JP2002063894A - Production method of carbon material film, and nonaqueous secondary battery using the carbon material film - Google Patents

Production method of carbon material film, and nonaqueous secondary battery using the carbon material film

Info

Publication number
JP2002063894A
JP2002063894A JP2000251100A JP2000251100A JP2002063894A JP 2002063894 A JP2002063894 A JP 2002063894A JP 2000251100 A JP2000251100 A JP 2000251100A JP 2000251100 A JP2000251100 A JP 2000251100A JP 2002063894 A JP2002063894 A JP 2002063894A
Authority
JP
Japan
Prior art keywords
carbon material
electrode
material film
conductive substrate
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000251100A
Other languages
Japanese (ja)
Inventor
Koichi Ui
幸一 宇井
Kazuo Yamada
和夫 山田
Takehito Mitachi
武仁 見立
Nobuyuki Koura
延幸 小浦
Yasushi Idemoto
康 井手本
Futoshi Matsumoto
太 松本
Hirofumi Tsuiki
洋文 對木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2000251100A priority Critical patent/JP2002063894A/en
Publication of JP2002063894A publication Critical patent/JP2002063894A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a carbon material film with reduced volume of binder. SOLUTION: In the production method of the carbon material film, in which a carbon material is deposited on the surface of a conductive substrate through electrophoretic migration electrodeposition, a conductive substrate as a negative electrode and an opposite electrode as a positive electrode are dipped in a liquid, in which at least iodine is dissolved in non-protic solvent and a carbon material is dispersed, and direct current electric field is applied between them, or conductive substrate as a positive electrode and a counter electrode as a negative electrode are dipped in a liquid, in which a carbon material is dispersed in the non-protic solvent, and direct current electric field is applied, to deposit a carbon material film on the surface of the conductive substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素材料膜の作製
方法及び負極に当該炭素材料膜を用いた非水電解質二次
電池に関するものである。さらに詳しくは、電気泳動電
着による炭素材料膜の作製方法及び負極に当該炭素材料
膜を用いた必ずしも結着剤を必要としない非水電解質二
次電池に関するものである。
The present invention relates to a method for producing a carbon material film and a non-aqueous electrolyte secondary battery using the carbon material film for a negative electrode. More specifically, the present invention relates to a method for producing a carbon material film by electrophoretic electrodeposition and a non-aqueous electrolyte secondary battery using the carbon material film for a negative electrode and not necessarily requiring a binder.

【0002】[0002]

【従来の技術】近年、電子機器の小型化に伴い高容量の
二次電池が必要になってきている。その中でも、非水電
解質二次電池、特にリチウム二次電池は軽量かつ高エネ
ルギー密度を有するため、携帯機器の駆動用電源として
有望視され、研究開発が活発に進められている。その負
極活物質として金属材料や炭素材料等が検討されてい
る。このうち、負極活物質としてリチウム金属を用いた
場合、充放電を繰り返すとリチウム電極上にデンドライ
トが生成・成長し、最終的には内部短絡を引き起こす可
能性がある。リチウム金属の代わりにリチウム・アルミ
ニウム合金のようなリチウム合金が提案されているが、
長期的な充放電サイクルあるいは充放電深度が深いと合
金の偏析等が起こるため充分な特性は得られ難い。
2. Description of the Related Art In recent years, high-capacity secondary batteries have been required as electronic devices have become smaller. Among them, non-aqueous electrolyte secondary batteries, particularly lithium secondary batteries, have a light weight and a high energy density, and thus are regarded as promising power sources for driving portable devices, and are being actively researched and developed. Metal materials, carbon materials, and the like are being studied as the negative electrode active material. Among these, when lithium metal is used as the negative electrode active material, dendrite is generated and grows on the lithium electrode when charge and discharge are repeated, which may eventually cause an internal short circuit. Lithium alloys such as lithium aluminum alloys have been proposed instead of lithium metal,
If the charge / discharge cycle is long or the depth of charge / discharge is deep, segregation of the alloy or the like occurs, so that it is difficult to obtain sufficient characteristics.

【0003】そこで、炭素材料をホスト材料として負極
に用い、リチウムイオンの電気化学的挿入・脱離反応を
利用するリチウム二次電池、すなわちリチウムイオン電
池が提案され、一部実用化されている。炭素材料を負極
に用いたリチウムイオン電池は、サイクル特性、安全性
に優れている。炭素材料は黒鉛から無定形炭素までの幅
広い構造乃至形態を有するとともに、それらの物性値あ
るいは炭素の六角網面が形成する微細組織が電極の性能
を大きく左右するため、物性値あるいは微細組織を規定
した種々の炭素材料が提案されている。例えば、特開昭
60−182670号公報、特開昭60−221964
号公報、特開平4−155776号公報等に示される黒
鉛系の炭素材料、特開昭61−111907号公報、特
開昭62−90863号公報等に示される比較的アモル
ファスな炭素材料、特開昭61−214417号公報の
ような炭素繊維を用いるもの、特開平4−280068
号公報、特開平4−342958号公報等のように炭素
材料の結晶性ではなく、炭素材料の微細組織に着目した
もの等が提案されている。
[0003] Therefore, a lithium secondary battery using a carbon material as a host material for a negative electrode and utilizing an electrochemical insertion / desorption reaction of lithium ions, that is, a lithium ion battery, has been proposed and partially put into practical use. A lithium ion battery using a carbon material for the negative electrode has excellent cycle characteristics and safety. Carbon materials have a wide range of structures and forms from graphite to amorphous carbon, and their physical property values or the fine structure formed by the hexagonal mesh of carbon greatly affect the performance of the electrode. Various carbon materials have been proposed. For example, JP-A-60-182670, JP-A-60-221964
Japanese Patent Application Laid-Open No. 4-155776, a graphite-based carbon material disclosed in Japanese Patent Application Laid-Open No. 61-111907, a relatively amorphous carbon material disclosed in Japanese Patent Application Laid-Open No. 62-90863, and the like. Japanese Patent Application Laid-Open No. 4-280068 using carbon fiber as disclosed in JP-A-61-214417.
And Japanese Patent Application Laid-Open No. 4-342958, which focus on the fine structure of the carbon material instead of the crystallinity of the carbon material.

【0004】現在、リチウムイオン電池の負極に使用さ
れている炭素材料は1000℃前後で焼成された炭素系
と2800℃前後で焼成された黒鉛系に大別される。前
者を用いた場合、電解液との反応が少なく、電解液の分
解が起きにくいという利点を有するが、リチウムイオン
の放出に伴う電位の変化が大きいという欠点がある。
At present, carbon materials used for negative electrodes of lithium ion batteries are roughly classified into carbon materials fired at about 1000 ° C. and graphite materials fired at about 2800 ° C. When the former is used, there is an advantage that the reaction with the electrolytic solution is small and decomposition of the electrolytic solution does not easily occur, but there is a disadvantage that a change in potential due to release of lithium ions is large.

【0005】一方、後者を用いた場合、リチウムイオン
の放出に伴う電位の変化が小さいという利点を有する
が、電解液と反応して電解液の分解が生じ、さらには炭
素材料が破壊されるという欠点がある(J.Electrochem.
Soc.,Vo.117,p.222(1970))。その結果、充放電効率の
低下、サイクル特性の低下、電池の安全性低下等の問題
を生じる。特定の電解液を用いる場合には、黒鉛系の材
料も使用可能であることが報告されている(J.Electroc
hem.Soc.,Vo.137,p.2009(1990))が、電解液が限定され
るため、電池の温度特性、サイクル特性等の改善が電解
液の種類により、かなり制限されるという問題点が残
る。従って、リチウムイオン電池の開発では、電解液の
分解、炭素材料の破壊を起こさない電解液と炭素材料と
の組み合わせに注意することが重要であるといえる。
[0005] On the other hand, when the latter is used, it has the advantage that the change in potential due to the release of lithium ions is small, but it reacts with the electrolytic solution to cause decomposition of the electrolytic solution and further destroys the carbon material. There are disadvantages (J. Electrochem.
Soc., Vo.117, p.222 (1970)). As a result, problems such as a decrease in charge / discharge efficiency, a decrease in cycle characteristics, and a decrease in battery safety occur. It has been reported that a graphite-based material can be used when a specific electrolyte is used (J. Electroc.
hem.Soc., Vo.137, p.2009 (1990)), but the problem is that the improvement in battery temperature characteristics and cycle characteristics is considerably limited by the type of electrolyte because the electrolyte is limited. Remains. Therefore, in the development of a lithium ion battery, it can be said that it is important to pay attention to the combination of an electrolyte and a carbon material that does not cause decomposition of the electrolyte and destruction of the carbon material.

【0006】リチウムイオン電池の負極には、粉末ある
いは繊維状の炭素材料と結着剤を混合し、分散媒を加え
たペースト状の電極合剤を作製し、これを集電体である
金属箔に塗布し、その後、分散媒を乾燥したものが用い
られている。この際、電極合剤の集電体への圧着と電極
厚みの均一化、電極容量の向上を目的として、さらに圧
縮成形もしくはプレスを掛ける工程を設けるのが一般的
である。この圧縮工程により、電極のかさ密度(みかけ
密度もしくは充填密度)は高くなり、電池の単位堆積当
たりのエネルギー密度は高くなる。しかし、この従来の
工程では、炭素材料自体の性能が優れていても、サイク
ル特性や単位体積当たりの活物質充填量等に問題を残す
場合がある。
For a negative electrode of a lithium-ion battery, a powdery or fibrous carbon material and a binder are mixed to prepare a paste-like electrode mixture to which a dispersion medium is added. And then drying the dispersion medium. At this time, it is general to provide a step of compression molding or pressing for the purpose of pressing the electrode mixture onto the current collector, making the electrode thickness uniform, and improving the electrode capacity. This compression step increases the bulk density (apparent density or packing density) of the electrode and increases the energy density per unit deposition of the battery. However, in this conventional process, even if the performance of the carbon material itself is excellent, a problem may remain in the cycle characteristics, the amount of the active material charged per unit volume, and the like.

【0007】これに対して、結着剤を使用しない炭素材
料膜を備えた電極としては、特開昭60−36315号
公報、特開昭63−13282号公報、特開昭63−2
4555号公報等に、集電体となり得る金属基板表面に
炭素材料を直接堆積させる方法、すなわち気相炭素化に
より得る方法が提案されている。この方法では炭素材料
を基板表面に直接堆積させているので、結着剤が不要で
あると同時に、炭素材料が基板表面に密着性よく堆積す
るため、高容量かつサイクル特性の優れた電極が得られ
る。上記の他に、特開平4−92364号公報、特開平
5−347155号公報等において、固体又は液体の有
機化合物を多孔質金属基体に含浸させ、焼成することに
より炭素材料を基体に堆積させる、すなわち固相炭素化
又は液相炭素化による電極作製方法等も提案されてい
る。
On the other hand, as an electrode provided with a carbon material film without using a binder, Japanese Patent Application Laid-Open Nos. 60-36315, 63-13282, and 63-2
No. 4555 proposes a method of directly depositing a carbon material on the surface of a metal substrate which can be a current collector, that is, a method of obtaining a carbon material by gas phase carbonization. In this method, since the carbon material is directly deposited on the substrate surface, a binder is not required, and at the same time, since the carbon material is deposited on the substrate surface with good adhesion, an electrode having high capacity and excellent cycle characteristics is obtained. Can be In addition to the above, in JP-A-4-92364, JP-A-5-347155, etc., a carbon material is deposited on a porous metal substrate by impregnating the porous metal substrate with a solid or liquid organic compound, followed by firing. That is, an electrode manufacturing method by solid-phase carbonization or liquid-phase carbonization has been proposed.

【0008】一方、電気泳動電着は、例えば、“湿式プ
ロセスハンドブック,p.124,日刊工業新聞社(1
996)”に金属、金属化合物、酸化物、蛍光体、有機
及び無機塗料、ラバー、誘電体、ガラス等のコーティン
グ法として水系、非水系電着浴を用いて広い範囲で応用
されていることが記載されている。例えば、酸化物粒子
の電気泳動電着については、“湿式プロセスハンドブッ
ク,pp.128〜132,日刊工業新聞社(199
6)”に記載してある。この方法による堆積は、次のよ
うな機構によると考えられる。まず、アセトンに少量の
水とヨウ素が素早く反応してプロトンが生じ、そのプロ
トンが分散している酸化物粒子の表面に吸着すること
で、酸化物粒子が正に帯電する。この状態で直流を通電
すると、正に帯電した酸化物粒子が放電する電極に向か
って移動し、作用極(カソード)表面に堆積されると考
えられている。
On the other hand, electrophoretic electrodeposition is described in, for example, “Wet Process Handbook, p. 124, Nikkan Kogyo Shimbun (1.
996) ”is widely applied as a coating method for metals, metal compounds, oxides, phosphors, organic and inorganic paints, rubbers, dielectrics, glass, etc. using aqueous and non-aqueous electrodeposition baths. For example, the electrophoretic electrodeposition of oxide particles is described in “Wet Process Handbook, pp. 146-64”. 128-132, Nikkan Kogyo Shimbun (199
6) ". The deposition by this method is considered to be due to the following mechanism: First, a small amount of water and iodine react quickly with acetone to generate protons, and the protons are dispersed. The oxide particles are positively charged by being adsorbed on the surface of the oxide particles.When a direct current is applied in this state, the positively charged oxide particles move toward the discharging electrode, and the working electrode (cathode) It is believed to be deposited on the surface.

【0009】さらには、一般製造工程においてはスケー
ルアップされ、ラバー製品、自動車工業での塗装に応用
されている。1960年代の始めに金属物品を塗装する
のに電着技術が導入されて以来、この方法は自動車工業
及び器具工業において多様な製品を被覆する技術として
世界中で広く応用されてきた。この方法は次の論文に詳
細に記載されている。 (1)Percy E. Pierce, Journal of Coatings Technol
ogy, Vol. 53, p.52(1981). (2)Fritz Beck and Harald Guder, J. Electrochem.
Soc., Vol. 134, p.2416(1987). (3)Fritz Beck, Electrochimica Acta, Vol. 33, p.
839(1988).
Further, the scale is increased in a general manufacturing process, and the product is applied to rubber products and coating in the automobile industry. Since the introduction of electrodeposition technology for painting metal articles in the early 1960's, this method has been widely applied throughout the world as a technique for coating a variety of products in the automotive and appliance industries. This method is described in detail in the following article. (1) Percy E. Pierce, Journal of Coatings Technol
ogy, Vol. 53, p. 52 (1981). (2) Fritz Beck and Harald Guder, J. Electrochem.
Soc., Vol. 134, p. 2416 (1987). (3) Fritz Beck, Electrochimica Acta, Vol. 33, p.
839 (1988).

【0010】電気泳動電着を二次電池用電極の製造方法
に応用した例としては、特開平5−94821号公報、
特開平5−121066号公報等にて、導電性基板を負
極(カソード)として対向電極との間に直流電界を印加
させ、活物質を直接集電体に堆積したものを化学電池、
鉛蓄電池に用いることが提案されている。また、電気泳
動電着を炭素材料膜の製造方法に応用した例としては、
特開平9−74052号公報等にて、水あるいはエタノ
ール等の溶媒中に活性炭、導電性付与材、結着材、結着
剤を分散させ、導電性基板を正極(アノード)として対
向電極との間に直流電界を印加させ、堆積させたものを
電気二重層キャパシタに用いることが提案されている。
導電性付与材には、カーボンブラック、アセチレンブラ
ック、ケッチェンブラック、黒鉛粉末、炭素繊維、又は
酸化ルテニウム、結着剤は多糖類から選ばれたものが用
いられており、溶媒には水及びアルコール等の極性の強
い溶媒から選ばれたものが用いられている。
Japanese Patent Application Laid-Open No. 5-94821 discloses an example in which electrophoretic electrodeposition is applied to a method for manufacturing an electrode for a secondary battery.
Japanese Patent Application Laid-Open No. 5-110666 discloses a method in which a direct current electric field is applied between a conductive substrate as a negative electrode (cathode) and a counter electrode to deposit an active material directly on a current collector.
It has been proposed for use in lead-acid batteries. Examples of application of electrophoretic electrodeposition to a method for producing a carbon material film include:
In JP-A-9-74052, etc., activated carbon, a conductivity-imparting material, a binder, and a binder are dispersed in a solvent such as water or ethanol, and a conductive substrate is used as a positive electrode (anode) to form a positive electrode (anode). It has been proposed to apply a direct current electric field between them and use the deposited one for an electric double layer capacitor.
Carbon black, acetylene black, Ketjen black, graphite powder, carbon fiber, or ruthenium oxide, a binder selected from polysaccharides are used as the conductivity-imparting material, and water and alcohol are used as solvents. And those selected from strong polar solvents.

