JP4373776B2 - Polishing liquid composition - Google Patents

Polishing liquid composition Download PDF

Info

Publication number
JP4373776B2
JP4373776B2 JP2003430933A JP2003430933A JP4373776B2 JP 4373776 B2 JP4373776 B2 JP 4373776B2 JP 2003430933 A JP2003430933 A JP 2003430933A JP 2003430933 A JP2003430933 A JP 2003430933A JP 4373776 B2 JP4373776 B2 JP 4373776B2
Authority
JP
Japan
Prior art keywords
polishing
silica particles
particle diameter
acid
colloidal silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003430933A
Other languages
Japanese (ja)
Other versions
JP2004259421A (en
Inventor
憲一 末永
良暁 大島
敏也 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2003430933A priority Critical patent/JP4373776B2/en
Publication of JP2004259421A publication Critical patent/JP2004259421A/en
Application granted granted Critical
Publication of JP4373776B2 publication Critical patent/JP4373776B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、研磨液組成物、該研磨液組成物を用いるメモリーハードディスク用基板の微小うねりの低減方法、及び前記研磨液組成物を用いるメモリーハードディスク用基板の製造方法に関する。   The present invention relates to a polishing liquid composition, a method for reducing microwaviness of a memory hard disk substrate using the polishing liquid composition, and a method for manufacturing a memory hard disk substrate using the polishing liquid composition.

近年のメモリーハードディスクドライブには、高容量・小径化が求められ記録密度を上げるために磁気ヘッドの浮上量を低下させたり、単位記録面積を小さくすることが強いられている。それに伴い、メモリーハードディスク用基板の製造工程においても研磨後に要求される表面品質は年々厳しくなってきており、ヘッドの低浮上に対応して、表面粗さ、平均うねり、ロールオフ、突起の低減や単位記録面積の減少に対応して許容されるスクラッチ、ピットの大きさと深さがますます小さくなってきている。   Memory hard disk drives in recent years are required to have a high capacity and a small diameter, and in order to increase the recording density, the flying height of the magnetic head is reduced or the unit recording area is reduced. Along with this, the surface quality required after polishing in the manufacturing process of memory hard disk substrates is becoming stricter year by year, and the surface roughness, average waviness, roll-off, protrusion reduction, The size and depth of scratches and pits allowed in response to the decrease in unit recording area are becoming increasingly smaller.

このような要求に対し、平均うねりが小さく、表面欠陥の少ないアルミニウムディスク基板を得ることのできる異なったモノモーダル数粒子径分布を有する複数のコロイダルシリカ粒子群を混合した研磨材を含む、アルミニウムディスク基板の研磨用組成物が知られている(特許文献1)。   In response to such demands, an aluminum disk including an abrasive mixed with a plurality of colloidal silica particle groups having different monomodal number particle size distributions that can obtain an aluminum disk substrate with small average waviness and few surface defects A polishing composition for a substrate is known (Patent Document 1).

しかし、かかる研磨液組成物は、平均うねりは低減しても、最近磁気ヘッドの浮上量低減に対して重要視されてきた粗さと平均うねりの中間の波長である微小うねり(短波長(50〜500μm)と長波長(500μm〜5mm))を低減するには不十分であり、さらなる改善が求められている。   However, even if the average waviness is reduced, such a polishing liquid composition has a fine waviness (short wavelength (50 to 50 nm)) which is an intermediate wavelength between the roughness and the average waviness, which has recently been regarded as important for reducing the flying height of the magnetic head. 500 [mu] m) and long wavelengths (500 [mu] m to 5 mm)) are insufficient, and further improvements are required.

特開2002−30274号公報JP 2002-30274 A

本発明の目的は、メモリーハードディスク用基板の表面の微小うねりを生産性を損なうことなく、実用上充分な程度に低減させうる研磨液組成物、ならびに該研磨液組成物を用いる、メモリーハードディスク用基板の微小うねりの低減方法及びメモリーハードディスク用基板の製造方法を提供することにある。   An object of the present invention is to provide a polishing liquid composition capable of reducing micro undulations on the surface of a memory hard disk substrate to a practically sufficient level without impairing productivity, and a memory hard disk substrate using the polishing liquid composition An object of the present invention is to provide a method for reducing micro swell and a method for manufacturing a memory hard disk substrate.

即ち、本発明の要旨は、
〔1〕 水系媒体中にシリカ粒子を含有してなるメモリーハードディスク用基板用の研磨液組成物であって、前記シリカ粒子が、透過型電子顕微鏡(TEM)観察による測定で得られた該シリカ粒子の個数基準の平均粒子径(r)に対して個数基準の標準偏差(σ)が、以下の式(1):
σ≧0.3×r (1)
(式中、rは個数基準の平均粒子径(nm)、σは個数基準の標準偏差(nm)を示す)
を満たし、かつ該シリカ粒子の粒子径60〜120nmの範囲における累積体積頻度(V)が粒子径(R)に対し、以下の式(2)及び(3):
V≧0.5×R (2)
V≦0.25×R+75 (3)
(式中、Rはシリカ粒子の粒子径(nm)、Vはシリカ粒子の小粒子径側からの累積体積頻度(%)を示す)
を満たすものである、研磨液組成物、
〔2〕 前記〔1〕記載の研磨液組成物を用いてメモリーハードディスク用基板の研磨を行う工程を含む、メモリーハードディスク用基板の微小うねりの低減方法、並びに
〔3〕 前記〔1〕記載の研磨液組成物を用いて、Ni−Pメッキされたメモリーハードディスク用基板の研磨を行う工程を含む、メモリーハードディスク用基板の製造方法
に関する。
That is, the gist of the present invention is as follows.
[1] A polishing liquid composition for a memory hard disk substrate, comprising silica particles in an aqueous medium, wherein the silica particles are obtained by measurement by transmission electron microscope (TEM) observation The standard deviation (σ) based on the number with respect to the average particle diameter (r) based on the number is expressed by the following formula (1):
σ ≧ 0.3 × r (1)
(Wherein r represents the number-based average particle diameter (nm), and σ represents the number-based standard deviation (nm))
And the cumulative volume frequency (V) of the silica particles in the particle size range of 60 to 120 nm with respect to the particle size (R) is represented by the following formulas (2) and (3):
V ≧ 0.5 × R (2)
V ≦ 0.25 × R + 75 (3)
(Wherein R represents the particle diameter (nm) of the silica particles, and V represents the cumulative volume frequency (%) from the small particle diameter side of the silica particles)
A polishing composition that satisfies the following conditions:
[2] A method for reducing microwaviness of a memory hard disk substrate, comprising the step of polishing the memory hard disk substrate using the polishing composition according to [1], and [3] the polishing according to [1] The present invention relates to a method for manufacturing a memory hard disk substrate, including a step of polishing a Ni-P plated memory hard disk substrate using a liquid composition.

本発明の研磨液組成物によれば、表面の微小うねり、さらにはマイクロピット等の表面欠陥が低減された、実用上充分な平滑性を有するディスク用基板が効率的に得られる。   According to the polishing liquid composition of the present invention, a disk substrate having practically sufficient smoothness with reduced surface waviness and surface defects such as micropits can be efficiently obtained.

本発明の研磨液組成物は、水系媒体と、研磨材として特定のシリカ粒子とを含有してなる、メモリーハードディスク用基板(以下、ディスク用基板という)用の研磨液組成物である。   The polishing liquid composition of the present invention is a polishing liquid composition for a memory hard disk substrate (hereinafter referred to as a disk substrate) comprising an aqueous medium and specific silica particles as an abrasive.

本発明に使用されるシリカ粒子は、その個数基準の平均粒子径(r)に対して個数基準の標準偏差(σ)が、前記式(1)を満たし、かつ該シリカ粒子の粒子径60〜120nmの範囲における累積体積頻度(V)が粒子径(R)に対し、前記式(2)及び(3)を満たすという特定の粒径分布を有するものである。本発明の研磨液組成物は、当該シリカ粒子を研磨材として含有してなることを大きな1つの特徴としており、かかる構成を有することから、ディスク用基板の表面の微小うねりを実用上充分な程度に低減させうる。従って、本発明の研磨液組成物により研磨されたディスク用基板の表面は優れた平滑性を有する。   The silica particles used in the present invention have a number-based standard deviation (σ) with respect to the number-based average particle size (r) satisfying the formula (1), and the silica particles have a particle size of 60 to 60. The cumulative volume frequency (V) in the range of 120 nm has a specific particle size distribution that satisfies the above formulas (2) and (3) with respect to the particle size (R). The polishing liquid composition of the present invention is characterized by containing the silica particles as an abrasive, and since it has such a configuration, it has a practically sufficient level of minute waviness on the surface of the disk substrate. Can be reduced. Accordingly, the surface of the disk substrate polished with the polishing composition of the present invention has excellent smoothness.

本明細書において、「微小うねり」とは、粗さとうねりの中間の波長を持つ表面の凹凸であり、短波長うねり(波長50〜500μmのうねり)、長波長うねり(波長500μm〜5mmのうねり)に分類される。   In the present specification, “micro wave” is a surface irregularity having an intermediate wavelength between roughness and wave, short wave wave (wave wave of 50 to 500 μm), long wave wave (wave wave of 500 μm to 5 mm). are categorized.

すなわち、微小うねりは、対象物の表面の平滑性を示す指標となり、磁気ヘッド浮上量に影響を及ぼす。したがって、微小うねりの値が小さい程、対象物の表面の平滑性は優れることとなり、磁気ヘッドの低浮上化が可能となる。   That is, the minute waviness becomes an index indicating the smoothness of the surface of the object and affects the flying height of the magnetic head. Therefore, the smaller the value of the microwaviness, the better the smoothness of the surface of the object, and the magnetic head can be lowered.

一般に、対象物の表面の微小うねりは、対象物の表面からランダムに抜き取った各部分の平均として求められる。対象物の表面では、個々の位置における微小うねりは一様ではなく、相当に大きなバラツキを示すのが普通である。従って、対象物の表面の微小うねりを求めるには、その母平均が効果的に推定できるように測定位置及びその個数を定める必要がある。よって、データの信頼性は、測定位置及びその個数の選択に大きく依存するが、本発明においては、この信頼性が高い測定方法により微小うねりを求める。   In general, the minute waviness on the surface of the object is obtained as an average of each portion extracted at random from the surface of the object. On the surface of the object, the minute undulations at the individual positions are not uniform and usually show considerable variations. Therefore, in order to obtain the minute waviness of the surface of the object, it is necessary to determine the measurement position and the number of the measurement so that the population average can be estimated effectively. Therefore, the reliability of data greatly depends on the selection of the measurement position and the number of the measurement positions, but in the present invention, the minute undulation is obtained by this highly reliable measurement method.

本発明における微小うねりの測定方法の詳細については、後述の実施例において記載する。   Details of the measurement method of the microwaviness in the present invention will be described in the examples described later.

本発明に使用されるシリカ粒子としては、例えば、コロイダルシリカ粒子、ヒュームドシリカ粒子、表面修飾したシリカ粒子等が挙げられる。ディスク基板の表面のより高度な平滑性を得る観点から、コロイダルシリカ粒子が好ましい。当該コロイダルシリカ粒子は、市販のものでも、例えば、ケイ酸水溶液から生成させる公知の製造方法により得られたものであってもよい。シリカ粒子の使用形態としては、スラリー状であるのが好ましい。   Examples of the silica particles used in the present invention include colloidal silica particles, fumed silica particles, and surface-modified silica particles. From the viewpoint of obtaining a higher level of smoothness on the surface of the disk substrate, colloidal silica particles are preferred. The colloidal silica particles may be commercially available, for example, those obtained by a known production method produced from an aqueous silicic acid solution. The use form of the silica particles is preferably a slurry.

前記シリカ粒子の粒径分布は、以下の方法により求めることができる。即ち、シリカ粒子を日本電子製透過型電子顕微鏡(TEM)(商品名「JEM−2000FX」、80kV、1〜5万倍)で観察した写真をパソコンにスキャナで画像データとして取込み、解析ソフト「WinROOF」(販売元:三谷商事)を用いて1000個以上のシリカ粒子データについて1個1個のシリカ粒子の円相当径を求め、それを直径とし、表計算ソフト「EXCEL」(マイクロソフト社製)にて、個数基準の平均粒子径(r)及び標準偏差値(σ)を得る。   The particle size distribution of the silica particles can be determined by the following method. That is, a photograph obtained by observing silica particles with a transmission electron microscope (TEM) manufactured by JEOL (trade name “JEM-2000FX”, 80 kV, 1 to 50,000 times) is taken as image data with a scanner on a personal computer, and analysis software “WinROOF” ”(Distributor: Mitani Corp.) is used to calculate the equivalent circle diameter of each silica particle for 1000 or more silica particle data, and this is used as the diameter to calculate spreadsheet software“ EXCEL ”(manufactured by Microsoft). Thus, the number-based average particle diameter (r) and standard deviation value (σ) are obtained.

本発明において、シリカ粒子は、個数基準の平均粒子径(r)に対して、個数基準の標準偏差値(σ)が式(1)を満たすものであるが、研磨速度を向上させる観点から、式(4)を満たすことが好ましく、式(5)を満たすことが更に好ましい。
σ≧0.34×r (4)
σ≧0.375×r (5)
In the present invention, the silica particles have a number-based standard deviation value (σ) satisfying the formula (1) with respect to the number-based average particle diameter (r). From the viewpoint of improving the polishing rate, It is preferable to satisfy Formula (4), and it is more preferable to satisfy Formula (5).
σ ≧ 0.34 × r (4)
σ ≧ 0.375 × r (5)

また、表面あらさを低減する観点から、式(6)を満たすことが好ましく、式(7)を満たすことが更に好ましい。
−0.2×r+25≧σ (6)
−0.25×r+25≧σ (7)
Moreover, it is preferable to satisfy | fill Formula (6) from a viewpoint of reducing surface roughness, and it is still more preferable to satisfy | fill Formula (7).
−0.2 × r + 25 ≧ σ (6)
−0.25 × r + 25 ≧ σ (7)

また、前記表計算ソフト「EXCEL」にて、粒子直径から粒子体積に換算して得られるシリカ粒子の粒径分布データに基づき、全粒子中における、ある粒子径の粒子の割合(体積基準%)を小粒子径側からの累積頻度として表し、累積体積頻度(%)を得る。以上のようにして得られたシリカ粒子の粒子径及び累積体積頻度データに基づき、粒子径に対して累積体積頻度をプロットすることにより、粒子径対累積体積頻度グラフが得られる。   Further, based on the particle size distribution data of silica particles obtained by converting the particle diameter to the particle volume by the spreadsheet software “EXCEL”, the ratio of particles having a certain particle diameter in all particles (volume basis%) Is expressed as the cumulative frequency from the small particle diameter side, and the cumulative volume frequency (%) is obtained. By plotting the cumulative volume frequency against the particle diameter based on the particle diameter and cumulative volume frequency data of the silica particles obtained as described above, a particle diameter versus cumulative volume frequency graph is obtained.

本発明において、シリカ粒子は、前記粒子径対累積体積頻度グラフにおいて、粒子径60〜120nmの範囲における累積体積頻度(V)が粒子径(R)に対し、前記式(2)及び(3)を満たす粒径分布を有するものであるが、ディスク用基板の表面の微小うねりの低減による当該基板の表面の平滑性の向上の観点から、粒子径105nm以上の範囲で累積体積頻度が90%となる粒径分布を有するものが好ましい。   In the present invention, the silica particles have the cumulative volume frequency (V) in the particle diameter range of 60 to 120 nm with respect to the particle diameter (R) in the particle diameter versus cumulative volume frequency graph. From the viewpoint of improving the smoothness of the surface of the substrate by reducing the micro waviness of the surface of the disk substrate, the cumulative volume frequency is 90% in the range of the particle diameter of 105 nm or more. Those having a particle size distribution of

中でも、スクラッチ低減と表面粗さ低減により優れる観点から、粒子径60〜120nmの範囲における前記シリカ粒子の粒径分布は、式(8):
V ≧ 0.60×R−5 (8)
を満たすことが好ましく、式(9):
V ≧ 0.70×R−10 (9)
を満たすことがより好ましく、式(10):
V ≧ 0.80×R−14 (10)
を満たすことがさらに好ましい。
Among these, from the viewpoint of excellent scratch reduction and surface roughness reduction, the particle size distribution of the silica particles in the particle size range of 60 to 120 nm is represented by the formula (8):
V ≧ 0.60 × R-5 (8)
It is preferable to satisfy the formula (9):
V ≧ 0.70 × R-10 (9)
It is more preferable to satisfy the formula (10):
V ≧ 0.80 × R-14 (10)
It is further preferable to satisfy

また、マイクロピット低減により優れる観点から、粒子径60〜120nmの範囲における前記シリカ粒子の粒径分布は、式(11):
V ≦ 0.35×R+65 (11)
を満たすことが好ましく、式(12):
V ≦ 0.45×R+55 (12)
を満たすことがより好ましい。
In addition, from the viewpoint of being excellent in reducing micropits, the particle size distribution of the silica particles in the particle size range of 60 to 120 nm is represented by the formula (11):
V ≦ 0.35 × R + 65 (11)
It is preferable to satisfy the formula (12):
V ≦ 0.45 × R + 55 (12)
It is more preferable to satisfy.

本発明において、前記式(1)は、シリカ粒子の粒径分布の広がりを示す指標であり、かかる範囲内の粒径分布を有するシリカ粒子は、その粒径分布がある一定以上の広がりを有するものであることを意味する。
また、本発明において、前記式(2)及び(3)は、シリカ粒子の存在割合を示す指標であり、粒子径60〜120nmの範囲において前記式(2)及び(3)を満たすシリカ粒子は、所定の粒子径のものをある一定以上の割合で含有することを意味する。
これらの式を満たすことにより、生産性を損なうことなく、微小うねりを実用上充分な程度に低減させることができる。
In the present invention, the formula (1) is an index indicating the spread of the particle size distribution of the silica particles, and the silica particles having the particle size distribution within such a range have a certain size or more spread. It means to be a thing.
In the present invention, the formulas (2) and (3) are indices indicating the abundance ratio of the silica particles, and the silica particles satisfying the formulas (2) and (3) in a particle diameter range of 60 to 120 nm , It means containing a certain particle size at a certain ratio or more.
By satisfying these formulas, the fine waviness can be reduced to a practically sufficient level without impairing productivity.

また、シリカ粒子は、キャリア鳴きの低減に優れる観点から、粒子径5〜60nmの範囲の粒径分布が、式(13):
V ≦ (2/3)×R+50 (13)
を満たすことが好ましく、マイクロピットの低減に優れる観点から、粒子径30〜60nmの範囲の粒径分布が、式(14):
V ≧ R−30 (14)
を満たすことがより好ましい。
Silica particles have a particle size distribution in the range of 5 to 60 nm from the viewpoint of excellent carrier squealing, as expressed by formula (13):
V ≦ (2/3) × R + 50 (13)
From the viewpoint of excellent micropit reduction, the particle size distribution in the particle size range of 30 to 60 nm is represented by the formula (14):
V ≧ R-30 (14)
It is more preferable to satisfy.

本発明に使用されるシリカ粒子としては、前記のような粒径分布を有するものであれば、特定の粒径分布を有する1種類のシリカ粒子からなるものであっても、異なる粒径分布を有する2種類以上のシリカ粒子を混合してなるものであってもよい。なお、2種以上のシリカ粒子を用いる場合、シリカ粒子の粒径分布とは、混合したシリカ粒子の粒径分布をいう。   The silica particles used in the present invention have different particle size distributions even if they are composed of one kind of silica particles having a specific particle size distribution as long as they have the particle size distribution as described above. It may be a mixture of two or more types of silica particles. In addition, when using 2 or more types of silica particles, the particle size distribution of a silica particle means the particle size distribution of the mixed silica particle.

シリカ粒子の粒径分布を調整する方法としては、特に限定されないが、例えば、シリカ粒子がコロイダルシリカ粒子の場合、その製造段階における粒子の成長過程で新たな核となる粒子を加えることにより最終製品に粒径分布を持たせる方法、異なる粒径分布を有する2つ以上のシリカ粒子を混合する方法等が挙げられる。   The method for adjusting the particle size distribution of the silica particles is not particularly limited. For example, when the silica particles are colloidal silica particles, the final product is obtained by adding new core particles during the particle growth process in the production stage. And a method of mixing two or more silica particles having different particle size distributions.

また、研磨材としては、前記シリカ粒子に加えて、研磨用に一般に使用されている研磨材を使用することもできる。該研磨材として、金属;金属又は半金属の炭化物、窒化物、酸化物、ホウ化物;ダイヤモンド等が挙げられる。金属又は半金属元素は、周期律表(長周期型)の2A、2B、3A、3B、4A、4B、5A、6A、7A又は8族由来のものである。研磨材の具体例として、酸化アルミニウム、炭化珪素、ダイヤモンド、酸化マグネシウム、酸化亜鉛、酸化チタン、酸化セリウム、酸化ジルコニウム等が挙げられ、これらを1種以上使用することは研磨速度を向上させる観点から好ましい。中でも、酸化アルミニウム、酸化セリウム、酸化ジルコニウム、酸化チタン等が、磁気記録媒体用基板等の精密部品用基板の研磨に適している。酸化アルミニウムについては、α、θ、γ等種々の結晶系が知られているが、用途に応じ適宜選択、使用することができる。   Moreover, as an abrasive, in addition to the silica particles, an abrasive generally used for polishing can be used. Examples of the abrasive include metal; metal or metalloid carbide, nitride, oxide, boride; diamond and the like. The metal or metalloid element is derived from Group 2A, 2B, 3A, 3B, 4A, 4B, 5A, 6A, 7A or Group 8 of the periodic table (long period type). Specific examples of the abrasive include aluminum oxide, silicon carbide, diamond, magnesium oxide, zinc oxide, titanium oxide, cerium oxide, and zirconium oxide. Using one or more of these from the viewpoint of improving the polishing rate. preferable. Among these, aluminum oxide, cerium oxide, zirconium oxide, titanium oxide, and the like are suitable for polishing a precision component substrate such as a magnetic recording medium substrate. As for aluminum oxide, various crystal systems such as α, θ, and γ are known, but can be appropriately selected and used according to the application.

シリカ粒子以外の研磨材の一次粒子の平均粒径は、200nm以下であり、研磨速度を向上させる観点から、好ましくは1nm以上、より好ましくは10nm以上、さらに好ましくは20nm以上であり、表面粗さ(Ra、Rmax)、うねり(Wa)を低減する観点から、200nm以下、好ましくは150nm以下、より好ましくは120nm以下、さらに好ましくは100nm以下である。該一次粒子の平均粒径は、好ましくは1〜200nm、より好ましくは1〜150nm、さらに好ましくは10〜120nm、さらに好ましくは20〜100nmである。さらに、一次粒子が凝集して二次粒子を形成している場合は、同様に研磨速度を向上させる観点及び被研磨物の表面粗さを低減させる観点から、その二次粒子の平均粒径は、好ましくは50〜3000nm、さらに好ましくは100〜1500nm、さらに好ましくは200〜1200nmである。   The average particle size of the primary particles of the abrasive other than silica particles is 200 nm or less, and from the viewpoint of improving the polishing rate, it is preferably 1 nm or more, more preferably 10 nm or more, and even more preferably 20 nm or more, and the surface roughness. From the viewpoint of reducing (Ra, Rmax) and waviness (Wa), the thickness is 200 nm or less, preferably 150 nm or less, more preferably 120 nm or less, and even more preferably 100 nm or less. The average particle size of the primary particles is preferably 1 to 200 nm, more preferably 1 to 150 nm, still more preferably 10 to 120 nm, and still more preferably 20 to 100 nm. Furthermore, when primary particles are aggregated to form secondary particles, the average particle size of the secondary particles is similarly from the viewpoint of improving the polishing rate and reducing the surface roughness of the object to be polished. The thickness is preferably 50 to 3000 nm, more preferably 100 to 1500 nm, and still more preferably 200 to 1200 nm.

シリカ粒子以外の研磨材の一次粒子の平均粒径は、走査型電子顕微鏡で観察(好適には3000〜100000倍)した画像を解析して一次粒子の小粒径側からの積算粒径分布(個数基準)が50%となる粒径(D50)を測定することにより求めることができる。ここで、ひとつの一次粒子の粒径は、2軸平均(長径と短径の平均)粒径を用いることとする。また、二次粒子の平均粒径はレーザー光回折法を用いて体積平均粒径として測定することができる。   The average particle size of the primary particles of the abrasive other than the silica particles is obtained by analyzing an image observed with a scanning electron microscope (preferably 3000 to 100000 times) and analyzing the accumulated particle size distribution from the small particle size side of the primary particles ( It can be determined by measuring the particle size (D50) at which the number basis) is 50%. Here, the particle diameter of one primary particle is a biaxial average (average of major axis and minor axis). The average particle size of the secondary particles can be measured as a volume average particle size using a laser beam diffraction method.

研磨液組成物中におけるシリカ粒子の含有量は、研磨速度を向上させる観点から、好ましくは0.5 重量%以上、より好ましくは1重量%以上、さらに好ましくは3重量%以上、さらに好ましくは5重量%以上であり、また、表面品質を向上させる観点、及び経済性の観点から、好ましくは20重量%以下、より好ましくは15重量%以下、さらに好ましくは13重量%以下、さらに好ましくは10重量%以下である。すなわち、該含有量は、研磨液組成物中において好ましくは0.5 〜20重量% 、より好ましくは1 〜15重量% 、さらに好ましくは3 〜13重量% 、さらに好ましくは5 〜10重量% である。   The content of silica particles in the polishing composition is preferably 0.5% by weight or more, more preferably 1% by weight or more, further preferably 3% by weight or more, and further preferably 5% by weight from the viewpoint of improving the polishing rate. From the viewpoint of improving the surface quality and the economical aspect, it is preferably 20% by weight or less, more preferably 15% by weight or less, further preferably 13% by weight or less, and further preferably 10% by weight or less. It is. That is, the content is preferably 0.5 to 20% by weight, more preferably 1 to 15% by weight, further preferably 3 to 13% by weight, and still more preferably 5 to 10% by weight in the polishing composition.

また、本発明の研磨液組成物は、さらに酸、その塩、および酸化剤からなる群より選ばれる少なくとも1種を含有することで、効果をさらに優れたものにすることができる。   Further, the polishing composition of the present invention can further improve the effect by further containing at least one selected from the group consisting of an acid, a salt thereof, and an oxidizing agent.

