JP2005047743A - Method of producing hydrogen using heat conductive catalytic body - Google Patents

Method of producing hydrogen using heat conductive catalytic body Download PDF

Info

Publication number
JP2005047743A
JP2005047743A JP2003281080A JP2003281080A JP2005047743A JP 2005047743 A JP2005047743 A JP 2005047743A JP 2003281080 A JP2003281080 A JP 2003281080A JP 2003281080 A JP2003281080 A JP 2003281080A JP 2005047743 A JP2005047743 A JP 2005047743A
Authority
JP
Japan
Prior art keywords
reaction
hydrogen
catalyst
catalyst body
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003281080A
Other languages
Japanese (ja)
Other versions
JP4431338B2 (en
Inventor
Toshiyuki Enomoto
敏行 榎本
Takanari Matsumoto
隆也 松本
Yukinori Kude
幸徳 久手
Yoshihiro Kobori
良浩 小堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2003281080A priority Critical patent/JP4431338B2/en
Publication of JP2005047743A publication Critical patent/JP2005047743A/en
Application granted granted Critical
Publication of JP4431338B2 publication Critical patent/JP4431338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that the reaction efficiency tends to be decreased with the lowering of catalyst temperature because the dehydrogenation reaction of hydrocarbon, particularly cyclohexane ring to produce hydrogen is a largely endothermic reaction though it is very useful. <P>SOLUTION: Hydrogen is produced by dehydrogenating a hydrocarbon, preferably a cyclic hydrocarbon using a heat conductive catalytic body. As a result, the lowering of the catalyst temperature and the decrease of the catalyst efficiency are suppressed. Group VIII to X metal and further preferably a basic substance are made present on the surface of the heat conductive catalytic body. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、熱伝導性触媒体を用いる水素の製造方法に関し、とくに石油精製、燃料製造、石油化学の分野において、熱伝導性触媒体を用いて主として炭化水素からなる原料油を脱水素することを特徴とする水素の製造方法に関するものである。   The present invention relates to a method for producing hydrogen using a thermally conductive catalyst body, and in particular, in the fields of petroleum refining, fuel production, and petrochemistry, dehydrogenating a feedstock mainly composed of hydrocarbons using a thermally conductive catalyst body. The present invention relates to a method for producing hydrogen.

水素は石油精製、化学産業などをはじめとしてあらゆる産業分野において広く用いられている。とくに近年、将来のエネルギーとして水素エネルギーが注目されてきており燃料電池を中心に研究が進められているが、水素ガスは熱量あたりの体積が大きく、また液化するには非常に低い温度が必要で液化に必要なエネルギーも大きいため、水素の貯蔵、輸送のシステムが重要な課題となっている。そこで例えば水素吸蔵金属の利用も提案されているが実用性には程遠い。一方、液状の炭化水素は水素ガスに比べてエネルギー密度が大きく取り扱いやすいことに加え、既存のインフラストラクチャーが利用できるという利点もあることから、炭化水素の形態で貯蔵、輸送して、必要に応じ炭化水素から水素を製造する方法は重要である。
水素の大規模な製造はメタンや軽質パラフィンの水蒸気改質法、部分酸化法など公知の技術により広く行われている。しかしこれらの反応は高温を必要とするとともにプロセスが複雑であり、小規模の製造では一般に効率が悪く適していない。小規模の水素製造方法としてメタノールの改質反応による方法もあるが、この反応で得られる水素には一酸化炭素が混入しており、その後に一酸化炭素の転換および転換して生じた二酸化炭素ないしメタンの分離除去、の各工程が必要となるという欠点がある。
Hydrogen is widely used in various industrial fields including the oil refining and chemical industries. In particular, hydrogen energy has attracted attention as a future energy, and research is being conducted mainly on fuel cells. However, hydrogen gas has a large volume per heat and requires a very low temperature for liquefaction. Since the energy required for liquefaction is large, a system for storing and transporting hydrogen is an important issue. Thus, for example, use of a hydrogen storage metal has been proposed, but it is far from practical. Liquid hydrocarbons, on the other hand, have an energy density that is easier to handle than hydrogen gas, and also have the advantage of being able to use existing infrastructure, so they can be stored and transported in the form of hydrocarbons and used as needed. The method of producing hydrogen from hydrocarbons is important.
Large-scale production of hydrogen is widely performed by known techniques such as steam reforming and partial oxidation of methane and light paraffin. However, these reactions require high temperatures and complicated processes, and are generally inefficient and unsuitable for small scale production. There is a reforming reaction of methanol as a small-scale hydrogen production method, but carbon monoxide is mixed in the hydrogen obtained by this reaction, and then carbon dioxide produced by conversion and conversion of carbon monoxide. In addition, there is a disadvantage that each process of separation and removal of methane is required.

これに対し、液状の炭化水素を脱水素して水素を製造する方法では、反応が単純であるため反応に関するプロセスが少なくてすむことに加え、生成物が水素と常温で液体である不飽和炭化水素であるため両者の分離が容易であるという特長がある。特にシクロヘキサン環を有する炭化水素を原料とし、そのシクロヘキサン環を芳香族環に脱水素する反応は、適宜の脱水素触媒の存在下容易に脱水素するため反応条件を適切に設定すれば転化率をほぼ100%とすることができ、さらに生成物の水素と芳香族炭化水素の分離も沸点差が大により容易であるために、小規模の水素製造に適した方法である。
また前記したように固体または液体の炭化水素の形態で輸送すれば気体もしくは液体水素輸送の不便さも解消できる。すなわち、燃料電池等の水素消費設備・装置等に隣接した個所に炭化水素、好ましくは液状炭化水素を脱水素する設備・装置を配置し、該隣接個所で脱水素させて水素を製造し、製造した水素を隣接する水素消費装置・設備で利用いるならば、炭化水素の形態で輸送・貯蔵するために気体水素の貯蔵・輸送の不便さが解消できるので好ましい。特に水素消費設備・装置が自動車等の移動性の設備・装置等に搭載されるような場合、共に移動するべく該移動性設備・装置に搭載すれば更に好ましい態様となる。小規模装置ではこのような複数設備の搭載も容易である。
On the other hand, in the method of producing hydrogen by dehydrogenating liquid hydrocarbons, the reaction is simple, so the number of processes related to the reaction is reduced, and the unsaturated carbonized product is liquid with hydrogen at room temperature. Since it is hydrogen, it has the feature that separation of both is easy. In particular, the reaction in which hydrocarbons having a cyclohexane ring are used as a raw material and the cyclohexane ring is dehydrogenated to an aromatic ring is easily dehydrogenated in the presence of an appropriate dehydrogenation catalyst. It can be almost 100%, and the separation of the product hydrogen from the aromatic hydrocarbon is also easier for the difference in boiling point, and is therefore suitable for small-scale hydrogen production.
Moreover, the inconvenience of transporting gas or liquid hydrogen can be eliminated by transporting in the form of solid or liquid hydrocarbon as described above. That is, equipment / devices for dehydrogenating hydrocarbons, preferably liquid hydrocarbons, are placed at locations adjacent to hydrogen consumption facilities / devices such as fuel cells, etc., and hydrogen is produced by dehydrogenation at the adjacent locations. If the hydrogen used is used in the adjacent hydrogen consuming apparatus / equipment, it is preferable because the inconvenience of storing and transporting gaseous hydrogen can be eliminated because it is transported and stored in the form of hydrocarbon. In particular, when the hydrogen consuming equipment / device is mounted on a mobile equipment / device such as an automobile, it is more preferable if it is mounted on the mobile equipment / device to move together. Such equipment can be easily installed in a small-scale device.

