JP4910332B2 - Method for producing carbon material thin film - Google Patents

Method for producing carbon material thin film Download PDF

Info

Publication number
JP4910332B2
JP4910332B2 JP2005236314A JP2005236314A JP4910332B2 JP 4910332 B2 JP4910332 B2 JP 4910332B2 JP 2005236314 A JP2005236314 A JP 2005236314A JP 2005236314 A JP2005236314 A JP 2005236314A JP 4910332 B2 JP4910332 B2 JP 4910332B2
Authority
JP
Japan
Prior art keywords
carbon
carbon material
thin film
material thin
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005236314A
Other languages
Japanese (ja)
Other versions
JP2007051018A (en
JP2007051018A5 (en
Inventor
義明 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2005236314A priority Critical patent/JP4910332B2/en
Publication of JP2007051018A publication Critical patent/JP2007051018A/en
Publication of JP2007051018A5 publication Critical patent/JP2007051018A5/ja
Application granted granted Critical
Publication of JP4910332B2 publication Critical patent/JP4910332B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、炭素材料薄膜の製造方法に関する。さらに詳しくは、炭素材料を塩基性高分子型分散剤を添加した非プロトン性溶媒中に分散させ、この溶媒中で被被覆材を陽極として電圧を印加し、陽極材表面上に炭素材料薄膜を形成させて炭素材料薄膜を製造する方法に関する。   The present invention relates to a method for producing a carbon material thin film. More specifically, a carbon material is dispersed in an aprotic solvent to which a basic polymer type dispersant is added, a voltage is applied in this solvent using the coating material as an anode, and a carbon material thin film is formed on the surface of the anode material. The present invention relates to a method for forming a carbon material thin film.

炭素材料は、電気伝導性、熱伝導性、耐食性、耐熱性、黒色着色性および薬品安定性など多くの面ですぐれた性能を有するため、様々な用途に使用されており、特に耐食性を要する帯電防止材や電磁波シールド材、さらには電気伝導性および耐食性を有することが必要とされる燃料電池セパレータあるいはリチウム二次電池の負極には、金属材料の使用が難しいため、黒鉛、カーボンブラックまたはカーボンファイバーなどの炭素材料が使用されている。 Carbon materials have excellent performance in many aspects such as electrical conductivity, thermal conductivity, corrosion resistance, heat resistance, black colorability, and chemical stability, so they are used in various applications, especially those that require corrosion resistance. Since it is difficult to use metallic materials for the prevention material, electromagnetic wave shielding material , and the negative electrode of fuel cell separators or lithium secondary batteries that are required to have electrical conductivity and corrosion resistance, graphite, carbon black or carbon fiber Carbon materials such as are used.

これらの用途では、樹脂またはゴムなどに導電性フィラーとして炭素材料を添加し、成形する方法や、炭素材料に樹脂またはゴムなどをバインダーとして添加して成形する方法などが一般的に用いられている。一方、対象物の表面のみに炭素材料を薄膜化する方法は、電気特性と強度特性の両特性を満足できることから、特に表面の電気伝導性や放電性が重要とされる燃料電池セパレータあるいはリチウム二次電池の負極に用いられている。 In these applications, a method of forming by adding a carbon material as a conductive filler to a resin or rubber or the like, a method of adding a resin or rubber or the like as a binder to a carbon material, and the like are generally used. . On the other hand, since the method of thinning the carbon material only on the surface of the object can satisfy both the electrical characteristics and the strength characteristics, the fuel cell separator or lithium secondary battery in which surface electrical conductivity and discharge characteristics are particularly important. Used in the negative electrode of secondary batteries.

炭素材料を薄膜化する方法としては、蒸着法、CND法、スピンコート法、スプレー塗布法、浸漬塗布法、静電塗布法、電着法などが挙げられるが、中でも複雑な形状のものにも膜厚を均一に製膜可能である電着法が有効である。この電着法は、水系電着液と非水系電着液の2種類に分類される。   Examples of methods for thinning a carbon material include vapor deposition, CND, spin coating, spray coating, dip coating, electrostatic coating, and electrodeposition. An electrodeposition method that can form a uniform film thickness is effective. This electrodeposition method is classified into two types, an aqueous electrodeposition liquid and a non-aqueous electrodeposition liquid.

水系の電着法としては、自動車ボディーの下塗り塗装に使用されているカチオン電着塗装が一般的である。これは、電着塗料中に被塗物を浸漬し、被塗物を陰極として対極との間に電流を流し、陰極に塗膜を析出させて製膜する方法であり、この際電着塗料に炭素材料を分散させておくと、炭素材料は電着塗料に付随して陰極側に移動し、被塗物に複合的に製膜されるというものである。この方法では、電着塗料が分散剤の働きもするため電解液中の炭素材料の分散性が良く、さらに電着塗料の流動速度が大きいため電着量が多く、短時間で製膜できるといった長所があるものの、被塗物表面は電着塗料と炭素材料の複合膜となるため、被塗物表面の炭素密度が低くなるといった欠点がある。
日本接着学会誌 Vol.27、No.9、401頁(1991)
As a water-based electrodeposition method, cationic electrodeposition coating, which is used for undercoating of automobile bodies, is common. This dipping the object to be coated in an electrodeposition coating composition, a current is supplied between the counter electrode coated article as a cathode, a method of film formation by depositing a coating film on the cathode, this time electrodeposition paint If the carbon material is dispersed in the carbon material, the carbon material moves to the cathode side in association with the electrodeposition paint, and is formed into a composite film on the object to be coated. In this method, since the electrodeposition paint also functions as a dispersant, the dispersibility of the carbon material in the electrolytic solution is good, and furthermore , since the flow rate of the electrodeposition paint is large, the amount of electrodeposition is large and a film can be formed in a short time. Although there is an advantage, since the surface of the object to be coated is a composite film of an electrodeposition paint and a carbon material, there is a drawback that the carbon density of the surface of the object to be coated is lowered.
Journal of the Adhesion Society of Japan Vol.27, No.9, 401 (1991)

