JP2006333691A - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
JP2006333691A
JP2006333691A JP2005157944A JP2005157944A JP2006333691A JP 2006333691 A JP2006333691 A JP 2006333691A JP 2005157944 A JP2005157944 A JP 2005157944A JP 2005157944 A JP2005157944 A JP 2005157944A JP 2006333691 A JP2006333691 A JP 2006333691A
Authority
JP
Japan
Prior art keywords
switching element
electric motor
duty ratio
control device
fet1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005157944A
Other languages
English (en)
Inventor
Kazuhiko Maruta
一彦 丸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuba Corp
Original Assignee
Mitsuba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuba Corp filed Critical Mitsuba Corp
Priority to JP2005157944A priority Critical patent/JP2006333691A/ja
Publication of JP2006333691A publication Critical patent/JP2006333691A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Direct Current Motors (AREA)

Abstract

【課題】 電動モータの速度制御時におけるスイッチング素子の切り替えを無くして被駆動体の作動を滑らかにすることと、簡単な制御マップにより電動モータの速度制御と回転方向制御とを可能にすることである。
【解決手段】 電動モータを駆動するモータ制御装置は4つのスイッチング素子FET1〜FET4を備えた駆動回路を有し、スイッチング素子FET1〜FET4はマイクロコンピュータによりPWM制御される。スイッチング素子FET1のデューティー比x1はスライドドアの移動速度等に基づいてマイクロコンピュータにより算出され、スイッチング素子FET3のデューティー比x3は100%からスイッチング素子FET1のデューティー比x1を引いた値に設定される。また、スイッチング素子FET2,FET4はそれぞれスイッチング素子FET1,FET3に対して位相を反転して駆動される。
【選択図】 図5

Description

本発明は、被駆動体を駆動する電動モータを目標速度で作動させるモータ制御装置に関する。
自動車に設けられるスライドドアやバックドア等の被駆動体を電動モータにより駆動するようにした自動開閉装置では、電動モータを正逆両方向に回転制御して、ドアを開閉両方向に作動させるようにしている。例えば、特許文献1に示される自動開閉装置では、電動モータとしては一対の給電端子を備えたブラシ付きの直流モータが用いられ、電動モータの制御には所謂Hブリッジ回路(フルブリッジ回路)を備えたモータ制御装置が用いられている。
Hブリッジ回路は、一端が電動モータの一方の給電端子に接続され他端が電源に接続される第1の正転用スイッチング素子と、一端が電動モータの他方の給電端子に接続され他端が接地される第2の正転用スイッチング素子と、一端が電動モータの他方の給電端子に接続され他端が電源に接続される第1の逆転用スイッチング素子と、一端が電動モータの一方の給電端子に接続され他端が接地される第2の逆転用スイッチング素子とを有しており、これらのスイッチング素子を所定の組み合わせでオンすることにより、電動モータを正転、逆転させることができる。つまり、2つの正転用スイッチング素子をオンに切り替えることにより、これらのスイッチング素子を介して両給電端子間に電流を流して電動モータを正転させることができ、2つの逆転用スイッチング素子をオンに切り替えることにより正転時とは逆向きの電流を給電端子間に流して電動モータを逆転させることができる。また、第1の正転用スイッチング素子と第1の逆転用スイッチング素子、または第2の正転用スイッチング素子と第2の逆転用スイッチング素子とをオンに切り替えることにより、これらのスイッチング素子を介して電動モータの両給電端子を短絡させて電動モータに回生制動力を発生させることができる。