しかし、炭化水素の脱水素、とりわけシクロヘキサン環の脱水素は大きな吸熱反応である。シクロヘキサンの脱水素では反応エンタルピーは50kcal/molであり、置換基がついたシクロヘキサン環を有する炭化水素の脱水素でもシクロヘキサン環あたりの反応エンタルピーはほぼ同じ値である。通常、脱水素反応では、触媒活性主成分を担体に担持させてできた固体触媒(粒、ペレット、押出し成型体など)を反応器に充填して反応物を流す固定床流通式反応の形式をとるが、従来の固体触媒ではその大部分を占める担体がアルミナ等、熱の不良導体で構成されている。この場合、外部からの熱供給は主として反応管壁から流体への伝熱により行われ、触媒への直接の伝熱はごくわずかである。このためシクロヘキサン環の脱水素のように反応速度が速く反応の吸熱が大きいときには、吸熱反応の場である触媒への熱供給が不足して触媒の温度が低下しひいては反応効率が低下する可能性がある。   However, hydrocarbon dehydrogenation, especially cyclohexane ring dehydrogenation, is a large endothermic reaction. In the dehydrogenation of cyclohexane, the enthalpy of reaction is 50 kcal / mol, and the enthalpy of reaction per cyclohexane ring is almost the same value even in the dehydrogenation of a hydrocarbon having a cyclohexane ring with a substituent. Usually, in the dehydrogenation reaction, a fixed bed flow type reaction method is used in which a solid catalyst (particles, pellets, extruded products, etc.) made by supporting a catalytically active main component on a carrier is filled in a reactor and the reactants are flown. However, in the conventional solid catalyst, the carrier that occupies most of the solid catalyst is composed of a poor heat conductor such as alumina. In this case, heat supply from the outside is mainly performed by heat transfer from the reaction tube wall to the fluid, and direct heat transfer to the catalyst is negligible. For this reason, when the reaction rate is fast and the endotherm of the reaction is large, such as dehydrogenation of the cyclohexane ring, there is a possibility that the heat supply to the catalyst, which is the endothermic reaction, is insufficient and the temperature of the catalyst is lowered, thereby reducing the reaction efficiency. There is.

特開昭47−33785号公報JP 47-33785 A 特開平5−116901号公報 これに関連して、上記特許文献1には反応熱の除去ないし反応熱の供給に熱伝導性触媒が有効であることが開示されている。同公報では、熱伝導性触媒は、触媒物質が熱伝導性基体と一体的に熱伝導的関係において結合してなる触媒と規定されている。しかし水素製造については言及がない。また熱伝導性触媒体を用いて水素を製造する方法として、上記特許文献2には、連続状金属基体の表面に超微粒子の触媒物質を担持せしめた連続触媒体を使用することを特徴とするメタノールの改質方法が開示され、高収率で水素と一酸化炭素を得ることができるという記載がある。しかし、メタノールの改質反応は前述したとおり小規模の水素の製造方法としてはメタンや二酸化炭素などのガスとの分離工程が必要であり、また工程数が多いという欠点がある。In relation to this, Japanese Patent Application Laid-Open No. 5-116901 discloses that the thermal conductive catalyst is effective for removing reaction heat or supplying reaction heat. In this publication, a heat conductive catalyst is defined as a catalyst in which a catalyst substance is integrally bonded to a heat conductive substrate in a heat conductive relationship. However, there is no mention of hydrogen production. Further, as a method for producing hydrogen using a heat conductive catalyst body, the above-mentioned Patent Document 2 is characterized by using a continuous catalyst body in which ultrafine catalyst material is supported on the surface of a continuous metal substrate. A method for reforming methanol is disclosed, and there is a description that hydrogen and carbon monoxide can be obtained in a high yield. However, as described above, the reforming reaction of methanol requires a separation process from a gas such as methane or carbon dioxide as a method for producing hydrogen on a small scale, and has a disadvantage that the number of processes is large.

一方、燃料電池を初めとする水素消費の反応は一般には発熱反応であり、この発生した熱量は、従来はこのままでは外部へ単に廃棄され有効利用されることが少ないが、燃焼を代表とする水素消費反応の発熱は大きく、この熱を有効に利用することができればシステム全体の熱効率が向上する。とりわけ前述のような好ましい態様として水素の消費設備とその発生設備とが隣接しているような場合には、互いに隣接しているので配管等が容易であり、また熱輸送の損失も少なくすることができ好ましいものとなる。   On the other hand, the reaction of hydrogen consumption including fuel cells is generally an exothermic reaction, and the amount of generated heat is conventionally simply discarded to the outside and not effectively used as it is. The heat generated by the consumption reaction is large, and if this heat can be used effectively, the thermal efficiency of the entire system is improved. In particular, when the hydrogen consuming equipment and its generating equipment are adjacent to each other as a preferred embodiment as described above, piping is easy because they are adjacent to each other, and the loss of heat transport is reduced. This is preferable.

本発明の目的は、熱伝導性触媒体を用いて炭化水素の脱水素を起こさせることにより、効率よく水素を製造する方法を提供することにある。   An object of the present invention is to provide a method for efficiently producing hydrogen by causing dehydrogenation of hydrocarbons using a thermally conductive catalyst body.

本発明者らは上記の課題を解決するため鋭意研究を重ねた結果、熱伝導性触媒体を触媒として用いることにより、炭化水素の脱水素反応において高活性を有することを見出し、本発明を完成した。
すなわち、本発明は、熱伝導性触媒体を用いて固定床流通式で炭化水素を脱水素することにより水素を発生させることを特徴とする水素の製造方法に関する。さらに炭化水素が環状炭化水素、好ましくはシクロヘキサン環を有し、そのシクロヘキサン環を脱水素して芳香族環に変換させることにより水素を発生させることを特徴とする水素の製造方法に関する。また熱伝導性触媒体の表面に第8〜10族金属が存在することを特徴とする水素の製造方法、その製造方法に用いる触媒体、ならびにその触媒体を用いた水素製造装置に関する。
As a result of intensive studies to solve the above problems, the present inventors have found that by using a thermally conductive catalyst as a catalyst, the catalyst has high activity in hydrocarbon dehydrogenation, and the present invention has been completed. did.
That is, the present invention relates to a method for producing hydrogen, characterized in that hydrogen is generated by dehydrogenating hydrocarbons in a fixed bed flow system using a thermally conductive catalyst body. Furthermore, the present invention relates to a method for producing hydrogen, wherein the hydrocarbon has a cyclic hydrocarbon, preferably a cyclohexane ring, and hydrogen is generated by dehydrogenating the cyclohexane ring and converting it to an aromatic ring. In addition, the present invention relates to a method for producing hydrogen, wherein a group 8-10 metal is present on the surface of a thermally conductive catalyst body, a catalyst body used in the production method, and a hydrogen production apparatus using the catalyst body.