一方、非水系の電着法としては、水系の電着が不可能なアルミニウム材料に関するものが多いものの、炭素材料においてもアセトニトリルとトリエチルアミンなどの低分子量塩基性化合物からなる溶媒に黒鉛を分散させ、この電着液に被塗物を陽極として浸漬し、対極との間に電流を流し、陽極に黒鉛を析出させ製膜する方法が提案されている。しかるに、この方法においては帯電した黒鉛が電場により移動し析出するため、被塗物表面の炭素密度が高くなるといった長所がある一方で、電着液への黒鉛の分散性が悪く、また黒鉛の泳動速度が遅いため電着量が少なく、製膜に多くの時間を要するといった欠点がある。
表面技術 Vol.53、No.10、685頁(2002)
On the other hand, as a non-aqueous electrodeposition method, although many are related to aluminum materials that cannot be electrodeposited in water, graphite is dispersed in a solvent composed of a low molecular weight basic compound such as acetonitrile and triethylamine in the carbon material, A method has been proposed in which an object to be coated is immersed in this electrodeposition liquid as an anode, a current is passed between the electrode and a counter electrode, and graphite is deposited on the anode to form a film. However, in this method, the charged graphite moves and precipitates due to the electric field, so that there is an advantage that the carbon density on the surface of the object to be coated is increased. On the other hand, the dispersibility of the graphite in the electrodeposition liquid is poor. Since the migration speed is slow, the amount of electrodeposition is small, and there is a disadvantage that a long time is required for film formation.
Surface Technology Vol. 53, No. 10, p. 685 (2002)

また、カーボンナノチューブは、優れた電気伝導性と熱伝導性を有し、この特性を活かした様々な応用用途が期待されているが、通常はカーボンナノチューブ同士が絡み合った状態にあるため、薄膜形成が非常に困難であり、また薄膜化の際破断し易いため、満足される薄膜化が難しい材料である。一方で、カーボンナノチューブは高価な材料であるため、少量の使用により効果を発揮させることが求められているのが現状である。   Carbon nanotubes have excellent electrical and thermal conductivity, and are expected to be used in various applications that take advantage of these properties. However, since carbon nanotubes are usually intertwined, thin film formation Therefore, it is a difficult material to achieve satisfactory thinning because it is very difficult to break and is easily broken during thinning. On the other hand, since the carbon nanotube is an expensive material, it is currently required to exhibit the effect by using a small amount.

かかる要請から、カーボンナノチューブの薄膜化方法として、電場を利用してカーボンナノチューブを製膜することにより行う方法、具体的には、ジメチルホルムアミド溶媒中にカーボンナノチューブを分散させ、この分散溶媒中にて電極に電圧をかけ、陽極側にカーボンナノチューブを吸着させるという方法が提案されている。しかるに、かかる方法ではカーボンナノチューブの分散量が少ないため、結果的に吸着量が少ないといった解決すべき課題が残されている。   From such a request, as a method of thinning the carbon nanotube, a method of forming a carbon nanotube using an electric field, specifically, by dispersing the carbon nanotube in a dimethylformamide solvent, A method of applying a voltage to the electrode and adsorbing the carbon nanotube on the anode side has been proposed. However, in this method, since the amount of carbon nanotube dispersion is small, there remains a problem to be solved such that the amount of adsorption is small.

カーボンナノチューブの薄膜化については、電場を利用してカーボンナノチューブを製膜する方法では、溶媒中にカーボンナノチューブを分散させる必要があるが、分散に際してボールミル、ビーズミル等の分散装置を用いた場合には、カーボンナノチューブの破断が生じ、好ましくない。また、分散装置としてホモジナイザ、超音波等を用いた場合には、1回に処理できる量が少なく、分散に要する時間も長いという欠点がみられる。   Regarding the thinning of carbon nanotubes, in the method of forming carbon nanotubes using an electric field, it is necessary to disperse carbon nanotubes in a solvent, but in the case of using a dispersing device such as a ball mill or a bead mill for dispersion, The carbon nanotube breaks, which is not preferable. Further, when a homogenizer, an ultrasonic wave, or the like is used as a dispersion device, there are disadvantages that the amount that can be processed at one time is small and the time required for dispersion is long.

本発明の目的は、炭素材料の溶媒中における分散性を向上させて、炭素材料としてカーボンナノチューブを用いた場合にあってもそれの破断がみられず、かつ大容量、短時間で薄膜形成が可能な炭素材料の製膜方法を提供することにある。   The object of the present invention is to improve the dispersibility of a carbon material in a solvent, and even when carbon nanotubes are used as the carbon material, it is not broken, and a thin film can be formed in a large capacity and in a short time. An object of the present invention is to provide a method for forming a carbon material.