Hブリッジ回路に用いられるスイッチング素子としては、通常、FET(電解効果トランジスタ)等の半導体スイッチが用いられ、これらのスイッチング素子をオン・オフ制御するための制御手段としてはCPU(中央演算処理装置)やメモリ等を備えたマイクロコンピュータが用いられる。マイクロコンピュータのメモリ内には正転用の速度制御マップと、逆転用の速度制御マップおよび制動用制御マップが格納されており、CPUはこれらの制御マップに従って演算された指令信号により各スイッチング素子を所定の組み合わせで駆動させる。
また、このようなモータ制御装置では、同時にオンされる一対のスイッチング素子のうちのいずれか一方をPWM(Pulse Width Modulation、パルス幅変調)制御することにより、電動モータの回転速度や制動力を制御して、ドアを所望の目標速度で開閉動作させるようにしている。つまり、ドアの開閉速度が目標速度より遅い場合には、PWM制御されるスイッチング素子のデューティー比を増加させてドアが目標速度となるまで電動モータの回転速度を増加させる。一方、外力等が加わってドアが目標速度以上となったときには、第1の正転用スイッチング素子と第1の逆転用スイッチング素子、または第2の正転用スイッチング素子と第2の逆転用スイッチング素子とをオンに切り替えて電動モータを制動状態に切り替えるとともに、PWM制御されるスイッチング素子のデューティー比を変化させて制動力を調整するようにしている。
特開2003−47271号公報
しかしながら、このようなモータ制御装置では、ドアの開閉速度を制御するために、駆動されるスイッチング素子が切り替えられ、これにより電動モータは駆動状態から制動状態、または制動状態から駆動状態に切り替えられるので、電動モータからドアに加えられる駆動力が大きく変化し、ドアを滑らかに作動させることは困難であった。
また、電動モータの速度制御と回転方向制御を行うためには、マイクロコンピュータのメモリ内に、正転用の速度制御マップと逆転用の速度制御マップと制動用制御マップとを予め格納しておく必要があるので、このモータ制御装置のソフト的な構成が複雑となっていた。
本発明の目的は、電動モータの速度制御時におけるスイッチング素子の切り替えを無くして被駆動体の作動を滑らかにすることにある。
本発明の他の目的は、簡単な制御マップにより電動モータの速度制御と回転方向制御とを可能にすることにある。
本発明のモータ制御装置は、被駆動体を駆動する電動モータの作動を前記被駆動体が目標速度となるように制御するモータ制御装置であって、一端が前記電動モータの一方の給電端子に接続され他端が電源に接続される第1の正転用スイッチング素子と、一端が前記電動モータの他方の給電端子に接続され他端が接地される第2の正転用スイッチング素子と、一端が前記電動モータの他方の給電端子に接続され他端が前記電源に接続される第1の逆転用スイッチング素子と、一端が前記電動モータの一方の給電端子に接続され他端が接地される第2の逆転用スイッチング素子と、それぞれの前記スイッチング素子をPWM制御によりオン・オフ駆動する制御手段とを有し、それぞれの前記スイッチング素子のデューティー比を変化させることにより、前記第1の正転用スイッチング素子のオン期間と前記第2の正転用スイッチング素子のオン期間とを重畳させ、または前記第1の逆転用スイッチング素子のオン期間と前記第2の逆転用スイッチング素子のオン期間とを重畳させて、前記電動モータを正転と逆転とのいずれの方向にも回転可能としたことを特徴とする。
本発明のモータ制御装置は、前記第1の正転用スイッチング素子のデューティー比に対して前記第1の逆転用スイッチング素子のデューティー比を100%から前記第1の正転用スイッチング素子のデューティー比を引いた値に設定するとともに、前記第2の逆転用スイッチング素子を前記第1の正転用スイッチング素子に対して位相を反転させてオン・オフ駆動し、前記第2の正転用スイッチング素子を前記第1の逆転用スイッチング素子に対して位相を反転させてオン・オフ駆動することを特徴とする。
本発明のモータ制御装置は、前記第1の正転用スイッチング素子のデューティー比が50%以上となったときに前記電動モータが正転し、前記第1の逆転用スイッチング素子のデューティー比が50%以上となったときに前記電動モータが逆転することを特徴とする。
本発明のモータ制御装置は、前記第1の正転用スイッチング素子のデューティー比と前記第1の逆転用スイッチング素子のデューティー比とが50%となったときに前記電動モータが停止することを特徴とする。
本発明のモータ制御装置は、前記被駆動体は、車両に開閉自在に装着されるとともにケーブルを介して前記電動モータに接続され、前記電動モータにより開閉駆動されるスライドドアであることを特徴とする。
本発明によれば、それぞれPWM制御される各スイッチング素子のデューティー比を変化させることにより、電動モータの速度制御と回転方向制御とを行うことができるので、速度制御のために駆動されるスイッチング素子自体を切り替える必要が無く、これにより電動モータの駆動力の変動を抑制して被駆動体の作動を滑らかにすることができる。
また、本発明によれば、第1の正転用スイッチング素子のデューティー比に対して第1の逆転用スイッチング素子のデューティー比を100%から第1の正転用スイッチング素子のデューティー比を引いた値に設定するとともに、第2の逆転用スイッチング素子を第1の正転用スイッチング素子に対して位相を反転させてオン・オフ駆動し、第2の正転用スイッチング素子を第1の逆転用スイッチング素子に対して位相を反転させてオン・オフ駆動するようにしたので、1つのスイッチング素子のデューティー比を変化させることにより電動モータの速度制御と回転方向制御とを行うことができる。したがって、制御手段に複数の制御マップを設ける必要がなく、簡単な制御マップで電動モータの速度制御と回転方向制御を行うことができる。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1は本発明の一実施の形態であるモータ制御装置を備えたスライドドア開閉装置の概略を示す平面図であり、図1に示す車両11の側部には被駆動体としてのスライドドア12が装着されており、このスライドドア12は車両11に固定されるガイドレール13に案内され、図中実線で示す全開位置と一点鎖線で示す全閉位置との間で車両前後方向に移動自在つまり開閉自在となっている。
スライドドア12を自動的に開閉するために、車両11にはスライドドア開閉装置14(以下、開閉装置14とする。)が設けられており、この開閉装置14は車両11に固定される駆動ユニット15を有し、駆動ユニット15には駆動用のケーブル16が設けられている。ケーブル16はガイドレール13の両端に配置された反転プーリ17,18に掛け渡されて車両11の前方側と後方側とからスライドドア12に接続されており、駆動ユニット15によりケーブル16のいずれか一方側が引かれると、スライドドア12はケーブル16に引かれながら開方向または閉方向に移動する。
図2は図1に示すスライドドア開閉装置の制御体系を示す説明図であり、図3は図2に示すモータ制御装置の詳細を示す回路図である。
図2に示すように、駆動ユニット15には電動モータ21が設けられており、図3に示すように、この電動モータ21としては一対の給電端子22,23を備えたブラシ付き直流モータが用いられている。電動モータ21は給電端子22,23間に直流電流が供給されることにより作動するとともに、給電端子22,23間に供給される直流電流の向きに応じてその回転方向が正転または逆転に切り替えられる。電動モータ21の回転軸21aには駆動ギヤ24が固定され、駆動ギヤ24には大径スパーギヤ25が噛み合わされており、大径スパーギヤ25と一体に回転する小径スパーギヤ26には出力軸27に固定される従動ギヤ28が噛み合わされている。これにより、電動モータ21の回転は所定の減速比で減速されて出力軸27に伝達される。
出力軸27には外周面に図示しない螺旋状の案内溝が形成された円筒形状のドラム31が固定されており、駆動ユニット15に案内されたケーブル16は案内溝に沿ってドラム31に複数回巻き付けられている。電動モータ21が作動するとドラム31は電動モータ21に駆動されて回転し、これによりケーブル16が作動してスライドドア12は開閉動作する。つまり、電動モータ21が正転すると、図2中で反時計回り方向にドラム31が回転し、これにより車両後方側のケーブル16がドラム31に巻き取られてスライドドア12はケーブル16に引かれながら開方向に移動する。反対に、電動モータ21が逆転すると、図2中で時計回り方向にドラム31が回転し、これにより車両前方側のケーブル16がドラム31に巻き取られてスライドドア12はケーブル16に引かれながら閉方向に移動する。このように、スライドドア12は、ケーブル16、ドラム31、出力軸27等を介して電動モータ21に接続され、電動モータ21により開閉駆動されるようになっている。
なお、駆動ユニット15は電動モータ21と出力軸27との間にクラッチ機構が設けられないクラッチレス式となっており、電動モータ21と出力軸27つまりスライドドア12との間は常に動力伝達可能な状態とされている。
ドラム31とスライドドア12との間におけるケーブル16の弛みを取って、ケーブル張力を一定範囲に維持するために、ドラム31と2つの反転プーリ17,18との間にはそれぞれテンショナ32が設けられている。テンショナ32は、それぞれ固定プーリ32aと可動プーリ32bとを有し、可動プーリ32bは固定プーリ32aを軸心としてばね部材32cにより回転方向に付勢されており、ケーブル16は各プーリ32a,32bの間に掛け渡されている。したがって、ケーブル16に緩みが生じると、可動プーリ32bにより付勢されてケーブル16の移動経路が増加し、これによりケーブル16の張力が維持される。
スライドドア12を予め設定された目標速度で開閉移動させるように電動モータ21の作動を制御するために、駆動ユニット15にはモータ制御装置41が設けられている。
図3に示すように、モータ制御装置41は電動モータ21を駆動するための駆動回路42を有し、この駆動回路42は電界効果トランジスタから成る4つのスイッチング素子FET1〜FET4をH形に組んだ所謂Hブリッジ回路(フルブリッジ回路)となっている。図3に示すように、第1の正転用スイッチング素子としてのスイッチング素子FET1は一端が電動モータ21の一方の給電端子22に接続され他端が車両11に搭載される電源つまりバッテリ43に接続され、第2の逆転用スイッチング素子としてのスイッチング素子FET2は一端が電動モータ21の一方の給電端子22に接続され他端が接地されており、第1の逆転用スイッチング素子としてのスイッチング素子FET3は一端が電動モータ21の他方の給電端子23に接続され他端がバッテリ43に接続され、第2の正転用スイッチング素子としてのスイッチング素子FET4は一端が電動モータ21の他方の給電端子23に接続され他端が接地されている。スイッチング素子FET1とスイッチング素子FET4とがオンされると、スイッチング素子FET1を介して給電端子22がバッテリ43に接続されるとともにスイッチング素子FET4を介して給電端子23が接地され、給電端子22,23間に直流電流が流れて電動モータ21は正転する。反対に、スイッチング素子FET3とスイッチング素子FET2とがオンされると、スイッチング素子FET3を介して給電端子23がバッテリ43に接続されるとともにスイッチング素子FET2を介して給電端子22が接地され、給電端子22,23間に正転時とは逆向きの直流電流が流れて電動モータ21は逆転する。また、スイッチング素子FET1とスイッチング素子FET3またはスイッチング素子FET2とスイッチング素子FET4とがオンされると、給電端子22,23が短絡されて電動モータ21は回生制動状態となる。
図2に示すように、スイッチング素子FET1〜FET4を駆動するために、モータ制御装置41には制御手段としてのマイクロコンピュータ44が設けられており、このマイクロコンピュータ44には図示しないCPU(中央演算処理装置)や制御プログラム等が格納されるROM、一時的にデータを格納するRAM等が設けられ、スライドドア12に設けられた開閉スイッチ45が乗員等により操作されると、その操作に応じた開閉指令信号がマイクロコンピュータ44に入力される。
また、マイクロコンピュータ44にはスライドドア12の移動速度Vや位置を検出するために、回転センサ46が接続されている。回転センサ46は電動モータ21の回転軸21aに固定される多極着磁磁石47と多極着磁磁石47の回転軌道近傍に互いに90度の位相差をもって配置される2つのホールIC48a,48bとを有し、電動モータ21が作動すると各ホールIC48a,48bから互いに90度位相がずれたパルス信号がモータ回転数に応じた周期で出力される。各ホールIC48a,48bが出力するパルス信号が入力されると、マイクロコンピュータ44はパルス信号の周期に基づいて電動モータ21の回転速度つまりスライドドア12の移動速度Vを検出する。また、マイクロコンピュータ44は各ホールIC48a,48bから入力されるパルス信号の出現タイミングに基づいて電動モータ21の回転方向つまりスライドドア12の移動方向を検出し、また、スライドドア12が基準位置(例えば全閉位置)となったときを起点としてパルス信号をカウント(積算)することによりスライドドア12の位置を検出するようになっている。
なお、スライドドア12の位置や移動速度Vを検出する回転センサ46としては、多極着磁磁石47とホールIC48a,48bとを用いたものに限らず、レゾルバやロータリーエンコーダなどを用いたものであってもよい。
図4は各FETに対する指令信号の状態を示すチャート図であり、図5は図4に示す指令信号の周期毎のオン・オフ状態を示すチャート図である。
図3に示すように、マイクロコンピュータ44には所定の周期のPWM信号を生成するPWM生成回路51が接続されており、マイクロコンピュータ44はPWM信号によりパルス状とされた指令信号により各スイッチング素子FET1〜FET4を駆動するようになっている。つまり、図4に示すように、各スイッチング素子FET1〜FET4は、それぞれPWM制御によりオン・オフ駆動される。なお、図4においては、ハッチング部分はPWM制御されていることを示している。また、マイクロコンピュータ44と駆動回路42との間にはプリドライバ52が設けられ、マイクロコンピュータ44から出力される指令信号は、プリドライバ52によりPWM制御されたゲート信号に変換されて各スイッチング素子FET1〜FET4に入力される。
PWM制御においては、スイッチング素子FET1のデューティー比x1はスライドドア12の移動速度Vや位置に基づいてマイクロコンピュータ44により演算されることにより設定され、スイッチング素子FET3のデューティー比x3はマイクロコンピュータ44により100%からスイッチング素子FET1のデューティー比x1を引いた値として設定される。また、マイクロコンピュータ44には相補PWM出力機能が設けられており、マイクロコンピュータ44からスイッチング素子FET2に対して出力される指令信号はスイッチング素子FET1の指令信号をインバートつまり位相を反転させた信号として出力され、マイクロコンピュータ44からスイッチング素子FET4に対して出力される指令信号はスイッチング素子FET3の指令信号をインバートつまり位相を反転させた信号として出力される。つまり、図5に示すように、電動モータ21に対してバッテリ43側にあるスイッチング素子FET1とスイッチング素子FET3はこれらのデューティ比x1,x3の和が100%となるように互いに反比例して駆動され、スイッチング素子FET2はスイッチング素子FET1に対して位相を反転させてオン・オフ駆動され、スイッチング素子FET4はスイッチング素子FET3に対して位相を反転させてオン・オフ駆動される。
図6(a)は電動モータを停止させるときの指令信号の状態を示すチャート図であり、図6(b)は電動モータを正転させるときの指令信号の状態を示すチャート図であり、図6(c)は電動モータを逆転させるときの指令信号の状態を示すチャート図である。さらに、図7はデューティー比と電動モータの作動状態との関係を示す線図である。
このような構成により、このモータ制御装置41では、スイッチング素子FET1のデューティー比x1を変化させることにより他のスイッチング素子FET2〜FET4のデューティー比を変化させることができ、これにより、各スイッチング素子FET1〜FET4のオン期間を所定の組み合わせで重畳させて、電動モータ21を正転と逆転の両方向に回転させることができる。
例えば、図6(a)に示すように、スイッチング素子FET1のデューティー比x1を50%に設定すると、スイッチング素子FET3のデューティー比x3も50%に設定され、またスイッチング素子FET2とスイッチング素子FET4はそれぞれスイッチング素子FET1、スイッチング素子FET3に対して反転したタイミングで駆動されるので、電動モータ21は、PWM制御による周期毎にスイッチング素子FET1とスイッチング素子FET3またはスイッチング素子FET2とスイッチング素子FET4がオンされ、これにより各給電端子22,23が各スイッチング素子FET1〜FET4を介して短絡され電動モータ21には短絡制動が生じて電動モータ21は停止する。
一方、図6(b)に示すように、スイッチング素子FET1のデューティー比x1が50%以上に設定されると、スイッチング素子FET1のオン期間とスイッチング素子FET4のオン期間が重畳し、これにより給電端子22,23間に電位差が生じ、正転方向に直流電流が流れて電動モータ21は正転する。また、スイッチング素子FET1のデューティー比x1を50%〜100%の間で変化させることにより、スイッチング素子FET1とスイッチング素子FET4とが重畳する期間つまり電動モータ21に給電される通電期間を、通電可能な全期間に対して0%〜100%の間で増減させることができ、これにより電動モータ21つまりスライドドア12の速度制御を行うことができる。
反対に、図6(c)に示すように、スイッチング素子FET1のデューティー比x1が50%以下に設定され、つまりスイッチング素子FET3のデューティー比x3が50%以上に設定されると、スイッチング素子FET3のオン期間とスイッチング素子FET2のオン期間とが重畳し、これにより給電端子22,23間に正転時とは逆向きの電位差が生じ、逆向きの直流電流が流れて電動モータ21は逆転する。また、スイッチング素子FET3のデューティー比x3を50%〜100%の間で変化させることにより、スイッチング素子FET3とスイッチング素子FET2とが重畳する期間つまり電動モータ21に給電される通電期間を、通電可能な全期間に対して0%〜100%の間で増減させることができ、これにより電動モータ21つまりスライドドア12の速度制御を行うことができる。つまり、このモータ制御装置41では、図7に示すように、スイッチング素子FET1のデューティー比x1を50%を基準として0〜100%の間で増減させることにより、それぞれのスイッチング素子FET1〜FET4のデューティー比を変化させることができ、これにより、電動モータ21を正転または逆転のいずれの方向にも回転させるとともに、電動モータ21を停止させ、また、その回転速度の制御を行うことができる。したがって、電動モータ21によりスライドドア12を所望の目標速度で駆動するときには、スライドドア12の速度制御のために駆動するスイッチング素子自体を切り替える必要が無く、これによりスライドドア12の作動を滑らかにすることができる。
このように、このモータ制御装置41によれば、それぞれPWM制御される各スイッチング素子FET1〜FET4のデューティー比を変化させることにより、電動モータ21の速度制御と回転方向制御とを行うことができるので、スライドドア12の速度制御のために駆動するスイッチング素子自体を切り替える必要が無く、これによりスライドドア12の作動を滑らかにすることができる。特に、スライドドア12と電動モータ21とをケーブル16を介して接続するようにした開閉装置14では、速度制御時に電動モータ21からスライドドア12に加えられる駆動力の変化を小さくして、速度制御時におけるテンショナ32の作動を抑制してスライドドア12を滑らかに作動させることができる。
図8はデューティー比の算出手順を示すフローチャート図であり、図7に示すように、このモータ制御装置41では、スイッチング素子FET1のデューティー比x1を設定すると、これに基づいて他のスイッチング素子FET2〜FET4のデューティー比をも設定されるので、マイクロコンピュータ44によるデューティー比の算出はスイッチング素子FET1のデューティー比x1についてのみ行われる。スイッチング素子FET1のデューティー比x1は、スライドドア12の移動速度Vと予め設定されてマイクロコンピュータ44のメモリ内に格納された目標速度Vcとに基づいた比例制御と積分制御とにより設定される。つまり、スイッチング素子FET1のデューティー比x1はスライドドア12の移動速度Vと目標速度Vcとに基づいたPI(比例積分)演算、x=kp(V−Vc)+kiΣ(V−Vc)の算出結果つまり出力xをマイクロコンピュータ44のROM内に格納された図示しないデューティー比設定用の制御マップで参照することにより設定される。ここで、kpは比例ゲイン、kiは積分ゲインを示している。PI制御によれば、スライドドア12の移動速度Vと目標速度Vcの差の累積により、移動速度Vと目標速度Vcの差が0となっても出力xは0とならないので、安定した速度制御が可能となる。
このように、このモータ制御装置41によれば、スイッチング素子FET1のデューティー比x1を変化させることにより、電動モータ21の速度制御と回転方向制御とを行うことができるので、ROM内に格納されるデューティー比設定用のマップとしてスイッチング素子FET1のデューティー比x1を設定するためのもののみを設ければよく、複数のデューティーマップを設ける必要がない。したがって、このモータ制御装置41のROM内に格納される制御マップは簡素化され、簡単な制御マップで電動モータ21の速度制御と回転方向制御を行うことができる。また、1つのデューティー比を設定することで電動モータ21の速度制御と回転方向制御が可能となるので、デューティー比の設定にPI制御を用いて、スライドドア12の速度制御を安定させることができる。
図9は図3に示すモータ制御装置の変形例を示す回路図である。
図3に示すモータ制御装置41では、マイクロコンピュータ44には相補PWM出力機能が設けられ、スイッチング素子FET1に対する指令信号に対してインバートした指令信号をスイッチング素子FET2に出力し、スイッチング素子FET3に対する指令信号に対してインバートした指令信号をスイッチング素子FET4に出力して、スイッチング素子FET1に対してスイッチング素子FET2を、スイッチング素子FET3に対してスイッチング素子FET4をそれぞれ位相を反転させて駆動するようにしている。これに対して、図9に示すモータ制御回路61では、スイッチング素子FET1とスイッチング素子FET3に対する2系統の出力しか持たないマイクロコンピュータ62が用いられ、外部回路としてスイッチング素子FET1、スイッチング素子FET3の指令信号線とプリドライバ52との間に接続されたインバータ63によりスイッチング素子FET1、スイッチング素子FET3に対する指令信号をインバートしてスイッチング素子FET2、スイッチング素子FET4に入力するようにしている。この場合、プリドライバ52には図示しない短絡防止機能が設けられており、電動モータ21の回転方向切り替え時つまりスイッチング素子FET1のデューティー比x1を50%を境に切り替えるときに、スイッチング素子の駆動タイムラグ等により、スイッチング素子FET1とスイッチング素子FET2またはスイッチング素子FET3とスイッチング素子FET4が短絡することを防止するようにしている。
なお、図9においては、前述した部材に対応する部材には同一の符号が付されている。
本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。例えば、本実施の形態おいては、被駆動体は車両に開閉自在に装着されるスライドドア12とされているが、これに限らず、電動モータにより駆動されるものであれば、たとえば、車両11の後端部にヒンジを介して開閉自在に装着されるバックドアなど、他の部材であってもよい。
また、本実施の形態においては、スイッチング素子としてはFETが用いられているが、これに限らず、PWM制御可能なスイッチング素子であればよい。
さらに、本実施の形態においては、FET3のデューティー比を100%からFET1のデューティー比を引いた値に設定し、FET2をFET1に対して位相を反転させてオン・オフ駆動し、FET4をFET3に対して位相を反転させてオン・オフ駆動させるようにしているが、これに限らず、それぞれのFETのデューティー比を変化させることによりFET1とFET4またはFET3とFET2とを重畳させるものであれば、各FETの制御パターンは問わない。
さらに、本実施の形態においては、FET1のデューティー比を基準として他のFETのデューティー比を設定するようにしているが、これに限らず、他のFETのデューティー比を基準とするようにしてもよい。また、FET1の設定はPI演算に限らず、他の方法により設定するようにしてもよい。
本発明の一実施の形態であるモータ制御装置を備えたスライドドア開閉装置の概略を示す平面図である。 図1に示すスライドドア開閉装置の制御体系を示す説明図である。 図2に示すモータ制御装置の詳細を示す回路図である。 各FETに対する指令信号の状態を示すチャート図である。 図4に示す指令信号の周期毎のオン・オフ状態を示すチャート図である。 (a)は電動モータを停止させるときの指令信号の状態を示すチャート図であり、(b)は電動モータを正転させるときの指令信号の状態を示すチャート図であり、(c)は電動モータを逆転させるときの指令信号の状態を示すチャート図である。 デューティー比と電動モータの作動状態との関係を示す線図である。 デューティー比の算出手順を示すフローチャート図である。 図3に示すモータ制御装置の変形例を示す回路図である。
符号の説明
11 車両
12 スライドドア
13 ガイドレール
14 スライドドア開閉装置
15 駆動ユニット
16 ケーブル
17,18 反転プーリ
21 電動モータ
21a 回転軸
22,23 給電端子
24 駆動ギヤ
25 大径スパーギヤ
26 小径スパーギヤ
27 出力軸
28 従動ギヤ
31 ドラム
32 テンショナ
32a 固定プーリ
32b 可動プーリ
32c ばね部材
41 モータ制御装置
42 駆動回路
43 バッテリ
44 マイクロコンピュータ
45 開閉スイッチ
46 回転センサ
47 多極着磁磁石
48a,48b ホールIC
51 PWM生成回路
52 プリドライバ
61 モータ制御回路
62 マイクロコンピュータ
63 インバータ
FET1〜FET4 スイッチング素子
V 移動速度
Vc 目標速度
x 出力

Claims (5)

  1. 被駆動体を駆動する電動モータの作動を前記被駆動体が目標速度となるように制御するモータ制御装置であって、
    一端が前記電動モータの一方の給電端子に接続され他端が電源に接続される第1の正転用スイッチング素子と、
    一端が前記電動モータの他方の給電端子に接続され他端が接地される第2の正転用スイッチング素子と、
    一端が前記電動モータの他方の給電端子に接続され他端が前記電源に接続される第1の逆転用スイッチング素子と、
    一端が前記電動モータの一方の給電端子に接続され他端が接地される第2の逆転用スイッチング素子と、
    それぞれの前記スイッチング素子をPWM制御によりオン・オフ駆動する制御手段とを有し、
    それぞれの前記スイッチング素子のデューティー比を変化させることにより、前記第1の正転用スイッチング素子のオン期間と前記第2の正転用スイッチング素子のオン期間とを重畳させ、または前記第1の逆転用スイッチング素子のオン期間と前記第2の逆転用スイッチング素子のオン期間とを重畳させて、前記電動モータを正転と逆転とのいずれの方向にも回転可能としたことを特徴とするモータ制御装置。
  2. 請求項1記載のモータ制御装置において、前記第1の正転用スイッチング素子のデューティー比に対して前記第1の逆転用スイッチング素子のデューティー比を100%から前記第1の正転用スイッチング素子のデューティー比を引いた値に設定するとともに、前記第2の逆転用スイッチング素子を前記第1の正転用スイッチング素子に対して位相を反転させてオン・オフ駆動し、前記第2の正転用スイッチング素子を前記第1の逆転用スイッチング素子に対して位相を反転させてオン・オフ駆動することを特徴とするモータ制御装置。
  3. 請求項2記載のモータ制御装置において、前記第1の正転用スイッチング素子のデューティー比が50%以上となったときに前記電動モータが正転し、前記第1の逆転用スイッチング素子のデューティー比が50%以上となったときに前記電動モータが逆転することを特徴とするモータ制御装置。
  4. 請求項2または3記載のモータ制御装置において、前記第1の正転用スイッチング素子のデューティー比と前記第1の逆転用スイッチング素子のデューティー比とが50%となったときに前記電動モータが停止することを特徴とするモータ制御装置。
  5. 請求項1〜4のいずれか1項に記載のモータ制御装置において、前記被駆動体は、車両に開閉自在に装着されるとともにケーブルを介して前記電動モータに接続され、前記電動モータにより開閉駆動されるスライドドアであることを特徴とするモータ制御装置。
JP2005157944A 2005-05-30 2005-05-30 モータ制御装置 Pending JP2006333691A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005157944A JP2006333691A (ja) 2005-05-30 2005-05-30 モータ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005157944A JP2006333691A (ja) 2005-05-30 2005-05-30 モータ制御装置

Publications (1)

Publication Number Publication Date
JP2006333691A true JP2006333691A (ja) 2006-12-07

Family

ID=37554780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005157944A Pending JP2006333691A (ja) 2005-05-30 2005-05-30 モータ制御装置

Country Status (1)

Country Link
JP (1) JP2006333691A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065736A1 (ja) 2011-11-04 2013-05-10 株式会社ミツバ 電動モータ装置及びその組み立て方法
JP2018107960A (ja) * 2016-12-27 2018-07-05 株式会社ミツバ モータ制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065736A1 (ja) 2011-11-04 2013-05-10 株式会社ミツバ 電動モータ装置及びその組み立て方法
JP2018107960A (ja) * 2016-12-27 2018-07-05 株式会社ミツバ モータ制御装置
US11233467B2 (en) 2016-12-27 2022-01-25 Mitsuba Corporation Motor control device

Similar Documents

Publication Publication Date Title
US10122303B2 (en) Motor control device
CN108258969B (zh) 马达控制装置
JP6132784B2 (ja) モータ制御装置
JP2008005656A (ja) 車両用自動開閉装置
JP4882417B2 (ja) 電動パワーステアリング装置
US9438148B2 (en) Motor drive device
US20210230923A1 (en) Vehicle door opening/closing device
JP2010144379A (ja) 車両用開閉体制御装置
JP6643862B2 (ja) モータ制御装置
JP2006333691A (ja) モータ制御装置
WO2017141920A1 (ja) ワイパ制御装置
JP2008184740A (ja) 車両用自動開閉装置
JP6928156B2 (ja) モータ制御装置およびドア開閉装置
JP7197650B2 (ja) モータ制御装置およびドア開閉装置
JP6741606B2 (ja) モータ制御装置
JP2015051718A (ja) モータ制御装置
US11716043B2 (en) Motor control device
JP2006022512A (ja) 車両用自動開閉装置
JP2009012665A (ja) 電動パワーステアリング装置
JP7463658B2 (ja) スライドドア用駆動装置
JP2021083271A (ja) モータ駆動装置、モータ駆動システムおよびモータ駆動方法
JP6698195B2 (ja) 開閉体制御装置
JP2022180245A (ja) スライドドア用駆動装置
JP2006115556A (ja) モータ駆動回路および緩衝器
CN113153062A (zh) 车辆用开闭体控制装置