本発明の研磨液組成物は、研磨速度をより向上させる観点から、酸化剤を含有することが好ましい。酸化剤としては、過酸化物、過マンガン酸又はその塩、クロム酸又はその塩、ペルオキソ酸又はその塩、酸素酸又はその塩、金属塩類、硫酸類等が挙げられる。   The polishing composition of the present invention preferably contains an oxidizing agent from the viewpoint of further improving the polishing rate. Examples of the oxidizing agent include peroxide, permanganic acid or a salt thereof, chromic acid or a salt thereof, peroxo acid or a salt thereof, oxygen acid or a salt thereof, metal salt, sulfuric acid, and the like.

前記過酸化物としては、過酸化水素、過酸化ナトリウム、過酸化バリウム等;過マンガン酸又はその塩としては、過マンガン酸カリウム等;クロム酸又はその塩としては、クロム酸金属塩、重クロム酸金属塩等;ペルオキソ酸又はその塩としては、ペルオキソ二硫酸、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸金属塩、ペルオキソリン酸、ペルオキソ硫酸、ペルオキソホウ酸ナトリウム、過ギ酸、過酢酸、過安息香酸、過フタル酸等;酸素酸又はその塩としては、次亜塩素酸、次亜臭素酸、次亜ヨウ素酸、塩素酸、臭素酸、ヨウ素酸、次亜塩素酸ナトリウム、次亜塩素酸カルシウム等;金属塩類としては、塩化鉄(III)、硝酸鉄(III)、硫酸鉄(III)、クエン酸鉄(III)、硫酸アンモニウム鉄(III)等が挙げられる。好ましい酸化剤としては、過酸化水素、硝酸鉄(III)、過酢酸、ペルオキソ二硫酸アンモニウム、硫酸鉄(III)及び硫酸アンモニウム鉄(III)等が挙げられる。特に、基板表面に金属イオンが付着せず汎用に使用され安価であるという観点から過酸化水素が好ましい。これらの酸化剤は、単独で又は2種以上を混合して使用してもよい。   Examples of the peroxide include hydrogen peroxide, sodium peroxide, barium peroxide, etc .; examples of permanganic acid or salts thereof include potassium permanganate; examples of chromic acid or salts thereof include chromic acid metal salts and heavy chromium. Peroxoacids or salts thereof include peroxodisulfuric acid, ammonium peroxodisulfate, metal peroxodisulfate, peroxophosphoric acid, peroxosulfuric acid, sodium peroxoborate, performic acid, peracetic acid, perbenzoic acid, peroxyacid Phthalic acid, etc .; oxygen acids or their salts include hypochlorous acid, hypobromite, hypoiodous acid, chloric acid, bromic acid, iodic acid, sodium hypochlorite, calcium hypochlorite, etc .; metal Examples of the salts include iron (III) chloride, iron (III) nitrate, iron (III) sulfate, iron (III) citrate, and iron (III) ammonium sulfate. Preferable oxidizing agents include hydrogen peroxide, iron (III) nitrate, peracetic acid, ammonium peroxodisulfate, iron (III) sulfate, and iron (III) ammonium sulfate. In particular, hydrogen peroxide is preferable from the viewpoint that metal ions do not adhere to the surface of the substrate and are generally used and inexpensive. These oxidizing agents may be used alone or in admixture of two or more.

研磨速度を向上させる観点から、研磨液組成物中の酸化剤の含有量は、好ましくは0.002 重量% 以上、より好ましくは0.005 重量% 以上、さらに好ましくは0.007 重量% 以上、さらに好ましくは0.01重量% 以上であり、表面粗さ、微小うねりを低減し、ピット、スクラッチ等の表面欠陥を減少させて表面品質を向上させる観点及び経済性の観点から、好ましくは20重量% 以下、より好ましくは15重量% 以下、さらに好ましくは10重量% 以下、さらに好ましくは5 重量% 以下である。該含有量は、研磨液組成物中、好ましくは0.002 〜20重量% 、より好ましくは0.005 〜15重量% 、さらに好ましくは0.007 〜10重量% 、さらに好ましくは0.01〜5 重量% である。   From the viewpoint of improving the polishing rate, the content of the oxidizing agent in the polishing liquid composition is preferably 0.002% by weight or more, more preferably 0.005% by weight or more, further preferably 0.007% by weight or more, and further preferably 0.01% by weight. From the viewpoints of reducing the surface roughness, micro waviness, reducing surface defects such as pits and scratches and improving the surface quality and economy, it is preferably 20% by weight or less, more preferably 15% by weight. % Or less, more preferably 10% by weight or less, and further preferably 5% by weight or less. The content in the polishing composition is preferably 0.002 to 20% by weight, more preferably 0.005 to 15% by weight, still more preferably 0.007 to 10% by weight, and still more preferably 0.01 to 5% by weight.

また、本発明の研磨液組成物は、研磨速度をさらに上げる観点から、酸及び/又はその塩を含有することが好ましい。酸及び/又はその塩としては、その酸のpK1が2以下の化合物が好ましく、微小スクラッチを低減する観点から、pK1が1.5以下の化合物が好ましく、より好ましくは1以下、さらに好ましくはpK1で表せない程の強い酸性を示す化合物が望ましい。その例としては、硝酸、硫酸、亜硫酸、過硫酸、塩酸、過塩素酸、リン酸、ホスホン酸、ホスフィン酸、ピロリン酸、トリポリリン酸、アミド硫酸等の無機酸及びその塩、2−アミノエチルホスホン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン−1,1−ジホスホン酸、エタン−1,1,2−トリホスホン酸、エタン−1−ヒドロキシ−1,1−ジホスホン酸、エタン−1−ヒドロキシ−1,1,2−トリホスホン酸、エタン−1,2−ジカルボキシ−1,2−ジホスホン酸、メタンヒドロキシホスホン酸、2−ホスホノブタン−1,2−ジカルボン酸、1−ホスホノブタン−2,3,4−トリカルボン酸、α−メチルホスホノコハク酸等の有機ホスホン酸及びその塩、グルタミン酸、ピコリン酸、アスパラギン酸等のアミノカルボン酸及びその塩、シュウ酸、ニトロ酢酸、マレイン酸、オキサロ酢酸等のカルボン酸及びその塩等が挙げられる。中でも、微小スクラッチを低減する観点から、無機酸や有機ホスホン酸及びその塩が好ましい。また、無機酸及びその塩の中では、硝酸、硫酸、塩酸、過塩素酸及びそれらの塩がより好ましい。有機ホスホン酸及びその塩の中では、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)及びそれらの塩がより好ましい。これらの酸及びその塩は単独で又は2種以上を混合して用いてもよい。ここで、pK1とは有機化合物又は無機化合物の酸解離定数(25℃)の逆数の対数値を通常pKaと表し、そのうちの第一酸解離定数の逆数の対数値をpK1としている。各化合物のpK1は例えば改訂4版化学便覧(基礎編)II、pp316−325(日本化学会編)等に記載されている。なお、本発明においては、微小スクラッチの低減と研磨速度向上の両立の観点から、その酸のpK1が2以下の酸及び/又はその塩を用いることがさらに好ましい。   The polishing composition of the present invention preferably contains an acid and / or a salt thereof from the viewpoint of further increasing the polishing rate. As the acid and / or salt thereof, a compound having a pK1 of 2 or less is preferred, and from the viewpoint of reducing fine scratches, a compound having a pK1 of 1.5 or less is preferred, more preferably 1 or less, and even more preferably pK1. The compound which shows the strong acidity which cannot be expressed with is desirable. Examples thereof include inorganic acids such as nitric acid, sulfuric acid, sulfurous acid, persulfuric acid, hydrochloric acid, perchloric acid, phosphoric acid, phosphonic acid, phosphinic acid, pyrophosphoric acid, tripolyphosphoric acid, amidosulfuric acid, and salts thereof, 2-aminoethylphosphone. Acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid), ethane-1,1-diphosphonic acid, ethane-1, 1,2-triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid, ethane-1,2-dicarboxy-1,2-diphosphonic acid , Methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobutane- , 3,4-tricarboxylic acid, organic phosphonic acids such as α-methylphosphonosuccinic acid and salts thereof, aminocarboxylic acids such as glutamic acid, picolinic acid and aspartic acid and salts thereof, oxalic acid, nitroacetic acid, maleic acid, oxalo Examples thereof include carboxylic acids such as acetic acid and salts thereof. Among these, inorganic acids, organic phosphonic acids, and salts thereof are preferable from the viewpoint of reducing minute scratches. Among inorganic acids and salts thereof, nitric acid, sulfuric acid, hydrochloric acid, perchloric acid and salts thereof are more preferable. Among organic phosphonic acids and salts thereof, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) and their salts are more preferred. preferable. These acids and salts thereof may be used alone or in admixture of two or more. Here, pK1 represents the logarithm of the reciprocal of the acid dissociation constant (25 ° C.) of an organic compound or an inorganic compound usually as pKa, and the logarithm of the reciprocal of the first acid dissociation constant is pK1. The pK1 of each compound is described in, for example, the revised 4th edition, Chemical Handbook (Basic Edition) II, pp316-325 (Edited by Chemical Society of Japan). In the present invention, it is more preferable to use an acid having a pK1 of 2 or less and / or a salt thereof from the viewpoint of achieving both a reduction in fine scratches and an improvement in polishing rate.

これらの酸の塩としては、特に限定はなく、具体的には、金属、アンモニウム、アルキルアンモニウム、有機アミン等との塩が挙げられる。金属の具体例としては、周期律表(長周期型)1A、1B、2A、2B、3A、3B、4A、6A、7A又は8族に属する金属が挙げられる。これらの中でも、微小スクラッチ低減の観点から1A族に属する金属又はアンモニウムとの塩が好ましい。   These acid salts are not particularly limited, and specific examples include salts with metals, ammonium, alkylammonium, organic amines and the like. Specific examples of the metal include metals belonging to the periodic table (long-period type) 1A, 1B, 2A, 2B, 3A, 3B, 4A, 6A, 7A, or Group 8. Among these, a salt with a metal belonging to Group 1A or ammonium is preferable from the viewpoint of reducing fine scratches.

前記酸及びその塩の研磨液組成物中における含有量は、充分な研磨速度を発揮する観点及び表面品質を向上させる観点から、0.0001〜5重量%が好ましく、より好ましくは0.0003〜4 重量%であり、さらに好ましくは0.001 〜3 重量%、さらに好ましくは0.0025〜2.5 重量%である。   The content of the acid and its salt in the polishing composition is preferably 0.0001 to 5% by weight, more preferably 0.0003 to 4% by weight from the viewpoint of exhibiting a sufficient polishing rate and improving the surface quality. More preferably 0.001 to 3% by weight, still more preferably 0.0025 to 2.5% by weight.

本発明の研磨液組成物中の水系媒体としては、例えば、蒸留水、イオン交換水、超純水等が使用される。その含有量は、被研磨物を効率よく研磨する観点から、好ましくは55重量% 以上であり、より好ましくは67重量% 以上であり、さらに好ましくは75重量% 以上であり、さらに好ましくは84重量% 以上であり、また、好ましくは99.4979 重量% 以下、より好ましくは98.9947 重量% 以下、さらに好ましくは96.992重量% 以下、さらに好ましくは、94.9875 重量% 以下である。該含有量は、好ましくは55〜99.4979 重量% 、より好ましくは67〜98.9947 重量% 、さらに好ましくは75〜96.992重量% 、さらに好ましくは84〜94.9875 重量% である。   As an aqueous medium in the polishing composition of the present invention, for example, distilled water, ion exchange water, ultrapure water, or the like is used. The content is preferably 55% by weight or more, more preferably 67% by weight or more, still more preferably 75% by weight or more, and further preferably 84% by weight, from the viewpoint of efficiently polishing the workpiece. % Or more, preferably 99.4979% by weight or less, more preferably 98.9947% by weight or less, further preferably 96.992% by weight or less, and further preferably 94.9875% by weight or less. The content is preferably 55 to 99.4979% by weight, more preferably 67 to 98.9947% by weight, still more preferably 75 to 96.992% by weight, and still more preferably 84 to 94.9875% by weight.

尚、前記研磨液組成物中の各成分の濃度は、該組成物製造時の濃度及び使用時の濃度のいずれであってもよい。通常、濃縮液として研磨液組成物は製造され、これを使用時に希釈して用いる場合が多い。   The concentration of each component in the polishing liquid composition may be any of the concentration during production of the composition and the concentration during use. Usually, a polishing composition is produced as a concentrated liquid, and it is often used after being diluted at the time of use.

また、本発明の研磨液組成物には、必要に応じて他の成分を配合することができる。該他の成分としては、増粘剤、分散剤、防錆剤、塩基性物質、界面活性剤等が挙げられる。   Moreover, other components can be mix | blended with the polishing liquid composition of this invention as needed. Examples of the other components include a thickener, a dispersant, a rust inhibitor, a basic substance, and a surfactant.

本発明の研磨液組成物は、前記研磨材及び水系媒体、さらに所望により酸化剤、酸及び/又はその塩、他の成分等を公知の方法で混合することにより調製することができる。   The polishing composition of the present invention can be prepared by mixing the polishing material and the aqueous medium, and further, if necessary, an oxidizing agent, an acid and / or a salt thereof, other components and the like by a known method.

本発明の研磨液組成物のpHは、被加工物の種類や要求性能に応じて適宜決定することが好ましい。研磨液組成物のpHは、被研磨物の材質により一概に限定はできないが、一般に金属材料では研磨速度を向上させる観点からpHは酸性であり、7 未満が好ましく、より好ましくは6 以下、さらに好ましくは5 以下、さらに好ましくは4 以下であることが望ましい。また、人体への影響や機械の腐食性の観点から、pHは1 以上であることが好ましく、より好ましくは1.1 以上、さらに好ましくは1.2 以上、さらに好ましくは1.3 以上である。特にニッケル−リン(Ni−P)メッキされたアルミニウム合金基板等の金属を主対象とした精密部品用基板においては、研磨速度を向上させる観点から、pHは酸性にすることが好ましく、pHは4.5 以下がより好ましく、さらに好ましくは4 以下、さらに好ましくは3.5 以下、さらに好ましくは3 以下である。従って、重視する目的に合わせてpHを設定すればよいが、さらにNi−Pメッキされたアルミニウム合金基板等の金属を対象とした精密部品用基板においては、前記観点を総合して、pHは1 〜4.5 が好ましく、より好ましくは1.1 〜4 、さらに好ましくは1.2 〜3.5 、さらに好ましくは1.3 〜3 である。pHは硝酸、硫酸等の無機酸やシュウ酸等の有機酸、アンモニウム塩、アンモニア水、水酸化カリウム、水酸化ナトリウム、アミン等の塩基性物質を適宜、所望量で配合することにより調整することができる。   The pH of the polishing composition of the present invention is preferably determined as appropriate according to the type of workpiece and the required performance. The pH of the polishing liquid composition cannot be generally limited depending on the material of the object to be polished, but in general, the pH of the metal material is acidic from the viewpoint of improving the polishing rate, preferably less than 7, more preferably 6 or less, Preferably it is 5 or less, more preferably 4 or less. Further, from the viewpoint of the influence on the human body and the corrosiveness of the machine, the pH is preferably 1 or more, more preferably 1.1 or more, further preferably 1.2 or more, and further preferably 1.3 or more. In particular, in precision component substrates mainly made of metal such as nickel-phosphorus (Ni-P) plated aluminum alloy substrate, it is preferable to make the pH acidic from the viewpoint of improving the polishing rate. The following is more preferable, further preferably 4 or less, further preferably 3.5 or less, and further preferably 3 or less. Therefore, the pH may be set in accordance with the purpose to be emphasized. However, in the case of a precision component substrate that targets a metal such as an aluminum alloy substrate plated with Ni-P, the pH is 1 in total. -4.5 is preferable, more preferably 1.1-4, still more preferably 1.2-3.5, and still more preferably 1.3-3. The pH should be adjusted by blending inorganic acids such as nitric acid and sulfuric acid, organic acids such as oxalic acid, ammonium salts, aqueous ammonia, potassium hydroxide, sodium hydroxide, amines, etc. in appropriate amounts. Can do.

本発明のディスク用基板の微小うねりの低減方法としては、メモリーハードディスク用基板に代表される被研磨基板を研磨する際に、本発明の研磨液組成物を用いる方法が挙げられる。前記被研磨基板の研磨方法としては、本発明の研磨液組成物を用いて、あるいは本発明の研磨液組成物の組成となるように各成分を混合して研磨液組成物を調製して被研磨基板を研磨する工程を有しており、特にメモリーハードディスク用基板等の精密部品用基板を好適に製造することができる。また、本発明の研磨液組成物は、ディスク用基板の微小うねりを顕著に低減して高い研磨速度を発揮することができる。   Examples of the method for reducing the microwaviness of the disk substrate of the present invention include a method of using the polishing composition of the present invention when polishing a substrate to be polished typified by a memory hard disk substrate. As a polishing method for the substrate to be polished, a polishing liquid composition is prepared by using the polishing liquid composition of the present invention or by mixing each component so as to be the composition of the polishing liquid composition of the present invention. It has the process of grind | polishing a grinding | polishing board | substrate, Especially the board | substrates for precision components, such as a board | substrate for memory hard disks, can be manufactured suitably. In addition, the polishing composition of the present invention can remarkably reduce the fine waviness of the disk substrate and exhibit a high polishing rate.

本発明の研磨液組成物が対象とする被研磨物の材質は、例えば、シリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン等の金属又は半金属及びこれらの合金、及びガラス、ガラス状カーボン、アモルファスカーボン等のガラス状物質、アルミナ、二酸化珪素、窒化珪素、窒化タンタル、炭化チタン等のセラミック材料、ポリイミド樹脂等の樹脂等が挙げられる。これらの中では、アルミニウム、ニッケル、タングステン、銅等の金属及びこれらの金属を主成分とする合金が被研磨物であるのが好ましく、例えば、Ni−Pメッキされたアルミニウム合金基板がより好ましい。   Examples of the material of the object to be polished by the polishing liquid composition of the present invention include metals, metalloids such as silicon, aluminum, nickel, tungsten, copper, tantalum, and titanium, and alloys thereof, and glass and glassy carbon. And glassy substances such as amorphous carbon, ceramic materials such as alumina, silicon dioxide, silicon nitride, tantalum nitride, and titanium carbide, and resins such as polyimide resin. Among these, metals such as aluminum, nickel, tungsten, and copper and alloys containing these metals as main components are preferably objects to be polished, for example, Ni-P plated aluminum alloy substrates are more preferable.

本発明のディスク用基板の微小うねりの低減方法でディスク用基板の研磨を行う工程は、例えば、公知の研磨機を用いて好適に実施することができる。例えば、不織布状の有機高分子系研磨布等、好ましくはポリウレタン系研磨布を貼り付けた研磨盤でディスク用基板を挟み込み、研磨液組成物を流量として直径95mmのディスク用基板1枚当たり1〜30mL/分、好ましくは3〜20mL/分で研磨対象の表面に供給し、荷重として、通常、2.9〜14.7kPa、好ましくは4.9〜10.8kPaの一定圧力を加えながら、上定盤又は下定盤とディスク用基板との相対速度が定盤中央部で、通常、0.1〜2m/秒、好ましくは0.3〜1m/秒となるように研磨盤やディスク用基板を動かすことにより研磨することにより行われる。   The step of polishing the disk substrate by the method for reducing the microwaviness of the disk substrate of the present invention can be suitably performed using, for example, a known polishing machine. For example, a non-woven organic polymer polishing cloth or the like, preferably a disk substrate is sandwiched between polishing disks with a polyurethane polishing cloth attached thereto, and 1 to 1 disk substrate having a diameter of 95 mm with a polishing composition as a flow rate. While supplying a constant pressure of 2.9 to 14.7 kPa, preferably 4.9 to 10.8 kPa as a load, it is supplied to the surface to be polished at 30 mL / min, preferably 3 to 20 mL / min. The polishing disk or disk substrate is mounted so that the relative speed between the surface plate or lower surface plate and the disk substrate is usually 0.1 to 2 m / second, preferably 0.3 to 1 m / second at the center of the surface plate. It is done by polishing by moving.

かかるディスク用基板の微小うねりの低減方法によればディスク用基板の表面の微小うねりが生産性を損なうことなく、効果的に低減され、さらにマイクロピット等の表面欠陥も低減されるので、実用上充分なディスク用基板の表面の平滑性が得られる。   According to such a method for reducing the microwaviness of the disk substrate, the microwaviness on the surface of the disk substrate is effectively reduced without impairing the productivity, and surface defects such as micropits are also reduced. Sufficient smoothness of the surface of the disk substrate can be obtained.

また、本発明の一態様として、本発明の研磨液組成物により被研磨基板を研磨する工程を含む、ディスク用基板の製造方法、特に、本発明の研磨液組成物を用いて、Ni−Pメッキされたディスク用基板の研磨を行う工程を含む、ディスク用基板の製造方法が提供される。   Further, as one aspect of the present invention, a method for producing a substrate for a disk comprising a step of polishing a substrate to be polished with the polishing liquid composition of the present invention, in particular, Ni-P A method for manufacturing a disk substrate is provided, which includes a step of polishing a plated disk substrate.

本発明のNi−Pメッキされたディスク用基板の製造方法(以下、ディスク用基板の製造方法という)は、該基板を本発明の研磨液組成物を用いて研磨する工程を含むが、かかる工程は、複数の研磨工程の中でも第2工程目以降に行われるのが好ましく、最終研磨工程に行われるのがより好ましい。例えば、アルミナ砥粒等の公知の研磨材を含んでなる研磨スラリーを使用する、第1研磨工程又は第2研磨工程により、微小うねりとして短波長うねりを0.4〜0.6nm、長波長うねりを0.35〜0.5nmにした前記ディスク用基板(例えば、Ni−Pメッキされたアルミニウム合金基板)を、本発明の研磨液組成物を用いた研磨工程により、さらに研磨する。本発明の研磨液組成物を用いた研磨工程は、例えば、前記ディスク用基板の微小うねりの低減方法における研磨工程と同様に実施すればよい。   The Ni-P plated disk substrate manufacturing method of the present invention (hereinafter referred to as a disk substrate manufacturing method) includes a step of polishing the substrate using the polishing composition of the present invention. Is preferably performed after the second step among the plurality of polishing steps, and more preferably in the final polishing step. For example, by using a polishing slurry containing a known polishing material such as alumina abrasive grains, a short wavelength waviness of 0.4 to 0.6 nm and a long wavelength waviness as a fine waviness by the first polishing step or the second polishing step. The disk substrate having a thickness of 0.35 to 0.5 nm (for example, an Ni-P plated aluminum alloy substrate) is further polished by a polishing step using the polishing composition of the present invention. What is necessary is just to implement the grinding | polishing process using the polishing liquid composition of this invention similarly to the grinding | polishing process in the reduction method of the micro waviness of the said board | substrate for disks, for example.

本発明のディスク用基板の製造方法においては、2工程のみからなる研磨工程により、微小うねりとして短波長うねりを0.12nm以下、長波長うねりを0.25nm以下のディスク用基板を製造することを所望する場合、第2工程目を、本発明の研磨液組成物を用いたディスク用基板の研磨工程とするのが好適である。   In the method for manufacturing a disk substrate of the present invention, a disk substrate having a short wavelength undulation of 0.12 nm or less and a long wavelength undulation of 0.25 nm or less as a fine undulation is obtained by a polishing process consisting of only two steps. If desired, the second step is preferably a step for polishing a disk substrate using the polishing composition of the present invention.

本発明のディスク用基板の製造方法によれば、微小うねりが低減された、優れた表面の平滑性を有するNi−Pメッキされたディスク用基板を効率的に製造することができる。   According to the disk substrate manufacturing method of the present invention, it is possible to efficiently manufacture a Ni-P plated disk substrate having excellent surface smoothness with reduced microwaviness.

(被研磨物)
アルミナ砥粒を含有する研磨スラリーであらかじめ粗研磨して微小うねりとして短波長うねりを0.5nm、長波長うねりを0.45nmとした、厚さ1.27mm、直径95mmのNi−Pメッキされたアルミニウム合金基板を被研磨物として用い、以下の実施例及び比較例で得られた研磨液組成物を用いて当該基板に対する研磨評価を行った。
(Polished object)
Ni-P plating with a thickness of 1.27 mm and a diameter of 95 mm was performed by rough polishing in advance with a polishing slurry containing alumina abrasive grains to form a fine wave of 0.5 nm short wave waviness and 0.45 nm long wave waviness. Using an aluminum alloy substrate as an object to be polished, polishing evaluation was performed on the substrate using polishing liquid compositions obtained in the following Examples and Comparative Examples.

実施例1〜6及び比較例1〜3
表1に記載のコロイダルシリカ(シリカA〜H)、過酸化水素(H2 2 )、HEDP(1−ヒドロキシエチリデン−1,1−ジホスホン酸)及び残部水(イオン交換水)を添加、混合することにより、表1に記載の組成を有する研磨液組成物を調製した。混合する順番としては、HEDPを水に希釈した水溶液に35重量%過酸化水素水を、次いで残りの成分を混合し、最後にコロイダルシリカスラリーをゲル化しないように攪拌しながら配合し、研磨液組成物を調製した。
Examples 1-6 and Comparative Examples 1-3
Add and mix colloidal silica (silica A to H), hydrogen peroxide (H 2 O 2 ), HEDP (1-hydroxyethylidene-1,1-diphosphonic acid) and balance water (ion exchange water) listed in Table 1 By doing so, the polishing liquid composition which has a composition of Table 1 was prepared. As an order of mixing, 35 wt% hydrogen peroxide solution was mixed in an aqueous solution obtained by diluting HEDP in water, then the remaining components were mixed, and finally, the colloidal silica slurry was mixed with stirring so as not to gel, and a polishing liquid A composition was prepared.

Figure 0004373776
Figure 0004373776

なお、表中、シリカAは「カタロイドSI−30」(触媒化成工業社製)、
シリカBは「カタロイドSI−40」(触媒化成工業社製)、
シリカCは「カタロイドSI−50」(触媒化成工業社製)、
シリカDは「カタロイドSI−45P」(触媒化成工業社製)、
シリカEは「カタロイドSI−80P」(触媒化成工業社製)、
シリカFは「Syton520」(デュポン社製)、
シリカGは「Syton524」(デュポン社製)、
シリカHは「Syton HS40」(デュポン社製)、
HEDPは1−ヒドロキシエチリデン−1,1−ジホスホン酸(「ディクエスト2010」、ソルーシア・ジャパン製)、及び
2 2 は、35重量%過酸化水素水(旭電化社製)
を示す。
In the table, silica A is “Cataloid SI-30” (manufactured by Catalyst Kasei Kogyo Co., Ltd.),
Silica B is “Cataloid SI-40” (manufactured by Catalytic Chemical Industry Co., Ltd.)
Silica C is “Cataloid SI-50” (manufactured by Catalytic Chemical Industry Co., Ltd.)
Silica D is “Cataloid SI-45P” (catalyst chemical industry)
Silica E is “Cataloid SI-80P” (manufactured by Catalyst Kasei Kogyo Co., Ltd.)
Silica F is “Syton 520” (manufactured by DuPont),
Silica G is “Syton 524” (manufactured by DuPont),
Silica H is “Syton HS40” (manufactured by DuPont),
HEDP is 1-hydroxyethylidene-1,1-diphosphonic acid (“Diquest 2010”, manufactured by Solusia Japan), and H 2 O 2 is 35% by weight hydrogen peroxide (manufactured by Asahi Denka)
Indicates.

前記研磨液組成物におけるシリカ粒子の粒径分布について、以下の〔シリカ粒子の粒径分布の測定〕に記載の方法に従い、粒子径を測定し、個数基準の平均粒子径、標準偏差値及び累積体積頻度を求め、粒子径対累積体積頻度グラフを作成した。各実施例で使用されたシリカ粒子の粒子径対累積体積頻度グラフを図1に、各比較例で使用されたシリカ粒子の粒子径対累積体積頻度グラフを図2に示す。   Regarding the particle size distribution of the silica particles in the polishing liquid composition, the particle size is measured according to the method described in the following [Measurement of the particle size distribution of silica particles], the number-based average particle size, standard deviation value, and accumulation The volume frequency was obtained and a graph of particle diameter versus cumulative volume frequency was created. The particle diameter vs. cumulative volume frequency graph of silica particles used in each example is shown in FIG. 1, and the particle diameter vs. cumulative volume frequency graph of silica particles used in each comparative example is shown in FIG.

〔シリカ粒子の粒径分布の測定〕
スラリー状のシリカ粒子を試料として用い、日本電子製透過型電子顕微鏡(TEM)(商品名「JEM−2000FX」、80kV、1〜5万倍)により、試料を観察し、TEM像を写真撮影した。当該写真をスキャナで画像データとしてパソコンに取り込み、解析ソフト「WinROOF」(販売元:三谷商事)を用いて1個1個のシリカ粒子の円相当径を求め、それを直径とし、1000個以上のシリカ粒子データを解析した後、それをもとに表計算ソフト「EXCEL」(マイクロソフト社製)にて、シリカ粒子の個数基準の平均粒子径及び標準偏差値を得た。その結果を表2に示す。
[Measurement of particle size distribution of silica particles]
Using the slurry-like silica particles as a sample, the sample was observed with a transmission electron microscope (TEM) manufactured by JEOL (trade name “JEM-2000FX”, 80 kV, 1 to 50,000 times), and a TEM image was photographed. . The photograph is taken into a personal computer as image data by a scanner, and an analysis software “WinROOF” (distributor: Mitani Corp.) is used to determine the equivalent circle diameter of each silica particle. After analyzing the silica particle data, the average particle diameter and standard deviation value based on the number of silica particles were obtained using spreadsheet software “EXCEL” (manufactured by Microsoft). The results are shown in Table 2.

Figure 0004373776
Figure 0004373776

また、表計算ソフト「EXCEL」にて、粒子直径から粒子体積に換算して得られるシリカ粒子の粒径分布データに基づき、全粒子中における、ある粒子径の粒子の割合(体積基準%)を小粒子径側からの累積頻度として表し、累積体積頻度(%)を得た。   In addition, based on the particle size distribution data of silica particles obtained by converting the particle diameter to the particle volume with spreadsheet software “EXCEL”, the ratio of particles having a certain particle diameter (volume basis%) in all particles is calculated. Expressed as the cumulative frequency from the small particle diameter side, the cumulative volume frequency (%) was obtained.

以上のようにして得られたシリカ粒子の粒子径及び累積体積頻度データに基づき、粒子径に対して累積体積頻度をプロットすることにより、粒子径対累積体積頻度グラフを得た。   Based on the particle diameter and cumulative volume frequency data of the silica particles obtained as described above, the cumulative volume frequency was plotted against the particle diameter to obtain a particle diameter versus cumulative volume frequency graph.

また、実施例1〜6及び比較例1〜3の研磨液組成物を用いて、以下に示す研磨条件にて被研磨物を研磨した。次いで、被研磨物の表面の微小うねり及びマイクロピットを以下の方法に基づいて測定し、評価を行った。各実施例及び比較例につき10枚の被研磨物を用いて評価を行い、微小うねりは各被研磨物を用いて得られた個々のデータの平均とした。得られた結果を表3に示す。   Moreover, the to-be-polished object was grind | polished on the grinding | polishing conditions shown below using the polishing liquid composition of Examples 1-6 and Comparative Examples 1-3. Next, the micro-waviness and micropits on the surface of the object to be polished were measured and evaluated based on the following methods. Evaluation was performed using 10 objects to be polished for each example and comparative example, and the fine waviness was defined as the average of individual data obtained using each object to be polished. The obtained results are shown in Table 3.

(研磨条件)
研磨試験機 :スピードファム社製「両面9B研磨機」
研磨パッド :カネボウ社製「Bellatrix N0058」
研磨荷重 :7.8kPa
スラリー供給量 :100mL/分
下定盤回転数 :30r/min
研磨時間 :4分
投入した基板の枚数:10枚
(Polishing conditions)
Polishing tester: "Fast double-sided 9B polishing machine" manufactured by Speed Fam
Polishing pad: Kanebo "Bellatrix N0058"
Polishing load: 7.8 kPa
Slurry supply amount: 100 mL / min Lower platen rotation speed: 30 r / min
Polishing time: Number of substrates loaded for 4 minutes: 10

〔微小うねりの測定〕
Zygo製、「New View200」を用いて被測定基板を180°おきに2点(計4点)について、以下の条件で短波長うねりと長波長うねりを測定し、その4点の測定値の平均値を1枚の基板の短波長うねり又は長波長うねりとして算出した。
対物レンズ :2.5 倍 Michelson
ズーム比 :0.5倍
フィルター :Band Pass
フィルタータイプ:FFT Fixed
測定波長:
・短波長うねり:Filter High Wavelength 0.05mm
Filter Low Wavelength 0.50mm
・長波長うねり:Filter High Wavelength 0.50mm
Filter Low Wavelength 5.00mm
[Measurement of micro swell]
Measure the short wavelength undulation and long wavelength undulation under the following conditions for 2 points (total 4 points) at 180 ° intervals using the “New View 200” manufactured by Zygo, and the average of the measured values at the 4 points The value was calculated as the short wavelength waviness or long wavelength waviness of one substrate.
Objective lens: 2.5x Michelson
Zoom ratio: 0.5 times Filter: Band Pass
Filter type: FFT Fixed
Measurement wavelength:
・ Short wavelength swell: Filter High Wavelength 0.05mm
Filter Low Wavelength 0.50mm
・ Long wavelength swell: Filter High Wavelength 0.50mm
Filter Low Wavelength 5.00mm

[マイクロピットの測定方法]
微分干渉式顕微鏡観察〔金属顕微鏡「BX60M」(オリンパス工業社製)、倍率50倍(接眼レンズ10倍、対物レンズ5倍)〕により5枚の基板について表面、裏面ともに図3に示すように線AB、CD、EF、GHについて走査しながらマイクロピットの個数をカウントした。
その結果を以下の評価基準に基づいて、表3に示す。
[Measurement method of micropits]
The differential interference microscope observation [metal microscope “BX60M” (manufactured by Olympus Kogyo Co., Ltd.), magnification 50 × (eyepiece 10 ×, objective lens 5 ×)] shows a line as shown in FIG. The number of micropits was counted while scanning AB, CD, EF, and GH.
The results are shown in Table 3 based on the following evaluation criteria.

評価基準
「◎」:0.3個/面未満
「○」:0.3個/面以上、1個/面未満
「△」:1個/面以上、5個/面未満
「×」:5個/面以上
Evaluation criteria “◎”: 0.3 pieces / face less “◯”: 0.3 pieces / face or more, 1 piece / face less “Δ”: 1 piece / face or more, less than 5 pieces / face “×”: 5 Pieces / face or more

Figure 0004373776
Figure 0004373776

表3の結果より、実施例1〜6の研磨液組成物によれば、比較例1〜3のものに比べ、被研磨物の表面の微小うねり、さらにはマイクロピットもより低減されることが分かる。   From the results of Table 3, according to the polishing liquid compositions of Examples 1 to 6, compared to those of Comparative Examples 1 to 3, the surface of the surface of the object to be polished can be further reduced in waviness and micropits. I understand.

本発明の研磨液組成物は、磁気記録媒体用基板等の精密部品用基板、中でも、Ni−Pメッキされたディスク用基板の製造に好適に使用される。   The polishing composition of the present invention is suitably used for the production of precision component substrates such as magnetic recording medium substrates, and in particular, Ni-P plated disk substrates.

図1は、各実施例で使用されたシリカ粒子の粒子径対累積体積頻度グラフである。FIG. 1 is a graph of silica particle diameter versus cumulative volume frequency used in each example. 図2は、各比較例で使用されたシリカ粒子の粒子径対累積体積頻度グラフである。FIG. 2 is a graph of particle diameter versus cumulative volume frequency of silica particles used in each comparative example. 図3は、マイクロピットの測定の際に、微分干渉式顕微鏡で走査した基板上の部位を示す概略図である。FIG. 3 is a schematic view showing a portion on a substrate scanned with a differential interference microscope when measuring micropits.

Claims (6)

水系媒体中にコロイダルシリカ粒子を含有してなる、pHが1〜4.5であるメモリーハードディスク用基板用の研磨液組成物であって、さらに酸、その塩および酸化剤からなる群より選ばれる少なくとも1種を含有し、前記コロイダルシリカ粒子が、透過型電子顕微鏡(TEM)観察による測定で得られた該コロイダルシリカ粒子の個数基準の平均粒子径(r)に対して個数基準の標準偏差(σ)が、以下の式(1):
σ≧0.3×r (1)
(式中、rは個数基準の平均粒子径(nm)であって、14.3〜22.6nm、σは個数基準の標準偏差(nm)を示す)
を満たし、かつ該コロイダルシリカ粒子の粒子径60〜120nmの範囲における累積体積頻度(V)が粒子径(R)に対し、以下の式(2)及び(3):
V≧0.5×R (2)
V≦0.25×R+75 (3)
(式中、Rはコロイダルシリカ粒子の粒子径(nm)、Vはコロイダルシリカ粒子の小粒子径側からの累積体積頻度(%)を示す)
を満たすものである、研磨液組成物。
A polishing composition for a memory hard disk substrate having colloidal silica particles in an aqueous medium and having a pH of 1 to 4.5, further selected from the group consisting of an acid, a salt thereof and an oxidizing agent Containing at least one kind, and the colloidal silica particles have a number-based standard deviation (r) relative to the number-based average particle diameter (r) of the colloidal silica particles obtained by measurement by transmission electron microscope (TEM) observation ( σ) is the following formula (1):
σ ≧ 0.3 × r (1)
(Where r is the number-based average particle diameter (nm), 14.3 to 22.6 nm, and σ is the number-based standard deviation (nm))
And the cumulative volume frequency (V) of the colloidal silica particles in the particle diameter range of 60 to 120 nm with respect to the particle diameter (R) is represented by the following formulas (2) and (3):
V ≧ 0.5 × R (2)
V ≦ 0.25 × R + 75 (3)
(Wherein, R particle size of the colloidal silica particles (nm), V represents the cumulative volume frequency (%) from the small particle diameter side of the colloidal silica particles)
A polishing composition that satisfies the following conditions.
さらに、以下の式(5)及び(7):
σ≧0.375×r (5)
−0.25×r+25≧σ (7)
(式中、σ及びrは前記のとおり。)
を満たすものである、請求項1記載の研磨液組成物。
Furthermore, the following formulas (5) and (7):
σ ≧ 0.375 × r (5)
−0.25 × r + 25 ≧ σ (7)
(In the formula, σ and r are as described above.)
It satisfies the claim 1 Symbol placement polishing composition.
さらに、コロイダルシリカ粒子の粒子径60〜120nmの範囲における累積体積頻度(V)が粒子径(R)に対し、以下の式(10)及び(12):
V ≧ 0.80×R−14 (10)
V ≦ 0.45×R+55 (12)
(式中、V及びRは前記のとおり。)
を満たすものである、請求項1又は2記載の研磨液組成物。
Further, the cumulative volume frequency (V) of colloidal silica particles in the particle diameter range of 60 to 120 nm with respect to the particle diameter (R) is represented by the following formulas (10) and (12):
V ≧ 0.80 × R-14 (10)
V ≦ 0.45 × R + 55 (12)
(In the formula, V and R are as described above.)
The polishing composition according to claim 1 or 2 , which satisfies the above.
さらに、コロイダルシリカ粒子の粒子径5〜60nmの範囲における累積体積頻度(V)が粒子径(R)に対し、以下の式(13):
V ≦ (2/3)×R+50 (13)
を満たし、かつ、コロイダルシリカ粒子の粒子径30〜60nmの範囲における累積体積頻度(V)が粒子径(R)に対し、以下の式(14):
V ≧ R−30 (14)
(式中、V及びRは前記のとおり。)
を満たすものである、請求項1〜いずれか記載の研磨液組成物。
Further, the cumulative volume frequency (V) of colloidal silica particles in the particle diameter range of 5 to 60 nm is the following formula (13) with respect to the particle diameter (R):
V ≦ (2/3) × R + 50 (13)
And the cumulative volume frequency (V) of colloidal silica particles in the particle size range of 30 to 60 nm is the following formula (14) with respect to the particle size (R):
V ≧ R-30 (14)
(In the formula, V and R are as described above.)
The polishing composition according to any one of claims 1 to 3 , wherein the polishing composition is satisfied.
請求項1〜いずれか記載の研磨液組成物を用いてメモリーハードディスク用基板の研磨を行う工程を含む、メモリーハードディスク用基板の微小うねりの低減方法。 Claim 1-4 comprising the step of polishing a substrate for a memory hard disk by using the polishing composition according to any method of reducing micro-waviness of a substrate for a memory hard disk. 請求項1〜いずれか記載の研磨液組成物を用いて、Ni−Pメッキされたメモリーハードディスク用基板の研磨を行う工程を含む、メモリーハードディスク用基板の製造方法。 A method for producing a memory hard disk substrate, comprising the step of polishing a Ni-P plated memory hard disk substrate using the polishing composition according to any one of claims 1 to 4 .
JP2003430933A 2003-02-05 2003-12-25 Polishing liquid composition Expired - Lifetime JP4373776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003430933A JP4373776B2 (en) 2003-02-05 2003-12-25 Polishing liquid composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003028348 2003-02-05
JP2003430933A JP4373776B2 (en) 2003-02-05 2003-12-25 Polishing liquid composition

Publications (2)

Publication Number Publication Date
JP2004259421A JP2004259421A (en) 2004-09-16
JP4373776B2 true JP4373776B2 (en) 2009-11-25

Family

ID=33133682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003430933A Expired - Lifetime JP4373776B2 (en) 2003-02-05 2003-12-25 Polishing liquid composition

Country Status (1)

Country Link
JP (1) JP4373776B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4648367B2 (en) * 2004-08-09 2011-03-09 花王株式会社 Polishing liquid composition
TWI364450B (en) * 2004-08-09 2012-05-21 Kao Corp Polishing composition
JP2007260853A (en) * 2006-03-29 2007-10-11 Konica Minolta Opto Inc Polishing method of amorphous glass
JP2007260906A (en) * 2007-07-24 2007-10-11 Kao Corp Manufacturing method of substrate
JP2007320031A (en) * 2007-07-24 2007-12-13 Kao Corp Polishing liquid composition
JP5396047B2 (en) * 2008-09-03 2014-01-22 三井金属鉱業株式会社 Abrasive slurry for glass
JP5890088B2 (en) * 2010-07-26 2016-03-22 山口精研工業株式会社 Abrasive composition
JP6362395B2 (en) * 2014-04-16 2018-07-25 株式会社フジミインコーポレーテッド Polishing composition and method for manufacturing magnetic disk substrate

Also Published As

Publication number Publication date
JP2004259421A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
JP5219886B2 (en) Polishing liquid composition
JP4707311B2 (en) Magnetic disk substrate
JP4231632B2 (en) Polishing liquid composition
JP3997152B2 (en) Polishing liquid composition
US6910952B2 (en) Polishing composition
JP5289877B2 (en) Polishing liquid composition for magnetic disk substrate
US20140346138A1 (en) Polishing composition for magnetic disk substrate
US7147682B2 (en) Polishing composition
JP4986099B2 (en) Substrate manufacturing method
JP4651532B2 (en) Manufacturing method of magnetic disk substrate
JP4373776B2 (en) Polishing liquid composition
JP4462599B2 (en) Polishing liquid composition
JP2004253058A (en) Polishing liquid composition
JP4255976B2 (en) Polishing liquid composition for magnetic disk substrate
JP4104335B2 (en) Method for reducing microprojections
JP3997154B2 (en) Polishing liquid composition
JP3997153B2 (en) Polishing liquid composition
JP5473587B2 (en) Polishing liquid composition for magnetic disk substrate
JP2008094982A (en) Polishing liquid composition for memory hard disk substrate
JP4074126B2 (en) Polishing composition
JP2009181690A (en) Method of manufacturing substrate
JP2005001018A (en) Method of manufacturing substrate
JP2004127327A (en) Composition for polishing magnetic disk substrate
JP2009187657A (en) Method of manufacturing substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090730

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4373776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250