして被研磨基板を研磨する方法が挙げられる。   As a specific example of the method for polishing a substrate to be polished using the polishing liquid composition, the polishing substrate is sandwiched between a surface plate to which a polishing pad such as a non-woven organic polymer polishing cloth is attached, and the polishing liquid composition There is a method of polishing the substrate to be polished by moving the surface plate or the substrate to be polished while supplying to the polishing machine.

被研磨基板の研磨工程が多段階で行われる場合は、前記研磨液組成物を用いた研磨工程は2段階目以降に行われるのが好ましく、最終研磨工程で行われるのがより好ましい。その際、前工程の研磨材や研磨液組成物の混入を避けるために、それぞれ別の研磨機を使用してもよく、またそれぞれ別の研磨機を使用した場合では、研磨工程毎に被研磨基板を洗浄することが好ましい。なお、研磨機としては、特に限定されず、磁気ディスク基板研磨用の公知の研磨機が使用できる。   When the polishing process of the substrate to be polished is performed in multiple stages, the polishing process using the polishing liquid composition is preferably performed in the second and subsequent stages, and more preferably in the final polishing process. At that time, in order to avoid mixing of the polishing material and polishing liquid composition in the previous process, different polishing machines may be used, and in the case of using different polishing machines, polishing is performed for each polishing process. It is preferable to clean the substrate. The polishing machine is not particularly limited, and a known polishing machine for polishing a magnetic disk substrate can be used.

本発明の磁気ディスク基板の製造方法は、一実施形態において、動的光散乱法において検出角90°で測定される平均粒径が1〜40nmであり、動的光散乱法において検出角90°で測定される平均粒径のCV値(CV90)が1〜35%であり、かつ、動的光散乱法において検出角30度で測定される標準偏差を平均粒径で除して100を掛けたCV値(CV30)と前記CV90との差(ΔCV=CV30−CV90)が0〜10%であるコロイダルシリカを含有する研磨液組成物を選択及び又は確認して使用することを含んでもよい。   In one embodiment of the method for manufacturing a magnetic disk substrate of the present invention, the average particle diameter measured at a detection angle of 90 ° in the dynamic light scattering method is 1 to 40 nm, and the detection angle of 90 ° in the dynamic light scattering method. The CV value (CV90) of the average particle diameter measured at 1 is 35 to 35%, and the standard deviation measured at a detection angle of 30 degrees in the dynamic light scattering method is divided by the average particle diameter and multiplied by 100. Further, it may include selecting and / or confirming and using a polishing liquid composition containing colloidal silica having a difference (ΔCV = CV30−CV90) between the CV value (CV30) and the CV90 of 0 to 10%.

[研磨パッド]
本発明で使用される研磨パッドとしては、特に制限はなく、スエードタイプ、不織布タイプ、ポリウレタン独立発泡タイプ、又はこれらを積層した二層タイプ等の研磨パッドを使用することができるが、研磨速度の観点から、スエードタイプの研磨パッドが好ましい。
[Polishing pad]
The polishing pad used in the present invention is not particularly limited, and a polishing pad of a suede type, a nonwoven fabric type, a polyurethane closed-cell foam type, or a two-layer type in which these are laminated can be used. From the viewpoint, a suede type polishing pad is preferable.

[研磨荷重]
前記研磨液組成物を用いた研磨工程における研磨荷重は、研磨速度の低下を抑制及びスクラッチの発生を抑制の観点から、5.9〜20kPaが好ましく、6.9〜18kPaがより好ましく、7.5〜16kPaがさらに好ましい。なお、本発明において研磨荷重とは、研磨時に被研磨基板の研磨面に加えられる定盤の圧力をいう。研磨荷重の調整は、定盤及び被研磨基板のうち少なくとも一方に空気圧や重りを負荷することにより行うことができる。
[Polishing load]
The polishing load in the polishing step using the polishing composition is preferably 5.9 to 20 kPa, more preferably 6.9 to 18 kPa, from the viewpoint of suppressing a decrease in the polishing rate and suppressing the generation of scratches. 5-16 kPa is more preferable. In the present invention, the polishing load refers to the pressure of the surface plate applied to the polishing surface of the substrate to be polished during polishing. The polishing load can be adjusted by applying air pressure or weight to at least one of the surface plate and the substrate to be polished.

[研磨液組成物の供給]
前記研磨液組成物を用いた研磨工程における前記研磨液組成物の供給速度は、スクラッチ低減の観点から、被研磨基板1cm2当たり、好ましくは0.05〜15mL/分であり、より好ましくは0.06〜10mL/分であり、さらに好ましくは0.07〜1mL/分、さらにより好ましくは0.08〜0.5mL/分、さらにより好ましくは0.12〜0.5mL/分である。
[Supply of polishing liquid composition]
From the viewpoint of reducing scratches, the supply rate of the polishing composition in the polishing step using the polishing composition is preferably 0.05 to 15 mL / min, more preferably 0, per 1 cm 2 of the substrate to be polished. 0.06 to 10 mL / min, more preferably 0.07 to 1 mL / min, even more preferably 0.08 to 0.5 mL / min, and even more preferably 0.12 to 0.5 mL / min.

前記研磨液組成物を研磨機へ供給する方法としては、例えばポンプ等を用いて連続的に供給を行う方法が挙げられる。研磨液組成物を研磨機へ供給する際は、全ての成分を含んだ1液で供給する方法の他、研磨液組成物の安定性等を考慮して、複数の配合用成分液に分け、2液以上で供給することもできる。後者の場合、例えば供給配管中又は被研磨基板上で、上記複数の配合用成分液が混合され、本発明の研磨液組成物となる。   Examples of a method for supplying the polishing composition to the polishing machine include a method of continuously supplying the polishing composition using a pump or the like. When supplying the polishing composition to the polishing machine, in addition to the method of supplying one component containing all the components, considering the stability of the polishing composition, etc., it is divided into a plurality of compounding component liquids, Two or more liquids can be supplied. In the latter case, for example, the plurality of compounding component liquids are mixed in the supply pipe or on the substrate to be polished to obtain the polishing liquid composition of the present invention.

[被研磨基板]
磁気ディスク基板の製造方法に好適に使用される被研磨基板の材質としては、例えばシリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン等の金属若しくは半金属、又はこれらの合金や、ガラス、ガラス状カーボン、アモルファスカーボン等のガラス状物質や、アルミナ、二酸化珪素、窒化珪素、窒化タンタル、炭化チタン等のセラミック材料や、ポリイミド樹脂等の樹脂等が挙げられる。中でも、アルミニウム、ニッケル、タングステン、銅等の金属や、これらの金属を主成分とする合金を含有する被研磨基板が好適である。特にNi−Pメッキされたアルミニウム合金基板や、結晶化ガラス、強化ガラス、アルミノシリケートガラス等のガラス基板に適しており、中でもNi−Pメッキされたアルミニウム合金基板が適している。
[Polished substrate]
Examples of the material of the substrate to be polished preferably used in the method of manufacturing a magnetic disk substrate include metals or semimetals such as silicon, aluminum, nickel, tungsten, copper, tantalum, and titanium, or alloys thereof, glass, and glass. Glassy substances such as glassy carbon and amorphous carbon, ceramic materials such as alumina, silicon dioxide, silicon nitride, tantalum nitride, and titanium carbide, and resins such as polyimide resin. Among these, a substrate to be polished containing a metal such as aluminum, nickel, tungsten, copper, or an alloy containing these metals as a main component is preferable. In particular, it is suitable for Ni-P plated aluminum alloy substrates and glass substrates such as crystallized glass, tempered glass, aluminosilicate glass, etc. Among them, Ni-P plated aluminum alloy substrates are suitable.

[研磨方法]
本発明は、その他の態様として、前述した研磨液組成物を研磨パッドに接触させながら被研磨基板を研磨することを含む被研磨基板の研磨方法に関する。本発明の研磨方法を使用することにより、生産性を損なうことなく、被研磨基板の研磨が可能となり、表面粗さ及びスクラッチがともに低減された磁気ディスク基板、特に垂直磁気記録方式の磁気ディスク基板が好ましくは提供される。本発明の研磨方法における前記被研磨基板としては、前述のとおり、磁気ディスク基板や磁気記録用媒体の基板の製造に使用されるものが挙げられ、なかでも、垂直磁気記録方式用磁気ディスク基板の製造に用いる基板が好ましい。なお、具体的な研磨の方法及び条件は、前述のとおりとすることができる。
[Polishing method]
In another aspect, the present invention relates to a method for polishing a substrate to be polished, which comprises polishing the substrate to be polished while bringing the polishing composition described above into contact with a polishing pad. By using the polishing method of the present invention, the substrate to be polished can be polished without impairing the productivity, and both the surface roughness and the scratch are reduced, particularly the magnetic disk substrate of the perpendicular magnetic recording system. Is preferably provided. Examples of the substrate to be polished in the polishing method of the present invention include those used in the manufacture of magnetic disk substrates and magnetic recording medium substrates, as mentioned above. A substrate used for production is preferred. The specific polishing method and conditions can be as described above.

[実施例1]
コロイダルシリカを含む研磨液組成物を調製し、前記研磨液組成物にさらに非球状シリカ粒子又は球状シリカ粒子を添加して、ΔCV値を測定し、添加したシリカ粒子が及ぼす散乱強度分布の角度依存性への影響を確認した。測定結果を下記表1及び図1に示す。研磨液組成物の調製方法)及びΔCV値の測定方法は以下のとおりである。
[Example 1]
A polishing liquid composition containing colloidal silica was prepared, nonspherical silica particles or spherical silica particles were further added to the polishing liquid composition, ΔCV value was measured, and the angle dependence of the scattering intensity distribution exerted by the added silica particles The effect on sex was confirmed. The measurement results are shown in Table 1 and FIG. The method for preparing the polishing composition and the method for measuring the ΔCV value are as follows.

[研磨液組成物の調製方法]
コロイダルシリカと、硫酸(和光純薬工業社製 特級)と、HEDP(1−ヒドロキシエチリデン−1,1−ジホスホン酸、サーモスジャパン製)と、過酸化水素水(旭電化製 濃度:35重量%)とをイオン交換水に添加し、これらを混合することにより研磨液組成物を調製した。得られた研磨液組成物は最後に0.45μmのフィルターで濾過した。研磨液組成物中における硫酸、HEDP、過酸化水素の含有量は、それぞれ、0.4重量%、0.1重量%、0.4重量%であった。
[Method for preparing polishing liquid composition]
Colloidal silica, sulfuric acid (special grade, manufactured by Wako Pure Chemical Industries), HEDP (1-hydroxyethylidene-1,1-diphosphonic acid, manufactured by Thermos Japan), and hydrogen peroxide (concentration: 35% by weight, manufactured by Asahi Denka) Were added to ion-exchanged water, and these were mixed to prepare a polishing liquid composition. The resulting polishing composition was finally filtered through a 0.45 μm filter. The contents of sulfuric acid, HEDP, and hydrogen peroxide in the polishing composition were 0.4 wt%, 0.1 wt%, and 0.4 wt%, respectively.

なお、コロイダルシリカは、研磨液組成物において5.0重量%となる量のシリカ粒子(BET吸着法による平均粒径(DBET):27nm、動的光散乱法による平均粒径(DDLS):37nm、異形度(DDLS/DBET)=1.37)に、前記シリカ粒子に対して0.5、1.0、1.5、及び2.0重量%の下記シリカ粒子I、或いは、前記シリカ粒子に対して0.5、及び1.5重量%の下記シリカ粒子IIを添加したものを使用した。 In addition, colloidal silica is silica particles in an amount of 5.0% by weight in the polishing composition (average particle size (D BET ) by BET adsorption method: 27 nm, average particle size (D DLS ) by dynamic light scattering method) : 37 nm, degree of irregularity (D DLS / D BET ) = 1.37), 0.5, 1.0, 1.5, and 2.0 wt% of the following silica particles I, or In addition, 0.5% and 1.5% by weight of the following silica particles II were added to the silica particles.

〔混合したシリカ粒子I及びシリカ粒子II〕
シリカ粒子I:
BET=18nm、DDLS=80nm、異形度(DDLS/DBET)=4.44
シリカ粒子II:
BET=50nm、DDLS=65nm、異形度(DDLS/DBET)=1.30
[Mixed silica particles I and silica particles II]
Silica particles I:
D BET = 18 nm, D DLS = 80 nm, degree of irregularity (D DLS / D BET ) = 4.44
Silica particles II:
D BET = 50 nm, D DLS = 65 nm, irregularity (D DLS / D BET ) = 1.30

[コロイダルシリカの平均粒径、CV値、ΔCV値の測定方法]
〔平均粒径及びCV値〕
上記のように調製した研磨液組成物を大塚電子社製動的光散乱装置DLS−6500で測定しヒストグラム法(Marquardt法)により粒径分布解析を行った。コロイダルシリカの検出角30°及び90°における平均粒径は、それぞれ検出角30°及び90°における積算200回の平均粒径(d50)を用いた。また、CV値は散乱強度分布の標準偏差を前記平均粒径(d50)で除して100をかけて求め、それぞれ、CV30及びCV90を得た。
〔ΔCV値〕
上記測定法に従って測定した、検出角30°におけるコロイダルシリカ粒子のCV値(CV30)から検出角90°におけるコロイダルシリカ粒子のCV値(CV90)を引いた値を求め、ΔCV値とした。
(DLS−6500の測定条件)
検出角:90°
Sampling time: 4(μm)
Correlation Channel: 256(ch)
Correlation Method: TI
Sampling temperature: 26.0(℃)
検出角:30°
Sampling time: 10(μm)
Correlation Channel: 1024(ch)
Correlation Method: TI
Sampling temperature: 26.0(℃)
[Measuring method of average particle diameter, CV value, and ΔCV value of colloidal silica]
[Average particle size and CV value]
The polishing composition prepared as described above was measured with a dynamic light scattering apparatus DLS-6500 manufactured by Otsuka Electronics Co., Ltd., and particle size distribution analysis was performed by a histogram method (Marquardt method). The average particle size (d50) of 200 times of integration at the detection angles of 30 ° and 90 ° was used as the average particle size of the colloidal silica at the detection angles of 30 ° and 90 °, respectively. Further, the CV value was obtained by dividing the standard deviation of the scattering intensity distribution by the average particle diameter (d50) and multiplying by 100 to obtain CV30 and CV90, respectively.
[ΔCV value]
A value obtained by subtracting the CV value (CV90) of the colloidal silica particles at a detection angle of 90 ° from the CV value (CV30) of the colloidal silica particles at a detection angle of 30 °, which was measured according to the above measurement method, was obtained as a ΔCV value.
(Measurement conditions for DLS-6500)
Detection angle: 90 °
Sampling time: 4 (μm)
Correlation Channel: 256 (ch)
Correlation Method: TI
Sampling temperature: 26.0 (° C.)
Detection angle: 30 °
Sampling time: 10 (μm)
Correlation Channel: 1024 (ch)
Correlation Method: TI
Sampling temperature: 26.0 (° C.)

Figure 0005377117
Figure 0005377117

上記表1−1はシリカ粒子I(非球状)を添加した場合の検出角30°及び90°における平均粒径、標準偏差、及びCV値、並びにΔCV値の結果を示し、上記表1−2はシリカ粒子II(球状)を添加した場合の結果を示す。また、図1のグラフは、表1−1及び表1−2における粒子の添加量とΔCV値との関係を示す。上記表1−1に示されるとおり、検出角30°と90°の平均粒径の差(すなわち、散乱強度の角度依存性)はシリカ粒子Iの含有量とは相関を示さなかった。しかしながら、図1に示されるとおり、ΔCV値(散乱強度分布の角度依存性)は、シリカ粒子Iの含有量と強い相関関係を示した(白ひし形)。一方、シリカ粒子IIを添加した場合は、ΔCV値に大きな変化は見られなかった(白四角形)。すなわち、ΔCV値を測定することで、コロイダルシリカに含まれる非球状粒子の有無及び含有量が検出できることが示された。   Table 1-1 shows the results of average particle diameter, standard deviation, CV value, and ΔCV value at detection angles of 30 ° and 90 ° when silica particles I (non-spherical) are added, and Table 1-2 above. Shows the results when silica particles II (spherical) are added. Moreover, the graph of FIG. 1 shows the relationship between the addition amount of particle | grains in Table 1-1 and Table 1-2, and (DELTA) CV value. As shown in Table 1-1 above, the difference between the average particle diameters of the detection angles of 30 ° and 90 ° (that is, the angle dependency of the scattering intensity) did not correlate with the content of the silica particles I. However, as shown in FIG. 1, the ΔCV value (angle dependency of the scattering intensity distribution) showed a strong correlation with the content of the silica particles I (white diamonds). On the other hand, when silica particles II were added, no significant change was observed in the ΔCV value (white squares). That is, it was shown that the presence and content of non-spherical particles contained in colloidal silica can be detected by measuring the ΔCV value.

[実施例2]
2種類のコロイダルシリカ(シリカAとシリカB)について、ロットごとに研磨液組成物を調製した。調製した研磨液組成物を用いて被研磨基板の研磨を行い、研磨後の基板のスクラッチを評価した。評価結果を下記表2及び図2に示す。研磨液組成物の調製方法、研磨条件(研磨方法)、及び評価方法は以下のとおりである。なお、ΔCV値の測定方法は、上記実施例1と同様である。
[Example 2]
About two types of colloidal silica (silica A and silica B), the polishing liquid composition was prepared for every lot. The substrate to be polished was polished using the prepared polishing composition, and scratches on the substrate after polishing were evaluated. The evaluation results are shown in Table 2 below and FIG. The method for preparing the polishing composition, the polishing conditions (polishing method), and the evaluation method are as follows. Note that the method for measuring the ΔCV value is the same as in Example 1.

[研磨液組成物の調製方法]
コロイダルシリカと、硫酸(和光純薬工業社製 特級)と、HEDP(1−ヒドロキシエチリデン−1,1−ジホスホン酸、サーモスジャパン製)と、過酸化水素水(旭電化製 濃度:35重量%)とをイオン交換水に添加し、これらを混合することにより研磨液組成物を調製した。研磨液組成物中におけるシリカ粒子、硫酸、HEDP、過酸化水素の含有量は、それぞれ、5.0重量%、0.4重量%、0.1重量%、0.4重量%であった。配合した研磨液組成物を最後に0.45μmのフィルターで濾過して研磨評価を行った。
[Method for preparing polishing liquid composition]
Colloidal silica, sulfuric acid (special grade, manufactured by Wako Pure Chemical Industries), HEDP (1-hydroxyethylidene-1,1-diphosphonic acid, manufactured by Thermos Japan), and hydrogen peroxide (concentration: 35% by weight, manufactured by Asahi Denka) Were added to ion-exchanged water, and these were mixed to prepare a polishing liquid composition. The contents of silica particles, sulfuric acid, HEDP, and hydrogen peroxide in the polishing composition were 5.0% by weight, 0.4% by weight, 0.1% by weight, and 0.4% by weight, respectively. Finally, the blended polishing composition was filtered through a 0.45 μm filter for polishing evaluation.

なお、コロイダルシリカとして、シリカA(DBET=17nm、DDLS=26nm、DDLS/DBET=1.52)の6種類のロット(Lot Nos:1〜6)及びシリカB(DBET=27nm、DDLS=37nm、DDLS/DBET=1.37)の7種類のロット(Lot Nos:1〜7)を使用した。シリカAについての結果を下記表2−1及び図2に示す。シリカBの結果を下記表2−2及び図2に示す。 In addition, as colloidal silica, six types of lots (Lot Nos: 1 to 6) of silica A (D BET = 17 nm, D DLS = 26 nm, D DLS / D BET = 1.52) and silica B (D BET = 27 nm) 7 lots (Lot Nos: 1 to 7) of D DLS = 37 nm and D DLS / D BET = 1.37) were used. The results for silica A are shown in Table 2-1 below and FIG. The result of silica B is shown in the following Table 2-2 and FIG.

[研磨]
上記のように調製した研磨液組成物を用いて、以下に示す研磨条件にて下記被研磨基板を研磨した。次いで、研磨された基板のスクラッチを以下に示す条件に基づいて測定し、評価を行った。結果を下記表2に示す。下記表2に示すデータは、各研磨液組成物につき4枚の被研磨基板を研磨した後、各被研磨基板の両面について測定し、4枚(表裏合わせて計8面)のデータの平均とした。
[Polishing]
The following to-be-polished substrate was grind | polished on the grinding | polishing conditions shown below using the polishing liquid composition prepared as mentioned above. Subsequently, the scratch of the polished substrate was measured and evaluated based on the following conditions. The results are shown in Table 2 below. The data shown in Table 2 below is obtained by measuring four surfaces of each substrate to be polished for each polishing liquid composition, measuring both surfaces of each substrate to be polished, and averaging the data of four surfaces (front and back). did.

[被研磨基板]
被研磨基板としては、Ni−Pメッキされたアルミニウム合金基板を予めアルミナ研磨材を含有する研磨液組成物で粗研磨した基板を用いた。なお、この被研磨基板は、厚さが1.27mm、外径が95mm、内径が25mmであり、AFM(Digital Instrument NanoScope IIIa Multi Mode AFM)により測定した中心線平均粗さRaが1nm、長波長うねり(波長0.4〜2mm)の振幅は2nm、短波長うねり(波長50〜400μm)の振幅は2nmであった。
[Polished substrate]
As the substrate to be polished, a substrate obtained by rough polishing an aluminum alloy substrate plated with Ni-P in advance with a polishing composition containing an alumina abrasive was used. The substrate to be polished has a thickness of 1.27 mm, an outer diameter of 95 mm, an inner diameter of 25 mm, a center line average roughness Ra measured by AFM (Digital Instrument Nanoscope IIIa Multi Mode AFM), 1 nm, and a long wavelength. The amplitude of the undulation (wavelength 0.4 to 2 mm) was 2 nm, and the amplitude of the short wavelength undulation (wavelength 50 to 400 μm) was 2 nm.

[研磨条件]
研磨試験機:スピードファム社製「両面9B研磨機」
研磨パッド:フジボウ社製スエードタイプ(厚さ0.9mm、平均開孔径30μm)
研磨液組成物供給量:100mL/分(被研磨基板1cm2あたりの供給速度:0.072mL/分)
下定盤回転数:32.5rpm
研磨荷重:7.9kPa
研磨時間:4分間
[Polishing conditions]
Polishing tester: "Fast double-sided 9B polishing machine" manufactured by Speedfam
Polishing pad: Fujibo's suede type (thickness 0.9mm, average hole diameter 30μm)
Polishing liquid composition supply amount: 100 mL / min (supply rate per 1 cm 2 of polishing substrate: 0.072 mL / min)
Lower platen rotation speed: 32.5 rpm
Polishing load: 7.9 kPa
Polishing time: 4 minutes

[スクラッチの測定方法]
測定機器:Candela Instruments社製、OSA6100
評価:研磨試験機に投入した基板の中、無作為に4枚を選択し、各々の基板を10000rpmにてレーザーを照射してスクラッチを測定した。その4枚の基板の各々両面にあるスクラッチ数(本)の合計を8で除して、基板面当たりのスクラッチ数を算出した。その結果を下記表2に示す。
[Scratch measurement method]
Measuring instrument: OSA6100, manufactured by Candela Instruments
Evaluation: Four substrates were randomly selected from the substrates put into the polishing tester, and each substrate was irradiated with a laser at 10,000 rpm to measure scratches. The total number of scratches (both) on each of the four substrates was divided by 8 to calculate the number of scratches per substrate surface. The results are shown in Table 2 below.

Figure 0005377117
Figure 0005377117

上記表2−1はシリカAの様々なロットを用いた研磨液組成物を調製した場合の検出角30°及び90°における平均粒径、標準偏差、及びCV値、ΔCV値、並びにスクラッチの結果を示し、上記表2−2はシリカBの様々なロットを用いた場合の結果を示す。また、図2のグラフは、それぞれ、表2−1及び表2−2におけるロットをΔCV値及びスクラッチについてプロットしたグラフである。上記表2及び図2に示すとおり、シリカA及びシリカBの両方において、ロット間でΔCV値は一定しておらず、ΔCV値の高いロットでは研磨後の基板表面のスクラッチ数が増加し、ΔCV値の低いロットでは研磨後の基板表面のスクラッチ数が低減していた。したがって、使用するコロイダルシリカのΔCV値の品質を管理することで、スクラッチ低減性能を管理できることが示された。   Table 2-1 above shows the average particle diameter, standard deviation, CV value, ΔCV value, and scratch results at detection angles of 30 ° and 90 ° when polishing liquid compositions using various lots of silica A were prepared. Table 2-2 shows the results when various lots of silica B were used. Moreover, the graph of FIG. 2 is the graph which plotted the lot in Table 2-1 and Table 2-2 about (DELTA) CV value and a scratch, respectively. As shown in Table 2 and FIG. 2, in both silica A and silica B, the ΔCV value is not constant between lots, and in the lot having a high ΔCV value, the number of scratches on the substrate surface after polishing increases, and ΔCV In the lot with a low value, the number of scratches on the substrate surface after polishing was reduced. Therefore, it was shown that the scratch reduction performance can be managed by managing the quality of the ΔCV value of the colloidal silica used.

本発明は、粒子分散液を含む製品の分析、検査、品質管理、又は製造の分野などで有用である。   The present invention is useful in the field of analysis, inspection, quality control, or production of a product containing a particle dispersion.

Claims (8)

動的光散乱法により粒子分散液の散乱強度分布の角度依存性を測定することを含む、粒子分散液中の非球状粒子を検出する方法であって、
前記粒子分散液が、動的光散乱法により検出角90°で測定した散乱強度分布に基づく平均粒径が1〜200nmである研磨砥粒用コロイダルシリカの分散液である、非球状粒子を検出する方法
A method for detecting non-spherical particles in a particle dispersion, comprising measuring the angular dependence of the scattering intensity distribution of the particle dispersion by a dynamic light scattering method ,
Non-spherical particles are detected in which the particle dispersion is a dispersion of colloidal silica for abrasive grains having an average particle diameter of 1 to 200 nm based on a scattering intensity distribution measured at a detection angle of 90 ° by a dynamic light scattering method. How to do .
前記散乱強度分布の角度依存性の測定は、異なる2つの検出角で測定した前記粒子分散液の散乱強度分布に基づく測定値の差を求めることを含む、請求項1記載の非球状粒子を検出する方法。   The non-spherical particle detection according to claim 1, wherein the measurement of the angle dependence of the scattering intensity distribution includes obtaining a difference between measured values based on the scattering intensity distribution of the particle dispersion measured at two different detection angles. how to. 前記異なる2つの検出角が、前方散乱における検出角と、側方若しくは後方散乱における検出角とであり、
前記散乱強度分布に基づく測定値が、散乱強度分布に基づく標準偏差及び散乱強度分布に基づくCV値からなる群から選択される少なくとも1つである、請求項2記載の非球状粒子を検出する方法。
The two different detection angles are a detection angle in forward scattering and a detection angle in side or back scattering,
The method for detecting non-spherical particles according to claim 2, wherein the measured value based on the scattered intensity distribution is at least one selected from the group consisting of a standard deviation based on the scattered intensity distribution and a CV value based on the scattered intensity distribution. .
前記粒子分散液が更に酸を含有する、請求項1から3のいずれかに記載の非球状粒子を検出する方法。The method for detecting non-spherical particles according to claim 1, wherein the particle dispersion further contains an acid. 前記粒子分散液が更に酸化剤を含有する、請求項1から4のいずれかに記載の非球状粒子を検出する方法。The method for detecting non-spherical particles according to claim 1, wherein the particle dispersion further contains an oxidizing agent. 請求項1からのいずれかに記載の方法を用いて研磨砥粒用コロイダルシリカの粒子分散液を検査する工程を有する、粒子分散液の検査方法。 A step of inspecting a particle dispersion of abrasive grains for the colloidal silica using a method according to any one of claims 1 to 5, the inspection method of the particle dispersion. 請求項1からのいずれかに記載の方法を用いて粒子分散液を検査する工程を有する、粒子分散液の製造方法。 A step of inspecting a particle dispersion using a method according to any one of claims 1 to 5, the production method of the particle dispersion. 請求項記載の検査方法による無機粒子分散液の検査工程、又は、請求項記載の製造方法による無機粒子分散液の製造工程を有し、
前記無機粒子分散液が、研磨液組成物であり、
前記研磨液組成物を用いて被研磨基板を研磨する工程を含む、基板の製造方法。
An inspection step of the inorganic particle dispersion by the inspection method according to claim 6 , or a manufacturing step of the inorganic particle dispersion by the manufacturing method according to claim 7 ,
The inorganic particle dispersion is a polishing composition,
A method for producing a substrate, comprising a step of polishing a substrate to be polished using the polishing composition.
JP2009156993A 2009-07-01 2009-07-01 Method for detecting non-spherical particles in a particle dispersion Active JP5377117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009156993A JP5377117B2 (en) 2009-07-01 2009-07-01 Method for detecting non-spherical particles in a particle dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009156993A JP5377117B2 (en) 2009-07-01 2009-07-01 Method for detecting non-spherical particles in a particle dispersion

Publications (2)

Publication Number Publication Date
JP2011013078A JP2011013078A (en) 2011-01-20
JP5377117B2 true JP5377117B2 (en) 2013-12-25

Family

ID=43592137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009156993A Active JP5377117B2 (en) 2009-07-01 2009-07-01 Method for detecting non-spherical particles in a particle dispersion

Country Status (1)

Country Link
JP (1) JP5377117B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1142177A (en) * 1997-07-28 1999-02-16 Build:Kk Bathtub having high warm water durability and repairing method therefor
JP6092623B2 (en) * 2012-12-28 2017-03-08 花王株式会社 Manufacturing method of magnetic disk substrate
JP6138677B2 (en) * 2013-12-27 2017-05-31 花王株式会社 Polishing liquid composition for magnetic disk substrate
JP6637816B2 (en) * 2016-03-31 2020-01-29 株式会社フジミインコーポレーテッド Polishing composition, substrate polishing method and substrate manufacturing method
EP3669180A4 (en) * 2017-08-18 2021-06-09 Somadetect Inc. Methods and systems for assessing a health state of a lactating mammal

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07301593A (en) * 1994-03-08 1995-11-14 Nisshin Steel Co Ltd Method and apparatus for simultaneously measuring and determining size and shape of particle by forward micro-angle scattering method
JPH10195152A (en) * 1996-12-27 1998-07-28 Kazunori Kataoka Core-shell microsphere and its production
JPH11237226A (en) * 1997-11-28 1999-08-31 Hitachi Ltd Defect inspection equipment
JP4132432B2 (en) * 1999-07-02 2008-08-13 日産化学工業株式会社 Polishing composition
GB2429058B (en) * 2004-03-06 2008-12-03 Michael Trainer Method and apparatus for determining the size and shape of particles
JP2009137791A (en) * 2007-12-05 2009-06-25 Jgc Catalysts & Chemicals Ltd Non-spherical combined silica sol and method for producing the same

Also Published As

Publication number Publication date
JP2011013078A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
TWI471412B (en) A polishing composition for a disk substrate
CN1673306B (en) Polishing composition
JP4231632B2 (en) Polishing liquid composition
KR102105844B1 (en) Methods of polishing sapphire surfaces
JP5630992B2 (en) Polishing liquid composition for magnetic disk substrate
TWI506621B (en) Polishing composition for hard disk substrate
JP5473544B2 (en) Polishing liquid composition for magnetic disk substrate
TWI509039B (en) Polishing liquid composition
CN1986717B (en) Polishing composition for hard disk substrate
JP5377117B2 (en) Method for detecting non-spherical particles in a particle dispersion
JP6110715B2 (en) Abrasive composition for rough polishing of Ni-P plated aluminum magnetic disk substrate, method for polishing Ni-P plated aluminum magnetic disk substrate, method for manufacturing Ni-P plated aluminum magnetic disk substrate, and Ni-P Plated aluminum magnetic disk substrate
JP3997152B2 (en) Polishing liquid composition
TWI723085B (en) Polishing liquid composition for magnetic disk substrate
SG185977A1 (en) Polishing composition for nickel-phosphorous memory disks
TWI411667B (en) Polishing composition for magnetic disk substrate
JP7066480B2 (en) Abrasive grain dispersion liquid, polishing composition kit, and polishing method for magnetic disk substrates
JP2005001019A (en) Method of manufacturing substrate
JP6092623B2 (en) Manufacturing method of magnetic disk substrate
JP5473587B2 (en) Polishing liquid composition for magnetic disk substrate
JP2003155471A (en) Polishing liquid composition
JP4255976B2 (en) Polishing liquid composition for magnetic disk substrate
JP2003211351A (en) Method of reducing micro projections
JP6081317B2 (en) Manufacturing method of magnetic disk substrate
JP2008307676A (en) Polishing liquid composition for hard disk substrate
JP3997153B2 (en) Polishing liquid composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130924

R151 Written notification of patent or utility model registration

Ref document number: 5377117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250