JP2004250255A - Hydrogen storage and generation system - Google Patents

Hydrogen storage and generation system Download PDF

Info

Publication number
JP2004250255A
JP2004250255A JP2003040304A JP2003040304A JP2004250255A JP 2004250255 A JP2004250255 A JP 2004250255A JP 2003040304 A JP2003040304 A JP 2003040304A JP 2003040304 A JP2003040304 A JP 2003040304A JP 2004250255 A JP2004250255 A JP 2004250255A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
aromatic compound
induction heating
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003040304A
Other languages
Japanese (ja)
Inventor
Yasushi Goto
靖志 五藤
Kazuhiro Fukada
和宏 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2003040304A priority Critical patent/JP2004250255A/en
Publication of JP2004250255A publication Critical patent/JP2004250255A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storage and generation system by which the storage and/or generation of hydrogen can be performed with high efficiency. <P>SOLUTION: In the hydrogen storage and generation system, at least either hydrogenation reaction of an aromatic compound or dehydrogenation reaction of a hydride derivative of the aromatic compound is performed by using catalysts in which a metal is supported on a carrier, so that the storage and/or generation of hydrogen is performed. As for a reactor 3A in the hydrogen storage and generation system, granular catalysts 15A are stored inside a cylindrical body 14 so as to be assembled. In this case, each catalyst 15A is electrically insulated though they are mutually contacted. The reactor 3A is provided with a loop coil 16 and a heating apparatus comprising a high frequency current generator capable of flowing high frequency current so as to electrically be connected thereto. The cylinder 14 is arranged at the inside of the loop coil 16, and high frequency induction heating by an electromagnetic induction system is performed to the carriers of the catalysts 15A. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、水素貯蔵・発生装置に関し、特に、燃料電池に好適な水素貯蔵・発生装置に関する。
【0002】
【従来の技術】
近年、世界のエネルギー消費は一貫して増加しており、エネルギー利用に伴って排出される有害物質が、地球規模での環境破壊の一因となっている。このような背景から、燃料電池への関心が高まっている。燃料電池は、水素と酸素を電気化学的に反応させて水と共に電気エネルギーを発生することから、地球温暖化や大気汚染の防止に貢献できるものと考えられている。
【0003】
燃料電池において必要とされる水素の貯蔵・供給技術について種々の検討がなされており、例えば、(i)液化水素タンク等に水素を貯蔵し、必要に応じて液化水素を気化させて水素を供給する方法、(ii)メタノール,液化天然ガス,ガソリン等の液体燃料を水素前駆体として貯蔵し、改質によって水素ガスを供給する方法が知られている。
上記(i),(ii)の方法によれば、水素又は水素前駆体が液体で貯蔵されることから、気体で貯蔵される場合と比較して、貯蔵容量に対する水素ガスの供給量が大きいという利点を有する。しかし、上記(i)の方法では、水素を冷却・圧縮して液化水素とするために、さらには、低温状態を維持するために、多大なエネルギーが必要である。一方、上記(ii)の液体燃料を改質して水素を得る方法では、本質的に、水素発生に炭酸ガス(二酸化炭素)の発生を伴うとともに、燃料電池の電極に悪影響を及ぼす一酸化炭素ガスを副生成物として含有している。
【0004】
上記問題を解決するために、芳香族化合物の水素付加・脱水素化を利用した水素貯蔵・供給システムが提案されている(例えば特許文献1及び2参照)。このシステムは、芳香族化合物に水素付加することにより水素化誘導体として貯蔵し、そして、必要時に、この水素化誘導体の脱水素化反応を行い、水素を取り出すようにしたものである。
このシステムによれば、芳香族化合物及びその水素化誘導体は、常温で液体であることから、貯蔵・輸送に要するエネルギーが非常に少なく、また、脱水素反応生成物中に含まれる“芳香族化合物及びその水素化誘導体”と“水素”との分離を確実にかつ容易に実施することができ、しかも、水素ガスの発生に際して、本質的に二酸化炭素の発生を伴なわないとともに、一酸化炭素も原理的には発生しない、という利点を有している。
【0005】
【特許文献1】
特開2002−274802公報
【特許文献2】
特開2002−274803公報
【0006】
【発明が解決しようとする課題】
前記水素貯蔵・供給システムにおいて、芳香族化合物の水素化反応及び芳香族化合物の水素化誘導体の脱水素化反応は、“芳香族化合物の水素化反応”を行う時には芳香族化合物を、“芳香族化合物の水素化誘導体の脱水素化反応”を行う時には芳香族化合物の水素化誘導体を(以下、これらを総称して“原料”ともいう)、加熱状態の触媒と接触させることによってなされる。
より具体的には、特許文献1には、導電体を含有すると共に原料の通過を許容するように形成された触媒(ポーラス状等)を筒状体本体の内部に入れて反応装置を構成し、高周波誘導加熱によって前記導電体を発熱させることによって、触媒を加熱させながら、触媒内に原料を通過させる技術が記載されている(従来例1)。
【0007】
また、特許文献2には、導電体を含有すると共にハニカムシート状に形成されてなる触媒のシート面に、原料を供給する噴射ノズルを向けることによって反応装置を構成し、高周波誘導加熱によって前記導電体を発熱させることによって、触媒を加熱させながら、触媒に原料を接触させる技術が記載されている。より具体的には、高周波誘導加熱の形態としては、“誘導加熱コイルを円筒状コイル(ループコイル)とするとともに、円筒状コイルの内部に、円筒状コイルの筒方向とシート面の面方向とが略直交となるように、触媒を配置する形態(従来例2−1)”と“誘導加熱コイルを平板状コイル(渦巻き状コイル)とするとともに、平板状コイルの片側面にハニカムシート状の触媒(噴射ノズルとは反対側の面)を配置した形態(従来例2−2)”とが記載されている。
【0008】
しかしながら、前記従来例1及び従来例2−1では、高周波誘導加熱の特性の一つである表皮効果の発現によって、円筒状コイルに近い触媒の外側部と、円筒状コイルから離れる触媒の内側部とで、加熱温度の格差が生じる上、外側部から内側部に向けて熱伝導が発生することにも起因して、触媒を所望の温度にて均一に加熱するのは困難である。
【0009】
触媒に対する加熱温度は、通常、熱電対を用いる温度制御によって、“芳香族化合物の水素化反応(以下、単に水素化反応ともいう)”あるいは“芳香族化合物の水素化誘導体の脱水素化反応(以下、単に脱水素化反応ともいう)”に必要とされる所定値(水素化誘導体の脱水素化反応では250℃以上)に設定される。しかしながら、前記の加熱温度の格差は解消されるものではなく、触媒の外側部での温度制御では、内側部にて温度が低いことにより脱水素化反応が進行せず、触媒の内側部での温度制御では、触媒の外側部の温度が高くなりすぎることにより、必要以上の熱エネルギーが投入されて、エネルギーの無駄が発生するとともに、高すぎる温度に起因して原料の意図しない反応が発生することがあるという不具合があった。
【0010】
ところで、特に脱水素化反応は、通常、原料と触媒とを間欠的に接触させることによってなされる必要があると考えられている。これは、脱水素化反応が吸熱反応であり、触媒と原料との接触が継続すると、熱がうばわれ触媒の温度が、反応に必要とされる加熱温度を下回りやすいことから、原料と触媒とが接触しない時期を設けることによって、触媒の加熱温度を所望の値に回復させる必要があるためである。これにより、脱水素化反応は間欠的となり、水素発生の効率は不十分なものとなる。
【0011】
以上のように、従来例1及び従来例2は、水素の貯蔵及び発生に関し、効率面で不十分である。
【0012】
本発明は、上記問題点に鑑み成されたものであって、その目的とするところは、水素の貯蔵及び/又は発生を高効率で実施できる水素貯蔵・発生装置を提供することである。
【0013】
【課題を解決するための手段】
請求項1に係る水素貯蔵・発生装置は、芳香族化合物の水素化反応と、芳香族化合物の水素化誘導体の脱水素化反応との少なくとも一方を、金属が担持体に担持されてなる触媒を使用して実施することにより、水素の貯蔵及び/又は発生を行うことのできる水素貯蔵・発生装置であって、担持体に導電体が含有されてなる粒子状の触媒が、各々が電気的に絶縁するように集合するとともに、担持体に対して電磁誘導方式による高周波誘導加熱を実施できる加熱手段を具備している。
【0014】
このような構成によれば、粒子状の触媒が、各々が電気的に絶縁するように集合するので、高周波誘導加熱を発現させる磁束を各粒子に均等に到達させることができ、粒子の全てを所望かつ同等の温度で加熱できる。よって、このような触媒を集合させて触媒の集合体を構成しても、触媒の集合体の各触媒間における加熱温度の格差を極めて低減できるので、“エネルギーの無駄”及び“原料の意図しない反応”を抑制しつつ、触媒の集合体のどの部位からも確実に水素化反応あるいは脱水素化反応を進行させることができる。
また、高周波誘導加熱の表皮効果によって各粒子の表面近傍が速やかに加熱されるので、触媒に原料が接触する領域における温度を反応に必要とされる温度に速やかに上昇させることができ、前記した“原料と触媒とが接触しない時期”を短縮もしくは無くすことができる。
以上により、請求項1の構成によれば、水素の貯蔵及び/又は発生を高効率で実施できる水素貯蔵・発生装置とすることができる。
【0015】
請求項2に係る水素貯蔵・発生装置は、芳香族化合物の水素化反応と、芳香族化合物の水素化誘導体の脱水素化反応との少なくとも一方を、金属が担持体に担持されてなる触媒を使用して実施することにより、水素の貯蔵及び/又は発生を行うことのできる水素貯蔵・発生装置であって、担持体に導電体が含有されてなる柱状もしくは筒状の触媒が、2本以上で、各々が電気的に絶縁するように集合するとともに、担持体に対して電磁誘導方式による高周波誘導加熱を実施できる加熱手段を具備している。
【0016】
このような構成によれば、2本以上の柱状もしくは筒状の触媒が、各々が電気的に絶縁するように集合するので、高周波誘導加熱を発現させる渦電流を各触媒に発生させることができ、触媒の全てを所望かつ同等の温度で加熱できる。よって、このような触媒を集合させて触媒の集合体を構成しても、触媒の集合体の各触媒間における加熱温度の格差を極めて低減できるので、“エネルギーの無駄”及び“原料の意図しない反応”を抑制しつつ、触媒の集合体のどの部位からも確実に水素化反応あるいは脱水素化反応を進行させることができる。
また、高周波誘導加熱の表皮効果によって各触媒の表面近傍が速やかに加熱されるので、触媒に原料が接触する領域における温度を反応に必要とされる温度に速やかに上昇させることができ、前記した“原料と触媒とが接触しない時期”を短縮もしくは無くすことができる。
以上により、請求項2の構成によれば、水素の貯蔵及び/又は発生を高効率で実施できる水素貯蔵・発生装置とすることができる。
【0017】
請求項3に係る水素貯蔵・発生装置は、芳香族化合物の水素化反応と、芳香族化合物の水素化誘導体の脱水素化反応との少なくとも一方を、金属が担持体に担持されてなる触媒を使用して実施することにより、水素の貯蔵及び/又は発生を行うことのできる水素貯蔵・発生装置であって、担持体に導電体が含有されてなる筒状の触媒と、誘導加熱コイルによって担持体に対して高周波誘導加熱を実施できる加熱手段とを具備するとともに、誘導加熱コイルが、触媒の内周面側と外周面側とに設けられている。
【0018】
このような構成によれば、筒状の触媒の内周面側と外周面側の両方から電磁誘導方式による高周波誘導加熱を実施できるので、例えば、柱状の触媒の外周面側に誘導加熱コイルが設けられる場合と比較して、触媒の内側と外側との加熱温度の格差を低減できる。よって、“エネルギーの無駄”及び“原料の意図しない反応”を抑制しつつ、触媒のどの部位からも確実に水素化反応あるいは脱水素化反応を進行させることができる。
また、高周波誘導加熱の表皮効果によって筒状の触媒の内周面側と外周面側の両方が速やかに加熱されるので、触媒に原料が接触する領域における温度を反応に必要とされる温度に速やかに上昇させることができ、前記した“原料と触媒とが接触しない時期”を短縮もしくは無くすことができる。
以上により、請求項3の構成によれば、水素の貯蔵及び/又は発生を高効率で実施できる水素貯蔵・発生装置とすることができる。
【0019】
請求項4に係る水素貯蔵・発生装置は、芳香族化合物の水素化反応と、芳香族化合物の水素化誘導体の脱水素化反応との少なくとも一方を、金属が担持体に担持されてなる触媒を使用して実施することにより、水素の貯蔵及び/又は発生を行うことのできる水素貯蔵・発生装置であって、平板状の誘導加熱コイルによって担持体に対して高周波誘導加熱を実施できる加熱手段を具備するとともに、前記誘導加熱コイルの両面に、前記担持体に導電体が含有されてなる触媒が設けられている。
【0020】
このような構成によれば、高周波誘導加熱の表皮効果によって触媒の表面が速やかに加熱されるので、触媒に原料が接触する領域における温度を反応に必要とされる温度に速やかに上昇させることができ、前記した“原料と触媒とが接触しない時期”を短縮もしくは無くすことができる。
また、誘導加熱コイルの両面に触媒が設けられているので、平板状の触媒の片側面のみに触媒を設置する場合と比較して、触媒の有効面積を大きく確保できる。
以上により、請求項4の構成によれば、水素の貯蔵及び/又は発生を高効率で実施できる水素貯蔵・発生装置とすることができる。
【0021】
【発明の実施の形態】
本発明の水素貯蔵・発生装置は、前記したとおり、「芳香族化合物の水素化反応と、芳香族化合物の水素化誘導体の脱水素化反応との少なくとも一方を、金属が担持体に担持されてなる触媒(以下、金属担持触媒ともいう)を使用して実施することにより、水素の貯蔵及び/又は発生を行うことのできる水素貯蔵・発生装置」を前提とする。ここで、“水素の貯蔵”は、芳香族化合物を水素の存在下で金属担持触媒に接触させることによって、また、“水素の発生”は、芳香族化合物の水素化誘導体を金属担持触媒に接触させることによって行われるものである。
【0022】
以下、本発明の水素貯蔵・発生装置の実施形態について、図1(本発明の水素発生装置の一実施形態を示す模式図)に基づいて説明する。
水素貯蔵・発生装置1は、図1に示すように、原料31を貯蔵する原料貯蔵装置2,反応装置3,反応装置3から発生した生成物32を水素33と液体成分34とに分離する気液分離装置4を有している。
【0023】
原料貯蔵装置2は、芳香族化合物29を貯蔵する芳香族化合物貯蔵部7,芳香族化合物の水素化誘導体30(以下、単に“水素化誘導体”ともいう)を貯蔵する水素化誘導体貯蔵部8,切替弁9を有しており、芳香族化合物貯蔵部7と切替弁9とは、配管21によって接続されており、水素化誘導体貯蔵部8と切替弁9とは、配管22によって接続されている。さらに、切替弁9は配管23を介して原料供給部としてのポンプ12に接続されており、ポンプ12に対する芳香族化合物貯蔵部7からの送液と、水素化誘導体貯蔵部8からの送液とを選択できるように構成されている。ポンプ12と反応装置3とは配管24によって接続されており、原料31を原料貯蔵装置2から反応装置3に供給できるように構成されている。また、上記供給系は原料31が液状を保てる(温度)条件であるのが好ましい。
【0024】
反応装置3には、金属が担持体に担持されてなる触媒(金属担持触媒)が設けられており、担持体は、電磁誘導方式による高周波誘導加熱がなされるよう、導電体を含有している。前記触媒金属としては、水素化反応及び/又は脱水素化反応を達成できるものであればどのようなものでもよく、例えば、金属成分として、ニッケル,パラジウム,白金,ロジウム,イリジウム,ルテニウム,モリブデン,レニウム,タングステン,バナジウム,オスミニウム,クロム,コバルト,鉄等を用いることができる。また、これらを2種類以上合金化したものを、中でも、脱水素化反応に対する活性の高さから、白金族の金属(白金,パラジウム,ロジウム,ルテニウム)を用いることがより好ましい。また、特開2001−198469公報等に記載の複合金属系触媒を使用することもできる。
【0025】
導電体を含有する担持体としては、活性炭,カーボンナノチューブ,金属多孔体やハニカム状金属等の導電体からなるものや、モレキュラシーブ,ゼオライト,シリカゲル,アルミナ等の非導電体と一般的な導電体(ステンレス等)とのブレンド物などを挙げることができる。
【0026】
また、反応装置3には配管26が接続されており、配管26の他端に気液分離装置4が接続されている。さらに、反応装置3には、バルブ36を有する配管28が接続されており、“芳香族化合物29の水素化反応”を行う際には、バルブ36を開にして水素35を供給できるように構成されている。
気液分離装置4としては、反応装置3から発生した生成物32を水素33と液体成分34とに分離できれば、特に限定されないが、水冷循環式,空冷式,流水による冷却(循環させない)等、公知の冷却手段を用いることができる。冷媒としては、水,エチレングリコール,ジエチレングリコール等を用いることができる。
【0027】
水素貯蔵・発生装置1は、気液分離装置4によって分離された液体成分34が、原料貯蔵装置2に入るように構成されている。
すなわち、気液分離装置4は、配管27によって切替弁10に接続しており、切替弁10と芳香族化合物貯蔵部7とは配管37によって接続されており、切替弁10と水素化誘導体貯蔵部8とは配管38によって接続されている。これにより、例えば、“芳香族化合物29の水素化反応”を行う場合は、液体成分34を切替弁10を切り替えることにより水素化誘導体貯蔵部8に送ることができ、“芳香族化合物の水素化誘導体30の脱水素化反応”を行う場合は、液体成分34を切替弁10を切り替えることにより芳香族化合物貯蔵部7に送ることができる。
【0028】
次に、本発明の水素貯蔵・発生装置1を用いた水素貯蔵方法及び水素発生方法について、前記した図1に基づいて説明する。
【0029】
先ず、水素発生方法について説明する。
原料貯蔵装置2の水素化誘導体貯蔵部8に、水素化誘導体30を入れる。水素化誘導体30としては、シクロヘキサン,メチルシクロヘキサン,デカリン,ジメチルシクロヘキサン,トリメチルシクロヘキサン,テトラリン等を挙げることができ、単独物あるいは2種類以上の混合物として使用できる。また、特開2002−134141公報に記載の化合物も使用できる。単独物及び混合物は、常温で液状であるのが好ましい。
【0030】
次いで、切替弁9の切替えによって配管22と配管23とを連通させると共に、ポンプ12を作動させることによって、水素化誘導体30を、反応装置3に導入する。反応装置3では、水素化誘導体30と反応装置3に設けられた金属担持触媒とが接触して、“水素化誘導体の脱水素化反応”が進行する。金属担持触媒は、水素化誘導体の種類にもよるが、後述する加熱装置によって、通常200℃〜500℃から選択された所定の温度に加熱されている。温度が高すぎる場合、液状である原料が触媒に接触する前に気化し、単位時間当たりの反応効率が低下する。
【0031】
次に、脱水素化反応後の生成物32を、配管26を経て、気液分離装置4に導入し、ここで、水素33と液体成分34とに分離する。(なお、気液分離装置4の温度は、水素がガスとして存在し、それ以外の混合物が液体として存在する温度に設定するのが好ましく、原料の種類にもよるが、例えば、水素化誘導体として“デカリン”を用いた場合について説明すると、水素のガス化点が−250℃以下であるのに対し、デカリンの液化点は約−125℃、ガス化点は約189℃であり、デカリンが脱水素化されたナフタレンの液化点は約80℃、ガス化点は約218℃であることから、90℃〜170℃の範囲が例示される。上記温度範囲内とすれば、気液分離装置4にて、水素33をガスとして、それ以外の混合物を液体成分34として確実に分離できる。)以上のようにして、水素33を取り出すことができる。水素貯蔵・発生装置1から発生した水素33は、燃料電池の原料として使用できる。
【0032】
続いて、気液分離装置4にて分離された液体成分34を、配管27を経て、切替弁10の切替えによって原料貯蔵装置2の芳香族化合物貯蔵部7に回収する。なお、液体成分34を再度、反応装置3に供給して、液体成分34を純度の高い芳香族化合物29として芳香族化合物貯蔵部7に回収しても良い。芳香族化合物貯蔵部7にされた芳香族化合物29は、次に説明する“芳香族化合物29の水素化反応”の原料31として使用することができる。
【0033】
次いで、水素貯蔵方法について説明する。
原料31としては、原料貯蔵装置2の芳香族化合物貯蔵部7に貯蔵された芳香族化合物29を使用する。芳香族化合物29としては、ベンゼン,トルエン,ナフタレン,キシレン,メシチレン等を挙げることができ、単独物あるいは2種類以上の混合物として使用できる。また、特開2002−134141公報に記載の化合物も使用できる。単独物及び混合物は、常温で液状であるのが好ましい。
切替弁9の切替えによって配管21と配管23とを連通させると共に、ポンプ12を作動させることによって、芳香族化合物29を、反応装置3に導入する。バルブ36を開状態にするととともに、水素35を反応装置3に供給しながら、芳香族化合物29を反応装置3に設けられた金属担持触媒に対して接触させることにより、“芳香族化合物の水素化反応”が進行する。金属担持触媒は、芳香族化合物の種類にもよるが、後述する加熱装置によって、通常50℃〜250℃から選択された所定の温度に加熱されている。
【0034】
次に、水素化反応後の生成物32を、配管26を経て、気液分離装置4に導入し、ここで、液体成分34とする。(なお、気液分離装置4の温度は、生成物32が液体として存在する温度に設定するのが好ましく、原料の種類にもよるが、原料としてナフタレンを用いた場合、90〜170℃の範囲が例示される。
【0035】
続いて、気液分離装置4にて得られた液体成分34を、配管27を経て、切替弁10の切替えによって原料貯蔵装置2の水素化誘導体貯蔵部8に回収する。なお、液体成分34を再度、反応装置3に供給して、液体成分34を純度の高い水素化誘導体30として水素化誘導体貯蔵部8に回収しても良い。水素化誘導体貯蔵部8にされた水素化誘導体30は、前に説明した“水素化誘導体30の脱水素化反応”の原料31として使用することができる。以上のようにして、水素35を水素化誘導体30として貯蔵することができる。
【0036】
ところで、本発明の水素発生装置1は、前記したように、水素の貯蔵及び/又は発生を高効率で実施できるように、反応装置3が以下の第一〜第四実施形態のように構成されたものである。反応装置3のこれらの実施形態について詳述する。本発明の水素発生装置1によれば、触媒を構成する部位の内、最高温度部位と最低温度部位との間における温度差を、“水素化誘導体の脱水素化反応”の場合は20℃以内に、“芳香族化合物の水素化反応”の場合は10℃以内にすることが達成可能である。なお、以下に説明する各実施形態において、既に説明した部材等については、図中に同一符号を付すことにより説明を簡略化あるいは省略する。
【0037】
(第一実施形態)
図2に示すように、第一実施形態の反応装置3Aは、石英ガラスなどからなる円筒体14の内部に粒子状の触媒15A(金属担持触媒)が集合するように収容されてなる。ここで、触媒15Aは、触媒15Aの表面が絶縁体(シリカゲル,アルミナ等の公知の物質を使用可能)でコーティングされるなどして、互いに接しても、各々が電気的に絶縁するように構成されている。円筒体14の一端部には、配管24と配管28とが取り付けられており、原料31と、“芳香族化合物29の水素化反応”を行う際の水素35とを反応装置3Aに供給できるように構成されている。円筒体14の他端部には、配管26が取り付けられており、生成物32を気液分離装置4に送り込めるように構成されている。
また、反応装置3Aは、ループコイル16(誘導加熱コイル)とこれに電気的に接続してループコイル16に高周波電流を流すことのできる高周波電流発生装置(図示せず,公知のものを使用可能)とを有する加熱装置を具備している。円筒体14は、ループコイル16の内部に配置されており、前記加熱装置によって、触媒15Aの担持体に対して電磁誘導方式による高周波誘導加熱が実施されるように構成されている。
【0038】
反応装置3Aによれば、粒子状の触媒15Aが、各々が電気的に絶縁するように集合するので、高周波誘導加熱を発現させる磁束を各粒子に均等に到達させることができ、粒子の全てを所望かつ同等の温度で加熱できる。よって、このような触媒15Aを集合させて触媒の集合体を構成しても、触媒の集合体の各触媒間における加熱温度の格差を極めて低減できるので、“エネルギーの無駄”及び“原料の意図しない反応”を抑制しつつ、触媒の集合体のどの部位からも確実に水素化反応あるいは脱水素化反応を進行させることができる。
【0039】
また、高周波誘導加熱の表皮効果によって各触媒粒子の表面近傍が速やかに加熱されるので、触媒15Aに原料31が接触する領域における温度を反応に必要とされる温度に速やかに上昇させることができ、“芳香族化合物29の水素化反応”及び“水素化誘導体30の脱水素化反応”に際して、通常必要と考えられている“原料と触媒とが接触しない時期”を、短縮もしくは無くすことができる。
【0040】
なお、本実施形態では、触媒15Aの表面が絶縁体で被覆される例を示したが、互いに接しても、各々が電気的に絶縁するように構成されていれば良く、各触媒15Aの接触領域にのみに、絶縁体が介装された形態であっても良い。
【0041】
(第二実施形態)
図3に示すように、第二実施形態の反応装置3Bは、石英ガラスなどからなる円筒体14の内部に円筒状の触媒15B(金属担持触媒)が7本で集合するように収容されてなる。ここで、触媒15Bは、互いに接しないように収容されており、各々が電気的に絶縁するように構成されている。
【0042】
反応装置3Bによれば、円筒状の触媒15Bが、各々が電気的に絶縁するように集合しているので、高周波誘導加熱を発現させる渦電流を各触媒に発生させることができ、触媒の全てを所望かつ同等の温度で加熱できる。よって、このような触媒15Bを集合させて触媒の集合体を構成しても、触媒の集合体の各触媒間における加熱温度の格差を極めて低減できるので、“エネルギーの無駄”及び“原料の意図しない反応”を抑制しつつ、触媒の集合体のどの部位からも確実に水素化反応あるいは脱水素化反応を進行させることができる。
【0043】
また、高周波誘導加熱の表皮効果によって各円筒触媒の表面近傍が速やかに加熱されるので、触媒15Bに原料31が接触する領域における温度を反応に必要とされる温度に速やかに上昇させることができ、“芳香族化合物29の水素化反応”及び“水素化誘導体30の脱水素化反応”に際して、通常必要と考えられている“原料と触媒とが接触しない時期”を、短縮もしくは無くすことができる。
【0044】
なお、本実施形態では、触媒15Bの互いに接しないように収容された形態としたが、各々が電気的に絶縁するように構成されていれば、これに限るものではなく、第一実施形態のように、触媒15Bの表面を絶縁体で被覆し、これ2本以上で互いに接するように配置してもよい。
また、本実施形態では、円筒体14の内部に円筒状の触媒15B(金属担持触媒)が複数本で集合するように収容したが、複数本の触媒をそれぞれ個別に容器(円筒体など)に収容し、複数の容器の全体を取り囲むようにループコイルを配置してもよい。
また、触媒15Bの形状としては、上記した円筒状に限るものではなく、断面が円形状以外に形成された筒状のものや、円柱,角柱等の柱状のものであってもよい。
【0045】
(第三実施形態)
図4に示すように、第三実施形態の反応装置3Cは、石英ガラスなどからなる円筒体14の内部に円筒状の触媒15C(金属担持触媒)が収容されている。
また、反応装置3Cは、内側誘導加熱コイル17が触媒15Cの内周面側に、外側誘導加熱コイル18が触媒15Cの外周面側とに、それぞれ、設けられてなるとともに、内側誘導加熱コイル17と外側誘導加熱コイル18とに電気的に接続してこれらのコイルに高周波電流を流すことのできる高周波電流発生装置(図示せず,公知のものを使用可能)とを有する加熱装置を具備している。内側誘導加熱コイル17と外側誘導加熱コイル18とは、高周波電流発生装置内にて、それぞれ別の回路に接続されており、触媒15Cを所望の温度で均一に加熱するために、内側誘導加熱コイル17と外側誘導加熱コイル18に対する負荷が別個で制御できるように構成されている。
【0046】
反応装置3Cによれば、前記加熱装置によって、円筒状の触媒15Cの内周面側と外周面側の両方から、触媒15Aの担持体に対して電磁誘導方式による高周波誘導加熱を実施できるので、例えば、柱状の触媒の外周面側のみに誘導加熱コイルが設けられる場合と比較して、触媒の内側と外側との加熱温度の格差を低減できる。よって、“エネルギーの無駄”及び“原料の意図しない反応”を抑制しつつ、触媒15Aのどの部位からも確実に水素化反応あるいは脱水素化反応を進行させることができる。
また、高周波誘導加熱の表皮効果によって円筒状の触媒15Cの内周面側と外周面側の両方から加熱されるので、触媒15Cに原料31が接触する領域における温度を反応に必要とされる温度に速やかに上昇させることができ、“芳香族化合物29の水素化反応”及び“水素化誘導体30の脱水素化反応”に際して、通常必要と考えられている“原料と触媒とが接触しない時期”を、短縮もしくは無くすことができる。
【0047】
なお、本実施形態の触媒15Cの形状としては、上記した円筒状に限るものではなく、断面が円以外に形成された筒状のものであってもよい。
また、内側誘導加熱コイル17と外側誘導加熱コイル18とは、高周波電流発生装置内にて、必ずしも、それぞれ別の回路に接続される必要はなく、同一の回路に接続されて、内側誘導加熱コイル17と外側誘導加熱コイル18とに同等の負荷が掛けられる形態であっても良い。この場合は、触媒15Cを所望の温度で均一に加熱するために、内側誘導加熱コイル17と外側誘導加熱コイル18のインピーダンスがそれぞれに別個に設定されるのが好ましい。
【0048】
(第四実施形態)
図5(a)に示すように、第四実施形態の反応装置においては、渦巻き状コイル19(平板状の誘導加熱コイル)の両面に触媒15D(金属担持触媒)が設けられてなる触媒・コイル集合体41が使用される。
図5(b)に示すように、第四実施形態の反応装置3Dは、触媒・コイル集合体41と、2個の噴射ノズル13,13’とを有している。噴射ノズル13は、その噴射口(図示せず)が触媒・コイル集合体41の一方の面に向くように、噴射ノズル13’は、その噴射口(図示せず)が触媒・コイル集合体41の他方の面に向くように、それぞれ配置されている。(なお、噴射ノズル13,13’としては、触媒15Dに均一に原料31を供給できれば良く、スプレー式、シャワー式,滴下式等公知のものを使用することができ、複数のノズルを有してもよい)。噴射ノズル13,13’は、配管24に接続しており、ポンプ12から供給された原料31を触媒・コイル集合体41の触媒15Dに噴射できるように構成されている。
【0049】
また、反応装置3Dは、渦巻き状コイル19(誘導加熱コイル)とこれに電気的に接続して渦巻き状コイル19に高周波電流を流すことのできる高周波電流発生装置(図示せず,公知のものを使用可能)とを有する加熱装置を具備している。前記加熱装置によって、触媒15Dの担持体に対して電磁誘導方式による高周波誘導加熱が実施されるように構成されている。
【0050】
反応装置3Dによれば、高周波誘導加熱の表皮効果によって触媒15Dの表面が速やかに加熱されるので、触媒15Dに原料31が接触する領域における温度を反応に必要とされる温度に速やかに上昇させることができ、“芳香族化合物29の水素化反応”及び“水素化誘導体30の脱水素化反応”に際して、通常必要と考えられている“原料と触媒とが接触しない時期”を、短縮もしくは無くすことができる。
また、渦巻き状コイル19の両面に触媒15Dが設けられているので、平板状の触媒の片側面のみに触媒を接触させる場合と比較して、触媒の有効面積を大きく確保できる。
【0051】
なお、本発明の水素貯蔵・発生装置は、前述した実施形態に限定されるものではなく、例えば、円筒体14は、他の断面形状を有する筒状体であってもよい。また、実施形態で例示した、気液分離装置,原料貯蔵部,回収液貯蔵部,噴射ノズル,ポンプ等の、材質,形状,形態,数,配置個所等は、本発明を実施できるものであれば、適宜な変形、改良が可能であり、限定されない。
【0052】
以上により、本発明の前記実施形態に係る水素貯蔵・発生装置によれば、“芳香族化合物の水素化反応” 及び/又は“水素化誘導体の脱水素化反応”を高効率で実施できるので、水素の貯蔵及び/又は発生を高効率で実施できる。
【0053】
【実施例】
[実施例1]
反応装置3として反応装置3Aを具備する前記水素貯蔵・発生装置1を用いて、以下の条件に従い、水素の発生を実施した。
【0054】
触媒15A:白金が5重量%となるように担持体に担持された粒子であって、相互に接触しても電気的に絶縁されるように表面にアルミナ処理が施されたもの(前記担持体は、ニッケルを主成分とするとともに、外径φ5mm,長さ5mmの円柱ペレット形状に形成された比表面積2,000m/mの金属多孔質体)
円筒体14:内径φ45mm,長さ200mmの石英ガラス製筒
触媒の集合方法:前記触媒15Aを前記円筒体14の中に高さ50mmとなるように詰めた。
加熱方法:最大出力約1kW仕様の加熱装置を使用した電磁誘導方式による高周波誘導加熱(触媒15Aの加熱温度設定は350℃)
水素発生方法:配管24からデカリン(芳香族化合物の水素化誘導体)を約20ml/分で供給した。気液分離装置4の温度は120℃とした。
【0055】
[結果]
水素発生量:約14L/分
円筒体14の内周面近傍の温度:344℃〜354℃
円筒体14の中心部の温度:350±2℃
円筒体14の内周面近傍と中心部との温度格差:約0〜6℃
【0056】
[比較例1]
触媒15Aに関し、表面にアルミナ処理を施さない以外は、実施例1と同様に水素の発生を実施した。
【0057】
[結果]
水素発生量:約3L/分
円筒体14の内周面近傍の温度:350〜550℃の範囲で変動
円筒体14の中心部の温度:350±50℃の範囲で変動
円筒体14の内周面近傍と中心部との温度格差:約50〜150℃
【0058】
以上の結果より、実施例1は、比較例1と比較して、水素発生の効率が高いことが確認された。
【0059】
[実施例2]
反応装置3として反応装置3Bを具備する前記水素貯蔵・発生装置1を用いて、以下の条件に従い、水素の発生を実施した。
【0060】
触媒15B:白金が5重量%となるように担持体に担持された円筒体(前記担持体は、ニッケルを主成分とするとともに、外径φ10mm,内径φ5mm,高さ30mmの円筒形状に形成された比表面積2,000m/mの金属多孔質体)
円筒体14:内径φ45mm,長さ200mmの石英ガラス製筒
触媒の集合方法:前記触媒15Bを7本で前記円筒体14の中に互いが接触しないように配置した。
加熱方法:最大出力約1kW仕様の加熱装置を使用した電磁誘導方式による高周波誘導加熱(触媒15Aの加熱温度は350℃)
水素発生方法:配管24からデカリン(芳香族化合物の水素化誘導体)を約20ml/分で供給した。
【0061】
[結果]
水素発生量:約14L/分
円筒体14の内周面近傍の温度:345〜355℃
円筒体14の中心部の温度:350±1℃
円筒体14の内周面近傍と中心部との温度格差:約0〜5℃
【0062】
[比較例2]
円筒体14の中に7本の触媒15Bを互いに接触させて配置した以外は、実施例2と同様に水素の発生を実施した。
【0063】
[結果]
水素発生量:約7L/分
円筒体14の内周面近傍の温度:350〜460℃の範囲で変動
円筒体14の中心部の温度:350±30℃の範囲で変動
円筒体14の内周面近傍と中心部との温度格差:約30〜80℃
【0064】
以上の結果より、実施例2は、比較例2と比較して、水素発生の効率が高いことが確認された。
【0065】
[実施例3]
反応装置3として反応装置3Cを具備する前記水素貯蔵・発生装置1を用いて、以下の条件に従い、水素の発生を実施した。
【0066】
触媒15C:白金が5重量%となるように担持体に担持された円筒体(前記担持体は、ニッケルを主成分とするとともに、外径φ45mm,内径φ40mm,厚さ5mmの円筒形状に形成された比表面積2,000m/mの金属多孔質体)
円筒体14:内径φ45mm,長さ200mmの石英ガラス製筒
加熱装置:内側誘導加熱コイル17と外側誘導加熱コイル18とを、高周波電流発生装置内にて、それぞれ別の回路に接続
加熱方法:電磁誘導方式による高周波誘導加熱(触媒15Cの加熱温度は350℃)
水素発生方法:配管24からデカリン(芳香族化合物の水素化誘導体)を約20ml/分で供給した。
【0067】
[結果]
水素発生量:約14L/分
円筒体14の内周面近傍の温度:345〜355℃の範囲で変動
円筒体14の中心部の温度:350±1℃
円筒体14の内周面近傍と中心部との温度格差:約0〜5℃
【0068】
[比較例3]
触媒15Cを、外径φ45mm,内径φ40mm,高さ5mmの円筒形状とし、外周面側のみに誘導加熱コイルを設置して、電磁誘導方式による高周波誘導加熱を行った以外は、実施例3と同様に水素の発生を実施した。
【0069】
[結果]
水素発生量:約5L/分
円筒体14の内周面近傍の温度:370〜480℃の範囲で変動
触媒15Cの内周面の温度:350±30℃の範囲で変動
円筒体14の内周面近傍と触媒15Cの内周面との温度格差:約50〜100℃
【0070】
以上の結果より、実施例3は、比較例3と比較して、水素発生の効率が高いことが確認された。
【0071】
[実施例4]
反応装置3として反応装置3Dを具備する前記水素貯蔵・発生装置1を用いて、以下の条件に従い、水素の発生を実施した。
【0072】
触媒15D:白金が5重量%となるように担持体に担持された円板状体(前記担持体は、ニッケルを主成分とするとともに、直径φ100mm,厚さ3mmの円板状に形成された比表面積2,000m/mの金属多孔質体)
反応装置3D:内径φ120mm,高さ200mmの円筒状容器の高さ方向のほぼ中央部にて、触媒・コイル集合体41をその円板面が円筒状容器の筒方向と略直行となるように設置
加熱方法:最大出力約1kW仕様の加熱装置を使用した電磁誘導方式による高周波誘導加熱(触媒15Dの加熱温度は350℃)
水素発生方法:円筒状容器の一端部に設けられたスプレー式の噴射ノズル13と、他端部に設けられたスプレー式の噴射ノズル13’の両方から、一本の噴射ノズル当たり約20ml/分でデカリン(芳香族化合物の水素化誘導体)を触媒15Dに供給した。
【0073】
[結果]
水素発生量:約30L/分
円筒体14の内周面近傍の温度:345〜355℃の範囲で変動
円筒体14の中心部の温度:350±3℃の範囲で変動
円筒体14の内周面近傍と中心部の温度格差:約0〜7℃
【0074】
[比較例4−1]
渦巻き状コイル19を、加熱装置としての平板状ヒーター(出力約1kW使用)に代えて、触媒15Dを加熱温度350℃となるように加熱するとともに(高周波誘導加熱に依らない加熱)、平板状ヒーターの片側面にのみに前記[実施例4]で記載した円板状の触媒15Dを設け、この触媒15Dに向けて、噴射ノズルによって約20ml/分でデカリン(芳香族化合物の水素化誘導体)を供給した以外は、実施例4と同様に水素の発生を実施した。
【0075】
[結果]
水素発生量:約3L/分
触媒15Dの表面温度:約200℃まで低下し、デカリンの脱水素反応に必要とされる温度を下回った。
【0076】
[比較例4−2]
“噴射/噴射休止=1秒/5秒”となるように、噴射ノズルによって約20ml/分でデカリン(芳香族化合物の水素化誘導体)を間欠的に噴射した以外は、比較例4−1と同様に水素の発生を実施した。
【0077】
[結果]
水素発生量:デカリンの間欠的な噴射に応じて6L/分〜8L/分(平均して約7L/分)
触媒15Dの表面温度:200℃〜350℃で変動
【0078】
以上の結果より、実施例4は、比較例4−1及び比較例4−2と比較して、水素発生の効率が高いことが確認された。
【0079】
【発明の効果】
本発明によれば、水素の貯蔵及び/又は発生を高効率で実施できる水素貯蔵・発生装置を提供できる。
【図面の簡単な説明】
【図1】本発明の水素貯蔵・発生装置の一実施形態を示す模式図である。
【図2】反応装置の一実施形態を示す模式図である。
【図3】反応装置の一実施形態を示す模式図である。
【図4】反応装置の一実施形態を示す模式図である。
【図5】反応装置の一実施形態を示す模式図である。
【符号の説明】
1 水素貯蔵・発生装置
2 原料貯蔵装置
3,3A,3B,3C,3D 反応装置
4 気液分離装置
7 芳香族化合物貯蔵部
8 水素化誘導体貯蔵部
9,10 切替弁
12 ポンプ
13,13’ 噴射ノズル
14 円筒体
15A,15B,15C,15D 触媒
16 ループコイル
17 内側誘導加熱コイル
18 外側誘導加熱コイル
19 渦巻き状コイル
21〜24,26〜28,37,38 配管
29 芳香族化合物
30 芳香族化合物の水素化誘導体
31 原料
32 生成物
33,35 水素
34 液体成分
36 バルブ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrogen storage / generation device, and more particularly to a hydrogen storage / generation device suitable for a fuel cell.
[0002]
[Prior art]
In recent years, world energy consumption has been constantly increasing, and harmful substances emitted as a result of energy use contribute to environmental destruction on a global scale. Against this background, interest in fuel cells is increasing. Fuel cells are considered to be able to contribute to the prevention of global warming and air pollution because they electrochemically react hydrogen and oxygen to generate electric energy together with water.
[0003]
Various studies have been made on technologies for storing and supplying hydrogen required for fuel cells. For example, (i) hydrogen is stored in a liquefied hydrogen tank or the like, and hydrogen is supplied by vaporizing liquefied hydrogen as necessary. And (ii) a method of storing a liquid fuel such as methanol, liquefied natural gas, or gasoline as a hydrogen precursor and supplying hydrogen gas by reforming.
According to the above methods (i) and (ii), since hydrogen or a hydrogen precursor is stored as a liquid, the supply amount of hydrogen gas with respect to the storage capacity is larger than when stored as a gas. Has advantages. However, the method (i) requires a large amount of energy to cool and compress hydrogen to liquefied hydrogen and to maintain a low temperature state. On the other hand, in the method of obtaining hydrogen by reforming the liquid fuel of the above (ii), the generation of hydrogen essentially involves the generation of carbon dioxide (carbon dioxide) and the carbon monoxide which adversely affects the electrodes of the fuel cell. It contains gas as a by-product.
[0004]
In order to solve the above problem, a hydrogen storage / supply system using hydrogen addition / dehydrogenation of an aromatic compound has been proposed (for example, see Patent Documents 1 and 2). In this system, an aromatic compound is stored as a hydrogenated derivative by hydrogenation, and when necessary, the hydrogenated derivative is subjected to a dehydrogenation reaction to remove hydrogen.
According to this system, since the aromatic compound and its hydrogenated derivative are liquid at room temperature, the energy required for storage and transportation is extremely small, and the "aromatic compound" contained in the dehydrogenation reaction product is used. And its hydrogenated derivatives ”and“ hydrogen ”can be separated reliably and easily. In addition, the generation of hydrogen gas essentially does not involve the generation of carbon dioxide, and the generation of carbon monoxide is also reduced. This has the advantage that it does not occur in principle.
[0005]
[Patent Document 1]
JP-A-2002-274802
[Patent Document 2]
JP 2002-274803 A
[0006]
[Problems to be solved by the invention]
In the hydrogen storage / supply system, the hydrogenation reaction of the aromatic compound and the dehydrogenation reaction of the hydrogenated derivative of the aromatic compound are performed by converting the aromatic compound into an aromatic compound when performing the “hydrogenation reaction of the aromatic compound”. The "dehydrogenation reaction of a hydrogenated derivative of a compound" is performed by bringing a hydrogenated derivative of an aromatic compound (hereinafter, also collectively referred to as "raw material") into contact with a heated catalyst.
More specifically, Patent Literature 1 discloses a reactor in which a catalyst (porous or the like) containing a conductor and formed so as to allow passage of a raw material is placed inside a cylindrical body. A technique is described in which a material is passed through a catalyst while heating the catalyst by heating the conductor by high-frequency induction heating (conventional example 1).
[0007]
Further, in Patent Document 2, a reaction apparatus is configured by directing an injection nozzle for supplying a raw material to a sheet surface of a catalyst containing a conductor and formed in a honeycomb sheet shape. A technique is described in which a raw material is brought into contact with a raw material while heating the catalyst by heating the body. More specifically, as a form of the high-frequency induction heating, "the induction heating coil is a cylindrical coil (loop coil), and the cylindrical direction of the cylindrical coil and the surface direction of the sheet surface are provided inside the cylindrical coil. And the "induction heating coil is a flat coil (spiral coil)", and a honeycomb sheet is formed on one side of the flat coil. (Conventional Example 2-2) "in which a catalyst (a surface opposite to the injection nozzle) is disposed.
[0008]
However, in the conventional example 1 and the conventional example 2-1, due to the appearance of the skin effect which is one of the characteristics of the high-frequency induction heating, the outer portion of the catalyst close to the cylindrical coil and the inner portion of the catalyst separated from the cylindrical coil. Thus, it is difficult to uniformly heat the catalyst at a desired temperature due to the difference in heating temperature and heat conduction from the outside to the inside.
[0009]
The heating temperature for the catalyst is usually controlled by temperature control using a thermocouple, such as “hydrogenation reaction of aromatic compound (hereinafter, also simply referred to as hydrogenation reaction)” or “dehydrogenation reaction of hydrogenated derivative of aromatic compound ( Hereinafter, it is set to a predetermined value (250 ° C. or more in the dehydrogenation reaction of a hydrogenated derivative) required for “dehydrogenation reaction”). However, the above-mentioned difference in the heating temperature is not eliminated, and in the temperature control at the outer part of the catalyst, the dehydrogenation reaction does not proceed due to the lower temperature at the inner part, and the temperature at the inner part of the catalyst is low. In the temperature control, when the temperature of the outer portion of the catalyst becomes too high, excessive heat energy is supplied, thereby wasting energy, and an unintended reaction of the raw material occurs due to the excessively high temperature. There was a problem that there was.
[0010]
By the way, it is generally considered that the dehydrogenation reaction usually needs to be performed by intermittently bringing the raw material and the catalyst into contact with each other. This is because the dehydrogenation reaction is an endothermic reaction, and if the contact between the catalyst and the raw material continues, the heat is released and the temperature of the catalyst tends to fall below the heating temperature required for the reaction. This is because it is necessary to restore the heating temperature of the catalyst to a desired value by providing a time when the catalyst does not contact. Thereby, the dehydrogenation reaction becomes intermittent and the efficiency of hydrogen generation becomes insufficient.
[0011]
As described above, Conventional Examples 1 and 2 are insufficient in efficiency in terms of hydrogen storage and generation.
[0012]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a hydrogen storage / generation apparatus capable of storing and / or generating hydrogen with high efficiency.
[0013]
[Means for Solving the Problems]
The hydrogen storage and generation device according to claim 1, wherein at least one of the hydrogenation reaction of the aromatic compound and the dehydrogenation reaction of the hydrogenated derivative of the aromatic compound is formed using a catalyst in which a metal is supported on a support. A hydrogen storage and generation device capable of storing and / or generating hydrogen by using the same, wherein a particulate catalyst including a conductor contained in a carrier is electrically charged. A heating means is provided for assembling so as to be insulated and performing high-frequency induction heating on the carrier by an electromagnetic induction method.
[0014]
According to such a configuration, the particulate catalysts assemble so as to be electrically insulated from each other, so that the magnetic flux for expressing the high-frequency induction heating can reach each particle evenly, and all of the particles are removed. It can be heated at the desired and comparable temperature. Therefore, even if such catalysts are assembled to form an aggregate of catalysts, the difference in heating temperature between each catalyst in the aggregate of catalysts can be extremely reduced, so that "energy waste" and "unintended raw materials" While suppressing the "reaction", the hydrogenation reaction or the dehydrogenation reaction can proceed reliably from any part of the catalyst assembly.
In addition, since the vicinity of the surface of each particle is rapidly heated by the skin effect of high-frequency induction heating, the temperature in the region where the raw material comes into contact with the catalyst can be promptly increased to the temperature required for the reaction, It is possible to shorten or eliminate the “time when the raw material does not come into contact with the catalyst”.
As described above, according to the configuration of the first aspect, it is possible to provide a hydrogen storage / generation device that can store and / or generate hydrogen with high efficiency.
[0015]
The hydrogen storage / generation device according to claim 2, wherein at least one of the hydrogenation reaction of the aromatic compound and the dehydrogenation reaction of the hydrogenated derivative of the aromatic compound is formed using a catalyst in which a metal is supported on a support. A hydrogen storage / generation device capable of storing and / or generating hydrogen by using the same, wherein two or more column-shaped or cylindrical catalysts containing a conductor in a carrier are provided. And a heating means for assembling them so as to be electrically insulated and capable of performing high-frequency induction heating on the carrier by an electromagnetic induction method.
[0016]
According to such a configuration, since two or more columnar or cylindrical catalysts are assembled so as to be electrically insulated from each other, an eddy current that causes high-frequency induction heating can be generated in each catalyst. All of the catalyst can be heated at the desired and equivalent temperature. Therefore, even if such catalysts are assembled to form an aggregate of catalysts, the difference in heating temperature between each catalyst in the aggregate of catalysts can be extremely reduced, so that "energy waste" and "unintended raw materials" While suppressing the "reaction", the hydrogenation reaction or the dehydrogenation reaction can proceed reliably from any part of the catalyst assembly.
Further, since the vicinity of the surface of each catalyst is quickly heated by the skin effect of the high-frequency induction heating, the temperature in the region where the raw material comes into contact with the catalyst can be promptly increased to the temperature required for the reaction. It is possible to shorten or eliminate the “time when the raw material does not come into contact with the catalyst”.
As described above, according to the configuration of the second aspect, it is possible to provide a hydrogen storage / generation device that can store and / or generate hydrogen with high efficiency.
[0017]
The hydrogen storage / generation device according to claim 3, wherein at least one of the hydrogenation reaction of the aromatic compound and the dehydrogenation reaction of the hydrogenated derivative of the aromatic compound is formed using a catalyst in which a metal is supported on a support. A hydrogen storage and generation device capable of storing and / or generating hydrogen by using the same, comprising: a cylindrical catalyst having a conductor contained in a carrier; and a catalyst supported by an induction heating coil. A heating means capable of performing high-frequency induction heating on the body is provided, and induction heating coils are provided on the inner peripheral surface side and the outer peripheral surface side of the catalyst.
[0018]
According to such a configuration, since high-frequency induction heating by the electromagnetic induction method can be performed from both the inner peripheral surface side and the outer peripheral surface side of the cylindrical catalyst, for example, an induction heating coil is provided on the outer peripheral surface side of the columnar catalyst. The difference in heating temperature between the inside and outside of the catalyst can be reduced as compared with the case where the catalyst is provided. Therefore, the hydrogenation reaction or the dehydrogenation reaction can proceed reliably from any part of the catalyst while suppressing "waste of energy" and "unintended reaction of the raw material".
In addition, the skin effect of high-frequency induction heating rapidly heats both the inner peripheral surface and the outer peripheral surface of the cylindrical catalyst, so that the temperature in the region where the raw material comes into contact with the catalyst is reduced to the temperature required for the reaction. The temperature can be raised quickly, and the "time when the raw material does not come into contact with the catalyst" can be shortened or eliminated.
As described above, according to the configuration of the third aspect, it is possible to provide a hydrogen storage / generation device that can store and / or generate hydrogen with high efficiency.
[0019]
The hydrogen storage / generation device according to claim 4, wherein at least one of the hydrogenation reaction of the aromatic compound and the dehydrogenation reaction of the hydrogenated derivative of the aromatic compound is formed using a catalyst in which a metal is supported on a support. A hydrogen storage / generation device capable of storing and / or generating hydrogen by using the device, comprising a heating means capable of performing high-frequency induction heating on a carrier by a flat induction heating coil. In addition, a catalyst comprising a conductor contained in the carrier is provided on both sides of the induction heating coil.
[0020]
According to such a configuration, since the surface of the catalyst is quickly heated by the skin effect of the high-frequency induction heating, the temperature in the region where the raw material comes into contact with the catalyst can be quickly raised to the temperature required for the reaction. It is possible to shorten or eliminate the "time when the raw material does not come into contact with the catalyst".
In addition, since the catalyst is provided on both sides of the induction heating coil, a large effective area of the catalyst can be secured as compared with the case where the catalyst is provided only on one side of the flat catalyst.
As described above, according to the configuration of the fourth aspect, it is possible to provide a hydrogen storage / generation apparatus capable of storing and / or generating hydrogen with high efficiency.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
As described above, the hydrogen storage / generation device of the present invention is configured such that at least one of the hydrogenation reaction of an aromatic compound and the dehydrogenation reaction of a hydrogenated derivative of an aromatic compound is carried on a carrier. A hydrogen storage / generation device capable of storing and / or generating hydrogen by using a catalyst (hereinafter, also referred to as a metal-supported catalyst). Here, “storage of hydrogen” refers to contacting an aromatic compound with a metal-supported catalyst in the presence of hydrogen, and “generation of hydrogen” refers to contacting a hydrogenated derivative of an aromatic compound with a metal-supported catalyst. This is done by causing
[0022]
Hereinafter, an embodiment of the hydrogen storage / generation device of the present invention will be described with reference to FIG. 1 (a schematic diagram showing an embodiment of the hydrogen generation device of the present invention).
As shown in FIG. 1, the hydrogen storage / generation device 1 includes a raw material storage device 2 for storing a raw material 31, a reactor 3, a gas for separating a product 32 generated from the reactor 3 into a hydrogen 33 and a liquid component 34. It has a liquid separation device 4.
[0023]
The raw material storage device 2 includes an aromatic compound storage unit 7 for storing an aromatic compound 29, a hydrogenated derivative storage unit 8 for storing a hydrogenated derivative 30 of an aromatic compound (hereinafter, also simply referred to as “hydrogenated derivative”), It has a switching valve 9, the aromatic compound storage unit 7 and the switching valve 9 are connected by a pipe 21, and the hydrogenated derivative storage unit 8 and the switching valve 9 are connected by a pipe 22. . Further, the switching valve 9 is connected to a pump 12 as a raw material supply unit via a pipe 23, and sends the liquid from the aromatic compound storage unit 7 to the pump 12 and the liquid supply from the hydrogenated derivative storage unit 8. Is configured to be selectable. The pump 12 and the reactor 3 are connected by a pipe 24, and are configured so that the raw material 31 can be supplied from the raw material storage device 2 to the reactor 3. Further, it is preferable that the above-mentioned supply system is under a condition that the raw material 31 can maintain a liquid state (temperature).
[0024]
The reaction device 3 is provided with a catalyst in which a metal is supported on a carrier (metal-supported catalyst), and the carrier contains a conductor so that high-frequency induction heating by an electromagnetic induction method is performed. . The catalyst metal may be any one that can achieve a hydrogenation reaction and / or a dehydrogenation reaction. For example, as the metal component, nickel, palladium, platinum, rhodium, iridium, ruthenium, molybdenum, Rhenium, tungsten, vanadium, osmium, chromium, cobalt, iron and the like can be used. In addition, it is more preferable to use a metal obtained by alloying two or more of these metals, particularly, a platinum group metal (platinum, palladium, rhodium, ruthenium) from the viewpoint of high activity against dehydrogenation reaction. Further, a composite metal-based catalyst described in JP-A-2001-198469 can also be used.
[0025]
Examples of the carrier containing a conductor include those made of a conductor such as activated carbon, carbon nanotube, a porous metal or a honeycomb-shaped metal, and non-conductors such as molecular sieve, zeolite, silica gel, and alumina, and general conductors ( Blends with stainless steel, etc.).
[0026]
Further, a pipe 26 is connected to the reactor 3, and the gas-liquid separator 4 is connected to the other end of the pipe 26. Further, a pipe 28 having a valve 36 is connected to the reactor 3 so that the valve 36 can be opened to supply hydrogen 35 when performing the “hydrogenation reaction of the aromatic compound 29”. Have been.
The gas-liquid separation device 4 is not particularly limited as long as the product 32 generated from the reaction device 3 can be separated into hydrogen 33 and a liquid component 34, but is not particularly limited, such as a water-cooled circulation type, an air-cooled type, and cooling (not circulating) by flowing water. Known cooling means can be used. As the refrigerant, water, ethylene glycol, diethylene glycol, or the like can be used.
[0027]
The hydrogen storage / generation device 1 is configured such that the liquid component 34 separated by the gas-liquid separation device 4 enters the raw material storage device 2.
That is, the gas-liquid separation device 4 is connected to the switching valve 10 by the pipe 27, the switching valve 10 and the aromatic compound storage unit 7 are connected by the pipe 37, and the switching valve 10 and the hydrogenated derivative storage unit 8 is connected by a pipe 38. Thus, for example, when performing the “hydrogenation reaction of the aromatic compound 29”, the liquid component 34 can be sent to the hydrogenated derivative storage unit 8 by switching the switching valve 10, and the “hydrogenation of the aromatic compound 29” can be performed. When the “dehydrogenation reaction” of the derivative 30 is performed, the liquid component 34 can be sent to the aromatic compound storage unit 7 by switching the switching valve 10.
[0028]
Next, a hydrogen storage method and a hydrogen generation method using the hydrogen storage / generation device 1 of the present invention will be described with reference to FIG.
[0029]
First, a method for generating hydrogen will be described.
The hydrogenated derivative 30 is put into the hydrogenated derivative storage unit 8 of the raw material storage device 2. Examples of the hydrogenated derivative 30 include cyclohexane, methylcyclohexane, decalin, dimethylcyclohexane, trimethylcyclohexane, and tetralin, and can be used alone or as a mixture of two or more. Further, the compounds described in JP-A-2002-134141 can also be used. The single substance and the mixture are preferably liquid at room temperature.