【0011】[0011]

【発明が解決しようとする課題】上記の炭素材料を用い
る電極、その製造方法及び電気泳動電着にはいくつかの
問題点が残されている。気相炭素化の場合、一般的にコ
ストが高く、電極特性に影響を及ぼす炭素材料の結晶性
と堆積量の制御が困難である。すなわち、炭素材料の堆
積温度を上げることにより結晶性は高くなるが、炭素の
堆積量が上がりにくくなる。これについては、例えば、
“稲垣道夫,炭素材料工学,pp.66〜68,日刊工
業新聞社(1985)”に、気相熱分解過程では、気相
中でカーボンブラックに類似した炭素粒子(スス状粒子
と呼ばれているが、その実体は必ずしも明らかではな
い。)が絶えず生成すると記載されているように、上記
発生した炭素粒子が熱分解炭素中に入り込むために常に
新しい成長錐が発生し、その結果炭素材料が大きく成長
し得ないと考えられるからである。
The above-mentioned electrode using the carbon material, its production method and electrophoretic electrodeposition have some problems. In the case of gas-phase carbonization, the cost is generally high, and it is difficult to control the crystallinity and deposition amount of the carbon material which affects the electrode characteristics. That is, the crystallinity is increased by increasing the deposition temperature of the carbon material, but the deposition amount of carbon is hardly increased. For this, for example,
"Michio Inagaki, Carbon Materials Engineering, pp. 66-68, Nikkan Kogyo Shimbun (1985)" states that in the gas phase pyrolysis process, carbon particles similar to carbon black in the gas phase (called soot-like particles). However, the substance is not always clear.), As described above, the generated carbon particles always enter the pyrolysis carbon, so that new growth cones are generated, and as a result, the carbon material is This is because it is considered that they cannot grow significantly.

【0012】気相、液相及び固相炭素化により、基板表
面に直接炭素材料膜を形成する場合には、基板全体に炭
素材料膜が形成されるという欠点を有する。例えば、基
板表面に炭素材料を直接堆積させた電極を用いて電池を
作製する場合、電極と電池缶を溶接する工程で、溶接部
に堆積している炭素材料を剥離する工程が必要であっ
た。
When a carbon material film is formed directly on the surface of a substrate by gasification, liquid phase and solidification, there is a disadvantage that the carbon material film is formed on the entire substrate. For example, when manufacturing a battery using an electrode in which a carbon material is directly deposited on a substrate surface, a step of welding the electrode and the battery can requires a step of peeling off the carbon material deposited on the welded portion. .

【0013】そこで、この対応策として、炭素材料の堆
積しない部分を作るためにマスキングをすることが考え
られる。しかし、炭素生成温度をマスキング構成材料の
融点以下に設定しなければならず、さらにマスキング構
成材料と基板の密着性を考慮するとマスキングの効果は
著しく低下する。また、溶接部分を作製するため、堆積
した炭素材料を除去するとしても、触媒作用を有する導
電性基板を用いた場合、炭素材料と基板との密着性がよ
くなるので、炭素材料のみを剥離することは非常に困難
になる。
Therefore, as a countermeasure against this, it is conceivable to perform masking in order to form a portion where no carbon material is deposited. However, the carbon generation temperature must be set to be equal to or lower than the melting point of the masking constituent material, and the masking effect is significantly reduced in consideration of the adhesion between the masking constituent material and the substrate. In addition, even if the deposited carbon material is removed in order to form a welded portion, when a conductive substrate having a catalytic action is used, the adhesion between the carbon material and the substrate is improved. Will be very difficult.

【0014】これは、基板自身が触媒として作用するた
め、炭素堆積の際、炭素中に触媒原子がとり込まれた
り、さらには集電体が薄くなったり細くなったりするた
めである。加えて、電池の高容量化の要望が高まるにつ
れて、電池軽量化の一つの手段として、集電体(導電性
基板)となる金属板を薄くする必要が生じてくる。しか
し、上述したように活物質に対する集電機能は十分であ
っても、電池缶との溶接等を行う場合に、溶接部分のみ
の炭素剥離が困難であること、あるいは、剥離せずその
まま溶接しても、溶接抵抗、強度に問題を残すため、電
池の内部抵抗の増加、製造歩留りの低下、さらに信頼性
に大きく影響するという問題があった。
This is because the substrate itself acts as a catalyst, so that when depositing carbon, catalyst atoms are incorporated into carbon, and the current collector becomes thinner or thinner. In addition, as the demand for higher capacity batteries increases, it becomes necessary to reduce the thickness of a metal plate serving as a current collector (conductive substrate) as one means of reducing battery weight. However, as described above, even when the current collecting function for the active material is sufficient, it is difficult to separate carbon only from the welded portion when welding with a battery can or the like, or welding is performed without separating. However, there are problems that the internal resistance of the battery is increased, the production yield is reduced, and the reliability is greatly affected, because problems remain in the welding resistance and strength.

【0015】上記の他に、特開平4−92364号公
報、特開平5−347155号公報では、多孔質金属基
体のような三次元構造体に粉体状又は液状の炭素材料の
前駆体を含浸させた後、固化させてなる炭素電極が記載
されている。これらの製造方法では、炭素材料の前駆体
から炭素材料への収率が低いため、高密度の炭素電極が
得られにくい。また、電池を軽量化するために、三次元
構造体の空孔率が高いものを使用した場合、炭素材料の
炭素化の触媒作用を十分に受けることができなくなる。
さらに、熱処理温度も金属集電体を構成する金属の融点
以下にしなければならない。以上のことから、炭素材料
の結晶性を高くすることに制約が生じ、充分な容量が得
られないこと等の問題点が残っている。
In addition to the above, JP-A-4-92364 and JP-A-5-347155 disclose that a three-dimensional structure such as a porous metal substrate is impregnated with a precursor of a powdery or liquid carbon material. It describes a carbon electrode that is solidified after it has been cured. In these production methods, since the yield from the precursor of the carbon material to the carbon material is low, it is difficult to obtain a high-density carbon electrode. When a three-dimensional structure having a high porosity is used in order to reduce the weight of the battery, it is not possible to sufficiently receive the catalytic action of carbonizing the carbon material.
Furthermore, the heat treatment temperature must be lower than the melting point of the metal constituting the metal current collector. From the above, there is a limitation in increasing the crystallinity of the carbon material, and there remains a problem that a sufficient capacity cannot be obtained.

【0016】一方で、粉末あるいは繊維状の炭素材料を
用いて炭素電極を作製するには、工程が繁雑で、炭素材
料を結着するための結着剤を含んでいるので、少なくと
も結着剤に相当する部分のエネルギー密度が十分に上が
り難くなる。リチウムイオン電池の高エネルギー密度化
において、負極に用いる炭素材料の体積当たりの充填量
を増やすことは重要なポイントである。従って、結着剤
を使用することは電池の高エネルギー密度化を考慮する
と根本的な解決には至らない。
On the other hand, producing a carbon electrode using a powdery or fibrous carbon material requires a complicated process and includes a binder for binding the carbon material. It is difficult to sufficiently increase the energy density of the portion corresponding to. In increasing the energy density of a lithium ion battery, it is an important point to increase the filling amount per volume of the carbon material used for the negative electrode. Therefore, the use of a binder does not lead to a fundamental solution in consideration of increasing the energy density of a battery.

【0017】次に、電気泳動電着を用いて炭素材料膜を
製造する方法の課題としては、これまで炭素材料のみか
ら形成される製膜技術が確立されていないことと、電着
浴に極性の強い溶媒が用いられていることが挙げられ
る。前者については、特開平9−74052号公報にお
いて、活性炭、導電性付与体、結着剤をアノードに共析
することにより炭素材料膜を得ることが提案されている
が、結着剤が含まれているので、少なくともそれに相当
する部分のエネルギー密度が十分に高くなり難くなって
いる。また、結着剤を使用しないと炭素材料粒子間の結
着性や炭素材料膜と基板の接着力が低下するため、電極
特性、特にサイクル特性が著しく低下してしまう。
Next, the problems of the method for producing a carbon material film using electrophoretic electrodeposition include the fact that a film forming technique for forming only a carbon material has not been established and that the electrodeposition bath has a polarity. Is used. Regarding the former, Japanese Patent Application Laid-Open No. 9-74052 proposes to obtain a carbon material film by co-depositing activated carbon, a conductivity-imparting substance, and a binder on the anode, but the binder is included. Therefore, it is difficult for the energy density of at least the corresponding portion to be sufficiently high. If no binder is used, the binding properties between the carbon material particles and the adhesive strength between the carbon material film and the substrate are reduced, so that the electrode characteristics, particularly the cycle characteristics, are significantly reduced.

【0018】この原因の一つとしては、電気泳動電着時
の被堆積粒子を分散させる溶媒にあると考えられる。極
性の強い溶媒を用いる場合、例えば、“根岸秀之他,表
面技術,Vol.49,p.25,(1998)”に、
電気泳動電着に必要な電位で水や水以外のプロトン性溶
媒の還元が起こると記載されている。例えば、特開平5
−94821号公報、特開平9−74052号公報等に
おいては、溶媒として水及びアルコール等の極性の強い
溶媒から選ばれたものが用いられている。ゆえに、電気
泳動電着時に電極近傍において、前記溶媒の還元反応に
よるガス発生が起こるので、得られる膜の均一性に悪影
響を及ぼし易くなることが考えられる。
One of the causes is considered to be a solvent for dispersing particles to be deposited during electrophoretic electrodeposition. When a solvent having a strong polarity is used, for example, “Hideyuki Negishi et al., Surface Technology, Vol. 49, p. 25, (1998)”
It is described that reduction of water or a protic solvent other than water occurs at a potential required for electrophoretic electrodeposition. For example, Japanese Unexamined Patent Publication
In JP-A-94821, JP-A-9-74052 and the like, a solvent selected from strong polar solvents such as water and alcohol is used. Therefore, since gas is generated by the reduction reaction of the solvent in the vicinity of the electrode during the electrophoretic electrodeposition, the uniformity of the obtained film is likely to be adversely affected.

【0019】以上のことから、課題を解決するためには
被堆積粒子、それを分散させる溶媒、添加剤等の組み合
わせをはじめ、被堆積電極(アノードあるいはカソー
ド)を検討する必要があった。例えば、各種酸化物超伝
導膜、及び管状基材上への酸化物超伝導粉末の堆積によ
る超伝導体磁気シールド体の作製として、アセトン−ヨ
ウ素系浴からのYBCO膜の作製(小浦延幸他,表面技
術,Vol.40,p.819(1989))、トルエ
ン系浴からのBSCCO膜の作製(N. Koura, etal, Ph
ysica C, Vol. 200, p. 50(1992))、シクロヘキサノン
−ヨウ素系浴からのTBCCO膜の作製(N. Koura, et
al, Jpn. J. Appl. Phys.,)、固体電解質型燃料電池
における固体電解質の薄膜化技術として、アセチルアセ
トン浴からのYSZ粒子の堆積(T. Ishihara, et al,
Chem. Lett., 1992, p. 947(1992))等は、カソードに
堆積させると報告されている。
From the above, in order to solve the problem, it was necessary to examine the electrode (anode or cathode) to be deposited, including the combination of the particles to be deposited, the solvent for dispersing the particles, the additives, and the like. For example, as a preparation of various oxide superconducting films and a superconductor magnetic shield by depositing oxide superconducting powder on a tubular substrate, production of a YBCO film from an acetone-iodine bath (Nobuyuki Koura et al. Surface technology, Vol. 40, p. 819 (1989)), Preparation of BSCCO film from toluene-based bath (N. Koura, etal, Ph.
ysica C, Vol. 200, p. 50 (1992)), preparation of a TBCCO film from a cyclohexanone-iodine bath (N. Koura, et al.
al, Jpn. J. Appl. Phys.,), as a technique for thinning a solid electrolyte in a solid oxide fuel cell, deposition of YSZ particles from an acetylacetone bath (T. Ishihara, et al,
Chem. Lett., 1992, p. 947 (1992)) etc. are reported to deposit on the cathode.

【0020】また、ヨウ素の代わりにニトロセルロース
を添加したアセトン浴では、極微量の強塩基の添加で導
電率を上げ、さらに強酸の添加で粒子を負に帯電させ
て、粒子をアノード側に堆積させることも報告されてい
る(J. Mizuguchi et al, J. Electrochem. Soc., Vol.
130, p.1819(1983))。従って、被堆積粒子と相性のよ
い溶剤、添加物、電極等の最適な堆積条件を見出すこと
が極めて重要であるといえる。
In an acetone bath containing nitrocellulose instead of iodine, the conductivity is increased by adding a trace amount of a strong base, and the particles are negatively charged by the addition of a strong acid to deposit the particles on the anode side. (J. Mizuguchi et al, J. Electrochem. Soc., Vol.
130, p.1819 (1983)). Therefore, it can be said that it is extremely important to find optimum deposition conditions such as a solvent, an additive, an electrode, etc., which are compatible with the particles to be deposited.

【0021】[0021]

【課題を解決するための手段】以上の点より、活物質と
しての炭素材料の結晶性に制約されず導電性基板の表面
に炭素材料膜を作製すること、及びリチウムイオン電池
の高エネルギー密度化の観点から、電極の活物質密度を
高めるために、電極反応に関与しない結着剤に相当する
重量を減らすことを目的とし種々検討した結果、本発明
に至ったものである。すなわち、炭素材料膜の作製方法
として電気泳動電着を用いると炭素材料の結晶性に制約
されずに基板上に直接堆積することができること、結着
剤を必ずしも必要としないので活物質の単位体積当たり
の充填量、即ち活物質密度が飛躍的に大きくなることが
判明したので、従来の問題点が解決するに至った。
SUMMARY OF THE INVENTION In view of the above, it is possible to form a carbon material film on the surface of a conductive substrate without being restricted by the crystallinity of a carbon material as an active material, and to increase the energy density of a lithium ion battery. From the viewpoint of the present invention, the present inventors have conducted various studies for the purpose of reducing the weight corresponding to the binder not participating in the electrode reaction in order to increase the active material density of the electrode, and as a result, have reached the present invention. That is, when electrophoretic electrodeposition is used as a method for forming a carbon material film, the carbon material can be directly deposited on a substrate without being restricted by the crystallinity of the carbon material, and the unit volume of the active material is not necessarily required because a binder is not necessarily required. It has been found that the per-packing amount, that is, the active material density is dramatically increased, so that the conventional problems have been solved.

【0022】具体的には、溶媒として極性の強い溶媒で
はなく非プロトン性溶媒を用いて、電気泳動電着により
結着剤を必ずしも必要としない炭素材料膜を作製するこ
と、及び当該炭素材料膜を負極に用いて二次電池を作製
することを特徴としている。さらに、従来の作製方法で
は電極合剤の調製、塗布、分散剤の乾燥等繁雑であった
が、本発明によれば各工程時間の短縮化が図れ、加えて
電極の連続生産が容易になる。
More specifically, a carbon material film not necessarily requiring a binder is prepared by electrophoretic electrodeposition using an aprotic solvent instead of a strong polar solvent as a solvent, and the carbon material film is prepared. Is used as a negative electrode to manufacture a secondary battery. Further, in the conventional manufacturing method, preparation of the electrode mixture, application, drying of the dispersant, and the like were complicated, but according to the present invention, each process time can be shortened, and in addition, continuous production of the electrode is facilitated. .

【0023】なお、本発明における電極のかさ密度(み
かけ密度もしくは充填密度)とは、活物質、活物質以外
の含有物である導電剤、結着剤等の全質量をその電極合
剤の占める体積で除したものである。すなわち、かさ密
度=電極合剤の全質量/電極合剤の占める体積の式によ
り表すことができる。粒子の充填構造は、粒子の大きさ
と形状、粒子間相互作用等に左右されるが、充填構造を
定量的に議論する指標の一つとしてはかさ密度や充填率
が利用されている。一方、活物質密度とは電極の単位体
積中に占める活物質の重量である。活物質密度は活物質
の真密度以上にはならず、真密度との差は活物質以外の
結着剤等の含有物、電極中の空隙等の体積変化によるも
のである。
The bulk density (apparent density or packing density) of an electrode in the present invention means the total mass of an active material, a conductive agent, a binder, and the like, which are substances other than the active material, occupied by the electrode mixture. It is divided by volume. That is, it can be expressed by the formula of bulk density = total mass of electrode mixture / volume occupied by electrode mixture. The packing structure of the particles depends on the size and shape of the particles, the interaction between the particles, and the like, and the bulk density and the packing ratio are used as one of the indexes for quantitatively discussing the packing structure. On the other hand, the active material density is the weight of the active material in a unit volume of the electrode. The active material density does not exceed the true density of the active material, and the difference from the true density is due to a change in the volume of a material other than the active material, such as a binder, and a void in the electrode.

【0024】かくして本発明によれば、電気泳動電着に
より導電性基板の表面に炭素材料を堆積させる炭素材料
膜の作製方法において、非プロトン性溶媒に少なくとも
ヨウ素を溶解し、それに炭素材料を分散させた液に、負
極としての導電性基板と、正極としての対向電極とを浸
し、両者間に直流電界を印加することにより、前記導電
性基板の表面に炭素材料膜を堆積させることを特徴とす
る第1の炭素材料膜の作製方法が提供される。更に、本
発明によれば、電気泳動電着により導電性基板の表面に
炭素材料を堆積させる炭素材料膜の作製方法において、
非プロトン性溶媒に炭素材料を分散させた液に、正極と
しての導電性基板と、負極としての対向電極とを浸し、
両者間に直流電界を印加することにより、前記導電性基
板の表面に炭素材料膜を堆積させることを特徴とする第
2の炭素材料膜の作製方法が提供される。
Thus, according to the present invention, in a method for producing a carbon material film in which a carbon material is deposited on the surface of a conductive substrate by electrophoretic electrodeposition, at least iodine is dissolved in an aprotic solvent and the carbon material is dispersed therein. In the solution thus obtained, a conductive substrate as a negative electrode and a counter electrode as a positive electrode are immersed, and a DC electric field is applied between the two to deposit a carbon material film on the surface of the conductive substrate. A method for manufacturing a first carbon material film is provided. Further, according to the present invention, in a method for producing a carbon material film for depositing a carbon material on the surface of a conductive substrate by electrophoretic electrodeposition,
In a liquid in which a carbon material is dispersed in an aprotic solvent, a conductive substrate as a positive electrode and a counter electrode as a negative electrode are immersed,
A second method for manufacturing a carbon material film is provided, wherein a carbon material film is deposited on the surface of the conductive substrate by applying a DC electric field between the two.

【0025】[0025]

【発明の実施の態様】第1の炭素材料膜の作製方法は、
非プロトン性溶媒に少なくともヨウ素を溶解し、それに
炭素材料を分散させた液を用いて、導電性基板を負極と
して対向電極との間に直流電界を印加することにより、
前記導電性基板の表面に炭素材料を堆積させることを特
徴としている。より具体的には、非プロトン性溶媒中に
ヨウ素を溶解させて、炭素材料を懸濁・分散させた状態
にし、その分散溶液中に電極を少なくとも2本浸漬さ
せ、非水電解質二次電池の集電体に用いる導電性基板を
負極、すなわち作用極(カソード)として設置し、一方
に対向電極(アノード、正極)として例えば白金を設
け、直流を通電させると、帯電した炭素材料が作用極に
向かって移動し、作用極表面に炭素材料が堆積し製膜す
ることを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The first method for producing a carbon material film is as follows.
By dissolving at least iodine in an aprotic solvent and using a liquid in which a carbon material is dispersed, by applying a DC electric field between the conductive substrate and the counter electrode as a negative electrode,
A carbon material is deposited on the surface of the conductive substrate. More specifically, iodine is dissolved in an aprotic solvent to form a state in which a carbon material is suspended and dispersed, and at least two electrodes are immersed in the dispersion solution to form a non-aqueous electrolyte secondary battery. A conductive substrate used as a current collector is provided as a negative electrode, that is, a working electrode (cathode). On one side, for example, platinum is provided as a counter electrode (anode, positive electrode), and when a direct current is applied, the charged carbon material becomes a working electrode. The carbon material moves toward the surface of the working electrode, and is deposited on the surface of the working electrode to form a film.

【0026】本発明の対向電極としては化学的、電気化
学的に安定な白金、グラファイト等が好適に用いられ
る。本発明の非プロトン性溶媒としては、その性質を有
する限り特に限定されない。具体的には、アセトン、メ
チルエチルケトン、2−ペンタノン、3−ペンタノン、
2−ヘキサノン、メチルイソブチルケトン、2−ヘプタ
ノン、4−ヘプタノン、アセトニルアセトン、アセチル
アセトン等のケトン類、ジエチルエーテル等のエーテル
類、トルエン、n−ヘキサン等の炭化水素、アセトニト
リル等の窒素化合物等が挙げられ、これらの1種あるい
は2種以上の混合溶媒として使用される。特に、アセト
ン、アセチルアセトンが好適に使用される。
As the counter electrode of the present invention, chemically and electrochemically stable platinum, graphite and the like are preferably used. The aprotic solvent of the present invention is not particularly limited as long as it has the property. Specifically, acetone, methyl ethyl ketone, 2-pentanone, 3-pentanone,
Ketones such as 2-hexanone, methyl isobutyl ketone, 2-heptanone, 4-heptanone, acetonylacetone, and acetylacetone; ethers such as diethyl ether; hydrocarbons such as toluene and n-hexane; and nitrogen compounds such as acetonitrile. And one or more of these are used as a mixed solvent. In particular, acetone and acetylacetone are preferably used.

【0027】また、本発明の非プロトン性溶媒中にプロ
トン性溶媒を少量ならば添加してもよい。炭素材料の分
散量にもよるが、プロトン性溶媒が分散している炭素材
料粒子の表面に吸着することで、炭素材料粒子を正に帯
電させることができる。この状態で直流を通電すると、
正に帯電した炭素材料粒子が放電する電極に向かって移
動し、作用極表面に堆積されると考えられる。しかし、
プロトン性溶媒を過剰に添加すると、電解電圧等の諸条
件にもよるが、電気泳動電着中に電極近傍において、水
あるいは水以外のプロトン性溶媒の還元反応によるガス
発生が起き易くなり、得られる膜の均一性に悪影響を及
ぼし易くなることが考えられる。
Further, a small amount of a protic solvent may be added to the aprotic solvent of the present invention. Although depending on the amount of dispersion of the carbon material, the carbon material particles can be positively charged by adsorbing on the surface of the carbon material particles in which the protic solvent is dispersed. When direct current is applied in this state,
It is considered that the positively charged carbon material particles move toward the discharging electrode and are deposited on the working electrode surface. But,
If the protic solvent is excessively added, gas generation due to a reduction reaction of water or a protic solvent other than water is likely to occur in the vicinity of the electrode during electrophoretic electrodeposition, depending on various conditions such as electrolysis voltage. It is conceivable that the uniformity of the resulting film tends to be adversely affected.

【0028】プロトン性溶媒としては水、あるいは炭素
数4以下の低級アルコール、例えば、メタノール、エタ
ノール、1−プロパノール、2−プロパノール、1−ブ
タノール、2−ブタノール、イソブチルアルコール、t
ert−ブチルアルコール等が好適に使用される。その
中でも水が特に好適に使用される。なお、連続生産時に
は水あるいは低級アルコールを補給して、プロトン性溶
媒の濃度の低下を補うことが望ましい。
As the protic solvent, water or a lower alcohol having 4 or less carbon atoms, for example, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, t
Ert-butyl alcohol and the like are preferably used. Among them, water is particularly preferably used. During continuous production, it is desirable to supplement water or lower alcohol to compensate for the decrease in the concentration of the protic solvent.

【0029】本発明の炭素材料の分散・懸濁方法として
は超音波照射、あるいは、攪拌等により十分に行うのが
好ましいが、特に限定はされない。第1の方法の電気泳
動電着の手法としては、定電圧による電着、定電流によ
る電着、パルスによる電着等をいずれも好適に用いるこ
とができる。
The method for dispersing and suspending the carbon material of the present invention is preferably carried out sufficiently by ultrasonic irradiation or stirring, but is not particularly limited. As a method of electrophoretic electrodeposition in the first method, any of electrodeposition using a constant voltage, electrodeposition using a constant current, electrodeposition using a pulse, and the like can be suitably used.

【0030】本発明の導電性基板は、特に限定されず、
公知の基板をいずれも使用することができる。さらに、
プラスチック、ガラスのような絶縁物の表面に金属や導
電性酸化物等がメッキあるいはコーティングされた基板
も、本発明の導電性基板に含まれる。また、基板の表面
状態、厚さ、大きさ、形状等は特に限定されない。本発
明の導電性基板の形状としては箔状、板状のものが好適
に使用される。さらには、発泡状、不織布状、メッシュ
状、フェルト状、エキスパンデッド状のような多孔質金
属基体も挙げられる。
The conductive substrate of the present invention is not particularly limited.
Any known substrate can be used. further,
The conductive substrate of the present invention also includes a substrate in which a metal or a conductive oxide is plated or coated on the surface of an insulator such as plastic or glass. The surface state, thickness, size, shape, and the like of the substrate are not particularly limited. The shape of the conductive substrate of the present invention is preferably a foil shape or a plate shape. Further, a porous metal substrate such as a foam, a nonwoven fabric, a mesh, a felt, and an expanded shape may also be used.

【0031】炭素材料の堆積量は上記の電解手法、電解
時間、炭素材料の粒子径、炭素材料の分散量、電解電圧
等により制御することが可能である。例えば、電解電圧
を高めに設定した方が堆積膜の膜厚は厚くなり易い。な
お、連続生産時には炭素材料を補給して濃度の低下を補
うことが望ましい。
The deposition amount of the carbon material can be controlled by the above-described electrolysis method, electrolysis time, particle diameter of the carbon material, dispersion amount of the carbon material, electrolysis voltage and the like. For example, when the electrolytic voltage is set higher, the thickness of the deposited film tends to be larger. During continuous production, it is desirable to supplement the carbon material to compensate for the decrease in concentration.

【0032】ヨウ素は、非プロトン性溶媒1Lに対し
て、1mg〜5g添加されていることが好ましい。ヨウ
素の添加量が1mgより少ないと炭素材料に吸着するプ
ロトンの発生が少なくなると考えられ、堆積量の減少に
影響を及ぼし易くなる。また、ヨウ素添加量が5gより
多くなると、非プロトン性溶媒の導電率が増加する傾向
が見られてくる。これは電気泳動電着時に電解電流の増
加をもたらすため、電着浴の発火の可能性が高まること
や電極反応により気泡が発生し、それにより電着の阻害
を引き起こすので、この場合でも堆積量が減少するもの
と考えられる。
It is preferable that 1 mg to 5 g of iodine is added to 1 L of the aprotic solvent. If the amount of iodine added is less than 1 mg, it is considered that the amount of protons adsorbed on the carbon material is reduced, and the amount of iodine is likely to be reduced. When the amount of iodine added is more than 5 g, the conductivity of the aprotic solvent tends to increase. This causes an increase in the electrolysis current during electrophoretic electrodeposition, which increases the possibility of ignition of the electrodeposition bath and generates bubbles due to the electrode reaction, thereby inhibiting electrodeposition. Is thought to decrease.

【0033】第2の炭素材料膜の作製方法は、非プロト
ン性溶媒に炭素材料を分散させた液を用いて、導電性基
板を正極、対向電極を負極として、両者の間に直流電界
を印加することにより、前記導電性基板の表面に炭素材
料を堆積させることを特徴としている。より具体的に
は、ヨウ素を必要とせず、非プロトン性溶媒中に炭素材
料を懸濁・分散させた状態にし、その分散溶液中に電極
を少なくとも2本浸漬させ、非水電解質二次電池の集電
体に用いる導電性基板を正極、すなわち作用極(アノー
ド)として設置し、一方に対向電極(アノード、正極)
として例えば白金を設け、直流を通電させると、炭素材
料が作用極に向かって移動し、作用極表面に炭素材料が
堆積し製膜することを特徴とする。
The second method for producing a carbon material film is to apply a DC electric field between the conductive substrate and the counter electrode using a liquid in which the carbon material is dispersed in an aprotic solvent. By doing so, a carbon material is deposited on the surface of the conductive substrate. More specifically, no iodine is required, and a carbon material is suspended and dispersed in an aprotic solvent, at least two electrodes are immersed in the dispersion solution, and a non-aqueous electrolyte secondary battery is prepared. A conductive substrate used as a current collector is installed as a positive electrode, that is, a working electrode (anode), and a counter electrode (anode, positive electrode) is provided on one side.
For example, when platinum is provided and a direct current is applied, the carbon material moves toward the working electrode, and the carbon material is deposited on the surface of the working electrode to form a film.

【0034】大部分の電気泳動電着は、被堆積粒子を分
散させる溶媒にヨウ素等の添加剤を加えている。しか
し、ヨウ素の添加が少ないと粒子に吸着するプロトンが
少なくなるので堆積量が増えない。逆に、ヨウ素の添加
量が多くなるとこれに伴い溶液の導電率が増加し、電気
泳動電着時に電解電流の増加をもたらし、電極反応によ
る気泡の発生等により堆積の阻害を引き起し、堆積量の
減少につながる等制御が困難である。さらに、電着浴か
ら、堆積膜を引き上げた際に添加剤等を洗浄する工程を
設けることもあるので、添加剤を加えない方が製造上よ
り好ましい。このため、鋭意検討の結果、ヨウ素等の添
加剤を必ずしも必要としない本発明に至ったものであ
る。
In most electrophoretic electrodepositions, an additive such as iodine is added to a solvent in which particles to be deposited are dispersed. However, when the addition of iodine is small, the amount of protons adsorbed on the particles decreases, so that the deposition amount does not increase. Conversely, as the amount of iodine added increases, the conductivity of the solution increases, which causes an increase in the electrolytic current during electrophoretic electrodeposition, causing the formation of bubbles due to the electrode reaction, etc., thereby causing the deposition to be hindered. It is difficult to control such as reducing the amount. Further, a step of washing the additive or the like when the deposited film is pulled up from the electrodeposition bath may be provided. Therefore, it is more preferable not to add the additive in terms of manufacturing. Therefore, as a result of diligent studies, the present invention has not necessarily required an additive such as iodine.

【0035】第2の方法の対向電極としては化学的、電
気化学的に安全な白金、グラファイト等が好適に用いら
れる。第2の方法の炭素材料の分散・懸濁方法としては
超音波照射、あるいは、攪拌等を十分に行うのが好まし
いが、特に限定はされない。第2の方法の電気泳動電着
の手法としては、定電圧電着、定電流による電着、パル
スによる電着等をいずれも好適に用いることができる。
As the counter electrode in the second method, chemically and electrochemically safe platinum, graphite and the like are preferably used. As the method of dispersing and suspending the carbon material in the second method, it is preferable to sufficiently perform ultrasonic irradiation, stirring, or the like, but there is no particular limitation. As the electrophoretic electrodeposition method of the second method, any of constant voltage electrodeposition, electrodeposition with a constant current, electrodeposition with a pulse, and the like can be suitably used.

【0036】本発明の導電性基板は、特に限定されず、
公知の基板をいずれも使用することができる。さらに、
プラスチック、ガラスのような絶縁物の表面に金属や導
電性酸化物等がメッキあるいはコーティングされた基板
も本発明の導電性基板に含まれる。また、基板の表面状
態、厚さ、大きさ、形状等は特に限定されない。本発明
の導電性基板の形状としては箔状、板状のものが好適に
使用される。さらには、発泡状、不織布状、メッシュ
状、フェルト状、エキスパンデッド状のような多孔質金
属基体も挙げられる。
The conductive substrate of the present invention is not particularly limited.
Any known substrate can be used. further,
The conductive substrate of the present invention also includes a substrate in which a metal, a conductive oxide, or the like is plated or coated on the surface of an insulator such as plastic or glass. The surface state, thickness, size, shape, and the like of the substrate are not particularly limited. The shape of the conductive substrate of the present invention is preferably a foil shape or a plate shape. Further, a porous metal substrate such as a foam, a nonwoven fabric, a mesh, a felt, and an expanded shape may also be used.

【0037】炭素材料の堆積量は上記の電解手法、電解
時間、炭素材料の粒子径、炭素材料の分散量、電解電圧
等により制御することが可能である。例えば、電着電圧
を高めに設定した方が堆積膜の膜厚は厚くなり易い。な
お、連続生産時には炭素材料を補給して濃度の低下を補
うことが望ましい。
The deposition amount of the carbon material can be controlled by the electrolysis method, the electrolysis time, the particle size of the carbon material, the dispersion amount of the carbon material, the electrolysis voltage and the like. For example, when the electrodeposition voltage is set higher, the thickness of the deposited film tends to be larger. During continuous production, it is desirable to supplement the carbon material to compensate for the decrease in concentration.

【0038】第2の方法に使用する非プロトン性溶媒
は、上述の非プロトン性溶媒をいずれも使用できるが、
その中でもアセトニトリルが最も好適に使用される。第
1及び第2の方法に使用する導電性基板を構成する材料
として、例えば、リチウムイオン二次電池の集電体とし
て使用することを考慮すると、リチウムと合金化しない
もの、すなわち、銅、ニッケル、ステンレス鋼、真鋳、
モリブデン及びタングステン等が好適に使用される。例
えば、アルミニウム、スズ、鉛等の金属はリチウムと固
溶体あるいは金属間化合物を形成する可能性がある。ゆ
えに、充電中に析出したりリチウムが上記金属に固溶す
ると体積が膨潤、さらには変形等を引き起こし、サイク
ル特性に悪影響を及ぼす等の問題点を生じる可能性があ
る。導電性基板の形状としては箔状、板状のものが好適
に使用される。さらには、発泡状、不織布状、メッシュ
状、フェルト状、エキスパンデッド状のような多孔質金
属基体も挙げられる。
As the aprotic solvent used in the second method, any of the above aprotic solvents can be used.
Of these, acetonitrile is most preferably used. As a material constituting the conductive substrate used in the first and second methods, for example, in consideration of use as a current collector of a lithium ion secondary battery, a material that does not alloy with lithium, that is, copper, nickel , Stainless steel, brass,
Molybdenum and tungsten are preferably used. For example, metals such as aluminum, tin, and lead can form solid solutions or intermetallic compounds with lithium. Therefore, if it precipitates during charging or lithium forms a solid solution with the above-mentioned metal, the volume may swell, further deform, or the like, which may cause problems such as adversely affecting cycle characteristics. The shape of the conductive substrate is preferably a foil or plate. Further, a porous metal substrate such as a foam, a nonwoven fabric, a mesh, a felt, and an expanded shape may also be used.

【0039】第1及び第2の方法に使用する炭素材料と
しては、例えば、リチウムイオン二次電池の負極材料と
して使用することを考慮すると、人造黒鉛、天然黒鉛、
高結晶性黒鉛の表面に低結晶性の炭素材料が付着した黒
鉛材料(以後表面非晶質黒鉛と記す)、メソカーボンマ
イクロビーズ、メソフェーズピッチ、等方性ピッチ、炭
素繊維、コークスからなる群より少なくとも1つ以上を
選ぶことができる。上記以外でも、ボロンあるいはリン
等が添加されている炭素材料等、公知のリチウムイオン
電池の負極材料も使用できる。
As the carbon material used in the first and second methods, for example, considering use as a negative electrode material of a lithium ion secondary battery, artificial graphite, natural graphite,
From the group consisting of graphite material with low-crystalline carbon material attached to the surface of highly crystalline graphite (hereinafter referred to as surface amorphous graphite), mesocarbon microbeads, mesophase pitch, isotropic pitch, carbon fiber, and coke At least one or more can be selected. In addition to the above, known negative electrode materials for lithium ion batteries, such as a carbon material to which boron or phosphorus is added, can also be used.

【0040】なお、本発明における表面非晶質黒鉛は、
高結晶性の黒鉛材料を芯材として、表面に気相法、固相
法等の手法により、該黒鉛材料の表面に結晶性の低い炭
素を付着させることによって得ることができる。芯材に
用いる高結晶性黒鉛は、粒子状(鱗片状乃至塊状、繊維
状、ウイスカー状、球状、破砕状等)の天然黒鉛、人造
黒鉛、あるいは、メソカーボンマイクロビーズ、メソフ
ェーズピッチ粉末、等方性ピッチ粉末等の黒鉛化品の1
種又は2種以上が使用できる。
The surface amorphous graphite in the present invention is:
It can be obtained by using a highly crystalline graphite material as a core material and attaching low-crystalline carbon to the surface of the graphite material by a method such as a vapor phase method or a solid phase method. The highly crystalline graphite used for the core material is natural graphite, artificial graphite, or mesocarbon microbeads, mesophase pitch powder, etc. in the form of particles (flaky to massive, fibrous, whisker-like, spherical, crushed, etc.). Of graphitized products such as conductive pitch powder
Species or two or more can be used.

【0041】本発明の炭素材料の粒径分布は0.1〜1
50μm程度であることが好ましい。炭素材料の粒径が
0.1μmよりも小さい場合には電池のセパレーターの
空孔を通して内部短絡を引き起こす危険性が高くなるの
に対し、150μmよりも大きい場合には電極の均一
性、活物質の充填密度の高い電極を作製する工程上での
ハンドリング性等が低下するのでいずれも好ましくな
い。
The particle size distribution of the carbon material of the present invention is 0.1 to 1
It is preferably about 50 μm. When the particle size of the carbon material is smaller than 0.1 μm, the risk of causing an internal short circuit through the pores of the battery separator increases, whereas when the particle size is larger than 150 μm, the uniformity of the electrode and the active material Any of these is not preferred because the handling properties and the like in the process of producing an electrode having a high packing density are reduced.

【0042】本発明の炭素材料膜は、電気泳動電着後、
非プロトン性の有機溶媒で洗浄し、乾燥させてから用い
ることが望ましい。洗浄用の非プロトン性の有機溶媒と
しては経済性あるいは取り扱い易さの点からアセトン、
アセトニトリルが特に好適に使用される。
After the electrophoretic electrodeposition, the carbon material film of the present invention
It is desirable to wash with an aprotic organic solvent and dry before use. As an aprotic organic solvent for washing, acetone,
Acetonitrile is particularly preferably used.

【0043】第1及び第2の方法で得られた炭素材料膜
は、正極、負極及び非水電解質からなる非水電解二次電
池の負極として使用することが好ましい。正極として
は、例えばリチウムを含有した酸化物を正極活物質とし
て含んでいてもよい。正極活物質として、LiCo
2、LiNiO2、LiMnO2、LiFeO2や、この
系列のLiA1-xTxO2(ここでAはFe、Co、N
i、Mnのいずれかであり、Tは遷移金属、4B族ある
いは5B族の金属を表す。0≦X≦1)、LiMn
24、及びLiMn2-z4(ここでTは遷移金属、
4B族、あるいは5B族の金属を表す。0≦Z≦2)、
LiVO2等が挙げられる。正極は、活物質に導電剤、
結着剤及び場合によっては、固体電解質等を混合して形
成できる。
The carbon material films obtained by the first and second methods are preferably used as a negative electrode of a non-aqueous electrolytic secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte. The positive electrode may contain, for example, an oxide containing lithium as a positive electrode active material. LiCo as a positive electrode active material
O 2, LiNiO 2, LiMnO 2 , LiFeO 2 and, LiA 1-x TxO 2 (wherein A is Fe of this series, Co, N
i is either M or Mn, and T represents a transition metal, a 4B group metal or a 5B group metal. 0 ≦ X ≦ 1), LiMn
2 O 4 , and LiMn 2-z T z O 4 (where T is a transition metal,
It represents a Group 4B or Group 5B metal. 0 ≦ Z ≦ 2),
LiVO 2 and the like. The positive electrode has a conductive agent as an active material,
It can be formed by mixing a binder and, in some cases, a solid electrolyte or the like.

【0044】導電剤としてはカーボンブラック(アセチ
レンブラック、ケッチェンブラック、サーマルブラッ
ク、チャンネルブラック)等の炭素類や、グラファイト
粉末、金属粉末等を用いることができるが、これに限定
されるものではない。結着剤としてはポリテトラフルオ
ロエチレン、ポリフッ化ビニリデン等のフッ素系ポリマ
ー、ポリエチレン、ポリプロピレン等のポリオレフィン
系ポリマー、合成ゴム類等を用いることができるがこれ
に限定されるものではない。
As the conductive agent, carbons such as carbon black (acetylene black, Ketjen black, thermal black, and channel black), graphite powder, metal powder and the like can be used, but are not limited thereto. . As the binder, fluorine-based polymers such as polytetrafluoroethylene and polyvinylidene fluoride, polyolefin-based polymers such as polyethylene and polypropylene, and synthetic rubbers can be used, but are not limited thereto.

【0045】混合比は、活物質100重量部に対して、
導電剤を1〜50重量部、結着剤を1〜30重量部とす
ることが好ましい。導電剤が1重量部より少ないと電極
の抵抗しいては分極等が大きくなり充放電容量が小さく
なるため実用的ではない。導電剤が50重量部より多い
(混合する導電剤の種類により重量部は変わる)と電極
内に含まれる活物質の割合が減るため正極としての放電
容量が小さくなるため好ましくない。結着剤は1重量部
より小さいと結着能力がなくなってしまい、結着剤が3
0重量部より大きいと導電剤の場合と同様に、電極内に
含まれる活物質量が減り、電極の抵抗あるいは分極等が
大きくなり放電容量が小さくなるため実用的ではない。
正極作製において結着性を上げるために各々の結着剤の
融点(Tm)前後の温度で熱処理を行うことが好まし
い。
The mixing ratio is based on 100 parts by weight of the active material.
It is preferable that the conductive agent is 1 to 50 parts by weight and the binder is 1 to 30 parts by weight. When the amount of the conductive agent is less than 1 part by weight, the resistance of the electrode increases the polarization and the like, and the charge / discharge capacity decreases, which is not practical. If the amount of the conductive agent is more than 50 parts by weight (the weight part changes depending on the type of the conductive agent to be mixed), the ratio of the active material contained in the electrode is reduced, and the discharge capacity as a positive electrode is undesirably reduced. If the amount of the binder is less than 1 part by weight, the binding ability is lost, and the amount of the binder is 3 parts by weight.
If the amount is larger than 0 parts by weight, as in the case of the conductive agent, the amount of the active material contained in the electrode decreases, the resistance or polarization of the electrode increases, and the discharge capacity decreases, which is not practical.
It is preferable to perform heat treatment at a temperature around the melting point (T m ) of each binder in order to improve the binding property in producing the positive electrode.

【0046】本発明の非水電解質(イオン導電体)とし
ては有機溶媒系電解液又は固体電解質を好適に用いるこ
とができる。有機溶媒系電解液の溶媒として、プロピレ
ンカーボネート、エチレンカーボネート、ブチレンカー
ボネート、ジエチルカーボネート、ジメチルカーボネー
ト、メチルエチルカーボネート、γ−ブチロラクトン等
のエステル類や、テトラヒドロフラン、2−メチルテト
ラヒドロフラン等の置換テトラヒドロフラン、ジオキソ
ラン、ジエチルエーテル、ジメトキシエタン、ジエトキ
シエタン、メトキシエトキシエタン等のエーテル類、ジ
メチルスルホキシド、スルホラン、メチルスルホラン、
アセトニトリル、ギ酸メチル、酢酸メチル等が挙げら
れ、これらの1種あるいは2種以上の混合溶媒として使
用することができる。
As the non-aqueous electrolyte (ionic conductor) of the present invention, an organic solvent-based electrolyte or a solid electrolyte can be suitably used. As a solvent for the organic solvent-based electrolyte, propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, esters such as γ-butyrolactone, tetrahydrofuran, substituted tetrahydrofuran such as 2-methyltetrahydrofuran, dioxolane, Ethers such as diethyl ether, dimethoxyethane, diethoxyethane, methoxyethoxyethane, dimethylsulfoxide, sulfolane, methylsulfolane,
Acetonitrile, methyl formate, methyl acetate and the like can be mentioned, and these can be used as one kind or a mixed solvent of two or more kinds.

【0047】また、支持電解質塩としては、過塩素酸リ
チウム、4フッ化ホウ酸リチウム、6フッ化リン酸リチ
ウム、6フッ化砒素リチウム、トリフルオロメタンスル
ホン酸リチウム、ハロゲン化リチウム、塩化アルミン酸
リチウム等のリチウム塩が挙げられ、これらの1種ある
いは2種以上を混合して使用できる。
As the supporting electrolyte salt, lithium perchlorate, lithium tetrafluoroborate, lithium hexafluorophosphate, lithium arsenide hexafluoride, lithium trifluoromethanesulfonate, lithium halide, lithium chloride aluminate And the like, and these can be used alone or in combination of two or more.

【0048】前記で選ばれた有機溶媒に支持電解質塩を
溶解することによって有機溶媒系電解液を調製すること
ができる。なお、有機溶媒系電解液を調製する際に使用
する有機溶媒、支持電解塩は上記に掲げたものに限定さ
れず、公知のものをいずれも使用することができる。
An organic solvent-based electrolyte can be prepared by dissolving the supporting electrolyte salt in the organic solvent selected above. The organic solvent and the supporting electrolyte used when preparing the organic solvent-based electrolyte are not limited to those listed above, and any known one can be used.

【0049】さらに、固体電解質の形成方法としては、
上記有機溶媒系電解液用と同じ有機溶媒にモノマー等を
混合し、架橋反応を含む重合反応をさせて固体化するこ
とができる。これらモノマーとしてはエチレンオキシ
ド、プロピレンオキシド、グリシジルメタクリレート等
が挙げられる。これらモノマーは1種又は2種類以上を
組み合わせて使用してもよい。モノマーの溶媒に対する
量は、少なすぎると固体化が難しく、多すぎるとリチウ
ムイオン伝導性が阻害されるので、体積分率で1から5
0%が好ましい。
Further, as a method for forming a solid electrolyte,
A monomer or the like can be mixed with the same organic solvent as used for the organic solvent-based electrolyte solution, and a polymerization reaction including a crosslinking reaction can be performed to solidify the mixture. These monomers include ethylene oxide, propylene oxide, glycidyl methacrylate and the like. These monomers may be used alone or in combination of two or more. If the amount of the monomer with respect to the solvent is too small, solidification is difficult, and if the amount is too large, lithium ion conductivity is impaired.
0% is preferred.

【0050】また、架橋反応あるいは重合反応を促進さ
せるための開始剤を添加してもよい。重合開始剤として
はアゾイソブチロニトリルやベンゾイルパアオキサイド
等が挙げられる。これら開始剤は1種又は2種類以上を
組み合わせて使用してもよい。あるいはポリフッ化ビニ
リデン、ヘキサフルオロプロピレン、ポリメタクリル酸
メチル、ポリ塩化ビニル等のポリマーを1種又は2種類
以上混合し、テトラヒドロフラン、N−メチル−2−ピ
ロリドン等の溶剤に溶解させてキャストし乾燥等により
溶剤を除去したものに、前記の溶媒を含浸させることに
よっても作成できる。あるいは、前記有機溶媒にビニル
モノマーとしてアクリロニトリル、メチルアクリレー
ト、あるいはビニルアセタート等を混合し加熱させるこ
とによって重合させて固体化してもよい。
Further, an initiator for accelerating a crosslinking reaction or a polymerization reaction may be added. Examples of the polymerization initiator include azoisobutyronitrile and benzoyl peroxide. These initiators may be used alone or in combination of two or more. Alternatively, one or two or more polymers such as polyvinylidene fluoride, hexafluoropropylene, polymethyl methacrylate, and polyvinyl chloride are mixed, dissolved in a solvent such as tetrahydrofuran, N-methyl-2-pyrrolidone, cast and dried. It can also be prepared by impregnating the solvent from which the solvent has been removed with the above solvent. Alternatively, acrylonitrile, methyl acrylate, vinyl acetate, or the like as a vinyl monomer may be mixed with the organic solvent and heated to be polymerized and solidified.

【0051】正極側と負極側の間に配する第3の電解質
層は必要に応じて多孔質ポリエチレン、多孔質ポリプロ
ピレン、あるいは不織布等の支持体にしみこませたもの
を使用してもよい。この場合、液体状態の電解質をこれ
らの支持体に含浸させてから電解質中のビニルモノマー
を光あるいは熱で重合させる、あるいは溶剤を除去する
ことによって作成できる。その他、無機固体電解質とし
ては、例えば、リチウムの窒化物、ハロゲン化物、酸素
酸塩等が挙げられ、より具体的には、Li3N、Li
I、LiSiO4−LiI−LiOH、Li3PO4−L
4SiO4等がある。上記以外に溶融塩等も有機溶媒系
電解液の代わりに適用することができる。
As the third electrolyte layer disposed between the positive electrode side and the negative electrode side, a material soaked in a support such as porous polyethylene, porous polypropylene, or non-woven fabric may be used as necessary. In this case, it can be prepared by impregnating the support with a liquid electrolyte and then polymerizing the vinyl monomer in the electrolyte with light or heat, or removing the solvent. In addition, examples of the inorganic solid electrolyte include lithium nitride, halide, oxyacid salt, and the like. More specifically, Li 3 N, Li
I, LiSiO 4 -LiI-LiOH, Li 3 PO 4 -L
i 4 SiO 4 and the like. In addition to the above, a molten salt or the like can be applied instead of the organic solvent-based electrolyte.

【0052】電解液を保持するためのセパレーターとし
ては、電気絶縁性の合成樹脂繊維、ガラス繊維、天然繊
維等の不織布あるいは織布、アルミナ等の粉末の成形体
等が挙げられる。中でもポリ塩化ビニリデン、ポリエチ
レン、ポリプロピレン等の不織布が品質の安定性等の点
から好ましい。これら合成樹脂の不織布では電池が異常
発熱した場合に、セパレーターが熱により溶解し、正負
極間を遮断する機能を付加したものもあり、安全性の観
点からこれらも好適に使用することができる。セパレー
ターの厚みは特に限定はないが、必要量の電解液を保持
することが可能で、かつ正極と負極との短絡を防ぐ厚さ
があればよく、通常0.01〜1mm程度のものを用い
ることができ、好ましくは0.02〜0.05mm程度で
ある。上記第1及び第2の方法により得られる炭素材料
膜は、リチウムイオン電池の他に、公知の電池のいずれ
にも使用することができる。
Examples of the separator for holding the electrolytic solution include non-woven fabrics or woven fabrics of synthetic resin fibers, glass fibers, and natural fibers having electrical insulation properties, and molded articles of powder such as alumina. Among them, nonwoven fabrics such as polyvinylidene chloride, polyethylene, and polypropylene are preferable from the viewpoint of quality stability and the like. Some of these synthetic resin non-woven fabrics have a function of isolating the positive and negative electrodes when the battery is abnormally heated by the heat of the separator, and these can be suitably used from the viewpoint of safety. The thickness of the separator is not particularly limited, but it is sufficient that the separator can hold a required amount of electrolyte solution and has a thickness that prevents a short circuit between the positive electrode and the negative electrode, and usually a thickness of about 0.01 to 1 mm is used. And it is preferably about 0.02 to 0.05 mm. The carbon material film obtained by the first and second methods can be used for any known battery in addition to the lithium ion battery.

【0053】[0053]

【実施例】本発明の実施例の概要について説明する。ま
ず、電気泳動電着に用いる装置の概略を説明する。導電
性基板を負極とする場合を図1〜3に示す。ヨウ素を少
量添加した非プロトン性溶媒1中に炭素材料2を投入し
て、超音波照射下で十分攪拌して、懸濁させる。その液
中に非水電解質二次電池の集電体に用いる導電性基板を
作用極(カソード)31として、一方に対向電極(アノ
ード)41を配置する。直流電源5を用いて、両極間に
直流を通電させて、作用極31の表面に炭素材料2を堆
積させる。図1の対向電極の形状は板状になっている
が、その形状は特に限定されない。例えば、図2に示す
ように、作用極31とスパイラル状電極(アノード)4
2を設置したり、図3に示すように、作用極31に平行
して板状電極(アノード)43を設置したりすることが
可能である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be outlined. First, an outline of an apparatus used for electrophoretic electrodeposition will be described. FIGS. 1 to 3 show a case where the conductive substrate is used as a negative electrode. The carbon material 2 is put into the aprotic solvent 1 to which a small amount of iodine has been added, and the suspension is sufficiently stirred and stirred under ultrasonic irradiation. In the liquid, a conductive substrate used as a current collector of a non-aqueous electrolyte secondary battery is used as a working electrode (cathode) 31, and a counter electrode (anode) 41 is arranged on one side. Using the DC power supply 5, a DC current is applied between the two electrodes to deposit the carbon material 2 on the surface of the working electrode 31. Although the shape of the counter electrode in FIG. 1 is plate-shaped, the shape is not particularly limited. For example, as shown in FIG. 2, the working electrode 31 and the spiral electrode (anode) 4
2 or a plate-like electrode (anode) 43 in parallel with the working electrode 31 as shown in FIG.

【0054】次に、導電性基板を正極とする場合を図4
〜6に示す。非プロトン性溶媒1中に炭素材料2を投入
して、超音波照射下で十分攪拌して、懸濁させる。その
溶液中に非水電解質二次電池の集電体に用いる導電性基
板を作用極(アノード)32として、一方に対向電極
(カソード)44を配置する。直流電源5を用いて両極
間に直流を通電させて、作用極32の表面に炭素材料2
を堆積させる。図4の対向電極の形状は板状になってい
るが、その形状は特に限定されない。例えば、図5に示
すように、作用極31とスパイラル状電極(カソード)
45を設置したり、図6に示すように、作用極32に平
行して板状電極(カソード)46を設置したりすること
が可能である。
Next, the case where the conductive substrate is used as the positive electrode is shown in FIG.
To # 6. The carbon material 2 is put into the aprotic solvent 1 and sufficiently stirred under ultrasonic irradiation to be suspended. In the solution, a conductive substrate used as a current collector of a non-aqueous electrolyte secondary battery is used as a working electrode (anode) 32, and a counter electrode (cathode) 44 is arranged on one side. A direct current is applied between the two electrodes using a direct current power source 5, and the carbon material 2 is applied to the surface of the working electrode 32.
Is deposited. Although the shape of the counter electrode in FIG. 4 is plate-shaped, the shape is not particularly limited. For example, as shown in FIG. 5, a working electrode 31 and a spiral electrode (cathode)
45, or a plate-shaped electrode (cathode) 46 can be provided in parallel with the working electrode 32 as shown in FIG.

【0055】電気泳動電着後、作用極31あるいは32
を取り出し、溶剤等で洗浄し、これを40〜100℃で
仮乾燥する。その後、150℃程度で熱処理をし、圧縮
成形する。圧縮成形にはローラープレス機が通常用いら
れ、これらプレス機を適用する場合のプレス面の材質、
回転方法、温度、雰囲気等は特に限定しない。その後、
電極の無電着部にリードを溶接し、水分除去のために1
50℃程度で真空乾燥したものを負極として用いる。乾
燥、脱水方法としては、一般的な方法を利用することが
できる。例えば、熱風、真空、遠赤外線、電子線及び低
湿風等を単独あるいは組み合わせて用いる方法がある。
After the electrophoretic electrodeposition, the working electrode 31 or 32
Is taken out, washed with a solvent or the like, and temporarily dried at 40 to 100 ° C. Thereafter, heat treatment is performed at about 150 ° C., and compression molding is performed. Roller press machines are usually used for compression molding, and when these press machines are used, the material of the press surface,
The rotation method, temperature, atmosphere, and the like are not particularly limited. afterwards,
Weld the lead to the electrodeposited part of the electrode, and remove
A material dried in vacuum at about 50 ° C. is used as a negative electrode. As the drying and dehydrating methods, general methods can be used. For example, there is a method using hot air, vacuum, far-infrared rays, electron beam, low-humidity air, etc., alone or in combination.

【0056】一方、結着剤を用いる一般的な負極の作製
方法を以下に記載する。結着剤を乳鉢中で溶剤に溶かし
て、負極活物質を分散させる。分散処理には混練機、ボ
ールミル、ペイントシェイカー、ダイナミル等が用いら
れ、負極活物質、結着剤が均一に分散するようにペース
ト状に調製する。このペーストを集電体の金属箔に塗布
し、これを40〜100℃仮乾燥する。その後、150
℃程度で熱処理をし、圧縮成形する。圧縮成形にはロー
ラープレス機が通常用いられ、これらプレス機を適用す
る場合のプレス面の材質、回転方法、温度、雰囲気等は
特に限定しない。その後、電極の無電着部にリードを溶
接し、水分除去のために150℃程度で真空乾燥したも
のを負極として用いる。
On the other hand, a general method for producing a negative electrode using a binder will be described below. The binder is dissolved in a solvent in a mortar to disperse the negative electrode active material. For the dispersion treatment, a kneader, a ball mill, a paint shaker, a dynamill or the like is used, and the paste is prepared so that the negative electrode active material and the binder are uniformly dispersed. This paste is applied to a metal foil of a current collector, and this is temporarily dried at 40 to 100 ° C. Then 150
Heat treatment at about ° C and compression molding. Roller presses are usually used for compression molding, and when these presses are applied, the material of the press surface, the rotation method, the temperature, the atmosphere, and the like are not particularly limited. Thereafter, a lead is welded to the electrodeposited portion of the electrode, and vacuum-dried at about 150 ° C. to remove moisture is used as a negative electrode.

【0057】電気化学的特性の評価は3電極式セルを適
用し、上記作製方法で作製した負極を試験極に、対向電
極及び参照極に金属リチウムを用いる。セルの構成とし
ては対向電極の表面積を試験極のそれに対して十分に大
きくして、試験極の電位にて規制されるように設定す
る。電解液にはエチレンカーボネート(以後ECと記
す)を主体とした混合溶媒が用いられるが、特に限定は
しない。この混合溶媒に0.5〜3mol/dm3のリ
チウム塩を溶解したものを用いる。充放電作動試験は定
電流充放電にて行い、充電終止電位を0〜0.01Vv
s.Li/Li+、放電終了電位を2.0〜3.0Vv
s.Li/Li+とする。
For evaluation of electrochemical characteristics, a three-electrode cell was applied, and the negative electrode prepared by the above-described method was used as a test electrode, and metallic lithium was used as a counter electrode and a reference electrode. The cell is configured so that the surface area of the counter electrode is sufficiently larger than that of the test electrode and is regulated by the potential of the test electrode. As the electrolyte, a mixed solvent mainly composed of ethylene carbonate (hereinafter referred to as EC) is used, but is not particularly limited. A solution in which 0.5 to 3 mol / dm 3 of a lithium salt is dissolved in this mixed solvent is used. The charge / discharge operation test is performed by constant current charge / discharge, and the charge termination potential is 0 to 0.01 Vv
s. Li / Li + , discharge end potential of 2.0 to 3.0 Vv
s. Li / Li + .

【0058】本発明の負極を用いた非水二次電池の特性
評価は、円筒形、角形、コイン形、ボタン形、シート
形、ペーパー形、カード形等、種々の形状に適用でき
る。例えば、円筒形や角形電池では、主にシート電極を
缶に挿入し、缶とシート電極を電気的に接続する。電解
液を注入し、絶縁パッキンを介して封口板を封口、ある
いはハーメチックシールにより封口板と缶を絶縁して封
口し電池を作製する。このとき、安全素子を備え付けた
安全弁を封口板として用いることができる。安全素子に
は、例えば、過電流防止素子として、ヒューズ、バイメ
タル、PTC素子等がある。また、安全弁の他に電池缶
の内圧上昇の対策として、ガスケットに亀裂を入れる方
法、封口板に亀裂を入れる方法、電池缶に切れ込みを入
れる方法等を用いる。また、過充電や過放電対策を組み
込んだ外部回路を用いてもよい。
The characteristic evaluation of the non-aqueous secondary battery using the negative electrode of the present invention can be applied to various shapes such as a cylindrical shape, a square shape, a coin shape, a button shape, a sheet shape, a paper shape, and a card shape. For example, in a cylindrical or prismatic battery, a sheet electrode is mainly inserted into a can, and the can and the sheet electrode are electrically connected. An electrolyte is injected and the sealing plate is sealed via an insulating packing, or the sealing plate and the can are insulated and hermetically sealed by hermetic sealing to produce a battery. At this time, a safety valve provided with a safety element can be used as a sealing plate. Examples of the safety element include a fuse, a bimetal, a PTC element, and the like as an overcurrent prevention element. In addition to the safety valve, as a countermeasure against a rise in the internal pressure of the battery can, a method of making a crack in the gasket, a method of making a crack in the sealing plate, a method of making a cut in the battery can, and the like are used. Further, an external circuit incorporating measures for overcharging and overdischarging may be used.

【0059】また、コイン形やボタン形電池の場合は、
正極や負極はペレット状に形成し、これを缶中に入れ、
絶縁パッキンを介して蓋をかしめる方法が一般的であ
る。電解液にはECを主体とした混合溶媒を用いるが、
特に限定はしない。この混合溶媒に0.5〜3.0mo
l/dm3のリチウム塩を溶解したものを用いる。セパ
レーターには合成樹脂系の不織布を用いた。充放電作動
試験は定電流で行い、充電終止電圧を2.7〜2.9
V、放電終止電圧を4.1〜4.3Vとする。次いで、
作製した電池についてサイクル特性を調べる。なお、電
極及び電池評価はすべて不活性ガス雰囲気下のグローブ
ボックス中にて行われる。不活性ガスとしては通常アル
ゴン、窒素等が好適に用いられる。以下、本発明につい
て実施例及び比較例を示して、その効果を具体的に説明
するが、本発明は下記の実施例に制限されるものではな
い。
In the case of a coin-type or button-type battery,
The positive and negative electrodes are formed into pellets, which are put into a can,
A method of caulking the lid via an insulating packing is common. As the electrolyte, a mixed solvent mainly composed of EC is used.
There is no particular limitation. 0.5-3.0 mo in this mixed solvent
A solution in which 1 / dm 3 of a lithium salt is dissolved is used. As the separator, a synthetic resin nonwoven fabric was used. The charge / discharge operation test was performed at a constant current, and the charge end voltage was set to 2.7 to 2.9.
V, and the discharge end voltage is 4.1 to 4.3 V. Then
The cycle characteristics of the fabricated battery are examined. In addition, all the electrode and battery evaluations are performed in a glove box under an inert gas atmosphere. In general, argon, nitrogen, and the like are preferably used as the inert gas. EXAMPLES Hereinafter, the effects of the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

【0060】実施例 本発明を以下の実施例に基づき、より詳細に説明する。
実施例は本発明の炭素材料膜の方法で、比較例は結着剤
を用いる従来の負極の作製方法である。
EXAMPLES The present invention will be described in more detail with reference to the following examples.
The example is a method of forming a carbon material film of the present invention, and the comparative example is a method of manufacturing a conventional negative electrode using a binder.

【0061】実施例1 特級アセトン(キシダ化学製)100mLにヨウ素2
0.0mg(以後0.20g/Lと記す)を溶解させ
た。これに人造黒鉛(商品名:KS−25;ロンザ社
製)1.0gを投入して、超音波照射器を用いて10分
間懸濁させた。この操作により、人造黒鉛粒子はアセト
ン浴中で十分に分散されるのでこれを電着浴に用いた。
作用極31として非水電解質二次電池の集電体に用いる
銅箔(厚さ20μm、電極サイズ3.5cm×3.0c
m)を、一方に対向電極41として白金板を配置し、図
1に示すように設定した。電着浴の超音波を止めた後、
直流電源5を用いて、1000Vを5分間印加し、電源
をOFFした。銅箔を電着浴から引き出すと、銅箔上に
人造黒鉛粒子による炭素材料膜が形成されていた。
Example 1 Iodine 2 was added to 100 mL of special grade acetone (manufactured by Kishida Chemical).
0.0 mg (hereinafter referred to as 0.20 g / L) was dissolved. 1.0 g of artificial graphite (trade name: KS-25; manufactured by Lonza) was added thereto and suspended for 10 minutes using an ultrasonic irradiator. By this operation, the artificial graphite particles were sufficiently dispersed in the acetone bath, and this was used for the electrodeposition bath.
Copper foil (thickness: 20 μm, electrode size: 3.5 cm × 3.0 c) used as a working electrode 31 for a current collector of a nonaqueous electrolyte secondary battery
m), a platinum plate was arranged on one side as the counter electrode 41, and was set as shown in FIG. After stopping the ultrasonic of the electrodeposition bath,
Using a DC power supply 5, 1000 V was applied for 5 minutes to turn off the power. When the copper foil was pulled out from the electrodeposition bath, a carbon material film of artificial graphite particles was formed on the copper foil.

【0062】その後、アセトンを用いて洗浄を行い、こ
れを50〜70℃で仮乾燥した。リードの溶接部分を作
製するために、炭素材料膜の一部(3.0×0.5c
m)を除去し、炭素材料の堆積量(堆積面積:3.0c
m×3.0cm)を測定した。その後、約150℃で1
2時間熱処理をし、圧縮成形した。圧縮成形にはローラ
ープレス機を用いた。次に、無堆積部分にニッケル箔
(50μm)のリードを溶接した。その後、水分除去の
ために約150℃にて12時間真空乾燥したものを負極
として用いた。
Thereafter, washing was performed using acetone, and this was preliminarily dried at 50 to 70 ° C. A part (3.0 × 0.5 c
m) is removed and the carbon material is deposited (deposition area: 3.0 c).
mx 3.0 cm). Then, at about 150 ° C, 1
Heat treatment was performed for 2 hours and compression molding was performed. A roller press was used for compression molding. Next, a lead of nickel foil (50 μm) was welded to the non-deposited portion. After that, what was vacuum-dried at about 150 ° C. for 12 hours to remove water was used as a negative electrode.

【0063】実施例2 非プロトン性溶媒に特級アセチルアセトン(キシダ化学
製)100mL、ヨウ素添加量2.5g/L、炭素材料
として人造黒鉛(商品名:KS−15;ロンザ社製)を
用いること以外は実施例1と同様にして炭素材料膜を作
製した。炭素材料膜の一部(3.0×0.5cm)を除
去し、炭素材料の堆積量(堆積面積:3.0cm×3.
0cm)を測定した。
Example 2 Except that 100 mL of special grade acetylacetone (manufactured by Kishida Chemical), 2.5 g / L of iodine was used as an aprotic solvent, and artificial graphite (trade name: KS-15; manufactured by Lonza) was used as a carbon material. Produced a carbon material film in the same manner as in Example 1. A part (3.0 × 0.5 cm) of the carbon material film is removed, and the amount of carbon material deposited (deposition area: 3.0 cm × 3.0 cm).
0 cm).

【0064】実施例3 ヨウ素添加量5.0g/L、炭素材料として天然黒鉛、
導電性基板としてニッケル箔を用いること以外は実施例
1と同様にして炭素材料膜を作製した。リードの溶接部
分を作製するために、炭素材料膜の一部(3.0×0.
5cm)を除去し、炭素材料の堆積量(堆積面積:3.
0cm×3.0cm)を測定した。その後、約150℃
で12時間熱処理をし、圧縮成形した。圧縮成形にはロ
ーラープレス機を用いた。次に、無堆積部分にニッケル
箔(50μm)のリードを溶接した。その後、水分除去
のために約150℃にて12時間真空乾燥したものを負
極として用いた。
Example 3 The amount of iodine added was 5.0 g / L, and natural graphite was used as a carbon material.
A carbon material film was produced in the same manner as in Example 1 except that a nickel foil was used as the conductive substrate. In order to form a welded part of the lead, a part (3.0 × 0.
5 cm), and the amount of carbon material deposited (deposition area: 3.
(0 cm × 3.0 cm). Then about 150 ° C
For 12 hours and compression molded. A roller press was used for compression molding. Next, a lead of nickel foil (50 μm) was welded to the non-deposited portion. After that, what was vacuum-dried at about 150 ° C. for 12 hours to remove water was used as a negative electrode.

【0065】実施例4 ヨウ素添加量4.0g/L、炭素材料として人造黒鉛
(商品名:KS−6;ロンザ社製)、導電性基板として
ステンレス鋼を用いること以外は実施例1と同様にして
炭素材料膜を作製した。炭素材料膜の一部(3.0×
0.5cm)を除去し、炭素材料の堆積量(堆積面積:
3.0cm×3.0cm)を測定した。
Example 4 The procedure of Example 1 was repeated except that the amount of iodine added was 4.0 g / L, artificial graphite (trade name: KS-6, manufactured by Lonza) as a carbon material, and stainless steel as a conductive substrate. Thus, a carbon material film was produced. Part of the carbon material film (3.0 ×
0.5 cm) and the amount of carbon material deposited (deposition area:
(3.0 cm × 3.0 cm) was measured.

【0066】実施例5 ヨウ素添加量3.0g/L、炭素材料として天然黒鉛、
導電性基板として真鋳を用いること以外は実施例1と同
様にして炭素材料膜を作製した。炭素材料膜の一部
(3.0×0.5cm)を除去し、炭素材料の堆積量
(堆積面積:3.0cm×3.0cm)を測定した。
Example 5 Iodine was added in an amount of 3.0 g / L, and natural graphite was used as a carbon material.
A carbon material film was produced in the same manner as in Example 1 except that brass casting was used as the conductive substrate. A part (3.0 × 0.5 cm) of the carbon material film was removed, and the deposition amount of the carbon material (deposition area: 3.0 cm × 3.0 cm) was measured.