本発明の熱伝導性触媒体を用いた水素の製造方法によれば、触媒体の高い熱伝導性により熱供給が速く反応効率が向上するため、反応効率が高くまた反応装置を小型にできる。また触媒体の表面に塩基性物質を共存させることにより副反応を抑制して選択率を向上させるとともに触媒の寿命を長くすることができる。また触媒体に直接通電することにより迅速に反応温度を上げて反応装置の起動時間を著しく短縮できる。   According to the method for producing hydrogen using the heat conductive catalyst body of the present invention, the reaction efficiency is high and the reaction apparatus can be downsized because the heat supply is fast and the reaction efficiency is improved due to the high heat conductivity of the catalyst body. In addition, by allowing a basic substance to coexist on the surface of the catalyst body, side reactions can be suppressed to improve selectivity, and the life of the catalyst can be extended. Further, by directly energizing the catalyst body, the reaction temperature can be quickly raised and the start-up time of the reaction apparatus can be significantly shortened.

本発明の熱伝導性触媒体とは、高い熱伝導性の材料から構成されるものであり、具体的には300Kにおける熱伝導率が1W/m・K〜800W/m・K、好ましくは5W/m・K〜500W/m・Kの物質を基体材料とするものである。
この熱伝導性触媒体の基体は金属が好ましく、高い熱伝導性を発揮する限り基体表面に酸化物などの皮膜を有することができる。基体の金属には熱伝導性材料として一般に用いられる任意の金属および合金を用いることができ、例えば鉄、銅、ニッケル、アルミニウム、ステンレスなどを用いることができるが、特にアルミニウムもしくはその合金または表面にアルミニウムを有する金属もしくは合金が好ましい。
金属を基体とすることにより触媒体の熱伝導性が高まって熱供給が速くなり反応効率が向上する効果がある。また好ましい金属等の材料とすることにより、それが導電性を有し適宜の抵抗を有する場合、これを利用して直接触媒体に通電し発熱させることが可能となる。直接通電により迅速に触媒体の温度、ひいては反応系の反応温度を上げることができ、かくすることにより反応装置の起動時間を著しく短縮できる効果がある。
The heat conductive catalyst body of the present invention is composed of a material having high heat conductivity. Specifically, the heat conductivity at 300K is 1 W / m · K to 800 W / m · K, preferably 5 W. / M · K to 500 W / m · K as a base material.
The base of the thermal conductive catalyst body is preferably a metal, and can have a film such as an oxide on the surface of the base as long as it exhibits high thermal conductivity. As the base metal, any metal and alloy generally used as a heat conductive material can be used. For example, iron, copper, nickel, aluminum, stainless steel and the like can be used. A metal or alloy with aluminum is preferred.
By using a metal as a base, the thermal conductivity of the catalyst body is increased, so that the heat supply is accelerated and the reaction efficiency is improved. In addition, by using a preferable material such as a metal, when it has conductivity and has an appropriate resistance, it is possible to generate electricity by directly energizing the catalyst body using this. By direct energization, the temperature of the catalyst body, and thus the reaction temperature of the reaction system can be quickly increased, and thus the start-up time of the reaction apparatus can be remarkably shortened.

この金属基体は触媒活性成分を担持する担体として機能し、担体機能が発揮できるように、その表面を高表面積にするべく処理したものが好ましい。高表面積化の処理方法については金属を高表面化する公知の方法が採用でき、たとえばボール目立、砂目立等の機械的方法、エッチング等の化学的方法、陽極酸化等の電気的方法などの手段を用いることができる。
陽極酸化としては、例えば特開2002−119856号公報に記載されている方法を好ましく使用することができる。すなわち、この方法はアルミニウムなどをクロム酸水溶液,シュウ酸水溶液,硫酸水溶液等で常法により陽極酸化した後、硫酸、リン酸、シュウ酸等の酸処理をして表面細孔の孔径拡大処理をし、次いで水和処理をした後焼成する方法である。また、この陽極酸化の処理をベースに更に高表面積化することができる。
また、これらの高表面積処理後に更にアルミナなどの安定で高表面積の金属酸化物の層を形成しても良い。
本発明で用いる熱伝導性触媒体の表面には、触媒活性主成分として脱水素活性を有する成分を存在させる。この成分は任意に選択することができるが、好ましくは周期表中第8族元素、第9族元素および第10族元素からなり、具体的には鉄、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金である。なお本発明において、周期表の族番号は国際純正および応用化学連合無機化学命名法委員会命名規則1990年版に基づく。さらに好ましくはニッケル、パラジウム、白金である。また適宜にこれらの元素の2種類以上を組み合わせても良い。これらの触媒活性主成分を熱伝導性触媒体表面に存在させるための活性成分の担時または含有させる調製法は任意であるが、含浸法が好ましく挙げられる。具体的には、Incipient Wetness法、蒸発乾固法などが挙げられる。この操作に用いる元素の化合物としては水溶性の塩を用いて該塩の水溶液として含浸等の操作をすることが好ましい。水溶性の化合物としては、上記化合物の塩化物、硝酸塩、炭酸塩等が好ましく挙げられる。
The metal substrate functions as a carrier for supporting the catalytically active component and is preferably treated so that the surface thereof has a high surface area so that the carrier function can be exhibited. As a method for increasing the surface area, a known method for increasing the surface of a metal can be employed. For example, a mechanical method such as ball conspicuousness, sand conspicuousness, a chemical method such as etching, an electrical method such as anodization, etc. Means can be used.
As anodization, for example, the method described in JP-A No. 2002-11958 can be preferably used. That is, in this method, after anodizing aluminum or the like with a chromic acid aqueous solution, an oxalic acid aqueous solution, a sulfuric acid aqueous solution or the like by an ordinary method, acid treatment with sulfuric acid, phosphoric acid, oxalic acid, etc. Then, after the hydration treatment, firing is performed. Further, the surface area can be further increased based on this anodic oxidation treatment.
Further, after these high surface area treatments, a stable high surface area metal oxide layer such as alumina may be formed.
On the surface of the thermally conductive catalyst body used in the present invention, a component having dehydrogenation activity is present as a catalytically active main component. This component can be arbitrarily selected, but preferably consists of Group 8 element, Group 9 element and Group 10 element in the periodic table, specifically iron, cobalt, nickel, ruthenium, rhodium, palladium, Osmium, iridium and platinum. In the present invention, the group numbers in the periodic table are based on the International Pure and Applied Chemistry Union Inorganic Chemistry Nomenclature Commission naming convention 1990 edition. More preferably, they are nickel, palladium, and platinum. Moreover, you may combine 2 or more types of these elements suitably. Although the preparation method to contain or contain these active components for allowing these catalytically active main components to be present on the surface of the thermally conductive catalyst body is arbitrary, an impregnation method is preferred. Specific examples include the Incipient Wetness method and the evaporation to dryness method. As the elemental compound used in this operation, it is preferable to use a water-soluble salt and perform an operation such as impregnation as an aqueous solution of the salt. Preferred examples of the water-soluble compound include chlorides, nitrates and carbonates of the above compounds.

触媒体の表面には必要に応じ適宜の添加物を共存させても良い。好ましい添加物は脱水素の具体的態様ごとに異なる。脱水素反応については後述するが、炭素骨格の変化を伴う環化、環化脱水素および環状炭化水素の異性化を起こすためには酸性物質の前記活性成分への共存が好ましい。
一方、主にシクロヘキサン環から芳香族環への脱水素を起こさせる場合には、塩基性物質を共存させることが望ましい。塩基性物質が前記活性成分と共存することにより、酸性に起因する分解などの副反応が抑制されるとともに、炭素質析出による触媒の劣化も同様に抑制される。塩基性物質の種類は任意であるが、1族元素および2族元素の化合物が好ましく、具体的にはリチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等を含む化合物が好ましい。さらに好ましくは1族元素を含む化合物であり、具体的にはリチウム、ナトリウム、カリウム、ルビジウム、セシウム等を含む化合物が好ましい。これらの化合物としては、水溶性の物質が好ましい。これらリチウム等の塩化物、硫酸塩、硝酸塩、炭酸塩等の塩がさらに好ましい。塩基性物質の含有量は触媒活性主成分に対して重量比で0.1〜100の範囲が好ましい。これらの塩基性物質を触媒体に含有させる調製法は任意であるが、前記活性成分のそれと同様、例えば含浸法が好ましく挙げられる。具体的には、Incipient Wetness法、蒸発乾固法などが挙げられる。
An appropriate additive may coexist on the surface of the catalyst body as necessary. Preferred additives vary depending on the specific embodiment of dehydrogenation. Although the dehydrogenation reaction will be described later, in order to cause cyclization accompanied by a change in the carbon skeleton, cyclization dehydrogenation, and isomerization of the cyclic hydrocarbon, the coexistence of an acidic substance with the active component is preferable.
On the other hand, when causing dehydrogenation mainly from a cyclohexane ring to an aromatic ring, it is desirable to allow a basic substance to coexist. When the basic substance coexists with the active component, side reactions such as decomposition due to acidity are suppressed, and catalyst deterioration due to carbonaceous precipitation is similarly suppressed. The type of basic substance is arbitrary, but compounds of Group 1 and Group 2 elements are preferred, and specifically, compounds containing lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, etc. Is preferred. More preferably, it is a compound containing a group 1 element, and specifically, a compound containing lithium, sodium, potassium, rubidium, cesium and the like is preferable. These compounds are preferably water-soluble substances. These salts such as chlorides such as lithium, sulfates, nitrates and carbonates are more preferable. The content of the basic substance is preferably in the range of 0.1 to 100 by weight ratio with respect to the catalytically active main component. The preparation method for incorporating these basic substances into the catalyst body is optional, but for example, the impregnation method is preferable as in the case of the active ingredient. Specific examples include the Incipient Wetness method and the evaporation to dryness method.

触媒体の形状は任意であり、板状、管状、網状、ハニカム状などの形状とすることができる。反応熱の供給を効率的に行うためには、熱供給源と触媒体が直接接触することが好ましく、このため触媒体の形状を板状、管状、ハニカム状とし、熱交換を直接行う熱交換器の熱交換部分を構成する部材形状とすることが好ましい。すなわち、球状の形状以外の、単位重量あたりの表面積が大となる形状である方が好ましい。なお、この場合の表面積(外表面積)は、前記触媒活性成分担時の場合の表面積計算とは異なり、μmオーダー以下の細孔は無視して計算する。
本発明の炭化水素の脱水素反応は、炭素骨格の変化を伴わない反応と炭素骨格の変化を伴う反応に大別される。前者としては、炭素−炭素の一重結合が二重結合になる反応を伴う単純な脱水素反応、環状炭化水素が芳香族炭化水素になる脱水素反応がある。後者としては、炭化水素が環化するとともに脱水素が起きる環化脱水素反応、環状炭化水素の異性化を伴なう脱水素反応が含まれる。本発明の脱水素反応としてはどちらの反応も利用できるが、このなかで、炭素骨格の変化を伴わずに環状炭化水素から芳香族炭化水素に変換する脱水素反応が好ましく、特にシクロヘキサン環から芳香族環になる脱水素反応が好ましい。
本発明に用いられる反応原料は炭化水素である。好ましくは環状の飽和もしくは部分不飽和炭化水素であり、さらに好ましくはシクロヘキサン環を有する炭化水素である。具体的にはシクロヘキサンおよびシクロヘキサンのアルキル置換体、デカリンおよびデカリンのアルキル置換体、テトラリンおよびテトラリンのアルキル置換体が挙げられる。より好ましくはシクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン類、デカリン、メチルデカリン類である。これらの炭化水素は単一の化合物であっても良いが、複数の炭化水素の混合物であっても良い。なお、原料は反応物となる炭化水素のみから成る必要はなく、ある程度の量の脱水素反応に関わらない不活性な他の化合物を含んでいても良い。無論不活性物質があまりに多い場合には反応効率が低下するので適宜の量とする。
反応相は好ましくは気相であるので、気相反応の場合原料の炭化水素は適宜に気化させる。それゆえ気化させるに適当な分子量の炭化水素とするのが好適である。
反応により得られる生成物は、水素のほか主として芳香族炭化水素および不飽和炭化水素である。これらは回収して別途、再度水素化することにより、原料の炭化水素に戻し、これは再度利用することができる。またこれらの生成物、特に芳香族炭化水素は一般にオクタン価が高いので、沸点が適当ならばガソリン基材として用いることもできる。また芳香族炭化水素に限らず不飽和炭化水素も、適宜精製して化学製品として用いることができる。
The shape of the catalyst body is arbitrary, and may be a plate shape, a tubular shape, a net shape, a honeycomb shape, or the like. In order to efficiently supply reaction heat, it is preferable that the heat supply source and the catalyst body are in direct contact. For this reason, the shape of the catalyst body is a plate shape, a tubular shape, a honeycomb shape, and heat exchange is directly performed. It is preferable to use a member shape that constitutes the heat exchange portion of the vessel. That is, it is preferable that the shape has a large surface area per unit weight other than the spherical shape. The surface area (outer surface area) in this case is calculated by ignoring pores of the order of μm or less, unlike the surface area calculation in the case of carrying the catalytic active component.
The hydrocarbon dehydrogenation reaction of the present invention is roughly classified into a reaction not accompanied by a change in the carbon skeleton and a reaction accompanied by a change in the carbon skeleton. The former includes a simple dehydrogenation reaction involving a reaction in which a carbon-carbon single bond becomes a double bond, and a dehydrogenation reaction in which a cyclic hydrocarbon becomes an aromatic hydrocarbon. The latter includes a cyclization dehydrogenation reaction in which dehydrogenation occurs while the hydrocarbon cyclizes, and a dehydrogenation reaction accompanied by isomerization of the cyclic hydrocarbon. Either of the reactions can be used as the dehydrogenation reaction of the present invention. Among these reactions, a dehydrogenation reaction in which a cyclic hydrocarbon is converted to an aromatic hydrocarbon without changing the carbon skeleton is preferable. A dehydrogenation reaction to form a family ring is preferred.
The reaction raw material used in the present invention is a hydrocarbon. Preferred are cyclic saturated or partially unsaturated hydrocarbons, and more preferred are hydrocarbons having a cyclohexane ring. Specific examples include cyclohexane and cyclohexane alkyl-substituted products, decalin and decalin alkyl-substituted products, and tetralin and tetralin alkyl-substituted products. More preferred are cyclohexane, methylcyclohexane, dimethylcyclohexanes, decalin, and methyldecalins. These hydrocarbons may be a single compound or a mixture of a plurality of hydrocarbons. The raw material does not need to be composed only of hydrocarbons as reactants, and may contain a certain amount of other inactive compounds not involved in the dehydrogenation reaction. Of course, when there are too many inactive substances, reaction efficiency falls, Therefore It is set as a suitable quantity.
Since the reaction phase is preferably a gas phase, the raw material hydrocarbon is appropriately vaporized in the case of a gas phase reaction. Therefore, it is preferable to use a hydrocarbon having a molecular weight suitable for vaporization.
Products obtained by the reaction are mainly aromatic hydrocarbons and unsaturated hydrocarbons in addition to hydrogen. These are recovered and separately hydrogenated again to return to the raw material hydrocarbons, which can be reused. In addition, these products, particularly aromatic hydrocarbons, generally have a high octane number, and therefore can be used as a gasoline base material if the boiling point is appropriate. Further, not only aromatic hydrocarbons but also unsaturated hydrocarbons can be appropriately purified and used as chemical products.

反応条件は原料、反応の種類に応じて適宜選択することになる。シクロヘキサン環から芳香族環への脱水素反応は可逆反応であり、化学平衡上は圧力は低圧とし、反応温度は高温である方が脱水素は進行しやすい。しかしながらあまりに低い圧力では気体の容積が増大し装置が大きくなる。かかる観点から反応圧力は好ましくは0.05MPa以上、1MPa以下であり、さらに好ましくは0.05MPa以上、0.3MPa以下である。なお、減圧するのは減圧するエネルギーが必要になるのでエネルギー的には不利である。また、本発明においては特に断らないかぎり圧力は絶対圧で示す。反応温度は前記の通り化学平衡上は高温が好ましいが、エネルギー効率の点では低温のほうが好ましい。したがってやはりかかる観点から好ましい反応温度は200℃以上、450℃以下であり、さらに好ましくは300℃以上、400℃以下である。また化学平衡上は不利であるが、触媒の失活を防ぐ目的あるいは装置の運転上の理由で原料に水素を加えても良い。水素と原料の比は、モル比で0.01以上、1以下が好ましい。LHSV(液空間速度)の好ましい範囲は、触媒の活性に依存するが、好ましくは0.1v/v/hr以上、1000v/v/hr以下である。なお、LHSVを求める計算に使用する触媒の体積は、触媒主成分および担体の部分だけでなく基体の部分も含んだ体積を指す。
前述のように脱水素反応は吸熱反応であるので、本発明においては吸熱による温度低下を補償すべく、熱を反応系に供給する。適宜に加熱した反応原料の流れにより供給することもできる。また触媒体を適宜に加熱することもできる。すなわち、直接もしくは間接的に触媒体をホットプレート等の適宜の電気ヒーターで加熱することもできる。ヒーターは適宜の加熱流体を利用するヒーターであることもできる。前述のように触媒体が適宜の抵抗を有する導電性体である場合には、該触媒体に適宜の電圧を直接印加して通電しこれを加熱することもできる。
The reaction conditions are appropriately selected according to the raw material and the type of reaction. The dehydrogenation reaction from the cyclohexane ring to the aromatic ring is a reversible reaction, and the dehydrogenation proceeds more easily when the pressure is low and the reaction temperature is high in terms of chemical equilibrium. However, if the pressure is too low, the volume of gas increases and the apparatus becomes large. From this viewpoint, the reaction pressure is preferably 0.05 MPa or more and 1 MPa or less, and more preferably 0.05 MPa or more and 0.3 MPa or less. Note that decompression is disadvantageous in terms of energy because energy to decompress is required. In the present invention, unless otherwise specified, the pressure is an absolute pressure. As described above, the reaction temperature is preferably high in terms of chemical equilibrium, but is preferably low in terms of energy efficiency. Therefore, from this point of view, the reaction temperature is preferably 200 ° C. or higher and 450 ° C. or lower, more preferably 300 ° C. or higher and 400 ° C. or lower. Although it is disadvantageous in terms of chemical equilibrium, hydrogen may be added to the raw material for the purpose of preventing the deactivation of the catalyst or for operating the apparatus. The molar ratio of hydrogen to the raw material is preferably 0.01 or more and 1 or less. The preferable range of LHSV (liquid hourly space velocity) depends on the activity of the catalyst, but is preferably 0.1 v / v / hr or more and 1000 v / v / hr or less. The volume of the catalyst used in the calculation for determining LHSV refers to the volume including not only the catalyst main component and the support portion but also the substrate portion.
As described above, since the dehydrogenation reaction is an endothermic reaction, in the present invention, heat is supplied to the reaction system in order to compensate for a temperature decrease due to endotherm. It can also be supplied by a flow of reaction raw material appropriately heated. Further, the catalyst body can be appropriately heated. That is, the catalyst body can be directly or indirectly heated with an appropriate electric heater such as a hot plate. The heater may be a heater that uses an appropriate heating fluid. As described above, when the catalyst body is a conductive body having an appropriate resistance, an appropriate voltage can be directly applied to the catalyst body to be energized and heated.

本発明に係る脱水素装置・設備は、燃料電池等の燃焼反応に水素を利用する装置・設備に隣接した個所に配置して設けるならば、気体状水素の輸送・貯蔵等の不便が解消されるので好ましい。さらに、水素利用の装置・設備の反応が燃焼反応等発熱反応であるような場合、吸熱反応である脱水素反応の触媒加熱の熱補給、または前記反応原料の気化等に、当該発熱反応の廃(排)熱を利用することが可能となり、かくしてシステム全体の熱効率が向上する。
反応終了後、気相反応の場合適宜に反応物を冷却すれば、沸点差が大きく相違するので水素とその他の芳香族炭化水素や不飽和炭化水素とは容易に分離・回収することができる。
If the dehydrogenation apparatus / equipment according to the present invention is disposed at a location adjacent to an apparatus / equipment that uses hydrogen for a combustion reaction such as a fuel cell, inconveniences such as transportation and storage of gaseous hydrogen are eliminated. Therefore, it is preferable. Further, when the reaction of the hydrogen-using device / equipment is an exothermic reaction such as a combustion reaction, the exothermic reaction is abolished for replenishing the catalyst heating of the dehydrogenation reaction, which is an endothermic reaction, or for vaporizing the reaction raw material. It becomes possible to use (exhaust) heat, thus improving the thermal efficiency of the entire system.
If the reactants are appropriately cooled in the case of a gas phase reaction after completion of the reaction, the difference in boiling point is greatly different, so that hydrogen and other aromatic hydrocarbons and unsaturated hydrocarbons can be easily separated and recovered.

<実施例>
以下、本発明を実施例および比較例を用いて詳細に説明するが、本発明は実施例に限定されるものではない。
<Example>
EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example and a comparative example, this invention is not limited to an Example.

縦5cm、横5cm、厚さ2mmのアルミニウムの平板を希硝酸で洗浄し、水洗、乾燥した後、クロム酸水溶液中で陽極酸化を行った。この陽極酸化により平板面に多数の細孔が形成され高表面積化が達成された。得られた基体の片面に市販のアルミナゾルを塗布し乾燥させる操作を繰り返した後、450℃で2時間焼成した。焼成後のアルミナ量が0.4gとなるようにアルミナゾルの塗布量・回数を調整した。塩化白金酸の水溶液を用いて含浸法により基体に0.0012gの白金を担持した。その後、300℃で2時間焼成した。
得られた触媒体(厚さ2.3mm、体積5.8cm)を用いて、大気圧下でメチルシクロヘキサンの脱水素活性の評価を行った。
An aluminum flat plate having a length of 5 cm, a width of 5 cm, and a thickness of 2 mm was washed with dilute nitric acid, washed with water, dried, and then anodized in an aqueous chromic acid solution. By this anodic oxidation, a large number of pores were formed on the flat plate surface, and a high surface area was achieved. The operation of applying a commercially available alumina sol to one side of the obtained substrate and drying was repeated, followed by baking at 450 ° C. for 2 hours. The coating amount and the number of times of alumina sol were adjusted so that the alumina amount after firing was 0.4 g. 0.0012 g of platinum was supported on the substrate by an impregnation method using an aqueous solution of chloroplatinic acid. Then, it baked at 300 degreeC for 2 hours.
Using the obtained catalyst body (thickness 2.3 mm, volume 5.8 cm 3 ), the dehydrogenation activity of methylcyclohexane was evaluated under atmospheric pressure.

すなわち、触媒体を触媒面(白金担持面)を上にしてホットプレートの上に固定し、縦5.2cm、横5.2cm、深さ4mmの窪みを有するステンレス製の容器をかぶせ反応器とした。容器にはガスの入口と出口を設け、さらに熱電対を上から差込み触媒体の中心に接触させて温度を測定できるようにした。入口側には反応原料の気化器を設け、反応原料メチルシクロヘキサン(MCH)を気化させるとともに所定の温度に調整できるようにした。また出口側にレシーバーを設け、5℃に冷却し、液状生成物を捕集できるようにした。
まず気化器を通さずに反応容器へ水素を125ml/分の流量(0℃換算、以下同じ)で流しながらホットプレートを加熱し、触媒体の温度を330℃に設定した。一方、別途、水素流量25ml/分、水素とメチルシクロヘキサンのモル比が1/4となる量比でメチルシクロヘキサンを気化器に供給し、気化器を出る混合ガスの温度を330℃に調節した。触媒体の温度が330℃で一定となったところで、反応容器へのガスを水素から混合ガスへ切り替え反応を開始した。反応器出口のガスはガスメーターを用いて流量を測定した。メチルシクロヘキサンに対するLHSVは5.9v/v/hrであった。
30分間反応を行った後反応を終了した。反応終了直前にガスを採取しガスクロマトグラフでガス中の水素、メチルシクロヘキサン、トルエンおよび分解生成物の量を測定した。またレシーバー内の液状生成物もガスクロマトグラフを用いて分析した。反応結果を表1に示す。生成物はほとんどトルエンであったが、メタンの副生が認められた。触媒体の温度は328℃であり、2℃の温度低下が認められた。
That is, the catalyst body is fixed on a hot plate with the catalyst surface (platinum support surface) facing up, and a reactor made by covering with a stainless steel container having a recess of 5.2 cm in length, 5.2 cm in width, and 4 mm in depth. did. The container was provided with a gas inlet and outlet, and a thermocouple was inserted from above to contact the center of the catalyst body so that the temperature could be measured. A reaction material vaporizer was provided on the inlet side so that the reaction material methylcyclohexane (MCH) was vaporized and adjusted to a predetermined temperature. In addition, a receiver was provided on the outlet side and cooled to 5 ° C. so that the liquid product could be collected.
First, the hot plate was heated while flowing hydrogen at a flow rate of 125 ml / min (converted to 0 ° C., hereinafter the same) without passing through the vaporizer, and the temperature of the catalyst body was set to 330 ° C. Separately, methylcyclohexane was supplied to the vaporizer at a hydrogen flow rate of 25 ml / min and a molar ratio of hydrogen to methylcyclohexane of 1/4, and the temperature of the mixed gas exiting the vaporizer was adjusted to 330 ° C. When the temperature of the catalyst body became constant at 330 ° C., the gas into the reaction vessel was switched from hydrogen to a mixed gas to start the reaction. The gas at the outlet of the reactor was measured for flow rate using a gas meter. The LHSV for methylcyclohexane was 5.9 v / v / hr.
The reaction was terminated after 30 minutes of reaction. A gas was collected immediately before the completion of the reaction, and the amounts of hydrogen, methylcyclohexane, toluene and decomposition products in the gas were measured by gas chromatography. The liquid product in the receiver was also analyzed using a gas chromatograph. The reaction results are shown in Table 1. The product was mostly toluene, but methane by-product was observed. The temperature of the catalyst body was 328 ° C., and a temperature decrease of 2 ° C. was observed.

白金を担持する前に、炭酸カリウムを含浸法で触媒体の表面に担持した他は実施例1と同様に触媒体を調製した。炭酸カリウムの添加量はカリウム原子換算で白金に対し20質量%となるようにした。実施例1と同様にメチルシクロヘキサンの脱水素活性の評価を行った。結果を表1に示す。生成物はトルエンであり、メタンの副生は検出限界以下であった。実施例1と同様に触媒体の温度は328℃であり、2℃の温度低下が認められた。   A catalyst body was prepared in the same manner as in Example 1 except that potassium carbonate was supported on the surface of the catalyst body by impregnation before platinum was supported. The amount of potassium carbonate added was 20% by mass with respect to platinum in terms of potassium atoms. The dehydrogenation activity of methylcyclohexane was evaluated in the same manner as in Example 1. The results are shown in Table 1. The product was toluene, and methane by-product was below the detection limit. As in Example 1, the temperature of the catalyst body was 328 ° C., and a temperature decrease of 2 ° C. was observed.

比較例1Comparative Example 1

内径9.5mmの反応管に、平均直径1.5mmの球状のγ−アルミナ担体に0.3wt%の白金を担持した市販の触媒0.4gを充填した。白金の量は0.0012gであり実施例1,2と同じである。反応管の中心には温度測定のため直径1.6mmの内管をいれ、内管の中に直径0.8mmの熱電対を挿入し、触媒層の中心の高さの位置に固定して触媒層の温度を測定した。その他の反応条件、反応方法は実施例1と同様とした。結果を表1に示す。メチルシクロヘキサン転化率は実施例1,2と比べて低く、また触媒部の温度は322℃と8℃の温度低下が認められた。   A reaction tube having an inner diameter of 9.5 mm was charged with 0.4 g of a commercially available catalyst in which 0.3 wt% platinum was supported on a spherical γ-alumina carrier having an average diameter of 1.5 mm. The amount of platinum is 0.0012 g, which is the same as in Examples 1 and 2. At the center of the reaction tube, an inner tube with a diameter of 1.6 mm is inserted for temperature measurement, and a thermocouple with a diameter of 0.8 mm is inserted into the inner tube and fixed at the center height of the catalyst layer. The temperature of the layer was measured. The other reaction conditions and reaction method were the same as in Example 1. The results are shown in Table 1. The methylcyclohexane conversion was lower than in Examples 1 and 2, and the temperature of the catalyst part was found to be 322 ° C. and 8 ° C.

Figure 2005047743
Figure 2005047743

表1に示すとおり、熱伝導性触媒体を用いた実施例1では、従来の固体触媒を用いた比較例1に比べて、MCH転化率が高く、触媒温度が高い。このことは熱伝導性触媒体を用いたことにより反応熱の供給が効率的に行われたことを示しており、本発明の効果が現れている。またカリウムを添加した熱伝導性触媒体を用いた実施例2では、実施例1に比べてメタンの副生が抑制されており、本発明の塩基性物質の添加の効果が現れている。   As shown in Table 1, in Example 1 using a thermally conductive catalyst body, the MCH conversion rate is higher and the catalyst temperature is higher than in Comparative Example 1 using a conventional solid catalyst. This indicates that the reaction heat was efficiently supplied by using the heat conductive catalyst body, and the effect of the present invention appears. Moreover, in Example 2 using the heat conductive catalyst body which added potassium, the byproduct of methane was suppressed compared with Example 1, and the effect of addition of the basic substance of this invention has appeared.

Claims (5)

熱伝導性触媒体を用いて炭化水素を脱水素することにより水素を発生させることを特徴とする水素の製造方法。   A method for producing hydrogen, wherein hydrogen is generated by dehydrogenating a hydrocarbon using a thermally conductive catalyst. 炭化水素が環状炭化水素を有し、該環状炭化水素を脱水素して芳香族環とすることにより水素を発生させることを特徴とする請求項1に記載の水素の製造方法。   The method for producing hydrogen according to claim 1, wherein the hydrocarbon has a cyclic hydrocarbon, and hydrogen is generated by dehydrogenating the cyclic hydrocarbon to form an aromatic ring. 熱伝導性触媒体の表面に第8〜10族金属が存在することを特徴とする請求項1および2に記載の水素の製造方法。   The method for producing hydrogen according to claim 1 or 2, wherein Group 8 to 10 metal is present on the surface of the thermally conductive catalyst body. 熱伝導性触媒体の表面に第8〜10族金属および塩基性物質が存在することを特徴とする請求項1乃至3に記載の水素の製造方法に用いる水素製造用触媒体。   The hydrogen-producing catalyst body used in the method for producing hydrogen according to any one of claims 1 to 3, wherein a group 8-10 metal and a basic substance are present on the surface of the thermally conductive catalyst body. 請求項1乃至3に記載の水素の製造方法を用いることを特徴とする水素製造装置。   A hydrogen production apparatus using the method for producing hydrogen according to claim 1.
JP2003281080A 2003-07-28 2003-07-28 Method for producing hydrogen using thermally conductive catalyst body Expired - Fee Related JP4431338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003281080A JP4431338B2 (en) 2003-07-28 2003-07-28 Method for producing hydrogen using thermally conductive catalyst body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003281080A JP4431338B2 (en) 2003-07-28 2003-07-28 Method for producing hydrogen using thermally conductive catalyst body

Publications (2)

Publication Number Publication Date
JP2005047743A true JP2005047743A (en) 2005-02-24
JP4431338B2 JP4431338B2 (en) 2010-03-10

Family

ID=34266700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003281080A Expired - Fee Related JP4431338B2 (en) 2003-07-28 2003-07-28 Method for producing hydrogen using thermally conductive catalyst body

Country Status (1)

Country Link
JP (1) JP4431338B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039312A (en) * 2005-06-30 2007-02-15 National Institute Of Advanced Industrial & Technology Apparatus and method for producing hydrogen
JP2007216216A (en) * 2006-02-18 2007-08-30 Samsung Sdi Co Ltd Hydrocarbon reforming catalyst, method of preparing the same and fuel processor including the same
JP2007326000A (en) * 2006-06-06 2007-12-20 Petroleum Energy Center Dehydrogenation catalyst and hydrogen supply device using the same
JP2010163358A (en) * 2010-02-15 2010-07-29 Hitachi Ltd Hydrogen supply apparatus and method for supplying hydrogen
JP2011245475A (en) * 2010-04-28 2011-12-08 Nippon Seisen Co Ltd Wire catalyst for hydrogenation/dehydrogenation reaction, wire catalyst product, and method for producing them
WO2012090326A1 (en) * 2010-12-28 2012-07-05 日本精線株式会社 Catalyst structure and hydrogen reaction module using same
JP2012161718A (en) * 2011-02-04 2012-08-30 Tokyo Univ Of Agriculture & Technology Catalyst carrier, catalyst body, and method for manufacturing the same
JP2012236182A (en) * 2011-05-09 2012-12-06 Nippon Seisen Co Ltd Catalyst carrier, catalyst product using the same, and catalyst module
JP2016050144A (en) * 2014-08-29 2016-04-11 Jx日鉱日石エネルギー株式会社 Dehydrogenation reactor and dehydrogenation system
CN115043376A (en) * 2022-06-01 2022-09-13 苏州道顺电子有限公司 Method for preparing hydrogen and byproduct carbon material by catalytic cracking of methane
CN115231516A (en) * 2022-08-02 2022-10-25 中国石油大学(北京) Method for dehydrogenating methylcyclohexane

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1397293A (en) * 1972-09-01 1975-06-11 British Petroleum Co Platinum group metal catalysts and their use
JPH11508925A (en) * 1995-06-16 1999-08-03 アンスティテュー フランセ デュ ペトロール Reforming method using catalyst containing alkali metal or alkaline earth metal
JP2000037627A (en) * 1998-07-24 2000-02-08 Chiyoda Corp Dehydrogenation catalyst
JP2000037626A (en) * 1998-07-24 2000-02-08 Chiyoda Corp Dehydrogenation catalyst
JP2002114717A (en) * 2000-08-23 2002-04-16 Inst Fr Petrole Process for dehydrogenating organic compound in the presence of supported bimetallic catalyst with strong interaction between group viii metal and tin
JP2002119856A (en) * 2000-10-13 2002-04-23 Hideo Kameyama Anodized aluminum catalyst carrier having increased bet specific surface area and its manufacturing method
JP2002255503A (en) * 2001-03-01 2002-09-11 Toyota Motor Corp Hydrogen gas generation equipment
JP2005022939A (en) * 2003-07-02 2005-01-27 Sekisui Chem Co Ltd Reaction device of hydrogen-supply system, and hydrogen-supply system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1397293A (en) * 1972-09-01 1975-06-11 British Petroleum Co Platinum group metal catalysts and their use
JPH11508925A (en) * 1995-06-16 1999-08-03 アンスティテュー フランセ デュ ペトロール Reforming method using catalyst containing alkali metal or alkaline earth metal
JP2000037627A (en) * 1998-07-24 2000-02-08 Chiyoda Corp Dehydrogenation catalyst
JP2000037626A (en) * 1998-07-24 2000-02-08 Chiyoda Corp Dehydrogenation catalyst
JP2002114717A (en) * 2000-08-23 2002-04-16 Inst Fr Petrole Process for dehydrogenating organic compound in the presence of supported bimetallic catalyst with strong interaction between group viii metal and tin
JP2002119856A (en) * 2000-10-13 2002-04-23 Hideo Kameyama Anodized aluminum catalyst carrier having increased bet specific surface area and its manufacturing method
JP2002255503A (en) * 2001-03-01 2002-09-11 Toyota Motor Corp Hydrogen gas generation equipment
JP2005022939A (en) * 2003-07-02 2005-01-27 Sekisui Chem Co Ltd Reaction device of hydrogen-supply system, and hydrogen-supply system

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KARIYA N. ET AL: "Efficient hydrogen production using cyclohexane and decalin by pulse-spray mode reactor with Pt cata", APPLIED CATALYSIS A: GENERAL, vol. 247, no. 2, JPN6009005208, 25 July 2003 (2003-07-25), pages 247 - 259, XP004440487, ISSN: 0001242519, DOI: 10.1016/S0926-860X(03)00104-2 *
KOBAYASHI,M. ET AL: "Electron spin resonance study of supported ruthenium catalysts promoted by alkali metal salts in deh", JOURNAL OF CATALYSIS, vol. Vol.38, No.1-3, JPN6009064303, 23 June 1975 (1975-06-23), pages 394 - 401, ISSN: 0001486860 *
LIN, Z.-Z. ET AL: " Novel Effects of K-Addition to Ru/SiO2 on Conversion of Cyclohexane", BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, vol. 62, no. 6, JPN7009005382, June 1989 (1989-06-01), pages 1740 - 1744, ISSN: 0001486859 *
NEUMANN, R. ET AL: "Gas phase base-catalyzed dehydrogenations of cyclic hydrocarbons over a KOH/Al2O3 catalyst", JOURNAL OF MOLECULAR CATALYSIS, vol. 35, no. 1, JPN6009064305, 1 April 1986 (1986-04-01), pages 131 - 136, ISSN: 0001486861 *
触媒学会編, 触媒工学講座 触媒反応(2)酸化・脱水素・分解, vol. 7巻, JPN6009005205, 30 September 1964 (1964-09-30), pages 196 - 201, ISSN: 0001242520 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039312A (en) * 2005-06-30 2007-02-15 National Institute Of Advanced Industrial & Technology Apparatus and method for producing hydrogen
JP2007216216A (en) * 2006-02-18 2007-08-30 Samsung Sdi Co Ltd Hydrocarbon reforming catalyst, method of preparing the same and fuel processor including the same
US7833934B2 (en) 2006-02-18 2010-11-16 Samsung Sdi Co., Ltd. Hydrocarbon reforming catalyst, method of preparing the same and fuel processor including the same
JP2007326000A (en) * 2006-06-06 2007-12-20 Petroleum Energy Center Dehydrogenation catalyst and hydrogen supply device using the same
JP2010163358A (en) * 2010-02-15 2010-07-29 Hitachi Ltd Hydrogen supply apparatus and method for supplying hydrogen
JP2011245475A (en) * 2010-04-28 2011-12-08 Nippon Seisen Co Ltd Wire catalyst for hydrogenation/dehydrogenation reaction, wire catalyst product, and method for producing them
JP5632836B2 (en) * 2010-12-28 2014-11-26 日本精線株式会社 Catalyst structure and hydrogen reaction module using the same
WO2012090326A1 (en) * 2010-12-28 2012-07-05 日本精線株式会社 Catalyst structure and hydrogen reaction module using same
US8568665B2 (en) 2010-12-28 2013-10-29 Nippon Seisen Co., Ltd. Catalyst structure and hydrogenation/dehydrogenation reaction module using the same catalyst structure
JPWO2012090326A1 (en) * 2010-12-28 2014-06-05 日本精線株式会社 Catalyst structure and hydrogen reaction module using the same
JP2012161718A (en) * 2011-02-04 2012-08-30 Tokyo Univ Of Agriculture & Technology Catalyst carrier, catalyst body, and method for manufacturing the same
JP2012236182A (en) * 2011-05-09 2012-12-06 Nippon Seisen Co Ltd Catalyst carrier, catalyst product using the same, and catalyst module
JP2016050144A (en) * 2014-08-29 2016-04-11 Jx日鉱日石エネルギー株式会社 Dehydrogenation reactor and dehydrogenation system
CN115043376A (en) * 2022-06-01 2022-09-13 苏州道顺电子有限公司 Method for preparing hydrogen and byproduct carbon material by catalytic cracking of methane
CN115231516A (en) * 2022-08-02 2022-10-25 中国石油大学(北京) Method for dehydrogenating methylcyclohexane
CN115231516B (en) * 2022-08-02 2023-11-28 中国石油大学(北京) Methyl cyclohexane dehydrogenation method

Also Published As

Publication number Publication date
JP4431338B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
US9714169B2 (en) Catalyst and process for thermo-neutral reforming of liquid hydrocarbons
EP2598434B1 (en) An improved process for the storage delivery of hydrogen using catalyst
Fasanya et al. Copper zinc oxide nanocatalysts grown on cordierite substrate for hydrogen production using methanol steam reforming
Kariya et al. Efficient hydrogen production using cyclohexane and decalin by pulse-spray mode reactor with Pt catalysts
Kariya et al. Efficient evolution of hydrogen from liquid cycloalkanes over Pt-containing catalysts supported on active carbons under “wet–dry multiphase conditions”
Peela et al. Oxidative steam reforming of ethanol over Rh based catalysts in a micro-channel reactor
Goyal et al. Hydrogen production by steam reforming of model bio-oil using structured Ni/Al2O3 catalysts
Men et al. Ethanol steam reforming in a microchannel reactor
JP4431338B2 (en) Method for producing hydrogen using thermally conductive catalyst body
Park et al. Cobalt catalyst coated metallic foam and heat-exchanger type reactor for Fischer–Tropsch synthesis
Atsumi et al. Ammonia decomposition activity over Ni/SiO2 catalysts with different pore diameters
Kim et al. A microreactor with metallic catalyst support for hydrogen production by partial oxidation of dimethyl ether
Santander et al. Ni/CeO2–MgO catalysts supported on stainless steel plates for ethanol steam reforming
Baydir et al. Methanol steam reforming in a microchannel reactor coated with spray pyrolysis method for durable Cu/ZnO nanocatalyst
JP2008081385A (en) Method for producing hydrogen and reaction tube for it
El-Shafie et al. Development of zeolite-based catalyst for enhancement hydrogen production from ammonia decomposition
JP2005035842A (en) Hydrogen production system
Alonso et al. Reactions over Cu/Nb2O5 catalysts promoted with Pd and Ru during hydrogen production from ethanol
Mun et al. Decomposition of endothermic fuel using washcoated HZSM-5 on metal foam
Xu et al. Hydrogen production through diesel steam reforming over rare-earth promoted Ni/γ-Al2O3 catalysts
Makarshin et al. Influence of the microchannel plates design on the efficiency of the methanol steam reforming in microreactors
JP2007076982A (en) Hydrogen production system and power generation system
JP2005289652A (en) Method for producing hydrogen and reaction tube
JP5127516B2 (en) Raw material composition for hydrogen generation and method for producing hydrogen
CN102209699A (en) Method for manufacturing unsaturated hydrocarbon and oxygenated compound, catalyst, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4431338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees