JP2007039312A - Apparatus and method for producing hydrogen - Google Patents

Apparatus and method for producing hydrogen Download PDF

Info

Publication number
JP2007039312A
JP2007039312A JP2006135424A JP2006135424A JP2007039312A JP 2007039312 A JP2007039312 A JP 2007039312A JP 2006135424 A JP2006135424 A JP 2006135424A JP 2006135424 A JP2006135424 A JP 2006135424A JP 2007039312 A JP2007039312 A JP 2007039312A
Authority
JP
Japan
Prior art keywords
dehydrogenation
catalyst
aromatic compound
hydrogenated aromatic
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006135424A
Other languages
Japanese (ja)
Inventor
Katsuhiko Takagi
克彦 高木
Kenjiro Hamada
謙二郎 浜田
Masakuni Inoko
正邦 猪子
Kenji Matsubara
健次 松原
Giichi Sugimoto
義一 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
JFE Engineering Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical JFE Engineering Corp
Priority to JP2006135424A priority Critical patent/JP2007039312A/en
Publication of JP2007039312A publication Critical patent/JP2007039312A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for producing hydrogen by the dehydrogenation of a hydrogenated aromatic compound where a quick dehydrogenation reaction can be started by the quick and homogeneous supply of reaction heat to a catalyst, where the rate of hydrogen production is not reduced by the stereoisomer of the hydrogenated aromatic compound to be dehydrogenated and where the rate of hydrogen production per a reaction vessel is large and to provide a method for producing hydrogen using it. <P>SOLUTION: The apparatus for producing hydrogen by the dehydrogenation of a hydrogenated aromatic compound including the catalyst where an oxide having weak solid acidity and being capable of causing the skeletal isomerization reaction of the hydrogenated aromatic compound and the dehydrogenation reaction active ingredient of the hydrogenated aromatic compound are supported on a metallic catalyst carrier and the method for producing hydrogen using it can solve the problems. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、デカリンやパーヒドロアントラセン等の異性体が存在する水素化芳香族化合物を脱水素反応させて水素ガスを製造する装置と方法に関するものである。   The present invention relates to an apparatus and method for producing hydrogen gas by dehydrogenating a hydrogenated aromatic compound containing isomers such as decalin and perhydroanthracene.

自動車、並びに、家庭や事務所向け燃料電池用の燃料水素の供給方法として、シクロへキサンやデカリン等に代表される水素化芳香族化合物の脱水素反応による水素ガスの供給が検討されている。これらの燃料電池への水素の供給は、長期間にわたり連続的に行われるのではなく、必要とされる時に必要な量を間歇的に供給することが求められる。そのため、水素を発生させる水素化芳香族化合物の脱水素反応は、迅速な反応開始が必要となる。   As a method for supplying fuel hydrogen for automobiles and fuel cells for homes and offices, supply of hydrogen gas by dehydrogenation of hydrogenated aromatic compounds typified by cyclohexane, decalin and the like has been studied. The supply of hydrogen to these fuel cells is not performed continuously over a long period of time, but it is required to supply the necessary amount intermittently when needed. Therefore, the dehydrogenation reaction of the hydrogenated aromatic compound that generates hydrogen requires a quick start of the reaction.

特許文献1には、Pt/Al23系触媒と水素選択透過が可能な多孔質材料管とを組合せた膜反応器による、シクロへキサンの脱水素方法が開示されている。シェル・アンド・チューブ状の熱交換型反応器とすることにより、効率的な熱交換が可能とされているが、脱水素触媒がPt/Al23系であり熱伝導率が低く、この方法では迅速なる脱水素反応開始は著しく困難である。 Patent Document 1 discloses a cyclohexane dehydrogenation method using a membrane reactor in which a Pt / Al 2 O 3 catalyst and a porous material tube capable of hydrogen permeation are combined. By using a shell-and-tube heat exchange reactor, efficient heat exchange is possible, but the dehydrogenation catalyst is a Pt / Al 2 O 3 system and has low thermal conductivity. In this method, it is extremely difficult to quickly start the dehydrogenation reaction.

一方、水素化芳香族化合物の脱水素触媒に用いられる担体としては、特許文献2にはゼオライト、チタ二ア、シリカ、アルミナ等が開示されており、また特許文献3には多孔質炭素が開示されている。しかしながら、脱水素される水素化芳香族化合物の構造の違いによる、脱水素反応活性や選択性、並びに、水素発生速度等への担体の違いの影響については何ら知られていない。   On the other hand, as a carrier used for a dehydrogenation catalyst of a hydrogenated aromatic compound, Patent Document 2 discloses zeolite, titania, silica, alumina and the like, and Patent Document 3 discloses porous carbon. Has been. However, nothing is known about the influence of the difference in the support on the dehydrogenation reaction activity and selectivity, the hydrogen generation rate, and the like due to the difference in the structure of the hydrogenated aromatic compound to be dehydrogenated.

また、特許文献3には、高伝熱性基板等に多孔質炭素担持脱水素触媒を接触させて反応熱供給する水素ガス生成装置が開示されている。この方法によれば、前記特許文献1の方法に比べて反応熱供給が速くなるものと考えられるが、触媒担体が多孔質炭素材料であるため、金属質担体に比べ、触媒層内での温度沈下が大きくなり、高伝熱性基板から離れた位置の触媒では反応速度が低下してしまう。さらに、多孔質炭素担体は嵩高いので、反応装置が大きくなる欠点も有している。   Patent Document 3 discloses a hydrogen gas generator that supplies a reaction heat by bringing a porous carbon-supported dehydrogenation catalyst into contact with a highly heat conductive substrate or the like. According to this method, the reaction heat supply is considered to be faster than the method of Patent Document 1, but since the catalyst support is a porous carbon material, the temperature in the catalyst layer is higher than that of the metal support. Sedimentation increases, and the reaction rate decreases with the catalyst at a position away from the highly heat conductive substrate. Further, since the porous carbon support is bulky, it has a drawback that the reaction apparatus becomes large.

特開昭63−85002号公報JP 63-85002 A 特開2001−110437号公報JP 2001-110437 A 特開2002−255503号公報JP 2002-255503 A

以上述べてきたように、触媒への迅速、かつ、均一な反応熱供給による迅速な脱水素反応開始を可能とし、かつ、反応容器あたりの水素発生速度が大きい水素化芳香族化合物の脱水素反応を利用した水素製造装置、並びに、水素の製造方法については何ら知られていない。さらに、脱水素される水素化芳香族化合物の立体異性体による脱水素反応活性や選択性、並びに、水素発生速度等への担体の違いの影響については何ら知られていない。   As described above, dehydrogenation of hydrogenated aromatic compounds that enable rapid dehydrogenation reaction start by rapid and uniform supply of reaction heat to the catalyst and high hydrogen generation rate per reaction vessel There is no known hydrogen production apparatus using hydrogen and a method for producing hydrogen. Furthermore, there is no knowledge about the influence of the difference in the carrier on the dehydrogenation reaction activity and selectivity by the stereoisomer of the hydrogenated aromatic compound to be dehydrogenated and the hydrogen generation rate.

本発明の目的は、上記の問題を解決し、触媒への迅速、かつ、均一な反応熱供給による迅速な脱水素反応開始を可能とし、かつ、脱水素される水素化芳香族化合物の立体異性体によって水素発生速度が低下することがなく、さらに、反応容器あたりの水素発生速度が大きい水素化芳香族化合物の脱水素による水素製造装置、及びそれを用いる水素の製造方法を提供することにある。   The object of the present invention is to solve the above-mentioned problems, enable rapid dehydrogenation reaction start by rapid and uniform supply of reaction heat to the catalyst, and stereoisomerism of the dehydrogenated hydrogenated aromatic compound. An object of the present invention is to provide a hydrogen production apparatus by dehydrogenation of a hydrogenated aromatic compound that does not decrease the hydrogen generation rate depending on the body and has a high hydrogen generation rate per reaction vessel, and a method for producing hydrogen using the same. .

上記課題を解決する手段として、本発明の水素製造装置、及びそれを用いる水素の製造方法は、触媒として、金属質触媒担体上に、水素化芳香族化合物の骨格異性化反応を起こすことができる弱固体酸性を有する酸化物を担持し、さらに、水素化芳香族化合物の脱水素反応活性成分を担持した触媒を用いた脱水素触媒システムから成ること、及び前記脱水素触媒システムを用いることを特徴とする。   As means for solving the above problems, the hydrogen production apparatus of the present invention and the hydrogen production method using the same can cause a skeletal isomerization reaction of a hydrogenated aromatic compound on a metallic catalyst carrier as a catalyst. It comprises a dehydrogenation catalyst system using a catalyst carrying an oxide having weak solid acidity and further carrying a dehydrogenation reaction active component of a hydrogenated aromatic compound, and using the dehydrogenation catalyst system And

本発明の第1の態様に係る水素製造装置は、金属質触媒担体上に水素化芳香族化合物の骨格異性化反応を起こすことができる弱固体酸性を有する酸化物と、水素化芳香族化合物の脱水素反応活性成分を担持した触媒よりなることを特徴とするものである   The hydrogen production apparatus according to the first aspect of the present invention includes an oxide having weak solid acidity capable of causing a skeletal isomerization reaction of a hydrogenated aromatic compound on a metallic catalyst support, and a hydrogenated aromatic compound. It is characterized by comprising a catalyst carrying a dehydrogenation reaction active component.

本発明の第2の態様に係る水素製造装置は、第1の態様において、金属質触媒担体が、メタルハニカム、発泡金属、燃結金属、メタルクロスから成る群から選ばれる少なくとも1種であるものである。   The hydrogen production apparatus according to the second aspect of the present invention is the hydrogen production apparatus according to the first aspect, wherein the metallic catalyst carrier is at least one selected from the group consisting of a metal honeycomb, a foam metal, a sintered metal, and a metal cloth. It is.

本発明の第3の態様に係る水素製造装置は、第1又は第2の態様において、水素化芳香族化合物の骨格異性化反応を起こすことができる弱固体酸性を有する酸化物が、γ‐Al23、ZrO2、TiO2、Nb25から成る群から選ばれる少なくとも1種であるものである。 The hydrogen production apparatus according to the third aspect of the present invention is the hydrogen production apparatus according to the first or second aspect, wherein the oxide having weak solid acidity capable of causing the skeletal isomerization reaction of the hydrogenated aromatic compound is γ-Al. It is at least one selected from the group consisting of 2 O 3 , ZrO 2 , TiO 2 and Nb 2 O 5 .

本発明の第4の態様に係る水素製造装置は、前記触媒への反応熱供給が可能な熱供給システムが備えられているものである。   The hydrogen production apparatus according to the fourth aspect of the present invention is provided with a heat supply system capable of supplying reaction heat to the catalyst.

本発明の第5の態様に係る水素製造装置は、第1〜4のいずれかの態様において、反応熱供給が可能な熱供給システムが、少なくとも触媒の周囲、上面、下面又は内部に、実質的に触媒と接触するように配置されている、複数の金属製伝熱管又は複数の電気ヒーターであるものである。   A hydrogen production apparatus according to a fifth aspect of the present invention is the hydrogen production apparatus according to any one of the first to fourth aspects, wherein the heat supply system capable of supplying reaction heat is substantially provided at least around the catalyst, on the upper surface, the lower surface, or inside. And a plurality of metal heat transfer tubes or a plurality of electric heaters arranged so as to be in contact with the catalyst.

本発明の第6の態様に係る水素製造装置は、第1〜4のいずれかの態様において、反応熱供給が可能な熱供給システムが、触媒に通電するものである。   In the hydrogen production apparatus according to the sixth aspect of the present invention, in any one of the first to fourth aspects, a heat supply system capable of supplying reaction heat supplies electricity to the catalyst.

本発明の第7の態様に係る水素製造装置は、第1〜6のいずれかの態様において、触媒が2個以上のユニットに分割されているものである。   The hydrogen production apparatus according to the seventh aspect of the present invention is the hydrogen production apparatus according to any one of the first to sixth aspects, wherein the catalyst is divided into two or more units.

本発明の第8の態様に係る水素製造装置は、第7の態様において、ぞれぞれのユニットに反応熱供給が可能な熱供給システムを備えているものである。   According to an eighth aspect of the present invention, in the seventh aspect, the hydrogen production apparatus includes a heat supply system capable of supplying reaction heat to each unit.

本発明の第9の態様に係る水素製造方法は、異性体を有する水素化芳香族化合物を、第1〜8のいずれかの態様に係る触媒と接触させて脱水素させるものである。   The hydrogen production method according to the ninth aspect of the present invention is to dehydrogenate a hydrogenated aromatic compound having an isomer with a catalyst according to any one of the first to eighth aspects.

本発明の第10の態様に係る水素製造方法は、第9の態様において、異性体がシス‐トランス異性体であるものである。   The method for producing hydrogen according to the tenth aspect of the present invention is the method according to the ninth aspect, wherein the isomer is a cis-trans isomer.

本発明によれば、水素化芳香族化合物の脱水素触媒として熱伝導率の高い金属質触媒担体を用いているため、触媒層内での温度降下による反応速度の低下が無く、さらに、金属質触媒担体上に水素化芳香族化合物の骨格異性化反応を起こすことができる弱固体酸性を有する酸化物を担持しているため、脱水素される水素化芳香族化合物の立体異性体による水素発生速度の低下がない。その結果、反応容器あたりの水素発生速度が大きい水素製造装置を得ることができる。   According to the present invention, since the metal catalyst carrier having high thermal conductivity is used as the dehydrogenation catalyst for the hydrogenated aromatic compound, there is no decrease in the reaction rate due to the temperature drop in the catalyst layer. Hydrogen generation rate due to stereoisomers of hydrogenated aromatic compounds to be dehydrogenated because the catalyst support supports oxides with weak solid acidity that can cause skeletal isomerization of hydrogenated aromatic compounds. There is no decline. As a result, a hydrogen production apparatus having a high hydrogen generation rate per reaction vessel can be obtained.

本発明の水素製造装置は、反応容器あたりの水素発生速度が非常に大きいことから、水素ステーション等に限らず、化学プラント等で用いられる、より大型の水素製造装置としても適用することが出来る。   The hydrogen production apparatus of the present invention can be applied not only to hydrogen stations and the like but also to larger hydrogen production apparatuses used in chemical plants and the like because the hydrogen generation rate per reaction vessel is very high.

以下に、本発明の水素化芳香族化合物の脱水素による水素製造装置、及びそれを用いる水素の製造方法について、詳細に説明する。   Below, the hydrogen production apparatus by dehydrogenation of the hydrogenated aromatic compound of this invention and the manufacturing method of hydrogen using the same are demonstrated in detail.

本発明において用いられる触媒は、金属質触媒担体上に水素化芳香族化合物の骨格異性化反応を起こすことができる弱固体酸性を有する酸化物を担持し、さらに、水素化芳香族化合物の脱水素反応活性成分を担持した触媒であることが必要である。担体を熱伝導率の高い金属質とすることにより、触媒層内での温度降下による反応速度の低下が無く、触媒層全域を有効に活用することが可能となる。さらに、金属質触媒担体上に水素化芳香族化合物の骨格異性化反応を起こすことができる弱固体酸性を有する酸化物を担持しているため、脱水素される水素化芳香族化合物の立体異性体による水素発生速度の低下がない。特に、前記脱水素触媒層内での反応熱供給が可能な熱供給システムを備える場合には、触媒層への迅速、かつ、均一な反応熱供給による迅速な脱水素反応開始が可能となる。以上の結果、反応容器あたりの水素発生速度が大きい水素製造装置を得ることができる。   The catalyst used in the present invention supports an oxide having weak solid acidity capable of causing a skeletal isomerization reaction of a hydrogenated aromatic compound on a metal catalyst support, and further, dehydrogenation of the hydrogenated aromatic compound. It is necessary to be a catalyst carrying a reaction active component. By using a metal having a high thermal conductivity as the support, there is no decrease in reaction rate due to a temperature drop in the catalyst layer, and the entire catalyst layer can be used effectively. Further, since the oxide having weak solid acidity capable of causing the skeletal isomerization reaction of the hydrogenated aromatic compound is supported on the metal catalyst support, the stereoisomer of the hydrogenated aromatic compound to be dehydrogenated is supported. No decrease in hydrogen generation rate due to In particular, when a heat supply system capable of supplying reaction heat in the dehydrogenation catalyst layer is provided, a rapid dehydrogenation reaction can be started quickly and uniformly by supplying the reaction heat to the catalyst layer. As a result, a hydrogen production apparatus having a high hydrogen generation rate per reaction vessel can be obtained.

本発明で用いられる金属質触媒担体に用いられる金属は、多くのものが使用できるが、鉄、ニッケル、アルミニウム、あるいはそれらを含む合金等が好ましく、特に好ましいものは鉄とそれを主成分とする合金である。   Many metals can be used for the metallic catalyst carrier used in the present invention, but iron, nickel, aluminum, or an alloy containing them is preferable, and particularly preferable is iron and its main component. It is an alloy.

形状としては、内部に複数の貫通孔が存在していてガスが流通可能な形状であり、メタルハニカム、発泡金属、焼結金属、メタルクロスから成る群から選ばれる少なくとも1種であることが好ましい。メタルハニカムや発泡金属、焼結金属、メタルクロスには、担体嵩容積あたりの表面積が異なる種々のものが製造されているが、反応器断面積や原料の供給速度などの反応条件によって適切なる表面積の担体を使用すれば良く、特に限定されない。一例として、反応器断面積が1〜4m2で金属質担体としてメタルハニカムを用いる場合では、1inch2あたりのセル数(cpsi)で表して200〜400cpsi程度(担体嵩容積あたりの表面積で2〜4m2/L程度)のハニカムが適当である。
熱伝導率は高い程、好ましく限定的ではないが、例えば300℃において、5cal/m/s/k以上、得に好ましくは10cal/m/s/k以上の材料を用いることが好ましい。
骨格異性化反応を起こすことができる弱固体酸性を有する酸化物は、γ‐Al23、ZrO2、TiO2、Nb25から成る群から選ばれる少なくとも1種を含む酸化物であることが好ましい。この骨格異性化反応はシス‐トランス間の異性化の他、置換基を有する水素化芳香族化合物であれば、置換基の位置異性化等も含まれる。
The shape is a shape in which a plurality of through holes are present and gas can flow, and is preferably at least one selected from the group consisting of a metal honeycomb, a foam metal, a sintered metal, and a metal cloth. . Various types of metal honeycomb, foam metal, sintered metal, and metal cloth with different surface areas per bulk volume of the carrier are manufactured, but the appropriate surface area depends on the reaction conditions such as reactor cross-sectional area and feed rate The carrier may be used without any particular limitation. As an example, in the case where the reactor cross-sectional area is 1 to 4 m 2 and a metal honeycomb is used as the metal carrier, the number of cells per inch 2 (cpsi) is about 200 to 400 cpsi (surface area per carrier bulk volume is 2 to 2). A honeycomb of about 4 m 2 / L) is suitable.
The higher the thermal conductivity, the less preferably, but it is preferable to use, for example, a material of 5 cal / m / s / k or more, preferably 10 cal / m / s / k or more at 300 ° C.
The oxide having weak solid acidity capable of causing the skeletal isomerization reaction is an oxide containing at least one selected from the group consisting of γ-Al 2 O 3 , ZrO 2 , TiO 2 , and Nb 2 O 5. It is preferable. This skeletal isomerization reaction includes not only cis-trans isomerization but also positional isomerization of substituents in the case of a hydrogenated aromatic compound having a substituent.

ナフタレンやアントラセンのように、2環以上の芳香環が縮合した芳香族化合物の水素化物は立体異性体を有することが知られている。例えば、ナフタレンの水素化物であるデカリンにはトランス体とシス体が存在する。本発明者らが鋭意検討した結果、γ‐Al23、ZrO2、TiO2、Nb25から成る群から選ばれる少なくとも1種を含む酸化物を担持した触媒を用いることによって、反応系内において脱水素反応と共に水素化芳香族化合物の骨格異性化反応が進行し、水素発生速度を高くできることを見出した。これは、立体異性体によって脱水素反応速度が異なることに起因すると考えられ、例えば、デカリンの脱水素の場合、シス体の方がトランス体よりも脱水素反応速度が大きい。 It is known that a hydride of an aromatic compound in which two or more aromatic rings are condensed, such as naphthalene or anthracene, has a stereoisomer. For example, decalin, which is a hydride of naphthalene, has a trans form and a cis form. As a result of intensive studies by the present inventors, the reaction was achieved by using a catalyst supporting an oxide containing at least one selected from the group consisting of γ-Al 2 O 3 , ZrO 2 , TiO 2 and Nb 2 O 5. It has been found that the skeletal isomerization reaction of the hydrogenated aromatic compound proceeds together with the dehydrogenation reaction in the system, and the hydrogen generation rate can be increased. This is considered to be caused by the difference in the dehydrogenation reaction rate depending on the stereoisomer. For example, in the case of dehydrogenation of decalin, the cis isomer has a higher dehydrogenation reaction rate than the trans isomer.

その結果、脱水素機能しか有さない触媒を用いた場合はシス体が先に消費され、反応速度が低下することになるが、本発明においては、反応系内で脱水素反応と共に骨格異性化反応を進行させることができるので、消費された分のシス体はトランス体の異性化によって生成するため、反応速度の低下がなく、その結果として大きな水素発生速度を達成できるのである。また、このことから、本発明によれば、反応系内で脱水素反応と共に骨格異性化反応を進行させることができるので、任意の化合物や異性体に対しても本発明が有効であることが示される。すなわち、デカリン脱水素とは異なり、トランス体の方がシス体よりも脱水素反応速度が大きいような他の水素化芳香族化合物に対しても、脱水素反応で消費された分の異性体が骨格異性化反応で補われるため、脱水素反応速度の低下がないことになる。   As a result, when a catalyst having only a dehydrogenation function is used, the cis isomer is consumed first, and the reaction rate decreases. In the present invention, however, skeletal isomerization is performed together with the dehydrogenation reaction in the reaction system. Since the reaction can proceed, the consumed cis isomer is produced by isomerization of the trans isomer, so that the reaction rate does not decrease, and as a result, a large hydrogen generation rate can be achieved. In addition, from this, according to the present invention, since the skeletal isomerization reaction can proceed together with the dehydrogenation reaction in the reaction system, the present invention is effective for any compound or isomer. Indicated. That is, unlike decalin dehydrogenation, the isomer of the amount consumed in the dehydrogenation reaction is also different from other hydrogenated aromatic compounds in which the trans isomer has a higher dehydrogenation reaction rate than the cis isomer. Since it is compensated by the skeletal isomerization reaction, there is no decrease in the dehydrogenation reaction rate.

また、2.6−ジメチルデカリンと2.7−ジメチルデカリンのように、置換基を有する水素化芳香族化合物であって、置換基の位置が異なることにより、脱水素反応速度が異なる場合であっても、上述と同様の理由により、本発明によれば脱水素反応の低下がないことになる。   In addition, it is a hydrogenated aromatic compound having a substituent, such as 2.6-dimethyldecalin and 2.7-dimethyldecalin, in which the dehydrogenation reaction rate varies depending on the position of the substituent. However, for the same reason as described above, according to the present invention, there is no decrease in the dehydrogenation reaction.

この骨格異性化反応を起こすことができる酸化物の金属質触媒担体への担持量は担体嵩容積で表して、0.5〜80g/L程度、好ましくは5〜50g/L程度が適当である。   The supported amount of the oxide capable of causing the skeletal isomerization reaction on the metal catalyst carrier is about 0.5 to 80 g / L, preferably about 5 to 50 g / L, expressed as the volume of the carrier. .

脱水素反応活性成分としては、水素化芳香族化合物の脱水素反応を進行させることができる成分であれば良く、何ら限定的ではない。具体的には、Pt、Pd、Ir、Ag等の貴金属元素を担持することが一般的であるが、Fe、Ni等卑金属、あるいは、それらの酸化物を用いることもできる。さらに、助触媒成分としてRe、Sn、Ge、La、Ce等の元素を金属状態として、あるいは、酸化物として添加することもできる。   The dehydrogenation reaction active component is not particularly limited as long as it is a component capable of causing the dehydrogenation reaction of the hydrogenated aromatic compound to proceed. Specifically, it is common to support a noble metal element such as Pt, Pd, Ir, or Ag, but a base metal such as Fe or Ni, or an oxide thereof can also be used. Furthermore, elements such as Re, Sn, Ge, La, and Ce can be added as a promoter component in the metal state or as an oxide.

脱水素反応活性成分の金属質触媒担体への担持量は担体嵩容積あたりの担持量で表して、0.1〜10g/L程度、好ましくは0.5〜5g/L程度が適当である。また、骨格異性化反応を起こすことができる酸化物と脱水素反応活性成分との担持比率としては重量比で表して、2:1〜40:1程度、好ましくは5:1〜20:1程度とするのがよい。   The supported amount of the dehydrogenation reaction active component on the metallic catalyst carrier is expressed as a supported amount per volume of the carrier and is about 0.1 to 10 g / L, preferably about 0.5 to 5 g / L. The supporting ratio of the oxide capable of causing the skeletal isomerization reaction and the dehydrogenation reaction active component is expressed as a weight ratio of about 2: 1 to 40: 1, preferably about 5: 1 to 20: 1. It is good to do.

骨格異性化反応を起こすことができる弱固体酸性を有する酸化物、並びに、Pt、Pd、Ir、Ag等の脱水素反応活性成分を金属質触媒担体に担持する方法は、含浸法、イオン交換法、ディップコート法、CVD法などの種々の調製法を用いることができ、何ら限定的ではない。担持順序は、一般には前記酸化物を担持した後、脱水素反応活性成分を担持するが、両成分を同時に担持することもできる。また、金属質触媒担体粉末に前記各触媒成分を担持した後、ハニカム形状などに成型するような場合では、前記各触媒成分の粉末と金属質触媒担体粉末とを強力に機械混合することによって担持する、所謂メカニカルアロイングに類似した方法によっても調製することができる。   A method of supporting an oxide having weak solid acidity capable of causing a skeletal isomerization reaction and a dehydrogenation reaction active component such as Pt, Pd, Ir, Ag, etc. on a metallic catalyst carrier is an impregnation method, an ion exchange method Various preparation methods such as a dip coating method and a CVD method can be used, and the method is not limited at all. In general, the supporting order is to support the dehydrogenation reaction active component after supporting the oxide, but it is also possible to support both components simultaneously. In addition, when the catalyst components are supported on the metal catalyst carrier powder and then formed into a honeycomb shape, the catalyst component powder and the metal catalyst carrier powder are supported by powerful mechanical mixing. It can also be prepared by a method similar to so-called mechanical alloying.

本発明で用いられる脱水素触媒層内への反応熱供給が可能な熱供給システムを設けることによって、触媒層への迅速、かつ、均一な反応熱供給による迅速な脱水素反応開始が可能である。この熱供給システムでは、触媒層の周囲、及び/又は上面、及び/又は下面、及び/又は内部に、実質的に触媒層と接触するように、複数の金属製伝熱管、及び/または複数の電気ヒーターを配置することが好ましい。このような熱供給システムは熱供給手段を含む循環系であり、熱供給手段は、具体的には、図1から3に示す触媒10の周囲に配置した熱供給手段21、あるいは下面に配置した熱供給手段22、あるいは内部に配置した熱供給手段23を示すことができる。   By providing a heat supply system capable of supplying reaction heat into the dehydrogenation catalyst layer used in the present invention, it is possible to quickly start a dehydrogenation reaction by supplying uniform reaction heat to the catalyst layer. . In this heat supply system, a plurality of metal heat transfer tubes and / or a plurality of heat transfer tubes are provided so as to substantially contact the catalyst layer around and / or on the upper surface and / or the lower surface and / or inside the catalyst layer. It is preferable to arrange an electric heater. Such a heat supply system is a circulation system including a heat supply means. Specifically, the heat supply means is disposed on the lower surface of the catalyst 10 shown in FIGS. 1 to 3 or on the lower surface. The heat supply means 22 or the heat supply means 23 arranged inside can be shown.

図1から3は、本発明の水素製造装置で用いられる脱水素触媒システムを説明するための概念図である。本発明は、金属質担体を用いた脱水素触媒10と、原料である水素化芳香族化合物とが接触することによって脱水素反応を進行せしめ、水素を製造する装置であるが、脱水素反応の進行に必要となる反応熱は、手段10の周囲(図1の熱供給手段21)、及び/又は下面(図2の熱供給手段22)、及び/又は内部(図3の熱供給手段23)に、実質的に触媒層と接触するように配置された、複数の金属製伝熱管、及び/または複数の電気ヒーターとから成る熱供給システムから供給される装置である。図1から3の立体図において、原料である水素化芳香族化合物は、図の上部、あるいは、下部の何れからでも供給することができる。   1 to 3 are conceptual diagrams for explaining a dehydrogenation catalyst system used in the hydrogen production apparatus of the present invention. The present invention is an apparatus for producing hydrogen by causing a dehydrogenation reaction to proceed by contacting a dehydrogenation catalyst 10 using a metal carrier with a hydrogenated aromatic compound as a raw material. The reaction heat necessary for the progress is around the means 10 (heat supply means 21 in FIG. 1) and / or the lower surface (heat supply means 22 in FIG. 2) and / or inside (heat supply means 23 in FIG. 3). And a device supplied from a heat supply system comprising a plurality of metal heat transfer tubes and / or a plurality of electric heaters arranged so as to be substantially in contact with the catalyst layer. 1 to 3, the hydrogenated aromatic compound as a raw material can be supplied from either the upper part or the lower part of the figure.

吹抜け防止材32は触媒、脱水素10と熱供給手段21、22、23との間の隙間から原料や生成物が吹抜けることを防止できる材料であれば良く、金属性の板や石英ウールなど、任意のものを用いることができる。吹抜け防止材32と触媒10や熱供給手段21、22、23との接合方法も、溶接やパッキンなど任意である。   The blow-off prevention material 32 may be any material that can prevent the raw materials and products from blowing through the gaps between the catalyst, the dehydrogenation 10 and the heat supply means 21, 22, 23, such as a metallic plate or quartz wool. Any one can be used. The joining method of the blow-off preventing material 32 and the catalyst 10 or the heat supply means 21, 22, 23 is also arbitrary such as welding or packing.

これらの熱供給システムは、実質的に触媒層と接触していることが好ましいが、接触方法としては、触媒との直接接触に限らず、金属箔やグラファイトシートのような高伝熱性のシートなどを介する間接接触であっても良い。熱供給システムの配置方法は、前記の配置方法の何れかを単独で用いることが一般的であるが、1つの反応器内に複数の配置方法を混合することもできる。   These heat supply systems are preferably substantially in contact with the catalyst layer. However, the contact method is not limited to direct contact with the catalyst, but a highly heat-conductive sheet such as a metal foil or a graphite sheet. Indirect contact via a gap may be used. As the arrangement method of the heat supply system, any one of the above arrangement methods is generally used alone, but a plurality of arrangement methods can be mixed in one reactor.

熱供給システムを触媒層の周囲、あるいは、内部に配置する方法の場合、触媒層を反応器軸方向に分割して充填する必要がないか、上面、あるいは、下面に配置する方法では、反応器軸方向の触媒層内温度分布が大きくなることを避けるため、触媒層を2段以上に分割し、分割した各々の触媒層に熱供給システムを配置することが好ましい。   In the case of a method in which the heat supply system is arranged around or inside the catalyst layer, it is not necessary to divide and fill the catalyst layer in the axial direction of the reactor, or in the method of arranging the heat supply system on the upper surface or the lower surface, the reactor In order to avoid an increase in the temperature distribution in the catalyst layer in the axial direction, the catalyst layer is preferably divided into two or more stages, and a heat supply system is disposed in each of the divided catalyst layers.

なお、伝熱管内を流れる熱媒体の設定温度や流量、あるいは、電気ヒーターの出力などは、原料である水素化芳香族化合物の種類や必要とされる水素発生速度に応じて、適宜選択すればよい。   Note that the set temperature and flow rate of the heat medium flowing in the heat transfer tube or the output of the electric heater can be appropriately selected according to the type of hydrogenated aromatic compound used as a raw material and the required hydrogen generation rate. Good.

また、本発明で用いられる脱水素触媒層内での反応熱供給が可能な熱供給システムは、触媒層を直接通電することによって、触媒層自体の発熱により反応熱を供給するシステムであることも好ましい。触媒層への直接通電の場合、触媒層温度を非常に早く変化させることができることに特徴がある。   In addition, the heat supply system capable of supplying reaction heat in the dehydrogenation catalyst layer used in the present invention may be a system that supplies reaction heat by the heat generation of the catalyst layer itself by directly energizing the catalyst layer. preferable. In the case of direct energization to the catalyst layer, the catalyst layer temperature can be changed very quickly.

本発明で用いられる脱水素触媒システムは、反応器断面において、脱水素触媒層を少なくとも2個以上のユニットに分割するのが装置の設計や組立・保守の点から好ましい。更に、それぞれのユニットに反応熱供給が可能な熱供給システムを備えることが好ましい。ユニットの分割方法としては、何ら限定的ではないが、図1から3に例示したような反応器断面方向に対称的となる配列とすることが、装置の設計や組立・保守の点からより好ましい。   In the dehydrogenation catalyst system used in the present invention, the dehydrogenation catalyst layer is preferably divided into at least two units in the cross section of the reactor from the viewpoint of device design, assembly and maintenance. Furthermore, it is preferable to provide each unit with a heat supply system capable of supplying reaction heat. The method of dividing the unit is not limited at all, but it is more preferable from the viewpoint of device design, assembly, and maintenance to have a symmetrical arrangement in the cross-sectional direction of the reactor as illustrated in FIGS. .

それぞれのユニットに反応熱供給が可能な熱供給システムを備えれば、熱供給の対象がより小型になるので、供給された熱が触媒層により均質に行き渡らせることが可能になり、しかも熱供給システムを含めたユニット毎に装置の設計や組立・保守が可能になる。   If each unit is equipped with a heat supply system that can supply reaction heat, the target of heat supply becomes smaller, so that the supplied heat can be distributed more uniformly in the catalyst layer, and the heat supply The unit can be designed, assembled and maintained for each unit including the system.

一つの触媒ユニットの反応器断面方向の大きさは、原料である水素化芳香族化合物の種類や金属質触媒担体の種類によって種々のサイズを選択し得るため限定的ではないが、1辺の長さで20〜40cm程度が経済性の観点から適当である。   The size of one catalyst unit in the cross-sectional direction of the reactor is not limited because various sizes can be selected depending on the type of hydrogenated aromatic compound as a raw material and the type of metallic catalyst support, but the length of one side is not limited. Then, about 20-40 cm is suitable from a viewpoint of economical efficiency.

なお、熱供給システムを触媒層の周囲、あるいは、内部に配置する方法の場合、触媒層の高さは任意に選択できるが、熱供給システムを下面に配置する方法では、一つの触媒ユニットの高さを1辺の長さの0.8〜1.2倍程度とし、触媒層を2段以上に分割することが好ましい。   In the case of a method in which the heat supply system is arranged around or inside the catalyst layer, the height of the catalyst layer can be arbitrarily selected. However, in the method in which the heat supply system is arranged on the lower surface, the height of one catalyst unit is set. The length is preferably about 0.8 to 1.2 times the length of one side, and the catalyst layer is preferably divided into two or more stages.

脱水素触媒システムは反応器に入れて使用される。
脱水素触媒を反応器2に入れた状態を図4、図5に示す。
図4の脱水素反応器2は内部に図1に示す脱水素触媒システムを組み込んだ例である。脱水素触媒10は、図1に示すように、横断面が田の字状に4つのユニット10に分割配置されており各触媒ユニット10間の田の字枠状の隙間39は吹抜け防止材35で閉止されており、そこには、熱供給手段としての伝熱管21が各ユニット10の各辺に2本づつ縦方向に配置されている。なお、必要に応じ、各ユニット10を側面支持材、底部支持材及び側部係止材の少なくとも一つにより固定する。
A dehydrogenation catalyst system is used in the reactor.
The state in which the dehydrogenation catalyst is put in the reactor 2 is shown in FIGS.
4 is an example in which the dehydrogenation catalyst system shown in FIG. 1 is incorporated therein. As shown in FIG. 1, the dehydrogenation catalyst 10 is divided and arranged in four units 10 in a cross-sectional shape of a rice field, and a field frame-shaped gap 39 between the catalyst units 10 is a blow-off prevention member 35. There are two heat transfer tubes 21 as heat supply means arranged in the vertical direction, two on each side of each unit 10. If necessary, each unit 10 is fixed by at least one of a side support member, a bottom support member, and a side locking member.

各伝熱管21の下端は田の字状の分配管24に、上端はやはり田の字状の集合管25に接続されている。分配管24の入口はポンプ27を介して熱媒体タンク26に接続され、集合管25の出口はやはり熱媒体タンク26に接続されていて、熱媒体を循環させる循環ライン28が形成されている。原料である水素化芳香族化合物は反応器2の底部入口31から下部室32に入り、脱水素触媒10の層を通過して脱水素反応し、反応生成物は上部室33に集まって出口34から排出されて水素分離装置に送られる。   The lower end of each heat transfer tube 21 is connected to a rice field-shaped distribution pipe 24, and the upper end is also connected to a rice field-shaped collecting tube 25. The inlet of the distribution pipe 24 is connected to the heat medium tank 26 via a pump 27, and the outlet of the collecting pipe 25 is also connected to the heat medium tank 26, so that a circulation line 28 for circulating the heat medium is formed. The raw hydrogenated aromatic compound enters the lower chamber 32 from the bottom inlet 31 of the reactor 2, passes through the layer of the dehydrogenation catalyst 10, undergoes a dehydrogenation reaction, and the reaction product collects in the upper chamber 33 and exits 34. And discharged to a hydrogen separator.

図5の脱水素反応器2は熱供給システムを伴わないユニット化された触媒層を備えた脱水素反応器の例である。脱水素触媒10は図1、2に示すように、横断面が田の字状に4つのユニット10に分割配置されており、各ユニット10は、底部が底部支持材36、側部が側部支持材37で支持され、全体として側部係止材38で反応器2に固定されている。   The dehydrogenation reactor 2 of FIG. 5 is an example of a dehydrogenation reactor provided with a unitized catalyst layer without a heat supply system. As shown in FIGS. 1 and 2, the dehydrogenation catalyst 10 is divided into four units 10 having a horizontal cross-sectional shape, and each unit 10 has a bottom support member 36 at the bottom and a side portion at the side. It is supported by a support member 37 and fixed to the reactor 2 by a side locking member 38 as a whole.

図6は本発明の水素製造装置の一般的構成を説明するための概念図である。原料である水素化芳香族化合物は、タンクからバルブ50、ポンプ51を介して脱水素反応器2に送られる。脱水素反応器2の内部は、図1から3に示したような脱水素触媒層内での反応熱供給が可能な熱供給システムを備えたあるいは図5に示すような熱供給システムを備えていない脱水素触媒システムから成っている。   FIG. 6 is a conceptual diagram for explaining a general configuration of the hydrogen production apparatus of the present invention. The raw hydrogenated aromatic compound is sent from the tank to the dehydrogenation reactor 2 via the valve 50 and the pump 51. The dehydrogenation reactor 2 includes a heat supply system capable of supplying reaction heat in the dehydrogenation catalyst layer as shown in FIGS. 1 to 3 or a heat supply system as shown in FIG. Consists of no dehydrogenation catalyst system.

その結果、触媒への迅速、かつ、均一な反応熱供給による迅速な脱水素反応が開始され、かつ、脱水素される水素化芳香族化合物の立体異性体による水素発生速度の低下もなく、反応容器あたりの水素発生速度が大きい水素化芳香族化合物の脱水素による水素製造が行なわれる。脱水素反応器2の下流には、水素分離装置3が配置されている。水素分離装置3は、一般的には凝縮分離装置が用いられるが、何ら限定的ではなく、Pd膜などの水素分離膜による膜分離装置など、種々の原理の水素分離装置を用いることができる。水素分離装置3からは、脱水素生成物である水素と芳香族化合物の他に、少量の未反応の水素化芳香族化合物やテトラリンのような中間脱水素化合物が分離される。これらの内、未反応の水素化芳香族化合物やテトラリンのような中間脱水素化合物は、ポンプ51の上流側に戻すことによって、総合反応率を高めることができ、経済的である。   As a result, a rapid dehydrogenation reaction with a rapid and uniform reaction heat supply to the catalyst is started, and there is no decrease in the hydrogen generation rate due to the stereoisomer of the hydrogenated aromatic compound to be dehydrogenated. Hydrogen production is performed by dehydrogenation of a hydrogenated aromatic compound having a high hydrogen generation rate per vessel. A hydrogen separator 3 is disposed downstream of the dehydrogenation reactor 2. The hydrogen separation device 3 is generally a condensing separation device, but is not limited at all, and various types of hydrogen separation devices such as a membrane separation device using a hydrogen separation membrane such as a Pd membrane can be used. From the hydrogen separator 3, a small amount of unreacted hydrogenated aromatic compounds and intermediate dehydrogenated compounds such as tetralin are separated in addition to hydrogen and aromatic compounds as dehydrogenation products. Of these, intermediate dehydrogenated compounds such as unreacted hydrogenated aromatic compounds and tetralin can be returned to the upstream side of the pump 51 to increase the overall reaction rate, which is economical.

水素は、一般的には圧力調製弁のような制御弁52、次いで、水素精製装置4を介した後、製品である高純度水素タンク5に送られる。水素精製装置4は、一般的には活性炭吸着層が用いられるが、何ら限定的ではなく、水素分離装置3として膜分離装置を採用した場合などでは、水素精製装置4自体が不要となることが一般的である。   Hydrogen is generally sent to a high-purity hydrogen tank 5 as a product after passing through a control valve 52 such as a pressure adjusting valve and then a hydrogen purifier 4. The hydrogen purification device 4 generally uses an activated carbon adsorption layer, but is not limited in any way. If a membrane separation device is adopted as the hydrogen separation device 3, the hydrogen purification device 4 itself may be unnecessary. It is common.

また、製品水素タンク5の代わりに、直接、水素利用装置に水素を送ることも可能である。脱水素生成物である芳香族化合物は、タンク6に回収された後、タンクローリーなどで再度水素化され、原料タンク1に充填される。   Further, instead of the product hydrogen tank 5, it is also possible to send hydrogen directly to the hydrogen utilization device. The aromatic compound, which is a dehydrogenation product, is recovered in the tank 6, then hydrogenated again with a tank lorry or the like, and filled in the raw material tank 1.

上記の水素製造装置を用いて水素化芳香族化合物から水素を製造する方法を次に述べる。   A method for producing hydrogen from a hydrogenated aromatic compound using the above hydrogen production apparatus will be described next.

本発明を適用しうる水素化芳香族化合物は骨格異性化反応を起こしうるものであれば特に制限されないが、例えば、配座異性化反応や置換基を有する場合であれば幾何異性化反応などいわゆる立体異性化反応を起こしうるものであれば良い。   The hydrogenated aromatic compound to which the present invention can be applied is not particularly limited as long as it can cause a skeletal isomerization reaction. For example, a conformational isomerization reaction or a geometric isomerization reaction may be used if it has a substituent. Any material that can cause a stereoisomerization reaction may be used.

反応条件としては、温度が250〜500℃程度で、圧力が0.01〜20MPa程度であり、例えば、デカリンを原料とする場合、反応温度は300〜400℃、反応圧力は絶対圧で0.1〜10MPa程度が適当であるが、パーヒドロアントラセンを原料とする場合では、反応温度は350〜450℃、反応圧力は絶対圧で0.05〜5MPa程度が適当である。また、常圧付近で反応を行う場合は原料が気化するので、気相接触反応であるが、数MPaの圧力では液相接触反応となる。以上のように、本発明の水素製造方法は、原料である水素化芳香族化合物の種類や反応条件により限定されることがないことが大きな特徴である。   The reaction conditions are a temperature of about 250 to 500 ° C. and a pressure of about 0.01 to 20 MPa. For example, when decalin is used as a raw material, the reaction temperature is 300 to 400 ° C., and the reaction pressure is 0. About 1 to 10 MPa is appropriate, but when perhydroanthracene is used as a raw material, the reaction temperature is 350 to 450 ° C., and the reaction pressure is about 0.05 to 5 MPa in absolute pressure. Further, when the reaction is performed near normal pressure, since the raw material is vaporized, it is a gas phase contact reaction. As described above, the major feature of the hydrogen production method of the present invention is that it is not limited by the type of hydrogenated aromatic compound as a raw material and the reaction conditions.

また、脱水素触媒ユニットの間にγ‐Al2O3、SiO2、ZrO2、TiO2などの酸化物を充てんすることによって、整流効果を高めることもできる。酸化物の形状は任意であるが粒状などに成形されたものが圧力損失が低いため、好ましい。 Further, by filling the dehydrogenation catalyst unit with an oxide such as γ-Al 2 O 3 , SiO 2 , ZrO 2 , or TiO 2 , the rectifying effect can be enhanced. The shape of the oxide is arbitrary, but it is preferable that the oxide is shaped into a granular shape because the pressure loss is low.

以下、本発明を実施例により詳細に説明する。
脱水素触媒として、1inch2あたりのセル数(cpsi)が400cpsiで外径9.2mm、高さ20mmの円柱型メタルハニカム担体(材質:Fe−Cr−Al系合金)に、水素化芳香族化合物の骨格異性化反応を起こすことが出来る固体酸触媒成分としてγ−Al23系酸化物を、脱水素反応活性成分としてPtを、担体嵩容積あたりの担持量で表して、それぞれ、15g/L、2g/L担持した触媒1個を用意した。触媒の外周から内側約2mmで、軸方向中心の位置にシース熱電対を取付け、この熱電対で測定される温度を反応温度とした。
脱水素反応器として内径9.4mmの直管を用意し、反応器周囲に炉心管の内径が12mmの電気炉を用意して、外部加熱によって反応熱を供給した。反応器に脱水素反応の原料であるデカリン(トランス体とシス体の1:1混合物)のタンク、原料供給ポンプ、並びに、脱水素生成物の凝縮分離装置などを接続した。デカリンの供給速度を0.075mL/minとし、反応温度380℃となるよう電気炉出力を調節し、全圧3Mpaにおけるデカリンの脱水素実験を行ったところ、デカリン転化率60%であり、本反応条件における平衡転化率(83%)の72%まで反応が進行した。本実験における脱水素反応前後の炭素原子収支、並びに、水素原子収支は、それぞれ、98%、101%と良く一致しており、デカリン転化率に一致する水素ガスが発生したことがわかった。なお、凝縮分離装置後の未反応デカリン中のトランス体とシス体との比は1.2:1となっており、脱水素速度の速いシス体だけが選択的に反応したわけではなく、反応系内でトランス体からシス体への骨格異性化反応が進行したことが明らかであった。
Hereinafter, the present invention will be described in detail with reference to examples.
As a dehydrogenation catalyst, a cylindrical metal honeycomb carrier (material: Fe—Cr—Al alloy) having a cell number per inch 2 (cpsi) of 400 cpsi, an outer diameter of 9.2 mm, and a height of 20 mm is combined with a hydrogenated aromatic compound. Γ-Al 2 O 3 -based oxide as a solid acid catalyst component capable of causing the skeletal isomerization reaction of Pt, and Pt as a dehydrogenation reaction active component, expressed as a supported amount per carrier volume, One catalyst carrying L and 2 g / L was prepared. A sheath thermocouple was attached about 2 mm inside from the outer periphery of the catalyst and at the center in the axial direction, and the temperature measured by this thermocouple was taken as the reaction temperature.
A straight tube with an inner diameter of 9.4 mm was prepared as a dehydrogenation reactor, an electric furnace with an inner diameter of a core tube of 12 mm was prepared around the reactor, and reaction heat was supplied by external heating. A tank of decalin (1: 1 mixture of trans isomer and cis isomer) as a raw material for the dehydrogenation reaction, a raw material supply pump, a dehydrogenation product condensing / separating device, and the like were connected to the reactor. When the decalin supply rate was set to 0.075 mL / min, the electric furnace output was adjusted so that the reaction temperature was 380 ° C., and decalin was dehydrogenated at a total pressure of 3 Mpa, the decalin conversion rate was 60%. The reaction proceeded to 72% of the equilibrium conversion rate (83%) under the conditions. The carbon atom balance before and after the dehydrogenation reaction in this experiment and the hydrogen atom balance were in good agreement with 98% and 101%, respectively, indicating that hydrogen gas corresponding to the decalin conversion was generated. In addition, the ratio of the trans isomer and the cis isomer in the unreacted decalin after the condensing and separating apparatus is 1.2: 1, and not only the cis isomer having a high dehydrogenation rate reacted selectively, It was clear that the skeletal isomerization reaction from trans to cis proceeded in the system.

実施例1と同様の脱水素触媒を用い、この触媒の断面方向中心位置に外径2mm、全長60mm、ヒーター部の長さ25mmのシーズヒーターを挿入し、ヒーター部の中心と触媒の軸方向中心とが一致するようロウ付けし、内部加熱によって反応熱が供給されるようにした。
反応器周囲の電気炉の出力を切り、シーズヒーターの出力によって反応温度を380℃に制御した以外は、実施例1と同様にしてデカリンの脱水素実験を行った。触媒層内での反応熱供給が可能な内部加熱方式であるため、実施例1よりもさらに反応率が高く、デカリン転化率66%と、本反応条件における平衡転化率(83%)の80%まで反応が進行した。また、凝縮分離装置後の未反応デカリン中のトランス体とシス体との妃は1.3:1であった。
The same dehydrogenation catalyst as in Example 1 was used, and a sheathed heater having an outer diameter of 2 mm, a total length of 60 mm, and a heater part length of 25 mm was inserted into the center position of the catalyst in the cross-sectional direction. Was brazed so that the temperature and the temperature of the reaction coincided with each other, and the reaction heat was supplied by internal heating.
The decalin dehydrogenation experiment was conducted in the same manner as in Example 1 except that the output of the electric furnace around the reactor was turned off and the reaction temperature was controlled at 380 ° C. by the output of the sheathed heater. Since it is an internal heating system capable of supplying reaction heat in the catalyst layer, the reaction rate is higher than in Example 1, with a decalin conversion rate of 66% and an equilibrium conversion rate (83%) under the present reaction conditions of 80%. The reaction progressed until. In addition, the ratio of the trans form and the cis form in the unreacted decalin after the condensing and separating apparatus was 1.3: 1.

比較例1
脱水素触媒として、粒径を0.3〜0.5mmに分級したγ‐Al2O3を担体とし、担体自身が骨格異性化反応を起こすことが出来る固体酸触媒成分を兼ねるため、γ‐Al2O3系酸化物を担持しなかった以外は、実施例1と同様にして脱水素実験を行った。なお、触媒量は、実施例1における触媒嵩容積(1.33cm2)に等しい体積とし、外部加熱用電気炉の出力も実施例1に等しい出力とした。
本比較例では、触媒担体が金属質ではなく、また、外部加熱によって反応熱を供給しているため、触媒層断面方向での温度降下が起こり、熱電対の指示温度は368℃となった。その結果、デカリン転化率は41%と、372℃における平衡転化率(71%)の58%に低下した。なお、凝縮分離装置後の未反応デカリン中のトランス体とシス体との比は1.0:1であった。
Comparative Example 1
As a dehydrogenation catalyst, γ-Al 2 O 3 having a particle size of 0.3 to 0.5 mm is used as a carrier, and the carrier itself also serves as a solid acid catalyst component capable of causing a skeletal isomerization reaction. A dehydrogenation experiment was conducted in the same manner as in Example 1 except that no Al 2 O 3 oxide was supported. The catalyst amount was set to a volume equal to the catalyst bulk volume (1.33 cm 2 ) in Example 1, and the output of the electric furnace for external heating was also set to the output equivalent to Example 1.
In this comparative example, the catalyst support is not metallic and reaction heat is supplied by external heating, so that a temperature drop occurs in the cross-sectional direction of the catalyst layer, and the indicated temperature of the thermocouple is 368 ° C. As a result, the decalin conversion was 41%, which was 58% of the equilibrium conversion (71%) at 372 ° C. The ratio of the trans isomer to the cis isomer in the unreacted decalin after the condenser / separator was 1.0: 1.

比較例2
比較例1と同様の脱水素触媒を用い、反応熱を供給する内部加熱式であるシーズヒーターを触媒にロウ付けしなかった以外は、実施例2と同様にして脱水素実験を行った。なお、触媒量は、比較例1と同様とし、シーズヒーターの出力は実施例2に等しい出力とした。
本比較例では、触媒層内での反応熱供給システムを備えているため、比較例1よりは転化率が高いものの、触媒担体が金属質ではないため、触媒層断面方向での温度降下によって、熱電対の指示温度は372℃となった。その結果、デカリン転化率は52%と、372℃における平衡転化率(72%)の72%に低下した。なお、凝縮分離装置後の未反応デカリン中のトランス体とシス体との比は1.1:1であった。
Comparative Example 2
A dehydrogenation experiment was performed in the same manner as in Example 2 except that the same dehydrogenation catalyst as in Comparative Example 1 was used and a sheathed heater that was an internal heating type supplying reaction heat was not brazed to the catalyst. The catalyst amount was the same as in Comparative Example 1, and the output of the sheathed heater was the same as in Example 2.
In this comparative example, since the reaction heat supply system in the catalyst layer is provided, the conversion rate is higher than that in Comparative Example 1, but the catalyst support is not metallic, and therefore, due to the temperature drop in the cross-sectional direction of the catalyst layer, The indicated temperature of the thermocouple was 372 ° C. As a result, the decalin conversion rate was 52%, which was 72% of the equilibrium conversion rate (72%) at 372 ° C. The ratio of the trans isomer to the cis isomer in the unreacted decalin after the condensing / separating apparatus was 1.1: 1.

比較例3
脱水素触媒として、固体酸触媒成分であるγ‐Al2O3系酸化物を担持しなかった以外は実施例1と同様にして脱水素実験を行った。なお、シーズヒーターの出力は実施例2と等しい出力とした。比較例2と異なり、金属質触媒担体であるため、熱電対指示温度は381℃であったが、反応系内でトランス体からシス体への骨格異性化反応が進行しないため、デカリン転化率は38%まで低下し、かつ、未反応デカリン中のトランス体とシス体との比は6.3:1となり、ほぼ選択的にシス体が反応したことが明らかであった。
Comparative Example 3
A dehydrogenation experiment was conducted in the same manner as in Example 1 except that the γ-Al 2 O 3 oxide, which is a solid acid catalyst component, was not supported as a dehydrogenation catalyst. The output of the sheathed heater was the same as that of Example 2. Unlike Comparative Example 2, because it is a metallic catalyst support, the thermocouple indicating temperature was 381 ° C., but the skeletal isomerization reaction from the trans isomer to the cis isomer does not proceed in the reaction system, so the decalin conversion rate is The ratio decreased to 38%, and the ratio of the trans isomer to the cis isomer in unreacted decalin was 6.3: 1. It was clear that the cis isomer reacted almost selectively.

比較例4
比較例3と同様の脱水素触媒を用い、シーズヒーターに電力を供給せず、外部加熱方式である電気炉で加熱した以外は、実施例1と同様にして脱水素実験を行った。なお、本比較例では、反応温度が380℃になるよう、電気炉の出力を調節した。その結果、デカリン転化率は29%と、比較例3よりもさらに低下していた。
Comparative Example 4
A dehydrogenation experiment was performed in the same manner as in Example 1 except that the same dehydrogenation catalyst as in Comparative Example 3 was used, and no electric power was supplied to the sheathed heater, but the sheathed heater was heated in an electric furnace as an external heating method. In this comparative example, the output of the electric furnace was adjusted so that the reaction temperature was 380 ° C. As a result, the decalin conversion rate was 29%, which was lower than that of Comparative Example 3.

本発明により、水素化芳香族化合物から迅速かつ効率よく水素を製造することができ、自動車や家庭、事務所向け燃料電池の実用化を大きく前進させることができる。   According to the present invention, hydrogen can be produced quickly and efficiently from a hydrogenated aromatic compound, and the practical application of fuel cells for automobiles, homes and offices can be greatly advanced.

本発明の水素製造装置に組込まれる脱水素触媒システムの一態様を側方及び下方からみた概略図である。It is the schematic which looked at the one aspect | mode of the dehydrogenation catalyst system incorporated in the hydrogen production apparatus of this invention from the side and the downward direction. 本発明の水素製造装置に組込まれる脱水素触媒システムの別の態様を側方及び下方からみた概略図である。It is the schematic which looked at another aspect of the dehydrogenation catalyst system integrated in the hydrogen production apparatus of this invention from the side and the downward direction. 本発明の水素製造装置に組込まれる脱水素触媒システムのさらに別の態様を側方及び下方からみた概略図である。It is the schematic which saw another aspect of the dehydrogenation catalyst system integrated in the hydrogen production apparatus of this invention from the side and the downward direction. 上記脱水素触媒システムを組込んだ反応器の概略構造を示す側面断面図である。It is side surface sectional drawing which shows schematic structure of the reactor incorporating the said dehydrogenation catalyst system. 脱水素触媒システムを組込んだ別の反応器の概略構造を示す側面断面図である。It is side surface sectional drawing which shows schematic structure of another reactor incorporating the dehydrogenation catalyst system. 本発明の水素製造装置を用いた水素製造装置の全体構成の一例を示すブロック図である。It is a block diagram which shows an example of the whole structure of the hydrogen production apparatus using the hydrogen production apparatus of this invention.

符号の説明Explanation of symbols

1…原料タンク
2…脱水素反応器
3…水素分離装置
4…水素精製装置
5…水素タンク
6…芳香族化合物タンク
10…脱水素触媒(ユニット)
20…熱供給システム
21、22、23…伝熱策(熱供給手段)
24…分配管
25…集合管
26…熱媒体タンク
27…ポンプ
28…循環ライン
31…入口
32…下部室
33…上部室
34…出口
35…吹抜け防止材
36…底部支持材
37…側部支持材
38…側部係止材
39…隙間
DESCRIPTION OF SYMBOLS 1 ... Raw material tank 2 ... Dehydrogenation reactor 3 ... Hydrogen separation apparatus 4 ... Hydrogen purification apparatus 5 ... Hydrogen tank 6 ... Aromatic compound tank 10 ... Dehydrogenation catalyst (unit)
20 ... Heat supply system 21, 22, 23 ... Heat transfer measures (heat supply means)
24 ... Distribution pipe 25 ... Collecting pipe 26 ... Heat medium tank 27 ... Pump 28 ... Circulation line 31 ... Inlet 32 ... Lower chamber 33 ... Upper chamber 34 ... Outlet 35 ... Blow-out prevention material 36 ... Bottom support material 37 ... Side support material 38 ... Side locking member 39 ... Gap

Claims (10)

金属質触媒担体上に水素化芳香族化合物の骨格異性化反応を起こすことができる弱固体酸性を有する酸化物と、水素化芳香族化合物の脱水素反応活性成分を担持した触媒よりなることを特徴とする、水素化芳香族化合物の脱水素による水素製造装置   It comprises an oxide having weak solid acidity capable of causing a skeletal isomerization reaction of a hydrogenated aromatic compound on a metal catalyst support, and a catalyst supporting a dehydrogenation active component of the hydrogenated aromatic compound. And hydrogen production equipment by dehydrogenation of hydrogenated aromatic compounds 金属質触媒担体が、メタルハニカム、発泡金属、燃結金属、メタルクロスから成る群から選ばれる少なくとも1種である、請求項1に記載の水素化芳香族化合物の脱水素による水素製造装置   The hydrogen production apparatus by dehydrogenation of a hydrogenated aromatic compound according to claim 1, wherein the metallic catalyst carrier is at least one selected from the group consisting of a metal honeycomb, a foam metal, a sintered metal, and a metal cloth. 水素化芳香族化合物の骨格異性化反応を起こすことができる弱固体酸性を有する酸化物が、γ‐Al23、ZrO2、TiO2、Nb25から成る群から選ばれる少なくとも1種である、請求項1又は2に記載の水素化芳香族化合物の脱水素による水素製造装置 The oxide having weak solid acidity capable of causing the skeletal isomerization reaction of the hydrogenated aromatic compound is at least one selected from the group consisting of γ-Al 2 O 3 , ZrO 2 , TiO 2 , and Nb 2 O 5. An apparatus for producing hydrogen by dehydrogenation of a hydrogenated aromatic compound according to claim 1 or 2, 前記触媒への反応熱供給が可能な熱供給システムが備えられている請求項1、2又は3に記載の水素化芳香族化合物の脱水素による水素製造装置   The apparatus for producing hydrogen by dehydrogenation of a hydrogenated aromatic compound according to claim 1, 2 or 3, further comprising a heat supply system capable of supplying reaction heat to the catalyst. 反応熱供給が可能な熱供給システムが、少なくとも触媒の周囲、上面、下面又は内部に、実質的に触媒と接触するように配置されている、複数の金属製伝熱管又は複数の電気ヒーターである、請求項1〜4のいずれかに記載の水素化芳香族化合物の脱水素による水素製造装置   A heat supply system capable of supplying reaction heat is a plurality of metal heat transfer tubes or a plurality of electric heaters disposed so as to be substantially in contact with the catalyst at least around, on the upper surface, the lower surface, or inside the catalyst. An apparatus for producing hydrogen by dehydrogenation of a hydrogenated aromatic compound according to any one of claims 1 to 4 反応熱供給が可能な熱供給システムが、触媒に通電するものである、請求項1〜4のいずれかに記載の水素化芳香族化合物の脱水素による水素製造装置   The apparatus for producing hydrogen by dehydrogenation of a hydrogenated aromatic compound according to any one of claims 1 to 4, wherein a heat supply system capable of supplying reaction heat supplies electricity to the catalyst. 触媒が2個以上のユニットに分割されている請求項1〜6のいずれかに記載の水素化芳香族化合物の脱水素による水素製造装置   The apparatus for producing hydrogen by dehydrogenation of a hydrogenated aromatic compound according to any one of claims 1 to 6, wherein the catalyst is divided into two or more units. ぞれぞれのユニットに反応熱供給が可能な熱供給システムを備えている請求項7に記載の水素化芳香族化合物の脱水素による水素製造装置   The hydrogen production apparatus by dehydrogenation of the hydrogenated aromatic compound according to claim 7, wherein each unit includes a heat supply system capable of supplying reaction heat. 異性体を有する水素化芳香族化合物を、請求項1〜8のいずれかに記載の触媒と接触させて脱水素させることを特徴とする水素製造方法   A method for producing hydrogen, comprising dehydrogenating a hydrogenated aromatic compound having an isomer by contacting with the catalyst according to any one of claims 1 to 8. 異性体がシス‐トランス異性体である請求項9に記載の水素製造方法   The method for producing hydrogen according to claim 9, wherein the isomer is a cis-trans isomer.
JP2006135424A 2005-06-30 2006-05-15 Apparatus and method for producing hydrogen Pending JP2007039312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006135424A JP2007039312A (en) 2005-06-30 2006-05-15 Apparatus and method for producing hydrogen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005191446 2005-06-30
JP2006135424A JP2007039312A (en) 2005-06-30 2006-05-15 Apparatus and method for producing hydrogen

Publications (1)

Publication Number Publication Date
JP2007039312A true JP2007039312A (en) 2007-02-15

Family

ID=37797634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006135424A Pending JP2007039312A (en) 2005-06-30 2006-05-15 Apparatus and method for producing hydrogen

Country Status (1)

Country Link
JP (1) JP2007039312A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234279A (en) * 2009-03-31 2010-10-21 Hitachi Aic Inc Hydrogen catalyst member
JP2011016122A (en) * 2009-06-11 2011-01-27 Hitachi Aic Inc Hydrogen catalyst material
JP2011152527A (en) * 2010-01-28 2011-08-11 Hitachi Aic Inc Hydrogen catalyst member
JP2012158492A (en) * 2011-01-31 2012-08-23 Kokusai Yuki Hydride Kk Hydrogen gas generating apparatus and hydrogen gas generating method
CN104107702A (en) * 2014-07-07 2014-10-22 中国科学院过程工程研究所 Integral type metal-based catalyst and preparation method and application thereof
WO2021200672A1 (en) * 2020-03-30 2021-10-07 Eneos株式会社 Accommodation body and transportation method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637842A (en) * 1986-06-30 1988-01-13 Mitsubishi Heavy Ind Ltd Catalyst for reforming methanol
JPH06182201A (en) * 1984-07-31 1994-07-05 Hitachi Ltd Catalyst stable at high temperature, its preparation, and method for effecting chemical reaction using this catalyst
JP2003277002A (en) * 2002-03-19 2003-10-02 Honda Motor Co Ltd Hydrogen supplying apparatus
JP2004035300A (en) * 2002-07-01 2004-02-05 Sekisui Chem Co Ltd Hydrogen supply system
JP2004057858A (en) * 2002-07-25 2004-02-26 Kansai Electric Power Co Inc:The Catalyst for manufacturing hydrogen gas and manufacturing method of hydrogen gas
JP2004059336A (en) * 2002-07-25 2004-02-26 Kansai Electric Power Co Inc:The Process for producing hydrogen gas
JP2004083385A (en) * 2002-06-04 2004-03-18 Sekisui Chem Co Ltd Hydrogen-supplying medium and hydrogen storing and supply system utilizing the same
WO2005000457A2 (en) * 2003-05-06 2005-01-06 Air Products And Chemicals, Inc. Hydrogen storage reversible hydrogenated of pi-conjugated substrates
JP2005022939A (en) * 2003-07-02 2005-01-27 Sekisui Chem Co Ltd Reaction device of hydrogen-supply system, and hydrogen-supply system
JP2005047743A (en) * 2003-07-28 2005-02-24 Nippon Oil Corp Method of producing hydrogen using heat conductive catalytic body
JP2005138024A (en) * 2003-11-06 2005-06-02 Sekisui Chem Co Ltd Catalyst for dehydrogenation reaction from hydrogenated aromatic compound and hydrogen manufacturing method utilizing the catalyst
JP2005154204A (en) * 2003-11-26 2005-06-16 Sekisui Chem Co Ltd Hydrogen supply apparatus
JP2005154205A (en) * 2003-11-26 2005-06-16 Sekisui Chem Co Ltd Hydrogen supply apparatus
JP2006225169A (en) * 2005-02-15 2006-08-31 National Institute Of Advanced Industrial & Technology Hydrogen production apparatus and method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182201A (en) * 1984-07-31 1994-07-05 Hitachi Ltd Catalyst stable at high temperature, its preparation, and method for effecting chemical reaction using this catalyst
JPS637842A (en) * 1986-06-30 1988-01-13 Mitsubishi Heavy Ind Ltd Catalyst for reforming methanol
JP2003277002A (en) * 2002-03-19 2003-10-02 Honda Motor Co Ltd Hydrogen supplying apparatus
JP2004083385A (en) * 2002-06-04 2004-03-18 Sekisui Chem Co Ltd Hydrogen-supplying medium and hydrogen storing and supply system utilizing the same
JP2004035300A (en) * 2002-07-01 2004-02-05 Sekisui Chem Co Ltd Hydrogen supply system
JP2004059336A (en) * 2002-07-25 2004-02-26 Kansai Electric Power Co Inc:The Process for producing hydrogen gas
JP2004057858A (en) * 2002-07-25 2004-02-26 Kansai Electric Power Co Inc:The Catalyst for manufacturing hydrogen gas and manufacturing method of hydrogen gas
WO2005000457A2 (en) * 2003-05-06 2005-01-06 Air Products And Chemicals, Inc. Hydrogen storage reversible hydrogenated of pi-conjugated substrates
JP2005022939A (en) * 2003-07-02 2005-01-27 Sekisui Chem Co Ltd Reaction device of hydrogen-supply system, and hydrogen-supply system
JP2005047743A (en) * 2003-07-28 2005-02-24 Nippon Oil Corp Method of producing hydrogen using heat conductive catalytic body
JP2005138024A (en) * 2003-11-06 2005-06-02 Sekisui Chem Co Ltd Catalyst for dehydrogenation reaction from hydrogenated aromatic compound and hydrogen manufacturing method utilizing the catalyst
JP2005154204A (en) * 2003-11-26 2005-06-16 Sekisui Chem Co Ltd Hydrogen supply apparatus
JP2005154205A (en) * 2003-11-26 2005-06-16 Sekisui Chem Co Ltd Hydrogen supply apparatus
JP2006225169A (en) * 2005-02-15 2006-08-31 National Institute Of Advanced Industrial & Technology Hydrogen production apparatus and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234279A (en) * 2009-03-31 2010-10-21 Hitachi Aic Inc Hydrogen catalyst member
JP2011016122A (en) * 2009-06-11 2011-01-27 Hitachi Aic Inc Hydrogen catalyst material
JP2011152527A (en) * 2010-01-28 2011-08-11 Hitachi Aic Inc Hydrogen catalyst member
JP2012158492A (en) * 2011-01-31 2012-08-23 Kokusai Yuki Hydride Kk Hydrogen gas generating apparatus and hydrogen gas generating method
CN104107702A (en) * 2014-07-07 2014-10-22 中国科学院过程工程研究所 Integral type metal-based catalyst and preparation method and application thereof
WO2021200672A1 (en) * 2020-03-30 2021-10-07 Eneos株式会社 Accommodation body and transportation method
CN115427725A (en) * 2020-03-30 2022-12-02 引能仕株式会社 Housing body and conveying method

Similar Documents

Publication Publication Date Title
EP2598434B1 (en) An improved process for the storage delivery of hydrogen using catalyst
JP2007039312A (en) Apparatus and method for producing hydrogen
CN101622068B (en) Process for regeneration of a catalyst bed deactivated in the context of a heterogeneously catalyzed partial dehydrogenation of a hydrocarbon
WO2007102278A1 (en) Hydrogen generator and hydrogenation apparatus
JP2008273778A (en) Supported catalyst for hydrogenation/dehydrogenation reaction, its manufacturing method and hydrogen storing/feeding method using the catalyst
JP4849775B2 (en) Hydrogen supply system for fuel cell operating chassis
JP5654371B2 (en) Hydrogen gas generation apparatus and hydrogen gas generation method
CA2940616C (en) System and method for producing hydrogen by dehydrogenation of an organic hydride
JP6321946B2 (en) Catalytic reaction system and catalytic reaction apparatus
JP2005022939A (en) Reaction device of hydrogen-supply system, and hydrogen-supply system
US7678837B2 (en) Device and method for removing carbon monoxide from a gaseous stream containing hydrogen
CN105188904A (en) Device and method for the continuous reaction of liquids with gases
Makaryan et al. Catalytic Reactors for Dehydrogenation of Liquid Organic Hydrogen Carriers
JP2005138024A (en) Catalyst for dehydrogenation reaction from hydrogenated aromatic compound and hydrogen manufacturing method utilizing the catalyst
JP2004250255A (en) Hydrogen storage and generation system
JP2002274801A (en) Hydrogen storage and supply system
JP2010006651A (en) Apparatus and method for producing hydrogen
JP2004026593A (en) Apparatus for generating and storing hydrogen
JP2002274804A (en) Hydrogen storage and supply means
JP2003321201A (en) Hydrogen storage/supply system
JP4136396B2 (en) Organic hydride or aromatic hydrocarbon vaporizing and condensing equipment for hydrogen generation and storage equipment
JP2004224596A (en) Hydrogen supply apparatus
JP2016050145A (en) Dehydrogenation system
JP2003321202A (en) Hydrogen storage/supply system
WO2014054778A1 (en) Raw oil for dehydrogenation systems, and dehydrogenation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110330

A521 Written amendment

Effective date: 20110511

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111109

A02 Decision of refusal

Effective date: 20120228

Free format text: JAPANESE INTERMEDIATE CODE: A02