JP2007051018A5 - - Google Patents

Download PDF

Info

Publication number
JP2007051018A5
JP2007051018A5 JP2005236314A JP2005236314A JP2007051018A5 JP 2007051018 A5 JP2007051018 A5 JP 2007051018A5 JP 2005236314 A JP2005236314 A JP 2005236314A JP 2005236314 A JP2005236314 A JP 2005236314A JP 2007051018 A5 JP2007051018 A5 JP 2007051018A5
Authority
JP
Japan
Prior art keywords
electrodeposition
carbon
carbon material
coated
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005236314A
Other languages
Japanese (ja)
Other versions
JP4910332B2 (en
JP2007051018A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2005236314A priority Critical patent/JP4910332B2/en
Priority claimed from JP2005236314A external-priority patent/JP4910332B2/en
Publication of JP2007051018A publication Critical patent/JP2007051018A/en
Publication of JP2007051018A5 publication Critical patent/JP2007051018A5/ja
Application granted granted Critical
Publication of JP4910332B2 publication Critical patent/JP4910332B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

炭素材料は、電気伝導性、熱伝導性、耐食性、耐熱性、黒色着色性および薬品安定性など多くの面ですぐれた性能を有するため、様々な用途に使用されており、特に耐食性を要する帯電防止材や電磁波シールド材、さらには電気伝導性および耐食性を有することが必要とされる燃料電池セパレータあるいはリチウム二次電池の負極には、金属材料の使用が難しいため、黒鉛、カーボンブラックまたはカーボンファイバーなどの炭素材料が使用されている。 Carbon materials have excellent performance in many aspects such as electrical conductivity, thermal conductivity, corrosion resistance, heat resistance, black colorability, and chemical stability, so they are used in various applications, especially those that require corrosion resistance. Since it is difficult to use metallic materials for the prevention material, electromagnetic wave shielding material , and the negative electrode of fuel cell separators or lithium secondary batteries that are required to have electrical conductivity and corrosion resistance, graphite, carbon black or carbon fiber Carbon materials such as are used.

これらの用途では、樹脂またはゴムなどに導電性フィラーとして炭素材料を添加し、成形する方法や、炭素材料に樹脂またはゴムなどをバインダーとして添加して成形する方法などが一般的に用いられている。一方、対象物の表面のみに炭素材料を薄膜化する方法は、電気特性と強度特性の両特性を満足できることから、特に表面の電気伝導性や放電性が重要とされる燃料電池セパレータあるいはリチウム二次電池の負極に用いられている。 In these applications, a method of forming by adding a carbon material as a conductive filler to a resin or rubber or the like, a method of adding a resin or rubber or the like as a binder to a carbon material, and the like are generally used. . On the other hand, since the method of thinning the carbon material only on the surface of the object can satisfy both the electrical characteristics and the strength characteristics, the fuel cell separator or lithium secondary battery in which surface electrical conductivity and discharge characteristics are particularly important. Used in the negative electrode of secondary batteries.

水系の電着法としては、自動車ボディーの下塗り塗装に使用されているカチオン電着塗装が一般的である。これは、電着塗料中に被塗物を浸漬し、被塗物を陰極として対極との間に電流を流し、陰極に塗膜を析出させて製膜する方法であり、この際電着塗料に炭素材料を分散させておくと、炭素材料は電着塗料に付随して陰極側に移動し、被塗物に複合的に製膜されるというものである。この方法では、電着塗料が分散剤の働きもするため電解液中の炭素材料の分散性が良く、さらに電着塗料の流動速度が大きいため電着量が多く、短時間で製膜できるといった長所があるものの、被塗物表面は電着塗料と炭素材料の複合膜となるため、被塗物表面の炭素密度が低くなるといった欠点がある。
日本接着学会誌 Vol.27、No.9、401頁(1991)
As a water-based electrodeposition method, cationic electrodeposition coating, which is used for undercoating of automobile bodies, is common. This dipping the object to be coated in an electrodeposition coating composition, a current is supplied between the counter electrode coated article as a cathode, a method of film formation by depositing a coating film on the cathode, this time electrodeposition paint If the carbon material is dispersed in the carbon material, the carbon material moves to the cathode side in association with the electrodeposition paint, and is formed into a composite film on the object to be coated. In this method, since the electrodeposition paint also functions as a dispersant, the dispersibility of the carbon material in the electrolytic solution is good, and furthermore , since the flow rate of the electrodeposition paint is large, the amount of electrodeposition is large and a film can be formed in a short time. Although there is an advantage, since the surface of the object to be coated is a composite film of an electrodeposition paint and a carbon material, the carbon density of the surface of the object to be coated is disadvantageously low.
Journal of the Adhesion Society of Japan Vol.27, No.9, 401 (1991)

一方、非水系の電着法としては、水系の電着が不可能なアルミニウム材料に関するものが多いものの、炭素材料においてもアセトニトリルとトリエチルアミンなどの低分子量塩基性化合物からなる溶媒に黒鉛を分散させ、この電着液に被塗物を陽極として浸漬し、対極との間に電流を流し、陽極に黒鉛を析出させ製膜する方法が提案されている。しかるに、この方法においては帯電した黒鉛が電場により移動し析出するため、被塗物表面の炭素密度が高くなるといった長所がある一方で、電着液への黒鉛の分散性が悪く、また黒鉛の泳動速度が遅いため電着量が少なく、製膜に多くの時間を要するといった欠点がある。
表面技術 Vol.53、No.10、685頁(2002)
On the other hand, as a non-aqueous electrodeposition method, although many are related to aluminum materials that cannot be electrodeposited in water, graphite is dispersed in a solvent composed of a low molecular weight basic compound such as acetonitrile and triethylamine in the carbon material, A method has been proposed in which an object to be coated is immersed in this electrodeposition solution as an anode, a current is passed between the electrode and a counter electrode, and graphite is deposited on the anode to form a film. However, in this method, the charged graphite moves and precipitates due to the electric field, so that there is an advantage that the carbon density on the surface of the object to be coated is increased. On the other hand, the dispersibility of the graphite in the electrodeposition liquid is poor. Since the migration speed is slow, the amount of electrodeposition is small, and there is a disadvantage that a long time is required for film formation.
Surface Technology Vol. 53, No. 10, p. 685 (2002)

より具体的には、筒状体中央部の2個所に径を小さくした括れ部を設け、その括れ部、すなわち左右の流入口の設けられたダイヤモンドノズルから、途中で2流路に分岐された超高圧流体をさらに加速された状態で、実際には最大で音速の4倍程度の加速された状態で、ダイヤモンドブロックで構成されたアルティマイザ用(上記筒状体中央部)に左右より導入し、この中央部で対向衝突させて微粒子化し、例えば筒状体中央部に設けられた排出孔より超微粒子化した流体として排出される。 More specifically, a constricted portion having a reduced diameter is provided at two locations in the central portion of the cylindrical body, and the constricted portion, that is, a diamond nozzle provided with left and right inlets, is branched into two flow paths on the way. The ultra-high pressure fluid is further accelerated, and is actually accelerated up to about 4 times the speed of sound, and introduced into the optimizer (diameter of the cylindrical body) composed of diamond blocks from the left and right. Then, the particles collide with each other at the central portion to form fine particles and, for example, are discharged as ultrafine particles from a discharge hole provided in the central portion of the cylindrical body.

実施例1
キシレン90mlに、ポリエステル酸アマイドアミン塩(楠本化成製品ディスパロンDA-703-50;50重量%キシレン溶液)100mlを加え、さらにキシレンを加えて全体を1Lとしたキシレン溶液に、多層カーボンナノチューブ5gを添加した。この添加液を、予備分散としてホモジナイザで30分間攪拌した後、噴流衝合装置(スギノマシン製マルティマイザーシステムHJP-20005)を用いて、約3分間の対向衝突分散処理を5回くり返して行い、多層カーボンナノチューブ分散液を得た。
Example 1
Add 100 ml of polyester acid amide amine salt (Tsubakimoto Chemicals Disparon DA-703-50; 50 wt% xylene solution) to 90 ml of xylene, and then add 5 g of multi-walled carbon nanotubes to the xylene solution to add 1 x to the whole. did. After stirring this additive solution with a homogenizer for 30 minutes as a preliminary dispersion, using a jet abutting device (Sugino Machine Optimizer System HJP-20005), the counter collision dispersion treatment for about 3 minutes was repeated 5 times. A multi-walled carbon nanotube dispersion was obtained.

JP2005236314A 2005-08-17 2005-08-17 Method for producing carbon material thin film Expired - Fee Related JP4910332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005236314A JP4910332B2 (en) 2005-08-17 2005-08-17 Method for producing carbon material thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005236314A JP4910332B2 (en) 2005-08-17 2005-08-17 Method for producing carbon material thin film

Publications (3)

Publication Number Publication Date
JP2007051018A JP2007051018A (en) 2007-03-01
JP2007051018A5 true JP2007051018A5 (en) 2008-09-18
JP4910332B2 JP4910332B2 (en) 2012-04-04

Family

ID=37915729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005236314A Expired - Fee Related JP4910332B2 (en) 2005-08-17 2005-08-17 Method for producing carbon material thin film

Country Status (1)

Country Link
JP (1) JP4910332B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908858B2 (en) * 2006-01-31 2012-04-04 保土谷化学工業株式会社 Method for producing fine carbon fiber aggregate
JP5303234B2 (en) * 2008-09-30 2013-10-02 日本ケミコン株式会社 High-density carbon nanotube aggregate and method for producing the same
JP2010173884A (en) * 2009-01-28 2010-08-12 Jsr Corp Carbon nanotube dispersion, film using the same and method of producing the same
JP5933374B2 (en) * 2012-07-03 2016-06-08 ハリマ化成株式会社 Method for producing thin-layer graphite or thin-layer graphite compound
JP6495065B2 (en) * 2014-03-31 2019-04-03 大阪瓦斯株式会社 Method for producing flaky carbon
JP6495066B2 (en) * 2014-03-31 2019-04-03 大阪瓦斯株式会社 Method for producing flaky carbon
JP2019125481A (en) * 2018-01-16 2019-07-25 トヨタ自動車株式会社 Negative electrode mixture for all-solid lithium ion secondary battery and manufacturing method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0840712A (en) * 1994-08-02 1996-02-13 Japan Synthetic Rubber Co Ltd Production of dispersion liquid of carbon electric conductor powder
JP2002063894A (en) * 2000-08-22 2002-02-28 Sharp Corp Production method of carbon material film, and nonaqueous secondary battery using the carbon material film
JP2002255528A (en) * 2000-09-18 2002-09-11 Matsushita Electric Ind Co Ltd Fine particle dispersed liquid and its producing method
JP4306990B2 (en) * 2001-10-18 2009-08-05 独立行政法人産業技術総合研究所 Nonlinear optical element
US7252749B2 (en) * 2001-11-30 2007-08-07 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
JP2005035810A (en) * 2003-07-15 2005-02-10 Mikuni Color Ltd Zero-dimensional or one-dimensional carbon structure dispersion
JP4182214B2 (en) * 2003-11-27 2008-11-19 独立行政法人産業技術総合研究所 Carbon nanotube dispersed polar organic solvent
JP4581663B2 (en) * 2004-07-27 2010-11-17 Nok株式会社 Method for forming carbon material thin film
WO2006132254A1 (en) * 2005-06-07 2006-12-14 Kuraray Co., Ltd. Carbon nanotube dispersion liquid and transparent conductive film using same
JP4982734B2 (en) * 2005-07-08 2012-07-25 国立大学法人北海道大学 Carbon nanotube dispersion paste, carbon nanotube dispersion solution and method for producing the same

Similar Documents

Publication Publication Date Title
JP5050352B2 (en) Post-treatment method for carbon material thin film
JP2007051018A5 (en)
Qiu et al. An enhanced kinetics and ultra-stable zinc electrode by functionalized boron nitride intermediate layer engineering
JP6722266B2 (en) Electrolytic copper foil, electrode including the same, secondary battery including the same, and manufacturing method thereof
TW201301622A (en) Improved lead-acid battery formulations containing discrete carbon nanotubes
Martis et al. Electro-generated nickel/carbon nanotube composites in ionic liquid
WO2012036172A1 (en) Carbon microfiber dispersion liquid
JP5551161B2 (en) Conductive solid composite material and method for obtaining the same
JP6304681B2 (en) Metal film and method for forming metal film
TW200934844A (en) Composite films
JP2007508439A (en) Cathodic protective coating containing carbonaceous conductive media
JP4910332B2 (en) Method for producing carbon material thin film
Lu et al. 3D porous carbon networks with highly dispersed SiO x by molecular-scale engineering toward stable lithium metal anodes
JP4581663B2 (en) Method for forming carbon material thin film
Gan et al. Boosting the supercapacitive properties of polypyrrole with chitosan and hybrid silver nanoparticles/nanoclusters
Meng et al. A scalable bio-inspired polydopamine-Cu ion interfacial layer for high-performance lithium metal anode
JP2006063436A5 (en)
JP2014063714A (en) Negative electrode material for lithium ion battery and method of manufacturing the same
JP2007176070A (en) Electroconductive composite membrane, manufacturing method of the same, and separator for fuel cell
DE102021123519A1 (en) FILM FORMING METHOD AND FILM FORMING APPARATUS OF METAL PLATING FILM
US20170190856A1 (en) Process for preparing a composite part that is electrically conductive at the surface, and applications
KR102096448B1 (en) Method and apparatus for manufacturing copper foil coated with graphene
US8435627B2 (en) Multifunctional nanocoatings with mixed nanoparticles and process for fabricating same
Zhang et al. The novel hyperdispersant for CNT in waterborne paint and its metal corrosion protection behavior
JP2009203304A (en) Method for producing actuator element