[0030]
Next, the pipe 22 and the pipe 23 are communicated by switching the switching valve 9, and the hydrogenated derivative 30 is introduced into the reactor 3 by operating the pump 12. In the reaction device 3, the hydrogenated derivative 30 and the metal-supported catalyst provided in the reaction device 3 come into contact with each other, and the “dehydrogenation reaction of the hydrogenated derivative” proceeds. Although depending on the type of the hydrogenated derivative, the metal-supported catalyst is usually heated to a predetermined temperature selected from 200C to 500C by a heating device described later. If the temperature is too high, the liquid raw material is vaporized before coming into contact with the catalyst, and the reaction efficiency per unit time decreases.
[0031]
Next, the product 32 after the dehydrogenation reaction is introduced into the gas-liquid separator 4 via the pipe 26, where it is separated into hydrogen 33 and a liquid component 34. (The temperature of the gas-liquid separator 4 is preferably set to a temperature at which hydrogen is present as a gas and other mixtures are present as liquids. Explaining the case of using “decalin”, the gasification point of hydrogen is −250 ° C. or less, the liquefaction point of decalin is about −125 ° C., the gasification point is about 189 ° C., and decalin is dehydrated. Since the liquefied point of the oxidized naphthalene is about 80 ° C. and the gasification point is about 218 ° C., a range of 90 ° C. to 170 ° C. is exemplified. Thus, hydrogen 33 can be used as a gas, and the other mixture can be reliably separated as liquid component 34.) As described above, hydrogen 33 can be taken out. The hydrogen 33 generated from the hydrogen storage / generation device 1 can be used as a raw material for a fuel cell.
[0032]
Subsequently, the liquid component 34 separated by the gas-liquid separation device 4 is collected in the aromatic compound storage unit 7 of the raw material storage device 2 via the pipe 27 by switching the switching valve 10. The liquid component 34 may be supplied to the reaction device 3 again, and the liquid component 34 may be collected in the aromatic compound storage 7 as the aromatic compound 29 having high purity. The aromatic compound 29 stored in the aromatic compound storage unit 7 can be used as a raw material 31 for the “hydrogenation reaction of the aromatic compound 29” described below.
[0033]
Next, a hydrogen storage method will be described.
As the raw material 31, the aromatic compound 29 stored in the aromatic compound storage unit 7 of the raw material storage device 2 is used. Examples of the aromatic compound 29 include benzene, toluene, naphthalene, xylene, and mesitylene, and can be used alone or as a mixture of two or more. Further, the compounds described in JP-A-2002-134141 can also be used. The single substance and the mixture are preferably liquid at room temperature.
By switching the switching valve 9, the pipe 21 and the pipe 23 are communicated with each other, and the pump 12 is operated to introduce the aromatic compound 29 into the reactor 3. By opening the valve 36 and bringing the aromatic compound 29 into contact with the metal-supported catalyst provided in the reactor 3 while supplying hydrogen 35 to the reactor 3, “hydrogenation of the aromatic compound Reaction ”proceeds. Although depending on the type of aromatic compound, the metal-supported catalyst is usually heated to a predetermined temperature selected from 50C to 250C by a heating device described later.
[0034]
Next, the product 32 after the hydrogenation reaction is introduced into the gas-liquid separator 4 via the pipe 26, where it is used as a liquid component 34. (The temperature of the gas-liquid separation device 4 is preferably set to a temperature at which the product 32 exists as a liquid. Depending on the type of the raw material, when naphthalene is used as the raw material, the temperature is in the range of 90 to 170 ° C. Is exemplified.
[0035]
Subsequently, the liquid component 34 obtained by the gas-liquid separation device 4 is collected in the hydrogenated derivative storage unit 8 of the raw material storage device 2 by switching the switching valve 10 via the pipe 27. In addition, the liquid component 34 may be supplied to the reactor 3 again, and the liquid component 34 may be collected in the hydrogenated derivative storage unit 8 as the hydrogenated derivative 30 having high purity. The hydrogenated derivative 30 stored in the hydrogenated derivative storage unit 8 can be used as a raw material 31 for the “dehydrogenation reaction of the hydrogenated derivative 30” described above. As described above, the hydrogen 35 can be stored as the hydrogenated derivative 30.
[0036]
Meanwhile, in the hydrogen generator 1 of the present invention, as described above, the reaction device 3 is configured as in the following first to fourth embodiments so that hydrogen can be stored and / or generated with high efficiency. It is a thing. These embodiments of the reactor 3 will be described in detail. According to the hydrogen generator 1 of the present invention, the temperature difference between the highest temperature site and the lowest temperature site among the portions constituting the catalyst is set to within 20 ° C. in the case of “dehydrogenation reaction of hydrogenated derivative”. In the case of "hydrogenation reaction of aromatic compound", it is possible to achieve the temperature within 10 ° C. In each of the embodiments described below, the members and the like already described are denoted by the same reference numerals in the drawings to simplify or omit the description.
[0037]
(First embodiment)
As shown in FIG. 2, the reaction apparatus 3A of the first embodiment is configured such that a particulate catalyst 15A (metal-supported catalyst) is accommodated in a cylindrical body 14 made of quartz glass or the like. Here, the catalyst 15A is configured such that even when the catalyst 15A is in contact with each other such that the surface of the catalyst 15A is coated with an insulator (a known substance such as silica gel or alumina can be used), each of them is electrically insulated. Have been. A pipe 24 and a pipe 28 are attached to one end of the cylindrical body 14 so that the raw material 31 and hydrogen 35 for performing the “hydrogenation reaction of the aromatic compound 29” can be supplied to the reaction apparatus 3A. Is configured. A pipe 26 is attached to the other end of the cylindrical body 14 so that the product 32 can be sent to the gas-liquid separator 4.
The reactor 3A may be a loop coil 16 (induction heating coil) and a high-frequency current generator (not shown, which is electrically connected thereto and capable of flowing a high-frequency current through the loop coil 16). ) Is provided. The cylindrical body 14 is disposed inside the loop coil 16, and is configured so that the heating device performs high-frequency induction heating on the carrier of the catalyst 15A by an electromagnetic induction method.
[0038]
According to the reaction device 3A, since the particulate catalysts 15A assemble so as to be electrically insulated from each other, the magnetic flux for expressing the high-frequency induction heating can reach each particle evenly, and all of the particles are removed. It can be heated at the desired and comparable temperature. Therefore, even if such catalysts 15A are assembled to form an aggregate of catalysts, the difference in heating temperature between the catalysts of the aggregate of catalysts can be extremely reduced. The hydrogenation reaction or the dehydrogenation reaction can proceed reliably from any part of the catalyst assembly while suppressing the "reaction that does not occur".
[0039]
Further, since the vicinity of the surface of each catalyst particle is rapidly heated by the skin effect of the high-frequency induction heating, the temperature in the region where the raw material 31 comes into contact with the catalyst 15A can be quickly increased to the temperature required for the reaction. In the "hydrogenation reaction of the aromatic compound 29" and the "dehydrogenation reaction of the hydrogenated derivative 30", the "time when the raw material does not come into contact with the catalyst", which is generally considered necessary, can be shortened or eliminated. .
[0040]
In the present embodiment, an example is shown in which the surface of the catalyst 15A is covered with an insulator. However, even if the catalyst 15A is in contact with each other, it is only necessary that each of the catalysts 15A be electrically insulated. A form in which an insulator is interposed only in the region may be used.
[0041]
(Second embodiment)
As shown in FIG. 3, the reaction apparatus 3B of the second embodiment is configured such that seven cylindrical catalysts 15B (metal-supported catalysts) are housed in a cylindrical body 14 made of quartz glass or the like so as to be assembled into seven. . Here, the catalysts 15B are accommodated so as not to be in contact with each other, and each is configured to be electrically insulated.
[0042]
According to the reaction device 3B, since the cylindrical catalysts 15B are gathered so as to be electrically insulated from each other, an eddy current that causes high-frequency induction heating can be generated in each of the catalysts. Can be heated at a desired and equivalent temperature. Therefore, even if such a catalyst 15B is assembled to form an assembly of catalysts, the difference in heating temperature between the catalysts of the assembly of catalysts can be extremely reduced, so that "energy waste" and " The hydrogenation reaction or the dehydrogenation reaction can proceed reliably from any part of the catalyst assembly while suppressing the "reaction that does not occur".
[0043]
Further, since the vicinity of the surface of each cylindrical catalyst is quickly heated by the skin effect of the high-frequency induction heating, the temperature in the region where the raw material 31 contacts the catalyst 15B can be quickly increased to the temperature required for the reaction. In the "hydrogenation reaction of the aromatic compound 29" and the "dehydrogenation reaction of the hydrogenated derivative 30", the "time when the raw material does not come into contact with the catalyst", which is generally considered necessary, can be shortened or eliminated. .
[0044]
In the present embodiment, the catalysts 15B are accommodated so as not to be in contact with each other. However, the present invention is not limited to this as long as they are configured to be electrically insulated. As described above, the surface of the catalyst 15B may be covered with an insulator, and two or more of them may be arranged so as to be in contact with each other.
Further, in the present embodiment, a plurality of cylindrical catalysts 15B (metal-supported catalysts) are accommodated in the cylindrical body 14 so as to be collected. However, the plurality of catalysts are individually stored in containers (such as cylindrical bodies). The loop coil may be arranged so as to house and surround the whole of the plurality of containers.
The shape of the catalyst 15B is not limited to the above-described cylindrical shape, and may be a cylindrical shape having a cross section other than a circular shape, or a columnar shape such as a cylinder or a prism.
[0045]
(Third embodiment)
As shown in FIG. 4, in a reaction device 3C of the third embodiment, a cylindrical catalyst 15C (metal-supported catalyst) is accommodated in a cylindrical body 14 made of quartz glass or the like.
The reaction apparatus 3C has an inner induction heating coil 17 provided on the inner peripheral surface side of the catalyst 15C and an outer induction heating coil 18 provided on the outer peripheral surface side of the catalyst 15C. And a high-frequency current generator (not shown, a known one can be used) that is electrically connected to the outer induction heating coil 18 and can supply a high-frequency current to these coils. I have. The inner induction heating coil 17 and the outer induction heating coil 18 are connected to different circuits in the high-frequency current generator, and are used to uniformly heat the catalyst 15C at a desired temperature. The configuration is such that the load on the outer induction heating coil 18 and the load on the outer induction heating coil 18 can be controlled separately.
[0046]
According to the reaction device 3C, the high-frequency induction heating by the electromagnetic induction method can be performed on the support of the catalyst 15A from both the inner peripheral surface side and the outer peripheral surface side of the cylindrical catalyst 15C by the heating device. For example, the difference in heating temperature between the inside and outside of the catalyst can be reduced as compared with the case where the induction heating coil is provided only on the outer peripheral surface side of the columnar catalyst. Therefore, the hydrogenation reaction or the dehydrogenation reaction can proceed reliably from any part of the catalyst 15A, while suppressing "waste of energy" and "unintended reaction of the raw material".
In addition, since the cylindrical catalyst 15C is heated from both the inner peripheral surface side and the outer peripheral surface side by the skin effect of the high-frequency induction heating, the temperature in the region where the raw material 31 contacts the catalyst 15C is set to the temperature required for the reaction. In the “hydrogenation reaction of the aromatic compound 29” and the “dehydrogenation reaction of the hydrogenated derivative 30”, the “time when the raw material does not come into contact with the catalyst” which is generally considered necessary Can be shortened or eliminated.
[0047]
The shape of the catalyst 15C of the present embodiment is not limited to the above-described cylindrical shape, and may be a cylindrical shape having a cross section other than a circle.
Further, the inner induction heating coil 17 and the outer induction heating coil 18 do not necessarily need to be connected to different circuits in the high-frequency current generator, but are connected to the same circuit. The same load may be applied to the outer induction heating coil 18 and the outer induction heating coil 18. In this case, in order to uniformly heat the catalyst 15C at a desired temperature, it is preferable that the impedances of the inner induction heating coil 17 and the outer induction heating coil 18 are separately set.
[0048]
(Fourth embodiment)
As shown in FIG. 5A, in the reaction apparatus of the fourth embodiment, a catalyst / coil in which a catalyst 15D (metal-supported catalyst) is provided on both surfaces of a spiral coil 19 (a flat induction heating coil). An aggregate 41 is used.
As shown in FIG. 5B, the reaction device 3D according to the fourth embodiment has a catalyst / coil assembly 41 and two injection nozzles 13 and 13 ′. The injection nozzle 13 ′ has a nozzle (not shown) whose injection port (not shown) faces one surface of the catalyst / coil assembly 41. Are arranged so as to face the other surface. (Note that the injection nozzles 13 and 13 ′ need only be capable of uniformly supplying the raw material 31 to the catalyst 15 </ b> D, and may be a known type such as a spray type, a shower type, and a drop type. Good). The injection nozzles 13 and 13 ′ are connected to a pipe 24, and are configured to be able to inject the raw material 31 supplied from the pump 12 to the catalyst 15 </ b> D of the catalyst / coil assembly 41.
[0049]
The reaction device 3D includes a spiral coil 19 (induction heating coil) and a high-frequency current generator (not shown, a known device that can be electrically connected to the spiral coil 19 to supply a high-frequency current to the spiral coil 19). (Available). The heating device is configured to perform high-frequency induction heating on the carrier of the catalyst 15D by an electromagnetic induction method.
[0050]
According to the reactor 3D, since the surface of the catalyst 15D is quickly heated by the skin effect of the high-frequency induction heating, the temperature in the region where the raw material 31 comes into contact with the catalyst 15D is quickly increased to the temperature required for the reaction. In the "hydrogenation reaction of the aromatic compound 29" and the "dehydrogenation reaction of the hydrogenated derivative 30", the "time when the raw material does not come into contact with the catalyst" which is generally considered necessary can be shortened or eliminated. be able to.
Further, since the catalyst 15D is provided on both sides of the spiral coil 19, a large effective area of the catalyst can be secured as compared with a case where the catalyst is brought into contact with only one side of the flat catalyst.
[0051]
The hydrogen storage / generation device of the present invention is not limited to the above-described embodiment. For example, the cylindrical body 14 may be a cylindrical body having another cross-sectional shape. Further, the materials, shapes, forms, numbers, arrangement locations, and the like of the gas-liquid separation device, the raw material storage unit, the recovered liquid storage unit, the injection nozzle, the pump, and the like illustrated in the embodiment are those that can implement the present invention. As long as appropriate modifications and improvements are possible, there is no limitation.
[0052]
As described above, according to the hydrogen storage / generation device according to the embodiment of the present invention, “hydrogenation reaction of aromatic compound” and / or “dehydrogenation reaction of hydrogenated derivative” can be performed with high efficiency. Hydrogen storage and / or generation can be performed with high efficiency.
[0053]
【Example】
[Example 1]
Hydrogen was generated using the hydrogen storage / generation device 1 having the reaction device 3A as the reaction device 3 under the following conditions.
[0054]
Catalyst 15A: particles supported on a carrier such that the platinum content is 5% by weight, the surface of which has been subjected to alumina treatment so as to be electrically insulated even when contacted with each other (the carrier Has a specific surface area of 2,000 m, which is formed into a cylindrical pellet having a diameter of 5 mm and a length of 5 mm while containing nickel as a main component. 2 / M 3 Metal porous body)
Cylindrical body 14: Quartz glass cylinder with inner diameter φ45 mm and length 200 mm
Catalyst assembling method: The catalyst 15A was packed in the cylindrical body 14 so as to have a height of 50 mm.
Heating method: High frequency induction heating by electromagnetic induction using a heating device with a maximum output of about 1 kW (the temperature setting of the catalyst 15A is 350 ° C)
Hydrogen generation method: Decalin (hydrogenated derivative of aromatic compound) was supplied from pipe 24 at about 20 ml / min. The temperature of the gas-liquid separator 4 was set to 120 ° C.
[0055]
[result]
Hydrogen generation: about 14 L / min
Temperature near the inner peripheral surface of the cylindrical body 14: 344 ° C to 354 ° C
Temperature at the center of the cylindrical body 14: 350 ± 2 ° C.
Temperature difference between the vicinity of the inner peripheral surface of the cylindrical body 14 and the center: about 0 to 6 ° C
[0056]
[Comparative Example 1]
Regarding the catalyst 15A, hydrogen was generated in the same manner as in Example 1 except that the surface was not subjected to the alumina treatment.
[0057]
[result]
Hydrogen generation: about 3 L / min
Temperature near the inner peripheral surface of the cylindrical body 14: fluctuates in the range of 350 to 550 ° C
Temperature at the center of the cylindrical body 14: fluctuates within a range of 350 ± 50 ° C.
Temperature difference between the vicinity of the inner peripheral surface of the cylindrical body 14 and the center: about 50 to 150 ° C
[0058]
From the above results, it was confirmed that Example 1 had higher hydrogen generation efficiency than Comparative Example 1.
[0059]
[Example 2]
Using the hydrogen storage / generation device 1 having the reaction device 3B as the reaction device 3, hydrogen was generated under the following conditions.
[0060]
Catalyst 15B: A cylindrical body supported on a carrier so that the platinum content is 5% by weight (the carrier is formed of a cylindrical shape having nickel as a main component, an outer diameter of 10 mm, an inner diameter of 5 mm, and a height of 30 mm. 2,000m 2 / M 3 Metal porous body)
Cylindrical body 14: Quartz glass cylinder with inner diameter φ45 mm and length 200 mm
Method of assembling catalysts: Seven of the catalysts 15B were arranged in the cylindrical body 14 so as not to contact each other.
Heating method: High frequency induction heating by electromagnetic induction using a heating device with a maximum output of about 1 kW (heating temperature of catalyst 15A is 350 ° C)
Hydrogen generation method: Decalin (hydrogenated derivative of aromatic compound) was supplied from pipe 24 at about 20 ml / min.
[0061]
[result]
Hydrogen generation: about 14 L / min
Temperature near the inner peripheral surface of the cylindrical body 14: 345 to 355 ° C
Temperature at the center of the cylindrical body 14: 350 ± 1 ° C.
Temperature difference between the vicinity of the inner peripheral surface of the cylindrical body 14 and the center: about 0 to 5 ° C
[0062]
[Comparative Example 2]
Hydrogen was generated in the same manner as in Example 2, except that seven catalysts 15B were arranged in the cylindrical body 14 in contact with each other.
[0063]
[result]
Hydrogen generation: about 7 L / min
Temperature near the inner peripheral surface of the cylindrical body 14: fluctuates in the range of 350 to 460 ° C
Temperature at the center of the cylindrical body 14: fluctuates within a range of 350 ± 30 ° C.
Temperature difference between the vicinity of the inner peripheral surface of the cylindrical body 14 and the center: about 30 to 80 ° C
[0064]
From the above results, it was confirmed that Example 2 had higher hydrogen generation efficiency than Comparative Example 2.
[0065]
[Example 3]
Hydrogen was generated using the hydrogen storage / generation device 1 having the reaction device 3C as the reaction device 3 under the following conditions.
[0066]
Catalyst 15C: A cylinder supported on a carrier such that platinum is 5% by weight (the carrier is formed of a cylindrical shape having nickel as a main component, an outer diameter of 45 mm, an inner diameter of 40 mm, and a thickness of 5 mm). 2,000m 2 / M 3 Metal porous body)
Cylindrical body 14: Quartz glass cylinder with inner diameter φ45 mm and length 200 mm
Heating device: The inner induction heating coil 17 and the outer induction heating coil 18 are connected to different circuits in the high-frequency current generator.
Heating method: High frequency induction heating by electromagnetic induction method (heating temperature of catalyst 15C is 350 ° C)
Hydrogen generation method: Decalin (hydrogenated derivative of aromatic compound) was supplied from pipe 24 at about 20 ml / min.
[0067]
[result]
Hydrogen generation: about 14 L / min
Temperature near the inner peripheral surface of the cylindrical body 14: fluctuates in the range of 345 to 355 ° C
Temperature at the center of the cylindrical body 14: 350 ± 1 ° C.
Temperature difference between the vicinity of the inner peripheral surface of the cylindrical body 14 and the center: about 0 to 5 ° C
[0068]
[Comparative Example 3]
The same as Example 3 except that the catalyst 15C was formed into a cylindrical shape having an outer diameter of 45 mm, an inner diameter of 40 mm, and a height of 5 mm, and an induction heating coil was provided only on the outer peripheral surface side to perform high-frequency induction heating by an electromagnetic induction method. The generation of hydrogen was carried out.
[0069]
[result]
Hydrogen generation: about 5 L / min
Temperature near the inner peripheral surface of the cylindrical body 14: fluctuates in the range of 370 to 480 ° C
Temperature of the inner peripheral surface of the catalyst 15C: fluctuates within a range of 350 ± 30 ° C.
Temperature difference between the inner peripheral surface of the cylindrical body 14 and the inner peripheral surface of the catalyst 15C: about 50 to 100 ° C
[0070]
From the above results, it was confirmed that Example 3 had higher hydrogen generation efficiency than Comparative Example 3.
[0071]
[Example 4]
Hydrogen was generated using the hydrogen storage / generation device 1 having the reaction device 3D as the reaction device 3 under the following conditions.
[0072]
Catalyst 15D: a disk-shaped body supported on a support such that the platinum content was 5% by weight (the support was formed in a disk shape having a diameter of 100 mm and a thickness of 3 mm while being mainly composed of nickel. Specific surface area 2,000m 2 / M 3 Metal porous body)
Reactor 3D: At approximately the center in the height direction of a cylindrical container having an inner diameter of 120 mm and a height of 200 mm, the catalyst / coil assembly 41 is placed so that its disk surface is substantially perpendicular to the cylindrical direction of the cylindrical container. Installation
Heating method: High frequency induction heating by electromagnetic induction using a heating device with a maximum output of about 1 kW (the heating temperature of the catalyst 15D is 350 ° C.)
Hydrogen generation method: Approximately 20 ml / min per one spray nozzle from both the spray type spray nozzle 13 provided at one end of the cylindrical container and the spray type spray nozzle 13 ′ provided at the other end. Supplied decalin (a hydrogenated derivative of an aromatic compound) to the catalyst 15D.
[0073]
[result]
Hydrogen generation: about 30 L / min
Temperature near the inner peripheral surface of the cylindrical body 14: fluctuates in the range of 345 to 355 ° C
Temperature at the center of the cylindrical body 14: fluctuates in the range of 350 ± 3 ° C
Temperature difference between the vicinity of the inner peripheral surface and the center of the cylindrical body 14: about 0 to 7 ° C
[0074]
[Comparative Example 4-1]
Instead of the spiral coil 19 being replaced with a flat heater (using an output of about 1 kW) as a heating device, the catalyst 15D is heated to a heating temperature of 350 ° C. (heating not depending on high-frequency induction heating), and the flat heater is heated. The disc-shaped catalyst 15D described in the above [Example 4] is provided only on one side of the above, and decalin (hydrogenated derivative of an aromatic compound) is injected toward this catalyst 15D at about 20 ml / min by an injection nozzle. Except for the supply, hydrogen was generated in the same manner as in Example 4.
[0075]
[result]
Hydrogen generation: about 3 L / min
Surface temperature of catalyst 15D: dropped to about 200 ° C., below the temperature required for decalin dehydrogenation.
[0076]
[Comparative Example 4-2]
Comparative Example 4-1 except that decalin (a hydrogenated derivative of an aromatic compound) was intermittently injected at about 20 ml / minute by an injection nozzle so that “injection / injection pause = 1 second / 5 seconds”. Hydrogen generation was carried out similarly.
[0077]
[result]
Hydrogen generation: 6 L / min to 8 L / min (approximately 7 L / min on average) depending on the intermittent injection of decalin
Surface temperature of catalyst 15D: fluctuates between 200 ° C and 350 ° C
[0078]
From the above results, it was confirmed that Example 4 had higher hydrogen generation efficiency than Comparative Examples 4-1 and 4-2.
[0079]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the hydrogen storage / generation apparatus which can perform storage and / or generation of hydrogen with high efficiency can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing one embodiment of a hydrogen storage / generation device of the present invention.
FIG. 2 is a schematic view showing one embodiment of a reaction apparatus.
FIG. 3 is a schematic view showing one embodiment of a reaction apparatus.
FIG. 4 is a schematic view showing one embodiment of a reaction apparatus.
FIG. 5 is a schematic view showing one embodiment of a reaction apparatus.
[Explanation of symbols]
1 Hydrogen storage / generation device
2 Raw material storage device
3,3A, 3B, 3C, 3D reactor
4 Gas-liquid separation device
7. Aromatic compound storage
8 Hydrogenated derivative storage unit
9,10 switching valve
12 pumps
13, 13 'injection nozzle
14 Cylindrical body
15A, 15B, 15C, 15D catalyst
16 loop coil
17 Inside induction heating coil
18 Outside induction heating coil
19 Spiral coil
21-24, 26-28, 37, 38 Piping
29 aromatic compounds
30 Hydrogenated derivatives of aromatic compounds
31 Raw materials
32 products
33,35 hydrogen
34 liquid components
36 valves

Claims (4)

芳香族化合物の水素化反応と、芳香族化合物の水素化誘導体の脱水素化反応との少なくとも一方を、金属が担持体に担持されてなる触媒を使用して実施することにより、水素の貯蔵及び/又は発生を行うことのできる水素貯蔵・発生装置であって、前記担持体に導電体が含有されてなる粒子状の触媒が、各々が電気的に絶縁するように集合するとともに、前記担持体に対して電磁誘導方式による高周波誘導加熱を実施できる加熱手段を具備する水素貯蔵・発生装置。By performing at least one of the hydrogenation reaction of the aromatic compound and the dehydrogenation reaction of the hydrogenated derivative of the aromatic compound using a catalyst in which a metal is supported on a support, hydrogen storage and storage can be performed. And / or a hydrogen storage / generation device capable of performing generation, wherein the particulate catalyst comprising a conductor contained in the carrier is aggregated so as to be electrically insulated from each other, and A hydrogen storage / generation device comprising a heating means capable of performing high-frequency induction heating by an electromagnetic induction method on the device. 芳香族化合物の水素化反応と、芳香族化合物の水素化誘導体の脱水素化反応との少なくとも一方を、金属が担持体に担持されてなる触媒を使用して実施することにより、水素の貯蔵及び/又は発生を行うことのできる水素貯蔵・発生装置であって、前記担持体に導電体が含有されてなる柱状もしくは筒状の触媒が、2本以上で、各々が電気的に絶縁するように集合するとともに、前記担持体に対して電磁誘導方式による高周波誘導加熱を実施できる加熱手段を具備する水素貯蔵・発生装置。By performing at least one of the hydrogenation reaction of the aromatic compound and the dehydrogenation reaction of the hydrogenated derivative of the aromatic compound using a catalyst in which a metal is supported on a support, hydrogen storage and storage can be performed. And / or a hydrogen storage / generation device capable of performing generation, wherein two or more columnar or cylindrical catalysts each containing an electric conductor in the carrier are electrically insulated. A hydrogen storage and generation device comprising a heating unit that assembles and can perform high-frequency induction heating on the carrier using an electromagnetic induction method. 芳香族化合物の水素化反応と、芳香族化合物の水素化誘導体の脱水素化反応との少なくとも一方を、金属が担持体に担持されてなる触媒を使用して実施することにより、水素の貯蔵及び/又は発生を行うことのできる水素貯蔵・発生装置であって、前記担持体に導電体が含有されてなる筒状の触媒と、誘導加熱コイルによって前記担持体に対して高周波誘導加熱を実施できる加熱手段とを具備するとともに、前記誘導加熱コイルが、前記触媒の内周面側と外周面側とに設けられた水素貯蔵・発生装置。By performing at least one of the hydrogenation reaction of the aromatic compound and the dehydrogenation reaction of the hydrogenated derivative of the aromatic compound using a catalyst in which a metal is supported on a support, hydrogen storage and storage can be performed. And / or a hydrogen storage / generation device capable of performing generation, wherein high-frequency induction heating can be performed on the carrier by a cylindrical catalyst in which a conductor is contained in the carrier and an induction heating coil. A hydrogen storage / generation device comprising a heating means, wherein the induction heating coil is provided on an inner peripheral surface side and an outer peripheral surface side of the catalyst. 芳香族化合物を含む水素化反応と、芳香族化合物の水素化誘導体の脱水素化反応との少なくとも一方を、金属が担持体に担持されてなる触媒を使用して実施することにより、水素の貯蔵及び/又は発生を行うことのできる水素貯蔵・発生装置であって、平板状の誘導加熱コイルによって前記担持体に対して高周波誘導加熱を実施できる加熱手段を具備するとともに、前記誘導加熱コイルの両面に、前記担持体に導電体が含有されてなる触媒が設けられた水素貯蔵・発生装置。By performing at least one of a hydrogenation reaction containing an aromatic compound and a dehydrogenation reaction of a hydrogenated derivative of an aromatic compound using a catalyst in which a metal is supported on a support, storage of hydrogen is performed. And / or a hydrogen storage / generation device capable of performing generation, comprising heating means capable of performing high-frequency induction heating on the carrier by a flat induction heating coil, and both sides of the induction heating coil. And a hydrogen storage / generation device provided with a catalyst in which the carrier contains a conductor.
JP2003040304A 2003-02-18 2003-02-18 Hydrogen storage and generation system Pending JP2004250255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003040304A JP2004250255A (en) 2003-02-18 2003-02-18 Hydrogen storage and generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003040304A JP2004250255A (en) 2003-02-18 2003-02-18 Hydrogen storage and generation system

Publications (1)

Publication Number Publication Date
JP2004250255A true JP2004250255A (en) 2004-09-09

Family

ID=33024232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003040304A Pending JP2004250255A (en) 2003-02-18 2003-02-18 Hydrogen storage and generation system

Country Status (1)

Country Link
JP (1) JP2004250255A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289852A (en) * 2006-04-25 2007-11-08 Sumitomo Precision Prod Co Ltd Evaporator
US7553793B2 (en) 2005-09-22 2009-06-30 Toyota Jidosha Kabushiki Kaisha Method and system for recovering catalyst for fuel cell
JP2011506072A (en) * 2007-12-11 2011-03-03 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Method for performing chemical reaction using inductively heated heat medium
JP2011245475A (en) * 2010-04-28 2011-12-08 Nippon Seisen Co Ltd Wire catalyst for hydrogenation/dehydrogenation reaction, wire catalyst product, and method for producing them
WO2012090326A1 (en) * 2010-12-28 2012-07-05 日本精線株式会社 Catalyst structure and hydrogen reaction module using same
US9079144B2 (en) 2011-11-09 2015-07-14 Intelligent Energy Limited Hydrogen generator and fuel cell system
WO2015115101A1 (en) * 2014-02-03 2015-08-06 千代田化工建設株式会社 Aromatic compound hydrogenation system and hydrogen storage/transport system equipped with same, and aromatic compound hydrogenation method
WO2017186452A1 (en) * 2016-04-26 2017-11-02 Haldor Topsøe A/S Induction heated aromatization of higher hydrocarbons
US11506343B2 (en) 2019-12-12 2022-11-22 Hyundai Motor Company System for storing solid state hydrogen

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7553793B2 (en) 2005-09-22 2009-06-30 Toyota Jidosha Kabushiki Kaisha Method and system for recovering catalyst for fuel cell
JP2007289852A (en) * 2006-04-25 2007-11-08 Sumitomo Precision Prod Co Ltd Evaporator
JP2011506072A (en) * 2007-12-11 2011-03-03 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Method for performing chemical reaction using inductively heated heat medium
US8871964B2 (en) 2007-12-11 2014-10-28 Henkel Ag & Co. Kgaa Method for carrying out chemical reactions with the aid of an inductively heated heating medium
JP2011245475A (en) * 2010-04-28 2011-12-08 Nippon Seisen Co Ltd Wire catalyst for hydrogenation/dehydrogenation reaction, wire catalyst product, and method for producing them
JPWO2012090326A1 (en) * 2010-12-28 2014-06-05 日本精線株式会社 Catalyst structure and hydrogen reaction module using the same
US8568665B2 (en) 2010-12-28 2013-10-29 Nippon Seisen Co., Ltd. Catalyst structure and hydrogenation/dehydrogenation reaction module using the same catalyst structure
WO2012090326A1 (en) * 2010-12-28 2012-07-05 日本精線株式会社 Catalyst structure and hydrogen reaction module using same
US9079144B2 (en) 2011-11-09 2015-07-14 Intelligent Energy Limited Hydrogen generator and fuel cell system
WO2015115101A1 (en) * 2014-02-03 2015-08-06 千代田化工建設株式会社 Aromatic compound hydrogenation system and hydrogen storage/transport system equipped with same, and aromatic compound hydrogenation method
JP2015145347A (en) * 2014-02-03 2015-08-13 千代田化工建設株式会社 Hydrogenation system of aromatic compound, hydrogen storage/transportation system including the same, and hydrogenation method of aromatic compound
US9919986B2 (en) 2014-02-03 2018-03-20 Chiyoda Corporation Hydrogenation system for aromatic compound, hydrogen storage and transportation system equipped with same, and process for hydrogenation of aromatic compound
WO2017186452A1 (en) * 2016-04-26 2017-11-02 Haldor Topsøe A/S Induction heated aromatization of higher hydrocarbons
US11331638B2 (en) 2016-04-26 2022-05-17 Haldor Topsøe A/S Induction heated aromatization of higher hydrocarbons
US11506343B2 (en) 2019-12-12 2022-11-22 Hyundai Motor Company System for storing solid state hydrogen

Similar Documents

Publication Publication Date Title
JP2004250255A (en) Hydrogen storage and generation system
JP5654371B2 (en) Hydrogen gas generation apparatus and hydrogen gas generation method
JP2006035174A (en) Hydrogen occlusion material and manufacture and utilization of the same
JP2005022939A (en) Reaction device of hydrogen-supply system, and hydrogen-supply system
JP2007039312A (en) Apparatus and method for producing hydrogen
JP4657475B2 (en) Hydrogen storage and supply system
JP2003306303A (en) Hydrogen generator and hydrogen storage/supply apparatus
JP2004223505A (en) Dehydrogenation catalyst and its production method
JP4686865B2 (en) Hydrogen storage / release device
JP4408214B2 (en) Hydrogen-containing gas production method and hydrogen-containing gas production apparatus
JP2004026593A (en) Apparatus for generating and storing hydrogen
JP7198047B2 (en) Dehydrogenation device and dehydrogenation reaction method
JP2004250256A (en) Hydrogen storage and generation system
JP4254127B2 (en) Hydrogen storage and supply system
JP2002274804A (en) Hydrogen storage and supply means
JP2004315310A (en) Hydrogen supply apparatus
JP2003306301A (en) Hydrogen storage/supply system
JP2003306302A (en) Hydrogen generator, hydrogen storage/supply apparatus and method for generating hydrogen
JP2005154204A (en) Hydrogen supply apparatus
JP2005154205A (en) Hydrogen supply apparatus
JP2015044176A (en) Hydrogen generation catalyst body
JP2002274803A (en) Hydrogen storage and supply means
JP2006045652A (en) Hydrogen production apparatus, ammonia production apparatus, hydrogen production method and ammonia production method
JP2004224596A (en) Hydrogen supply apparatus
Yi et al. Plasma-Catalytic Decomposition of Ammonia for Hydrogen Energy