【0067】実施例6 ヨウ素添加量2.0g/L、炭素材料として人造黒鉛
(商品名:KS−25;ロンザ社製)、導電性基板とし
てモリブデンを用いること以外は実施例1と同様にして
炭素材料膜を作製した。炭素材料膜の一部(3.0×
0.5cm)を除去し、炭素材料の堆積量(堆積面積:
3.0cm×3.0cm)を測定した。
Example 6 The same procedure as in Example 1 was carried out except that the amount of iodine added was 2.0 g / L, artificial graphite (trade name: KS-25; manufactured by Lonza) as a carbon material, and molybdenum as a conductive substrate. A carbon material film was produced. Part of the carbon material film (3.0 ×
0.5 cm) and the amount of carbon material deposited (deposition area:
(3.0 cm × 3.0 cm) was measured.

【0068】実施例7 ヨウ素添加量1.0g/L、人造黒鉛(商品名:KS−
25;ロンザ社製)、導電性基板としてモリブデンを用
いること以外は実施例1と同様にして炭素材料膜を作製
した。炭素材料膜の一部(3.0×0.5cm)を除去
し、炭素材料の堆積量(堆積面積:3.0cm×3.0
cm)を測定した。
Example 7 Artificial graphite (trade name: KS-
25; manufactured by Lonza), and a carbon material film was produced in the same manner as in Example 1 except that molybdenum was used as the conductive substrate. A part (3.0 × 0.5 cm) of the carbon material film is removed, and the amount of carbon material deposited (deposition area: 3.0 cm × 3.0)
cm).

【0069】実施例8 ヨウ素添加量0.5g/L、炭素材料として高結晶性黒
鉛の表面に低結晶性の炭素材料が付着した黒鉛材料(以
後、表面非晶質黒鉛と記す)(粒径12μm、d002
0.336nm、R値=0.35)を用いること以外は
実施例1と同様にして炭素材料膜を作製した。炭素材料
の一部(3.0×0.5cm)を除去し、炭素材料の堆
積量(堆積面積:3.0cm×3.0cm)を測定し
た。
Example 8 A graphite material in which the amount of iodine was 0.5 g / L and a low-crystalline carbon material was adhered to the surface of a highly crystalline graphite as a carbon material (hereinafter referred to as surface amorphous graphite) 12 μm, d 002 =
A carbon material film was produced in the same manner as in Example 1 except that 0.336 nm and an R value of 0.35) were used. A part (3.0 × 0.5 cm) of the carbon material was removed, and the amount of the carbon material deposited (deposition area: 3.0 cm × 3.0 cm) was measured.

【0070】なお、X線広角回折法による平均面間隔
(d002)及び結晶子の大きさ(Lc、La)を測定す
る方法としては、公知の方法、例えば“炭素材料実験技
術1p.55〜63 炭素材料学会編(科学技術社)”
や特開昭61−111907号公報に記載されている方
法を適用した。結晶子の大きさを求める形状因子K(=
Lc・β・cosθ/λ;β:半価幅、θ:d002の角
度、λ:X線の波長)は0.9を用いた。また、粒径は
レーザー回折式粒度分布計(島津社製SALD110
0)を用いて測定を行い、粒度分布においてピークをも
つ粒径として求めた。
As a method for measuring the average interplanar spacing (d 002 ) and the crystallite size (Lc, La) by the X-ray wide-angle diffraction method, a known method, for example, “Carbon Material Experiment Technique 1p. 63 Carbon Materials Society of Japan (Science and Technology) "
And the method described in JP-A-61-111907. The form factor K (=
Lc · β · cos θ / λ; β: half width, θ: angle of d 002 , λ: wavelength of X-ray) used 0.9. The particle size was measured using a laser diffraction particle size distribution analyzer (SALD110 manufactured by Shimadzu Corporation).
The measurement was carried out using 0) to obtain a particle size having a peak in the particle size distribution.

【0071】実施例9 ヨウ素添加量2.0g/L、炭素材料としてメソカーボ
ンマイクロビーズ(以後、MCMBと記す)、導電性基
板としてニッケル箔を用いること以外は実施例1と同様
にして炭素材料膜を作製した。リードの溶接部分を作製
するために、炭素材料膜の一部(3.0×0.5cm)
を除去し、炭素材料の堆積量(堆積面積:3.0cm×
3.0cm)を測定した。その後、約150℃で12時
間熱処理をし、圧縮成形した。次に、無堆積部分にニッ
ケル箔(50μm)のリードを溶接した。その後、水分
除去のために約150℃にて12時間真空乾燥したもの
を負極として用いた。
Example 9 A carbon material was prepared in the same manner as in Example 1 except that 2.0 g / L of iodine was added, mesocarbon microbeads (hereinafter referred to as MCMB) as a carbon material, and nickel foil as a conductive substrate. A film was prepared. Part of the carbon material film (3.0 x 0.5 cm) to make the welded part of the lead
Is removed, and the amount of carbon material deposited (deposition area: 3.0 cm ×
3.0 cm). Thereafter, heat treatment was performed at about 150 ° C. for 12 hours, and compression molding was performed. Next, a lead of nickel foil (50 μm) was welded to the non-deposited portion. After that, what was vacuum-dried at about 150 ° C. for 12 hours to remove water was used as a negative electrode.

【0072】実施例10 非プロトン性溶媒に特級アセチルアセトン(キシダ化学
製)100mL、ヨウ素添加量0.25g/L、炭素材
料としてメソフェーズピッチ、導電性基板としてステン
レス鋼を用いること以外は実施例1と同様にして炭素材
料膜を作製した。炭素材料膜の一部(3.0×0.5c
m)を除去し、炭素材料の堆積量(堆積面積:3.0c
m×3.0cm)を測定した。
Example 10 Example 1 was the same as Example 1 except that 100 mL of special grade acetylacetone (manufactured by Kishida Chemical) was used as the aprotic solvent, the amount of iodine added was 0.25 g / L, mesophase pitch was used as the carbon material, and stainless steel was used as the conductive substrate. Similarly, a carbon material film was produced. Part of the carbon material film (3.0 × 0.5c)
m) is removed and the carbon material is deposited (deposition area: 3.0 c).
mx 3.0 cm).

【0073】実施例11 ヨウ素添加量0.15g/L、炭素原料として等方性ピ
ッチ、導電性基板として真鋳を用いること以外は実施例
1と同様にして炭素材料膜を作製した。炭素材料膜の一
部(3.0×0.5cm)を除去し、炭素材料の堆積量
(堆積面積:3.0cm×3.0cm)を測定した。
Example 11 A carbon material film was produced in the same manner as in Example 1, except that the amount of iodine added was 0.15 g / L, the carbon material was an isotropic pitch, and the conductive substrate was brass. A part (3.0 × 0.5 cm) of the carbon material film was removed, and the deposition amount of the carbon material (deposition area: 3.0 cm × 3.0 cm) was measured.

【0074】実施例12 ヨウ素添加量0.10g/L、炭素原料としてコーク
ス、導電性基板としてモリブデンを用いること以外は実
施例1と同様にして炭素材料膜を作製した。炭素材料膜
の一部(3.0×0.5cm)を除去し、炭素材料の堆
積量(堆積面積:3.0cm×3.0cm)を測定し
た。
Example 12 A carbon material film was produced in the same manner as in Example 1 except that the amount of iodine added was 0.10 g / L, coke was used as a carbon raw material, and molybdenum was used as a conductive substrate. A part (3.0 × 0.5 cm) of the carbon material film was removed, and the deposition amount of the carbon material (deposition area: 3.0 cm × 3.0 cm) was measured.

【0075】実施例13 ヨウ素添加量9.5g/L、炭素原料として人造黒鉛
(商品名:KS−15;ロンザ社製)を用いること以外
は実施例1と同様にして炭素材料膜を作製した。炭素材
料膜の一部(3.0×0.5cm)を除去し、炭素材料
の堆積量(堆積面積:3.0cm×3.0cm)を測定
した。
Example 13 A carbon material film was produced in the same manner as in Example 1 except that the amount of iodine added was 9.5 g / L, and artificial graphite (trade name: KS-15; manufactured by Lonza) was used as a carbon raw material. . A part (3.0 × 0.5 cm) of the carbon material film was removed, and the deposition amount of the carbon material (deposition area: 3.0 cm × 3.0 cm) was measured.

【0076】実施例14 ヨウ素添加量0g/L、炭素原料として人造黒鉛(商品
名:KS−25;ロンザ社製)、導電性基板としてニッ
ケルを用いること以外は実施例1と同様にして炭素材料
膜を作製した。炭素材料膜の一部(3.0×0.5c
m)を除去し、炭素材料の堆積量(堆積面積:3.0c
m×3.0cm)を測定した。
Example 14 A carbon material was prepared in the same manner as in Example 1 except that the amount of iodine added was 0 g / L, artificial graphite (trade name: KS-25; manufactured by Lonza) as a carbon raw material, and nickel as a conductive substrate. A film was prepared. Part of the carbon material film (3.0 × 0.5c)
m) is removed and the carbon material is deposited (deposition area: 3.0 c).
mx 3.0 cm).

【0077】実施例15 特級アセトニトリル(キシダ化学製)100mLに人造
黒鉛(商品名:KS−25;ロンザ社製)1.0gを投
入して超音波照射器を用いて10分間懸濁させた。この
操作により、人造黒鉛粒子はアセトニトリル浴中で十分
に分散されるのでこれを電着浴に用いた。作用極32と
して非水電解質二次電池の集電体に用いる銅箔(厚さ2
0μm、電極サイズ3.5cm×3.0cm)を、一方
に対向電極44として白金板を配置し、図4に示すよう
に設定した。電着浴の超音波を止めた後、直流電源5を
用いて、1000Vを5分間印加し、電源をOFFし
た。銅箔を電着浴から引き出すと、銅箔上に人造黒鉛粒
子による炭素材料膜が形成されていた。
Example 15 100 g of artificial graphite (trade name: KS-25; manufactured by Lonza) was placed in 100 mL of special grade acetonitrile (manufactured by Kishida Chemical) and suspended for 10 minutes using an ultrasonic irradiator. By this operation, the artificial graphite particles were sufficiently dispersed in the acetonitrile bath, and were used for the electrodeposition bath. Copper foil (thickness 2) used as a working electrode 32 for a current collector of a non-aqueous electrolyte secondary battery
0 μm, electrode size 3.5 cm × 3.0 cm), and a platinum plate was arranged on one side as a counter electrode 44, and set as shown in FIG. After the ultrasonic wave in the electrodeposition bath was stopped, 1000 V was applied for 5 minutes using the DC power supply 5 to turn off the power. When the copper foil was pulled out from the electrodeposition bath, a carbon material film of artificial graphite particles was formed on the copper foil.

【0078】その後、アセトニトリルを用いて洗浄を行
い、これを50〜70℃で仮乾燥した。リードの溶接部
分を作製するために、炭素材料膜の一部(3.0×0.
5cm)を除去し、炭素材料の堆積量(堆積面積:3.
0cm×3.0cm)を測定した。その後、約150℃
で12時間熱処理をし、圧縮成形した。圧縮成形にはロ
ーラープレス機を用いた。次に、無堆積部分にニッケル
箔(50μm)のリードを溶接した。その後、水分除去
のために約150℃にて12時間真空乾燥したものを負
極として用いた。
Thereafter, washing was performed using acetonitrile, and this was provisionally dried at 50 to 70 ° C. In order to form a welded part of the lead, a part (3.0 × 0.
5 cm), and the amount of carbon material deposited (deposition area: 3.
(0 cm × 3.0 cm). Then about 150 ° C
For 12 hours and compression molded. A roller press was used for compression molding. Next, a lead of nickel foil (50 μm) was welded to the non-deposited portion. After that, what was vacuum-dried at about 150 ° C. for 12 hours to remove water was used as a negative electrode.

【0079】比較例1 結着剤PVdFを乳鉢中で溶剤N−メチル−2ピロリド
ン(以後NMPと記す)に溶かして、炭素材料として人
造黒鉛(商品名:KS−25;ロンザ社製)を分散させ
た。分散処理には2軸遊星方式の混合混練機を使用し、
炭素材料、結着剤が均一に分散するようにペースト状に
調節した。負極の組成は炭素材料100重量部、PVd
F10重量部とし、活物質の重量は8.5mg/cm2
(集電体の単位面積当たりの活物質重量)程度とした。
このペーストを約20μmの銅箔に塗布し、これを50
〜70℃で仮乾燥した。その後、約150℃で12時間
熱処理をし、圧縮成形した。圧縮成形にはローラープレ
ス機を用いた。電極サイズを3.5×3.0cm(塗工
部3.0×3.0cm)とし、無塗工部にニッケル箔
(50μm)のリードを溶接した。その後、水分除去の
ために約150℃にて12時間真空乾燥したものを負極
として用いた。
Comparative Example 1 The binder PVdF was dissolved in a solvent N-methyl-2-pyrrolidone (hereinafter referred to as NMP) in a mortar, and artificial graphite (trade name: KS-25; manufactured by Lonza) was dispersed as a carbon material. I let it. For dispersion processing, use a twin-screw planetary mixing and kneading machine,
The paste was adjusted so that the carbon material and the binder were uniformly dispersed. The composition of the negative electrode was 100 parts by weight of a carbon material, PVd
F10 parts by weight, and the weight of the active material was 8.5 mg / cm 2.
(Active material weight per unit area of current collector).
This paste was applied to a copper foil of about 20 μm,
Preliminarily dried at 7070 ° C. Thereafter, heat treatment was performed at about 150 ° C. for 12 hours, and compression molding was performed. A roller press was used for compression molding. The electrode size was 3.5 × 3.0 cm (coated portion 3.0 × 3.0 cm), and a nickel foil (50 μm) lead was welded to the uncoated portion. After that, what was vacuum-dried at about 150 ° C. for 12 hours to remove water was used as a negative electrode.

【0080】比較例2 負極の組成を炭素材料100重量部、PVdF5重量部
とすること以外は比較例1と同様にして負極を作製し
た。
Comparative Example 2 A negative electrode was produced in the same manner as in Comparative Example 1, except that the composition of the negative electrode was 100 parts by weight of the carbon material and 5 parts by weight of PVdF.

【0081】比較例3 負極の組成を炭素材料100重量部、PVdF3重量部
とすること以外は比較例1と同様にして負極を作製し
た。
Comparative Example 3 A negative electrode was produced in the same manner as in Comparative Example 1, except that the composition of the negative electrode was 100 parts by weight of the carbon material and 3 parts by weight of PVdF.

【0082】比較例4 炭素材料として天然黒鉛、負極の組成を炭素材料100
重量部、PVdF3重量部とすること以外は比較例1と
同様にして負極を作製した。
Comparative Example 4 Natural graphite was used as the carbon material, and the composition of the negative electrode was 100 carbon material.
A negative electrode was produced in the same manner as in Comparative Example 1 except that the weight parts were changed to 3 parts by weight of PVdF.

【0083】比較例5 炭素材料としてMCMB、負極の組成を炭素材料100
重量部、PVdF3重量部とすること以外は比較例1と
同様にして負極を作製した。まず、実施例1〜15で得
られた炭素材料膜の重量を表1に示す。
Comparative Example 5 MCMB was used as the carbon material, and the composition of the negative electrode was 100 carbon material.
A negative electrode was produced in the same manner as in Comparative Example 1 except that the weight parts were changed to 3 parts by weight of PVdF. First, Table 1 shows the weight of the carbon material films obtained in Examples 1 to 15.

【0084】[0084]

【表1】 [Table 1]

【0085】実施例1〜12及び15では、堆積量70
〜80mgの炭素材料膜が得られることが分かった。ま
た、堆積した炭素材料膜の膜厚の凹凸は数ミクロンオー
ダーで均一であった。一方、実施例13では、人造黒鉛
からなる炭素材料膜が得られたものの膜厚が不均一であ
った。この原因としては、ヨウ素の添加量が多すぎるた
め、アセトンの導電率が増加し、電気泳動電着時に電解
電流の増加に影響を及ぼし、電極反応による気泡の発生
のため、炭素材料膜の膜厚が不均一となったものと考え
られる。また、実施例14では、ヨウ素を添加しなかっ
たため、炭素材料に吸着するべきプロトンが極端に少な
く、それが堆積量の減少に影響を及ぼしたと考えられ
た。以上のことから、炭素堆積量と膜厚の均一性はヨウ
素の添加量に依存することが分かった。
In Examples 1 to 12 and 15, the deposition amount was 70%.
It was found that 8080 mg of the carbon material film was obtained. The thickness of the deposited carbon material film was uniform on the order of several microns. On the other hand, in Example 13, although a carbon material film made of artificial graphite was obtained, the film thickness was uneven. The reason for this is that the amount of iodine added is too large, the conductivity of acetone increases, which affects the increase in electrolysis current during electrophoretic electrodeposition, and the generation of bubbles due to electrode reactions, resulting in the formation of carbon material films. It is considered that the thickness became non-uniform. In Example 14, since iodine was not added, the amount of protons to be adsorbed on the carbon material was extremely small, and it was considered that this had an effect on the reduction in the amount of deposition. From the above, it was found that the carbon deposition amount and the film thickness uniformity depended on the iodine addition amount.

【0086】次に、実施例及び比較例で得られた炭素材
料膜からなる負極の電極特性を調べた。負極の電気化学
的特性の評価には3電極式セルを適用し、負極を試験極
に、対向電極及び参照極に金属リチウムを用いた。セル
の構成としては対向電極の表面積を試験極のそれに対し
て十分に大きくして、試験極の電位にて規制されるよう
に設定した。電解液にはECとジエチルカーボネート
(以後DECと記す)との体積比1:1の混合溶媒に
1.0mol/dm3の過塩素酸リチウムLiClO4
溶解したものを用いた。充放電作動試験は30mA・g
-1の定電流充放電、充電終止電位0Vvs.Li/Li
+、放電終止電位2.5Vvs.Li/Li+、アルゴン
雰囲気下グローブボックス中、20℃にて行った。
Next, the electrode characteristics of the negative electrodes made of the carbon material films obtained in Examples and Comparative Examples were examined. To evaluate the electrochemical characteristics of the negative electrode, a three-electrode cell was used, and the negative electrode was used as a test electrode, and lithium metal was used as a counter electrode and a reference electrode. The cell was configured so that the surface area of the counter electrode was sufficiently larger than that of the test electrode, and was regulated by the potential of the test electrode. As the electrolytic solution, a solution prepared by dissolving 1.0 mol / dm 3 of lithium perchlorate LiClO 4 in a mixed solvent of EC and diethyl carbonate (hereinafter referred to as DEC) at a volume ratio of 1: 1 was used. Charge / discharge operation test is 30 mA · g
-1 constant current charge / discharge, charge termination potential 0 V vs. Li / Li
+ , Discharge end potential 2.5 V vs. This was performed at 20 ° C. in a glove box under an atmosphere of Li / Li + and argon.

【0087】実施例及び比較例で得られた負極の初期放
電結果を表2に示す。なお、表2における放電容量は、
{放電電流値(mA)×放電時間(h)/炭素材料の重
量(g)}=放電容量(mAh/g)の式により計算し
た。また、実質放電容量は、{放電電流値(mA)×放
電時間(h)/(炭素材料の重量+結着剤の重量)
(G)}=放電容量(mAh/g)の式により計算し
た。
Table 2 shows the initial discharge results of the negative electrodes obtained in the examples and comparative examples. The discharge capacity in Table 2 is
It was calculated by the formula of {discharge current value (mA) × discharge time (h) / weight of carbon material (g)} = discharge capacity (mAh / g). The actual discharge capacity is: discharge current value (mA) × discharge time (h) / (weight of carbon material + weight of binder)
(G)} = discharge capacity (mAh / g).

【0088】[0088]

【表2】 [Table 2]

【0089】表2に示すように、本発明の炭素材料膜が
負極として使用できることが分かった。また、結着剤を
用いる従来の負極とほぼ同等の放電容量が得られるが、
本発明の負極は結着剤を使用しないため、その重量減少
分が反映して実質放電容量が大きくなることが分かっ
た。
As shown in Table 2, it was found that the carbon material film of the present invention can be used as a negative electrode. Also, a discharge capacity almost equivalent to that of a conventional negative electrode using a binder is obtained,
Since the negative electrode of the present invention does not use a binder, it has been found that the discharge capacity is substantially increased by reflecting the weight reduction.

【0090】次に、実施例及び比較例で得られた負極の
サイクル特性を調べた。本実施例における放電容量維持
率は、(各サイクルにおける放電容量/1サイクル目の
放電容量)×100=放電容量維持率(%)の式により
計算した。実施例及び比較例で得られた負極の放電容量
維持率を図7に示す。本発明の実施例1、3、9、15
の負極のサイクル特性は、従来の負極に相当する比較例
1と同様に良好であった。これらのサイクル試験結果か
ら、炭素材料膜は負極に使用できる程度の強度に製膜さ
れていることが明らかになった。
Next, the cycle characteristics of the negative electrodes obtained in Examples and Comparative Examples were examined. The discharge capacity retention rate in this example was calculated by the formula of (discharge capacity in each cycle / discharge capacity in the first cycle) × 100 = discharge capacity retention rate (%). FIG. 7 shows the discharge capacity retention ratios of the negative electrodes obtained in Examples and Comparative Examples. Examples 1, 3, 9, 15 of the present invention
The cycle characteristics of the negative electrode were as good as Comparative Example 1 corresponding to the conventional negative electrode. From the results of these cycle tests, it was clarified that the carbon material film was formed to have such strength that it could be used as a negative electrode.

【0091】一方、結着剤を5重量部を用いた比較例2
の負極は60サイクル付近、結着剤3重量部を用いた比
較例3〜5の負極は各々20サイクル付近で急激に放電
容量維持率が低下した。サイクル試験終了後、各々の負
極を観察すると電極合剤が集電体からほとんど剥離し
て、かろうじて付着している状態であった。以上のこと
から、従来の負極では結着剤に相当する重量を減らすこ
とには限界があるので、電池の軽量化、及びコンパクト
化を考えると本発明の電気泳動電着による炭素材料膜を
負極に用いることが効果があることが分かった。
Comparative Example 2 using 5 parts by weight of a binder
The discharge capacity retention rate of the negative electrode rapidly decreased at around 60 cycles, and in the negative electrodes of Comparative Examples 3 to 5 using 3 parts by weight of the binder, respectively, at around 20 cycles. After the end of the cycle test, when observing each negative electrode, the electrode mixture was almost peeled off from the current collector and barely adhered. From the above, there is a limit in reducing the weight corresponding to the binder in the conventional negative electrode, and therefore, considering the weight reduction and the compactness of the battery, the carbon material film by the electrophoretic electrodeposition of the present invention is used as the negative electrode. Was found to be effective.

【0092】次に、実施例及び比較例で得られた負極を
用いて電池を作製して評価を行った。正極活物質にはコ
バルト酸リチウムLiCoO2を使用した。結着剤PV
dFを乳鉢中で溶剤NMPに溶かし、上記正極活物質と
導電剤アセチレンブラックを分散させた。分散処理には
2軸遊星方式の混合混練機を使用し、正極活物質、導電
剤、結着剤が均一分散するようにペースト状に調節し
た。正極の組成はLiCoO2100重量部、アセチレ
ンブラック5重量部、PVdF10重量部として、活物
質の重量は15.0mg/cm2(集電体の単位面積当
たりの活物質重量)程度とした。
Next, batteries were prepared using the negative electrodes obtained in Examples and Comparative Examples and evaluated. Lithium cobaltate LiCoO 2 was used as the positive electrode active material. Binder PV
dF was dissolved in a solvent NMP in a mortar to disperse the positive electrode active material and the conductive agent acetylene black. For the dispersion treatment, a biaxial planetary mixing and kneading machine was used, and the paste was adjusted so that the positive electrode active material, the conductive agent, and the binder were uniformly dispersed. The composition of the positive electrode was 100 parts by weight of LiCoO 2 , 5 parts by weight of acetylene black, and 10 parts by weight of PVdF, and the weight of the active material was about 15.0 mg / cm 2 (weight of the active material per unit area of the current collector).

【0093】このペーストを厚さ50μmのアルミニウ
ム箔上に塗布し、これを50〜70℃で仮乾燥、150
℃で熱処理後、圧縮成形した。圧縮成形には大気中でロ
ーラープレス機を用いて、活物質密度2.8〜3.0g
/cm3になるまで圧縮成形した。さらに、水分除去の
ために150℃程度で減圧乾燥したものを正極とした。
This paste was applied on an aluminum foil having a thickness of 50 μm, and was temporarily dried at 50 to 70 ° C.
After heat treatment at ℃, compression molding was performed. For the compression molding, using a roller press machine in the air, the active material density is 2.8 to 3.0 g.
/ Cm 3 . Furthermore, what was dried under reduced pressure at about 150 ° C. for removing water was used as a positive electrode.

【0094】電池は上記のごとく作製した負極と正極を
各々セパレーター(ポリエチレン製多孔体、厚み25μ
m)を介して対向させ、アルミニウム箔の入ったラミネ
ートフィルムにて覆い、三方を熱により封止した後、E
CとDECとの体積比1:1の混合溶媒に1mol/d
3のLiClO4を溶解したものを注入し、残った一方
を熱により封止して作製した。充放電作動試験は充電電
流を1.0mAの定電流とし、充電終止電圧4.2Vに
達した後4.2Vの定電圧充電を行い、充電時間を24
時間とした。放電終止電圧を2.75Vとして、放電電
流を0.2mAとした。電池評価は全てアルゴン雰囲気
下のグローブボックス中、20℃にて行った。表3に実
施例及び比較例で得られた炭素材料膜を負極に用いた電
池特性結果を示す。
In the battery, the negative electrode and the positive electrode produced as described above were each separated by a separator (polyethylene porous body, 25 μm thick).
m), covered with a laminate film containing aluminum foil, and sealed on three sides with heat.
1 mol / d in a mixed solvent of C and DEC at a volume ratio of 1: 1
A solution prepared by dissolving m 3 LiClO 4 was injected, and the other was sealed with heat to produce the product. In the charging / discharging operation test, the charging current was set to a constant current of 1.0 mA.
Time. The discharge end voltage was set to 2.75 V, and the discharge current was set to 0.2 mA. All battery evaluations were performed at 20 ° C. in a glove box under an argon atmosphere. Table 3 shows the results of battery characteristics using the carbon material films obtained in Examples and Comparative Examples as negative electrodes.

【0095】[0095]

【表3】 [Table 3]

【0096】表3に示すように、本発明の炭素材料膜を
負極に用いると、従来の負極と比較して高容量化に効果
が見られることが分かった。この理由として、本発明の
実施例1、3、9、15の負極中には結着剤が含まれて
いないため、炭素材料の充填量が多い、即ち活物質密度
の高い負極が作製できたことが反映したものと考えられ
る。また、比較例1〜5の負極の活物質密度を表3に示
す値以上に高め、実施例1〜3の負極の活物質密度1.
60g/cm3に作製を試みた。しかし、プレス中に電
極合剤が集電体である銅箔から剥がれたり、プレス側に
付着する等、歩留まりが急激に低下し、作製が困難であ
った。
As shown in Table 3, it was found that when the carbon material film of the present invention was used for the negative electrode, the effect of increasing the capacity was observed as compared with the conventional negative electrode. The reason for this is that the negative electrodes of Examples 1, 3, 9, and 15 of the present invention did not contain a binder, so that a negative electrode having a high filling amount of the carbon material, that is, a high active material density could be produced. It is thought that this was reflected. In addition, the active material densities of the negative electrodes of Comparative Examples 1 to 5 were increased to values shown in Table 3 or more, and the active material densities of the negative electrodes of Examples 1 to 3 were 1.
The production was attempted to be 60 g / cm 3 . However, during the pressing, the yield was sharply reduced, for example, the electrode mixture was peeled off from the copper foil as the current collector, or adhered to the pressing side, and the production was difficult.

【0097】次に、表3に示す実施例及び比較例で得ら
れた負極のサイクル特性結果を図8に示す。本発明の実
施例1、3、9の負極のサイクル特性は従来の負極に相
当する比較例1と同様に良好であった。これらのサイク
ル試験結果から、炭素材料膜は負極に使用できる程度の
強度に製膜されていることが明らかになった。しかし、
結着剤を5重量部を用いた比較例2の負極は60サイク
ル付近、結着剤を3重量部を用いた比較例3〜5の負極
は20〜40サイクル付近から徐々に放電容量維持率が
低下した。サイクル試験終了後、電池を解体して各々の
負極を観察すると、電極合剤が集電体との結着性が悪い
ことが確認された。以上のことから、従来の負極では結
着剤に相当する重量を減らすことには限界があるので、
電池の軽量化、及びコンパクト化を解決する一つの手段
として、本発明の電気泳動電着による炭素材料膜を負極
に用いることが有効であることが分かった。
Next, the results of the cycle characteristics of the negative electrodes obtained in Examples and Comparative Examples shown in Table 3 are shown in FIG. The cycle characteristics of the negative electrodes of Examples 1, 3, and 9 of the present invention were as good as Comparative Example 1 corresponding to the conventional negative electrode. From the results of these cycle tests, it was clarified that the carbon material film was formed to have such strength that it could be used as a negative electrode. But,
The negative electrode of Comparative Example 2 using 5 parts by weight of the binder gradually discharged from the vicinity of 60 cycles, and the negative electrodes of Comparative Examples 3 to 5 using 3 parts by weight of the binder gradually discharged from around 20 to 40 cycles. Decreased. After the completion of the cycle test, the battery was disassembled and each negative electrode was observed. As a result, it was confirmed that the electrode mixture had poor binding properties with the current collector. From the above, there is a limit in reducing the weight equivalent to the binder in the conventional negative electrode,
It has been found that it is effective to use the carbon material film formed by electrophoretic electrodeposition of the present invention for the negative electrode as one means for solving the weight reduction and compactness of the battery.

【0098】[0098]

【発明の効果】以上明らかなように、電気泳動電着を用
いると炭素材料の結晶性に制約されず、また簡単な作製
工程・制御にて導電性基板の表面に炭素材料膜を直接堆
積させることができることが明らかになった。さらに、
この炭素材料膜は電極反応に関与しない結着剤に相当す
る重量を減らすことができ、電極の活物質密度を高める
こと、すなわち活物質である炭素材料の単位体積当たり
の充填量を増やすことができるので、非水電解質二次電
池、特にリチウムイオン電池の高エネルギー密度化に効
果がある。ゆえに、本発明の産業的意義は非常に大であ
る。
As is apparent from the above, the use of electrophoretic electrodeposition does not limit the crystallinity of the carbon material, and the carbon material film is directly deposited on the surface of the conductive substrate by a simple manufacturing process and control. It became clear that we could do that. further,
This carbon material film can reduce the weight corresponding to the binder not participating in the electrode reaction and increase the active material density of the electrode, that is, increase the filling amount per unit volume of the carbon material as the active material. This is effective in increasing the energy density of a non-aqueous electrolyte secondary battery, particularly a lithium ion battery. Therefore, the industrial significance of the present invention is very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の炭素材料膜の製造方法の概略説明図で
ある。
FIG. 1 is a schematic explanatory view of a method for producing a carbon material film of the present invention.

【図2】本発明の炭素材料膜の製造方法の概略説明図で
ある。
FIG. 2 is a schematic explanatory view of a method for producing a carbon material film of the present invention.

【図3】本発明の炭素材料膜の製造方法の概略説明図で
ある。
FIG. 3 is a schematic explanatory view of a method for producing a carbon material film of the present invention.

【図4】本発明の炭素材料膜の製造方法の概略説明図で
ある。
FIG. 4 is a schematic explanatory view of a method for producing a carbon material film of the present invention.

【図5】本発明の炭素材料膜の製造方法の概略説明図で
ある。
FIG. 5 is a schematic explanatory view of a method for producing a carbon material film of the present invention.

【図6】本発明の炭素材料膜の製造方法の概略説明図で
ある。
FIG. 6 is a schematic explanatory view of a method for producing a carbon material film of the present invention.

【図7】実施例及び比較例で得られた負極の放電容量維
持率を示すグラフである。
FIG. 7 is a graph showing the discharge capacity retention ratio of the negative electrodes obtained in Examples and Comparative Examples.

【図8】実施例及び比較例で得られた電池のサイクル特
性を示すグラフである。
FIG. 8 is a graph showing cycle characteristics of batteries obtained in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 非プロトン性溶媒 2 炭素材料 5 直流電源 31 作用極(カソード) 32 作用極(アノード) 41 対向電極(アノード) 42 スパイラル状電極(アノード) 43 板状電極(アノード) 44 対向電極(カソード) 45 スパイラル状電極(カソード) 46 板状電極(カソード) Reference Signs List 1 aprotic solvent 2 carbon material 5 DC power supply 31 working electrode (cathode) 32 working electrode (anode) 41 counter electrode (anode) 42 spiral electrode (anode) 43 plate electrode (anode) 44 counter electrode (cathode) 45 Spiral electrode (cathode) 46 Plate electrode (cathode)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/66 H01M 4/66 A 10/40 10/40 Z (72)発明者 山田 和夫 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 見立 武仁 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 小浦 延幸 埼玉県三郷市さつき平2−2−1−110 (72)発明者 井手本 康 千葉県野田市山崎479番地(みずき43−10) (72)発明者 松本 太 栃木県黒磯市豊町1−5 (72)発明者 對木 洋文 愛知県一宮市大字杉山字地蔵浦15 Fターム(参考) 5G301 BA01 BA02 BE10 5H017 AA03 AS10 BB00 BB16 EE01 EE04 5H029 AJ03 AK03 AL06 AM03 AM04 AM05 AM07 CJ11 CJ28 DJ07 HJ01 5H050 AA08 BA17 CA08 CA09 CB07 EA10 EA24 FA04 GA11 GA27 HA01 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) H01M 4/66 H01M 4/66 A 10/40 10/40 Z (72) Inventor Kazuo Yamada Osaka-shi, Osaka 22-22 Nagaike-cho, Abeno-ku, Sharp Corporation (72) Inventor Takehito Mitate 22-22-22, Nagaike-cho, Abeno-ku, Osaka, Osaka Prefecture (72) Inventor Nobuyuki Koura 2-Satsukidaira, Misato-shi, Saitama 2-1-110 (72) Inventor Yasushi Idemoto 479 Yamazaki, Noda-shi, Chiba (Mizuki 43-10) (72) Inventor Futa Matsumoto 1-5 Toyocho, Kuroiso-shi, Tochigi Pref. F-term (reference) 5J301 BA01 BA02 BE10 5H017 AA03 AS10 BB00 BB16 EE01 EE04 5H029 AJ03 AK03 AL06 AM03 AM04 AM05 AM07 CJ11 CJ28 DJ07 HJ01 5H050 AA08 BA17 CA08 CB07 EA07 4 FA04 GA11 GA27 HA01

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 電気泳動電着により導電性基板の表面に
炭素材料を堆積させる炭素材料膜の作製方法において、 非プロトン性溶媒に少なくともヨウ素を溶解し、それに
炭素材料を分散させた液に、負極としての導電性基板
と、正極としての対向電極とを浸し、両者間に直流電界
を印加することにより、前記導電性基板の表面に炭素材
料膜を堆積させることを特徴とする炭素材料膜の作製方
法。
1. A method for producing a carbon material film in which a carbon material is deposited on the surface of a conductive substrate by electrophoretic electrodeposition, comprising: dissolving at least iodine in an aprotic solvent; By immersing a conductive substrate as a negative electrode and a counter electrode as a positive electrode and applying a DC electric field between the two, a carbon material film is deposited on the surface of the conductive substrate. Production method.
【請求項2】 ヨウ素が、非プロトン性溶媒1Lに1m
g〜5g添加されていることを特徴とする請求項1に記
載の炭素材料膜の作製方法。
2. An amount of 1 m of iodine per liter of aprotic solvent
The method for producing a carbon material film according to claim 1, wherein g to 5 g is added.
【請求項3】 非プロトン性溶媒が、アセトン又はアセ
チルアセトンであることを特徴とする請求項1又は2に
記載の炭素材料膜の作製方法。
3. The method for producing a carbon material film according to claim 1, wherein the aprotic solvent is acetone or acetylacetone.
【請求項4】 電気泳動電着により導電性基板の表面に
炭素材料を堆積させる炭素材料膜の作製方法において、 非プロトン性溶媒に炭素材料を分散させた液に、正極と
しての導電性基板と、負極としての対向電極とを浸し、
両者間に直流電界を印加することにより、前記導電性基
板の表面に炭素材料膜を堆積させることを特徴とする炭
素材料膜の作製方法。
4. A method for producing a carbon material film in which a carbon material is deposited on the surface of a conductive substrate by electrophoretic electrodeposition, wherein a conductive material as a positive electrode is added to a liquid in which a carbon material is dispersed in an aprotic solvent. , Soak the counter electrode as a negative electrode,
A method for producing a carbon material film, wherein a carbon material film is deposited on the surface of the conductive substrate by applying a DC electric field between the two.
【請求項5】 非プロトン性溶媒が、アセトニトリルで
あることを特徴とする請求項4に記載の炭素材料膜の作
製方法。
5. The method according to claim 4, wherein the aprotic solvent is acetonitrile.
【請求項6】 導電性基板が、銅、ニッケル、ステンレ
ス鋼、真鍮、モリブデン及びタングステンからなる群か
ら選択される材料からなる基板であることを特徴とする
請求項1〜5のいずれか1つに記載の炭素材料膜の作製
方法。
6. The conductive substrate according to claim 1, wherein the conductive substrate is made of a material selected from the group consisting of copper, nickel, stainless steel, brass, molybdenum and tungsten. 3. The method for producing a carbon material film according to item 1.
【請求項7】 炭素材料が、人造黒鉛、天然黒鉛、高結
晶性黒鉛の表面に低結晶性の炭素材料が付着した黒鉛材
料、メソカーボンマイクロビーズ、メソフェーズピッ
チ、等方性ピッチ及びコークスからなる群より少なくと
も1種以上選択されることを特徴とする請求項1〜6の
いずれか1つに記載の炭素材料膜の作製方法。
7. The carbon material is composed of artificial graphite, natural graphite, graphite material having a low crystalline carbon material adhered to the surface of highly crystalline graphite, mesocarbon microbeads, mesophase pitch, isotropic pitch and coke. The method for producing a carbon material film according to any one of claims 1 to 6, wherein at least one kind is selected from a group.
【請求項8】 少なくとも正極、非水電解質及び負極を
備えた非水電解質二次電池において、負極が請求項1〜
7のいずれか1つの方法により作製された炭素材料膜を
備えていることを特徴とする非水電解質二次電池。
8. A non-aqueous electrolyte secondary battery comprising at least a positive electrode, a non-aqueous electrolyte, and a negative electrode, wherein the negative electrode is
7. A non-aqueous electrolyte secondary battery comprising a carbon material film produced by any one of the methods of item 7.
JP2000251100A 2000-08-22 2000-08-22 Production method of carbon material film, and nonaqueous secondary battery using the carbon material film Pending JP2002063894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000251100A JP2002063894A (en) 2000-08-22 2000-08-22 Production method of carbon material film, and nonaqueous secondary battery using the carbon material film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000251100A JP2002063894A (en) 2000-08-22 2000-08-22 Production method of carbon material film, and nonaqueous secondary battery using the carbon material film

Publications (1)

Publication Number Publication Date
JP2002063894A true JP2002063894A (en) 2002-02-28

Family

ID=18740559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000251100A Pending JP2002063894A (en) 2000-08-22 2000-08-22 Production method of carbon material film, and nonaqueous secondary battery using the carbon material film

Country Status (1)

Country Link
JP (1) JP2002063894A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052802B2 (en) 2002-10-15 2006-05-30 Quallion Llc Fluorinated carbon active material
JP2007051018A (en) * 2005-08-17 2007-03-01 Nok Corp Method for producing carbon material thin film
JP2009120860A (en) * 2007-11-12 2009-06-04 Doshisha Method of manufacturing carbon film
CN102166481A (en) * 2011-03-07 2011-08-31 中国矿业大学 Method for preparing composite carbon membrane based on asphaltene components in coals
JP2013049837A (en) * 2011-07-29 2013-03-14 Fujifilm Corp Carbon black composition, and carbon black-containing coating film
US8524397B1 (en) 2004-11-08 2013-09-03 Quallion Llc Battery having high rate and high capacity capabilities
US8685569B2 (en) 2011-08-19 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Electrode for power storage device and power storage device
JP2014534591A (en) * 2011-11-02 2014-12-18 アイ テン Thin film lithium ion micro battery manufacturing method and micro battery obtained by the method
JP2014534592A (en) * 2011-11-02 2014-12-18 アイ テン Manufacturing method of all-solid-state thin film battery
JP2014535141A (en) * 2011-11-02 2014-12-25 アイ テン Method for producing solid electrolyte thin film for lithium ion battery
JP2015173071A (en) * 2014-03-12 2015-10-01 三洋化成工業株式会社 Slurry for lithium ion battery, negative electrode for lithium ion battery, method for manufacturing negative electrode for lithium ion battery, lithium ion battery, and method for producing negative electrode active material for lithium ion battery
US9401247B2 (en) 2011-09-21 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US9815691B2 (en) 2011-08-19 2017-11-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
US10614968B2 (en) 2016-01-22 2020-04-07 The Regents Of The University Of California High-voltage devices
US10622163B2 (en) 2016-04-01 2020-04-14 The Regents Of The University Of California Direct growth of polyaniline nanotubes on carbon cloth for flexible and high-performance supercapacitors
US10644315B2 (en) 2011-06-03 2020-05-05 Semiconductor Energy Laboratory Co., Ltd. Single-layer and multilayer graphene, method of manufacturing the same, object including the same, and electric device including the same
US10648958B2 (en) 2011-12-21 2020-05-12 The Regents Of The University Of California Interconnected corrugated carbon-based network
US10655020B2 (en) 2015-12-22 2020-05-19 The Regents Of The University Of California Cellular graphene films
US10734167B2 (en) 2014-11-18 2020-08-04 The Regents Of The University Of California Porous interconnected corrugated carbon-based network (ICCN) composite
US10847852B2 (en) 2014-06-16 2020-11-24 The Regents Of The University Of California Hybrid electrochemical cell
US10938021B2 (en) 2016-08-31 2021-03-02 The Regents Of The University Of California Devices comprising carbon-based material and fabrication thereof
US10938032B1 (en) 2019-09-27 2021-03-02 The Regents Of The University Of California Composite graphene energy storage methods, devices, and systems
US11004618B2 (en) 2012-03-05 2021-05-11 The Regents Of The University Of California Capacitor with electrodes made of an interconnected corrugated carbon-based network
US11062855B2 (en) 2016-03-23 2021-07-13 The Regents Of The University Of California Devices and methods for high voltage and solar applications
US11097951B2 (en) 2016-06-24 2021-08-24 The Regents Of The University Of California Production of carbon-based oxide and reduced carbon-based oxide on a large scale
US11133134B2 (en) 2017-07-14 2021-09-28 The Regents Of The University Of California Simple route to highly conductive porous graphene from carbon nanodots for supercapacitor applications
US11296322B2 (en) 2011-06-03 2022-04-05 Semiconductor Energy Laboratory Co., Ltd. Single-layer and multilayer graphene, method of manufacturing the same, object including the same, and electric device including the same
KR102655802B1 (en) * 2021-11-01 2024-04-11 재단법인대구경북과학기술원 Negative Electrode for Secondary Battery, Secondary Battery Comprising the Same and Manufacturing Method Thereof

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052802B2 (en) 2002-10-15 2006-05-30 Quallion Llc Fluorinated carbon active material
US7503943B2 (en) 2002-10-15 2009-03-17 Quallion Llc Fluorinated carbon active material
US8524397B1 (en) 2004-11-08 2013-09-03 Quallion Llc Battery having high rate and high capacity capabilities
JP2007051018A (en) * 2005-08-17 2007-03-01 Nok Corp Method for producing carbon material thin film
JP2009120860A (en) * 2007-11-12 2009-06-04 Doshisha Method of manufacturing carbon film
CN102166481A (en) * 2011-03-07 2011-08-31 中国矿业大学 Method for preparing composite carbon membrane based on asphaltene components in coals
US11296322B2 (en) 2011-06-03 2022-04-05 Semiconductor Energy Laboratory Co., Ltd. Single-layer and multilayer graphene, method of manufacturing the same, object including the same, and electric device including the same
US11699790B2 (en) 2011-06-03 2023-07-11 Semiconductor Energy Laboratory Co., Ltd. Single-layer and multilayer graphene, method of manufacturing the same, object including the same, and electric device including the same
US10644315B2 (en) 2011-06-03 2020-05-05 Semiconductor Energy Laboratory Co., Ltd. Single-layer and multilayer graphene, method of manufacturing the same, object including the same, and electric device including the same
JP2013049837A (en) * 2011-07-29 2013-03-14 Fujifilm Corp Carbon black composition, and carbon black-containing coating film
US11898261B2 (en) 2011-08-19 2024-02-13 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
US9815691B2 (en) 2011-08-19 2017-11-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
US10050273B2 (en) 2011-08-19 2018-08-14 Semiconductor Energy Laboratory Co., Ltd. Electrode for power storage device and power storage device
US10544041B2 (en) 2011-08-19 2020-01-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
US11248307B2 (en) 2011-08-19 2022-02-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
US8685569B2 (en) 2011-08-19 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Electrode for power storage device and power storage device
US9401247B2 (en) 2011-09-21 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
JP2014534591A (en) * 2011-11-02 2014-12-18 アイ テン Thin film lithium ion micro battery manufacturing method and micro battery obtained by the method
JP2018186099A (en) * 2011-11-02 2018-11-22 アイ テン Method for production of thin film lithium ion micro-battery, and micro-battery obtained by the same
JP2014534592A (en) * 2011-11-02 2014-12-18 アイ テン Manufacturing method of all-solid-state thin film battery
JP2014535141A (en) * 2011-11-02 2014-12-25 アイ テン Method for producing solid electrolyte thin film for lithium ion battery
US10648958B2 (en) 2011-12-21 2020-05-12 The Regents Of The University Of California Interconnected corrugated carbon-based network
US11397173B2 (en) 2011-12-21 2022-07-26 The Regents Of The University Of California Interconnected corrugated carbon-based network
US11004618B2 (en) 2012-03-05 2021-05-11 The Regents Of The University Of California Capacitor with electrodes made of an interconnected corrugated carbon-based network
US11257632B2 (en) 2012-03-05 2022-02-22 The Regents Of The University Of California Capacitor with electrodes made of an interconnected corrugated carbon-based network
US11915870B2 (en) 2012-03-05 2024-02-27 The Regents Of The University Of California Capacitor with electrodes made of an interconnected corrugated carbon-based network
JP2015173071A (en) * 2014-03-12 2015-10-01 三洋化成工業株式会社 Slurry for lithium ion battery, negative electrode for lithium ion battery, method for manufacturing negative electrode for lithium ion battery, lithium ion battery, and method for producing negative electrode active material for lithium ion battery
US10847852B2 (en) 2014-06-16 2020-11-24 The Regents Of The University Of California Hybrid electrochemical cell
US11569538B2 (en) 2014-06-16 2023-01-31 The Regents Of The University Of California Hybrid electrochemical cell
US11810716B2 (en) 2014-11-18 2023-11-07 The Regents Of The University Of California Porous interconnected corrugated carbon-based network (ICCN) composite
US10734167B2 (en) 2014-11-18 2020-08-04 The Regents Of The University Of California Porous interconnected corrugated carbon-based network (ICCN) composite
US11118073B2 (en) 2015-12-22 2021-09-14 The Regents Of The University Of California Cellular graphene films
US10655020B2 (en) 2015-12-22 2020-05-19 The Regents Of The University Of California Cellular graphene films
US11891539B2 (en) 2015-12-22 2024-02-06 The Regents Of The University Of California Cellular graphene films
US11842850B2 (en) 2016-01-22 2023-12-12 The Regents Of The University Of California High-voltage devices
US10614968B2 (en) 2016-01-22 2020-04-07 The Regents Of The University Of California High-voltage devices
US10892109B2 (en) 2016-01-22 2021-01-12 The Regents Of The University Of California High-voltage devices
US11062855B2 (en) 2016-03-23 2021-07-13 The Regents Of The University Of California Devices and methods for high voltage and solar applications
US10622163B2 (en) 2016-04-01 2020-04-14 The Regents Of The University Of California Direct growth of polyaniline nanotubes on carbon cloth for flexible and high-performance supercapacitors
US11097951B2 (en) 2016-06-24 2021-08-24 The Regents Of The University Of California Production of carbon-based oxide and reduced carbon-based oxide on a large scale
US11791453B2 (en) 2016-08-31 2023-10-17 The Regents Of The University Of California Devices comprising carbon-based material and fabrication thereof
US10938021B2 (en) 2016-08-31 2021-03-02 The Regents Of The University Of California Devices comprising carbon-based material and fabrication thereof
US11133134B2 (en) 2017-07-14 2021-09-28 The Regents Of The University Of California Simple route to highly conductive porous graphene from carbon nanodots for supercapacitor applications
US10938032B1 (en) 2019-09-27 2021-03-02 The Regents Of The University Of California Composite graphene energy storage methods, devices, and systems
US11961667B2 (en) 2021-05-27 2024-04-16 The Regents Of The University Of California Devices and methods for high voltage and solar applications
KR102655802B1 (en) * 2021-11-01 2024-04-11 재단법인대구경북과학기술원 Negative Electrode for Secondary Battery, Secondary Battery Comprising the Same and Manufacturing Method Thereof

Similar Documents

Publication Publication Date Title
JP2002063894A (en) Production method of carbon material film, and nonaqueous secondary battery using the carbon material film
EP1291941B1 (en) Active material for battery and method of preparing the same
EP2099043B1 (en) Coated electrode and organic electrolyte capacitor
EP2469629A2 (en) Amorphous anode active material, preparation method of electrode using same, secondary battery containing same, and hybrid capacitor
KR20030066613A (en) Nonaqueous lithium secondary cell
JP5070657B2 (en) Nonaqueous electrolyte secondary battery and method for producing negative electrode of nonaqueous electrolyte secondary battery
US20140065480A1 (en) Positive-Electrode Active Material, Manufacturing Method Of The Same, And Nonaqueous Electrolyte Rechargeable Battery Having The Same
KR20130067914A (en) Lithium metal powder-carbon powder composite anode for lithium rechargeable batteries and lithium metal secondary battery comprising the same
KR20130067920A (en) Carbon powder coated li anode for lithium rechargeable batteries
WO2019088139A1 (en) Secondary battery negative electrode, secondary battery, and methods for manufacturing these
CN108258241A (en) A kind of cathode of lithium battery for inhibiting lithium dendrite growth using ZIF-8 porous carbon materials
CN114552125B (en) Nondestructive lithium supplement composite diaphragm and preparation method and application thereof
Oriňáková et al. Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO 4 cathode material for Li-ion batteries
CN114447321A (en) Positive electrode material, positive plate comprising same and battery
KR101424865B1 (en) Method of manufacturing positive electrode active material and electrode, and electrode
US20230006209A1 (en) Anode plate, and battery and electronic apparatus using such electrode plate
CN108417773B (en) Lithium iron phosphate composite electrode and preparation method and application thereof
KR100693397B1 (en) Negative electrodes for rechargeable batteries
JP3816025B2 (en) Method for producing carbon material film and non-aqueous electrolyte secondary battery
CN112789748A (en) Method for producing an anode for a lithium ion battery
US20140065481A1 (en) Positive-Electrode Active Material, Manufacturing Method Of The Same, And Nonaqueous Electrolyte Rechargeable Battery Having The Same
WO2020255489A1 (en) Anode material, anode and battery cell
Nguyen et al. Effect of conductive carbon additives and negative/positive capacity ratio on graphite/LiFePO4 full‐cells performance
JPH0869797A (en) Carbon material for lithium secondary battery electrode and its manufacture
WO2022206528A1 (en) Current collector and preparation method therefor, and secondary battery and apparatus