かかる本発明の目的は、炭素材料を、塩基性高分子型分散剤を添加した炭化水素系溶媒中に分散させ、この溶媒中で被被覆材を陽極として電圧を印加し、陽極材表面上に炭素材料薄膜を形成する際、非プロトン溶媒中への分散を対向衝突分散処理によって行うことによって達成される。対向衝突分散処理は、噴流衝合装置を用いて行われる。   An object of the present invention is to disperse a carbon material in a hydrocarbon solvent to which a basic polymer type dispersant is added, and in this solvent, a voltage is applied using the material to be coated as an anode, on the surface of the anode material. When forming a carbon material thin film, it is achieved by carrying out dispersion in an aprotic solvent by counter collision dispersion treatment. The opposing collision dispersion process is performed using a jet collision device.

被被覆材を陽極として電圧を印加し、陽極材の表面上に炭素材料を付着させるに際して、炭素材料を塩基性高分子型分散剤を添加した非プロトン性溶媒中に対向衝突分散処理によって分散させることにより、炭素材料がカーボンナノチューブであってもそれの溶媒中における分散性を向上させて、カーボンナノチューブを破断させることなく、吸着性が良好な、換言すれば吸着量を増加させた炭素材料薄膜の形成が実現可能となる。このように、本発明方法は導通のある基材であれば如何なるものでも、また導通のない基材でも無電解メッキを施すことにより、基材表面への製膜が可能である。   When a voltage is applied using the material to be coated as an anode and the carbon material is deposited on the surface of the anode material, the carbon material is dispersed in an aprotic solvent to which a basic polymer type dispersant is added by counter collision dispersion treatment. Therefore, even if the carbon material is a carbon nanotube, the dispersibility in the solvent of the carbon material is improved, and the carbon nanotube is thin, so that the adsorbing property is good without breaking the carbon nanotube, in other words, the adsorption amount is increased. Can be realized. As described above, the method of the present invention can be used to form a film on the surface of the base material by applying electroless plating to any conductive base material or a non-conductive base material.

また、塩基性高分子型分散剤を添加した非プロトン性溶媒、好ましくは芳香族炭化水素溶媒中に分散させた炭素材料、特にカーボンナノチューブの平均粒子径を100〜1000nmの範囲に設定した場合には、吸着量および吸着層中のカーボンナノチューブ重量割合をいずれも増加させることができる。このことは、吸着中に同時に吸着される塩基性高分子型分散剤の重量割合が減少し、その結果としてカーボンナノチューブの重量割合が増加することを意味し、カーボンナノチューブ吸着層の機能として求められる導電性が十分に得られ、電気抵抗を減少させるという効果を奏する。   Also, when the average particle diameter of carbon materials, particularly carbon nanotubes, dispersed in an aprotic solvent, preferably an aromatic hydrocarbon solvent to which a basic polymer type dispersant is added, is set in the range of 100 to 1000 nm. Can increase both the amount of adsorption and the weight ratio of carbon nanotubes in the adsorption layer. This means that the weight ratio of the basic polymer dispersant adsorbed simultaneously during the adsorption decreases, and as a result, the weight ratio of the carbon nanotubes increases, and is required as a function of the carbon nanotube adsorption layer. Conductivity is sufficiently obtained, and the effect of reducing electric resistance is achieved.

炭素材料としては、カーボンナノチューブ、カーボンブラック、黒鉛、カーボンファイバー、フラーレンなどが挙げられるが、好ましくは、優れた電気伝導性と熱伝導性の観点からカーボンナノチューブが、電気特性および嵩密度の観点からカーボンブラックまたは黒鉛が用いられる。これらは、溶液分散するものであれば特に制限なく使用することができ、カーボンナノチューブとしては単層カーボンナノチューブまたは多層カーボンナノチューブなどが、カーボンブラックとしては、ケッチェンブラック、アセチレンブラックなどが、また黒鉛としては、人造黒鉛、天然黒鉛のいずれかが用いられる。   Examples of the carbon material include carbon nanotube, carbon black, graphite, carbon fiber, fullerene, and the like. Preferably, from the viewpoint of excellent electrical conductivity and thermal conductivity, the carbon nanotube is from the viewpoint of electrical characteristics and bulk density. Carbon black or graphite is used. These can be used without particular limitation as long as they are dispersed in a solution, such as single-walled carbon nanotubes or multi-walled carbon nanotubes as carbon nanotubes, ketjen black, acetylene black, etc. as carbon black, and graphite. As such, either artificial graphite or natural graphite is used.

塩基性高分子型分散剤としては、分子量が数千〜数万であり、エステルを有する構造のものであれば特に制限なく使用することができ、脂肪酸エステルなど、好ましくはポリエステル酸アマイドアミン塩が用いられる。実際には、市販品、例えば楠本化成製品ディスパロンDA-703-50、DA-705、DA-725、DA-234等が用いられる。この他、ポリエーテルリン酸エステルのアミン塩である同社製品ディスパロンDA-325等も用いられる。これらは、1〜20重量%、好ましくは3〜10重量%の割合で、非プロトン性溶媒、好ましくは炭化水素系溶媒中に添加されて用いられる。この使用割合がこれ以下では、本発明の目的が達成されず、一方これ以上の割合で用いられると、形成した薄膜中に塩基性高分子型分散剤が多量に付着することとなり、好ましくない。   As the basic polymer type dispersant, a molecular weight of several thousand to several tens of thousands can be used without particular limitation as long as it has an ester structure, and a fatty acid ester or the like, preferably a polyester acid amide amine salt is used. Used. In practice, commercially available products such as Enomoto Kasei products Disparon DA-703-50, DA-705, DA-725, DA-234 and the like are used. In addition, the company's product Disparon DA-325, which is an amine salt of polyether phosphate, is also used. These are used by being added to an aprotic solvent, preferably a hydrocarbon solvent, in a proportion of 1 to 20% by weight, preferably 3 to 10% by weight. If the use ratio is less than this, the object of the present invention is not achieved. On the other hand, if the use ratio is more than this, a large amount of the basic polymer type dispersant is adhered to the formed thin film, which is not preferable.

塩基性高分子型分散剤を添加した炭化水素溶媒中に分散させた炭素材料、好ましくはカーボンナノチューブの平均粒子径(湿式でのレーザー散乱法による50%粒子径)は、100〜1000nm、好ましくは500〜800nmに設定されることが好ましい。このような平均粒子径への調整は、ボールミル、超音波ホモジナイザを用いて行われる。超音波ホモジナイザの代りに、超音波洗浄器を用いると、分散液中のカーボンナノチューブ凝集塊の平均粒子径は1000nm以上となり、またポット型ボールミルを用いると、カーボンナノチューブの破断などがみられることもある。   The average particle size of carbon material, preferably carbon nanotubes (50% particle size by wet laser scattering method) dispersed in a hydrocarbon solvent to which a basic polymer type dispersant is added is preferably 100 to 1000 nm, preferably The thickness is preferably set to 500 to 800 nm. Such adjustment to the average particle size is performed using a ball mill or an ultrasonic homogenizer. If an ultrasonic cleaner is used instead of an ultrasonic homogenizer, the average particle diameter of the carbon nanotube aggregates in the dispersion will be 1000 nm or more, and if a pot-type ball mill is used, the carbon nanotubes may break. is there.

非プロトン性溶媒としては、芳香族炭化水素溶媒などが挙げられるが、好ましくはキシレンまたはトルエンが用いられる。これらの炭化水素溶媒は、炭素材料に対して一般に約100〜1000倍量程度用いられる。   Examples of the aprotic solvent include aromatic hydrocarbon solvents, and preferably xylene or toluene is used. These hydrocarbon solvents are generally used in an amount of about 100 to 1000 times the carbon material.

被被覆材陽極としては、導電性のものであれば特に制限なく、また導通のない基材でも無電解メッキを施したのもを使用することができ、例えば樹脂と黒鉛などからなる燃料電池用の電極のガス拡散体基材またはセパレータ基材、帯電防止基材、電磁波シールド基材、リチウム電池電極基材、電界放出ディスプレー基材、放熱基材などが用いられるが、好ましくはカーボンペーパー、カーボン不織布、カーボン織布などの多孔質炭素体であるカーボンシート基材が用いられる。   The anode of the coating material is not particularly limited as long as it is conductive, and a non-conductive base material subjected to electroless plating can be used, for example, an electrode for a fuel cell made of resin and graphite Gas diffuser base material or separator base material, antistatic base material, electromagnetic wave shield base material, lithium battery electrode base material, field emission display base material, heat dissipation base material, etc. are used, preferably carbon paper, carbon non-woven fabric, A carbon sheet substrate that is a porous carbon body such as a carbon woven fabric is used.

本発明の原理は、例えばカーボンナノチューブにあっては次の通りである。カーボンナノチューブは製造時に用いる金属触媒の除去のため、加熱、酸処理等の精製が行われるが、この際、カーボンナノチューブに存在する欠陥箇所が酸化され、カルボニル基、水酸基等の官能性基が発生し、カーボンナノチューブは水中でアニオン電荷をもつと考えられる。そこで、カーボンナノチューブを分散させた溶液に電場をかければ、カーボンナノチューブは陽極である燃料電池セパレータ基材に移動し付着(吸着)し、また付着したカーボンナノチューブは凝集のし易さから繋がったネットワークを形成することとなる。   The principle of the present invention is, for example, as follows for a carbon nanotube. Carbon nanotubes are refined by heating, acid treatment, etc. to remove the metal catalyst used in production. At this time, defective portions present in the carbon nanotubes are oxidized, and functional groups such as carbonyl groups and hydroxyl groups are generated. Carbon nanotubes are considered to have an anionic charge in water. Therefore, if an electric field is applied to a solution in which carbon nanotubes are dispersed, the carbon nanotubes move to and adhere to (adsorb on) the fuel cell separator substrate that is the anode, and the attached carbon nanotubes are connected due to the ease of aggregation. Will be formed.

炭素材料、好ましくはカーボンナノチューブの塩基性高分子型分散剤を添加した非プロトン性溶媒、好ましくは芳香族炭化水素溶媒中への分散を、ボールミル、超音波ホモジナイザなどを用いて行うと、元来凝集塊の形状となっているカーボンナノチューブに破断がみられる。このようなカーボンナノチューブの分散時における破断は、噴流衝合装置などを用いて行われる対向衝突分散処理によって有効に防止される。   When a carbon material, preferably a carbon nanotube, is dispersed in an aprotic solvent to which a basic polymer type dispersant is added, preferably an aromatic hydrocarbon solvent, using a ball mill, an ultrasonic homogenizer, or the like, The carbon nanotubes in the shape of aggregates are broken. Such breakage at the time of dispersion of the carbon nanotubes is effectively prevented by a counter collision dispersion process performed using a jet collision device or the like.

噴流衝合装置は、カーボンナノチューブ溶液を超高圧まで加圧、噴射し、双方向から互いに衝突させることにより、カーボンナノチューブの凝集塊を解砕するものであり、このような分散手法を用いることにより、短時間にしてかつ大容量のカーボンナノチューブ分散処理液を調製することが可能であり、しかも電着によって作製された薄膜中のカーボンナノチューブに破断は観測されない(走査型電子顕微鏡観察による)。
特開2002−177809号公報
A jet collision device is a device that crushes agglomerates of carbon nanotubes by pressurizing and injecting the carbon nanotube solution to ultra-high pressure and colliding with each other from both directions. By using such a dispersion technique, In addition, it is possible to prepare a large-capacity carbon nanotube dispersion treatment solution in a short time, and no breakage is observed in the carbon nanotubes in the thin film produced by electrodeposition (by observation with a scanning electron microscope).
JP 2002-177809 A

対向衝突の概念は、流体(本発明にあっては上記カーボンナノチューブの塩基性高分子型分散剤添加非プロトン性溶媒への分散液)に圧力エネルギーを与え、途中で2流路に分岐させ、再度合流する部分で対向衝突させて超微粒子化し、乳化、分散を行う湿式粉砕システムである。   The concept of facing collision is to apply pressure energy to a fluid (in the present invention, a dispersion of the above-mentioned carbon nanotubes in a basic polymer type dispersant-added aprotic solvent), branching into two channels in the middle, This is a wet pulverization system that emulsifies and disperses by making it collide oppositely at the part where it merges again to make ultrafine particles.

より具体的には、筒状体中央部の2個所に径を小さくした括れ部を設け、その括れ部、すなわち左右の流入口の設けられたダイヤモンドノズルから、途中で2流路に分岐された超高圧流体をさらに加速された状態で、実際には最大で音速の4倍程度の加速された状態で、ダイヤモンドブロックで構成されたアルティマイザ用(上記筒状体中央部)に左右より導入し、この中央部で対向衝突させて微粒子化し、例えば筒状体中央部に設けられた排出孔より超微粒子化した流体として排出される。 More specifically, a constricted portion having a reduced diameter is provided at two locations in the central portion of the cylindrical body, and the constricted portion, that is, a diamond nozzle provided with left and right inlets, is branched into two flow paths on the way. The ultra-high pressure fluid is further accelerated, and is actually accelerated up to about 4 times the speed of sound, and introduced into the optimizer (diameter of the cylindrical body) composed of diamond blocks from the left and right. Then, the particles collide with each other at the central portion to form fine particles and, for example, are discharged as ultrafine particles from a discharge hole provided in the central portion of the cylindrical body.

このような湿式超微粒子化、乳化、分散させる噴流衝合装置を用いたシステム、例えば(株)スギノマシンによるアルティマーザーシステムを用いることにより、次のような効果が奏せられる。
(1)粉砕媒体を一切使用していないため、不純物や汚染物が殆どない。
(2)エネルギー密度が高いため、短時間でサブミクロン単位の微粒子化を可能とする。
(3)連続処理タイプのため、前工程および後工程のインライン化が可能である。
(4)メディア式(粉砕媒体使用)よりも、均一でシャープな粒度分布が得られる。
(5)オリフィスの径を大きくしても微粒子化の効果が変わらないため、大流量処理が可能となる。より具体的には、固形分濃度が50重量%のものあるいは高粘性(例えば、2000cps)のもの迄処理が可能である。
(6)シール部の精緻構造により、硬質スラリーの処理が可能である。
(7)メディア式に比べ、金属等の粒子形状を変えずに分散させることが可能であり、破断し易いカーボンナノチューブにあっても、このような分散処理により破断することなく、電着によって作製される薄膜中に吸着層を形成せしめることができる。
The following effects can be obtained by using a system using such a wet type ultrafine particle, emulsifying and dispersing jet collision apparatus, for example, an Ultimar system by Sugino Machine Co., Ltd.
(1) Since no grinding media is used, there are almost no impurities or contaminants.
(2) Since the energy density is high, it is possible to make fine particles in submicron units in a short time.
(3) Because of the continuous processing type, it is possible to inline the previous process and the subsequent process.
(4) A more uniform and sharper particle size distribution can be obtained than the media type (using grinding media)
(5) Since the effect of atomization does not change even if the orifice diameter is increased, a large flow rate treatment is possible. More specifically, it can be processed up to a solid concentration of 50% by weight or high viscosity (for example, 2000 cps).
(6) The hard slurry can be processed by the precise structure of the seal part.
(7) Compared to the media type, it is possible to disperse without changing the shape of particles such as metal, and even carbon nanotubes that are easily broken can be produced by electrodeposition without breaking by such dispersion treatment. An adsorption layer can be formed in the thin film.

このような対向衝突分散処理には、噴流衝合装置が用いられ、かかる噴流衝合装置としては市販の、例えばスギノマシン製アルティマイザーシステムHJPシリーズのもの等を用いることができる。このような噴流衝合装置を用いての分散処理は、一回約1〜5分間程度で複数回必要に応じて行われる。   For such an opposing collision dispersion process, a jet collision device is used. As such a jet collision device, a commercially available, for example, the one of the optimizer system HJP series made by Sugino Machine can be used. Dispersion processing using such a jet collision device is performed a plurality of times as necessary in about 1 to 5 minutes at a time.

炭素材料薄膜の形成は、炭素材料を塩基性高分子型分散剤を添加した非プロトン性溶媒中で、上記陽極に電圧を印加することにより陽極材上に付着(吸着)することにより行われる。ここで、印加される電圧は、1〜1000V、好ましくは5〜500Vであり、印加電圧がこれより低い場合には、炭素材料の付着量が少なくなってしまい、一方これより大きい場合には、炭素材料の付着膜が不均一となり、かつ電力効率が悪化するため好ましくない。また、印加時間は必要とする製膜量により異なるが、例えば1〜3000秒、好ましくは30〜1000秒あるいは周期的に印加することも可能である。このとき、炭素材料の沈降を防ぐべく、分散溶液を攪拌しながら製膜することも行われる。また、製膜時にマスキングを行うことで、導電性が必要な部分にのみ炭素材料を付着させることができる。   The carbon material thin film is formed by adhering (adsorbing) the carbon material on the anode material by applying a voltage to the anode in an aprotic solvent to which a basic polymer dispersant is added. Here, the applied voltage is 1 to 1000 V, preferably 5 to 500 V. When the applied voltage is lower than this, the amount of adhesion of the carbon material decreases, whereas when larger than this, The adhesion film of the carbon material is not uniform, and the power efficiency is deteriorated, which is not preferable. The application time varies depending on the amount of film formation required. For example, it can be applied for 1 to 3000 seconds, preferably 30 to 1000 seconds, or periodically. At this time, in order to prevent sedimentation of the carbon material, a film is also formed while stirring the dispersion solution. Further, by performing masking at the time of film formation, the carbon material can be attached only to a portion requiring conductivity.

表面に炭素材料薄膜が製膜された陽極材は、分散溶液中から取り出した後、表面に製膜された炭素材料以外を取除くように洗浄され、乾燥される。   The anode material having the carbon material thin film formed on the surface is taken out of the dispersion solution, and then washed and dried so as to remove other than the carbon material formed on the surface.

以上の工程を繰り返し行うことで、陽極材表面上に製膜される炭素材料の膜厚を厚くしていくことができる。すなわち、上記工程の繰り返し回数を設定することによって、製膜される炭素材料の膜厚を所望の厚み、例えば約1〜50μm程度の厚みに制御することが可能となる。   By repeating the above steps, the film thickness of the carbon material formed on the anode material surface can be increased. That is, by setting the number of repetitions of the above steps, the film thickness of the carbon material to be formed can be controlled to a desired thickness, for example, about 1 to 50 μm.

次に、実施例について本発明を説明する。   Next, the present invention will be described with reference to examples.

実施例1
キシレン90mlに、ポリエステル酸アマイドアミン塩(楠本化成製品ディスパロンDA-703-50;50重量%キシレン溶液)100mlを加え、さらにキシレンを加えて全体を1Lとしたキシレン溶液に、多層カーボンナノチューブ5gを添加した。この添加液を、予備分散としてホモジナイザで30分間攪拌した後、噴流衝合装置(スギノマシン製マルティマイザーシステムHJP-20005)を用いて、約3分間の対向衝突分散処理を5回くり返して行い、多層カーボンナノチューブ分散液を得た。
Example 1
Add 100 ml of polyester acid amide amine salt (Tsubakimoto Chemicals Disparon DA-703-50; 50 wt% xylene solution) to 90 ml of xylene, and then add 5 g of multi-walled carbon nanotubes to the xylene solution to add 1 x to the whole. did. After stirring this additive solution with a homogenizer for 30 minutes as a preliminary dispersion, using a jet abutting device (Sugino Machine Optimizer System HJP-20005), the counter collision dispersion treatment for about 3 minutes was repeated 5 times. A multi-walled carbon nanotube dispersion was obtained.

次に電極としてITO電極を用い、ミニクランプを用いて電極間が2cmとなるように設置し、200Vの電圧を10分間印加することにより、陽極材への製膜処理(製膜面積12cm2)を行った。製膜後、ITO電極断面の走査型電子顕微鏡観察を行ったところ、約30μmのカーボンナノチューブの吸着層が確認された。なお、吸着層中のカーボンナノチューブの破断は観測されなかった。 Next, using an ITO electrode as an electrode, using a mini clamp, set up so that the distance between the electrodes is 2 cm, and apply a voltage of 200 V for 10 minutes to form a film on the anode material (film formation area 12 cm 2 ) Went. After forming the film, the cross section of the ITO electrode was observed with a scanning electron microscope, and an adsorbed layer of about 30 μm carbon nanotubes was confirmed. Note that no breakage of the carbon nanotubes in the adsorption layer was observed.

実施例2
実施例1において、約3分間の対向衝突分散処理を10回くり返して行い、約31μmのカーボンナノチューブの吸着層が確認された。なお、吸着層中のカーボンナノチューブの破断は観測されなかった。
Example 2
In Example 1, the opposing collision dispersion treatment for about 3 minutes was repeated 10 times, and an adsorption layer of about 31 μm carbon nanotubes was confirmed. Note that no breakage of the carbon nanotubes in the adsorption layer was observed.

実施例3
実施例1において、約3分間の対向衝突分散処理を15回くり返して行い、約30μmのカーボンナノチューブの吸着層が確認された。なお、吸着層中のカーボンナノチューブの破断は観測されなかった。
Example 3
In Example 1, the counter collision dispersion treatment for about 3 minutes was repeated 15 times, and an adsorption layer of carbon nanotubes of about 30 μm was confirmed. Note that no breakage of the carbon nanotubes in the adsorption layer was observed.

比較例1
実施例1において、キシレン溶液量を100mlとし、対向衝突分散処理の代りにポット型ボールミル(ニッカトー製DHボールミル)を用い、回転数60rpmで72時間攪拌処理を行った。ITO電極断面の走査型電子顕微鏡観察を行うと、カーボンナノチューブは破断した状態で吸着していた。
Comparative Example 1
In Example 1, the amount of xylene solution was set to 100 ml, and a pot type ball mill (DH ball mill manufactured by Nikkato) was used instead of the counter collision dispersion process, and the stirring process was performed for 72 hours at a rotation speed of 60 rpm. When the cross section of the ITO electrode was observed with a scanning electron microscope, the carbon nanotubes were adsorbed in a broken state.

比較例2
実施例1において、キシレン溶液量を100mlとし、対向衝突分散処理の代りに超音波ホモジナイザ(BRANSON SONIFIER 450)を用い、300Wの照射を1時間行った。製膜を行った結果、膜むらが発生し、均一な薄膜は得られなかった。
Comparative Example 2
In Example 1, the amount of xylene solution was 100 ml, and an ultrasonic homogenizer (BRANSON SONIFIER 450) was used instead of the opposing collision dispersion treatment, and 300 W irradiation was performed for 1 hour. As a result of film formation, film unevenness occurred and a uniform thin film could not be obtained.

比較例3
比較例2において、超音波ホモジナイザによる照射時間を12時間に変更した。均一な製膜が得られ、カーボンナノチューブの破断は観測されなかったが、分散処理は少量宛しか行えず、長時間を要した。
Comparative Example 3
In Comparative Example 2, the irradiation time by the ultrasonic homogenizer was changed to 12 hours. Uniform film formation was obtained, and no breakage of the carbon nanotubes was observed, but the dispersion treatment could only be carried out in a small amount and took a long time.

Claims (7)

炭素材料を、塩基性高分子型分散剤を添加した非プロトン性溶媒中に分散させ、この溶媒中で被被覆材を陽極として電圧を印加し、陽極材表面上に炭素材料薄膜を形成させるに際し、非プロトン性溶媒中への分散を対向衝突分散処理によって行うことを特徴とする炭素材料薄膜の製造方法。   When a carbon material is dispersed in an aprotic solvent to which a basic polymer type dispersant is added, a voltage is applied in this solvent using the coating material as an anode, and a carbon material thin film is formed on the surface of the anode material. A method for producing a carbon material thin film, characterized in that dispersion in an aprotic solvent is carried out by opposing collision dispersion treatment. 対向衝突分散処理が噴流衝合装置を用いて行われる請求項1記載の炭素材料薄膜の製造方法。   The carbon material thin film manufacturing method according to claim 1, wherein the opposing collision dispersion treatment is performed using a jet collision device. 炭素材料がカーボンナノチューブ、カーボンブラックまたは黒鉛である請求項1記載の炭素材料薄膜の製膜方法。   The method for producing a carbon material thin film according to claim 1, wherein the carbon material is carbon nanotube, carbon black, or graphite. 塩基性高分子型分散剤が、ポリエステル酸アマイドアミン塩である請求項1記載の炭素材料薄膜の製膜方法。   The method for producing a carbon material thin film according to claim 1, wherein the basic polymer type dispersant is a polyester acid amide amine salt. 非プロトン性溶媒が芳香族炭化水素溶媒である請求項1記載の炭素材料薄膜の製膜方法。   The method for producing a carbon material thin film according to claim 1, wherein the aprotic solvent is an aromatic hydrocarbon solvent. 塩素性高分子型分散剤を添加した非プロトン性溶媒中に分散させた炭素材料が100〜1000nmの平均粒子径(湿式でのレーザー散乱法による50%粒子径)を有する請求項1記載の炭素材料薄膜の製膜方法。   The carbon according to claim 1, wherein the carbon material dispersed in the aprotic solvent to which the chlorinated polymer type dispersant is added has an average particle size of 100 to 1000 nm (50% particle size by wet laser scattering method). A method for forming a material thin film. 炭素材料がカーボンナノチューブである請求項6記載の炭素材料薄膜の製膜方法。
The method for producing a carbon material thin film according to claim 6, wherein the carbon material is a carbon nanotube.
JP2005236314A 2005-08-17 2005-08-17 Method for producing carbon material thin film Expired - Fee Related JP4910332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005236314A JP4910332B2 (en) 2005-08-17 2005-08-17 Method for producing carbon material thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005236314A JP4910332B2 (en) 2005-08-17 2005-08-17 Method for producing carbon material thin film

Publications (3)

Publication Number Publication Date
JP2007051018A JP2007051018A (en) 2007-03-01
JP2007051018A5 JP2007051018A5 (en) 2008-09-18
JP4910332B2 true JP4910332B2 (en) 2012-04-04

Family

ID=37915729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005236314A Expired - Fee Related JP4910332B2 (en) 2005-08-17 2005-08-17 Method for producing carbon material thin film

Country Status (1)

Country Link
JP (1) JP4910332B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908858B2 (en) * 2006-01-31 2012-04-04 保土谷化学工業株式会社 Method for producing fine carbon fiber aggregate
JP5303234B2 (en) * 2008-09-30 2013-10-02 日本ケミコン株式会社 High-density carbon nanotube aggregate and method for producing the same
JP2010173884A (en) * 2009-01-28 2010-08-12 Jsr Corp Carbon nanotube dispersion, film using the same and method of producing the same
JP5933374B2 (en) * 2012-07-03 2016-06-08 ハリマ化成株式会社 Method for producing thin-layer graphite or thin-layer graphite compound
JP6495065B2 (en) * 2014-03-31 2019-04-03 大阪瓦斯株式会社 Method for producing flaky carbon
JP6495066B2 (en) * 2014-03-31 2019-04-03 大阪瓦斯株式会社 Method for producing flaky carbon
JP2019125481A (en) * 2018-01-16 2019-07-25 トヨタ自動車株式会社 Negative electrode mixture for all-solid lithium ion secondary battery and manufacturing method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0840712A (en) * 1994-08-02 1996-02-13 Japan Synthetic Rubber Co Ltd Production of dispersion liquid of carbon electric conductor powder
JP2002063894A (en) * 2000-08-22 2002-02-28 Sharp Corp Production method of carbon material film, and nonaqueous secondary battery using the carbon material film
JP2002255528A (en) * 2000-09-18 2002-09-11 Matsushita Electric Ind Co Ltd Fine particle dispersed liquid and its producing method
JP4306990B2 (en) * 2001-10-18 2009-08-05 独立行政法人産業技術総合研究所 Nonlinear optical element
US7252749B2 (en) * 2001-11-30 2007-08-07 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
JP2005035810A (en) * 2003-07-15 2005-02-10 Mikuni Color Ltd Zero-dimensional or one-dimensional carbon structure dispersion
JP4182214B2 (en) * 2003-11-27 2008-11-19 独立行政法人産業技術総合研究所 Carbon nanotube dispersed polar organic solvent
JP4581663B2 (en) * 2004-07-27 2010-11-17 Nok株式会社 Method for forming carbon material thin film
TW200710029A (en) * 2005-06-07 2007-03-16 Kuraray Co Carbon-nanotube dispersed liquid and transparent electorical conductive film using it
JP4982734B2 (en) * 2005-07-08 2012-07-25 国立大学法人北海道大学 Carbon nanotube dispersion paste, carbon nanotube dispersion solution and method for producing the same

Also Published As

Publication number Publication date
JP2007051018A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
JP5050352B2 (en) Post-treatment method for carbon material thin film
JP4910332B2 (en) Method for producing carbon material thin film
US11616220B2 (en) Electrodepositable compositions and electrodeposited coatings including graphenic carbon particles
KR102591338B1 (en) Alternating current electrospray manufacturing and products thereof
KR101310520B1 (en) Electrode material for electrochemical device and composite particle
CN108321353B (en) Process for manufacturing conductive particle thin films for lithium ion batteries
Kim et al. Fabrication and electrochemical properties of carbon nanotube/polypyrrole composite film electrodes with controlled pore size
CN101451262B (en) Methods and devices for electrophoretic deposition of a uniform carbon nanotube composite film
JP2016025077A (en) Electrode composition for battery
WO2017083566A1 (en) High performance electrodes
JP4581663B2 (en) Method for forming carbon material thin film
KR20110045024A (en) Electrodes and Lithium Ion Capacitors for Lithium Ion Capacitors
Wang et al. Hybrid low resistance ultracapacitor electrodes based on 1-pyrenebutyric acid functionalized centimeter-scale graphene sheets
US11387460B2 (en) Systems and methods for making structures defined by CNT pulp networks
CN109689329A (en) The method and apparatus for generating the large area monofilm of the nano material of solution dispersion
CN1962429A (en) Preparation method of pure nano-carbon tube film
Fujimori et al. Mechanical and electromagnetic interference shielding properties of poly (vinyl alcohol)/graphene and poly (vinyl alcohol)/multi-walled carbon nanotube composite nanofiber mats and the effect of Cu top-layer coating
JP2010173884A (en) Carbon nanotube dispersion, film using the same and method of producing the same
US20190044143A1 (en) High performance electrodes, materials, and precursors thereof
RU2729486C1 (en) Coating methods for electroconductive substrates and corresponding electrodeposition compositions containing graphene carbon particles
JP2007051018A5 (en)
US20210179880A1 (en) Dispersions comprising high surface area nanotubes and discrete carbon nanotubes
JP4961746B2 (en) Method for forming carbon nanotube thin film
KR101953804B1 (en) System for manufacturing lithium secondary battery anode
JP2013229240A (en) Conductive particle and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R150 Certificate of patent or registration of utility model

Ref document number: 4910332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees