JP2004207708A - Plasma treatment apparatus and plasma treatment method, and manufacturing method for thin film transistor - Google Patents

Plasma treatment apparatus and plasma treatment method, and manufacturing method for thin film transistor Download PDF

Info

Publication number
JP2004207708A
JP2004207708A JP2003411169A JP2003411169A JP2004207708A JP 2004207708 A JP2004207708 A JP 2004207708A JP 2003411169 A JP2003411169 A JP 2003411169A JP 2003411169 A JP2003411169 A JP 2003411169A JP 2004207708 A JP2004207708 A JP 2004207708A
Authority
JP
Japan
Prior art keywords
gas
electrode
plasma
process gas
atmospheric pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003411169A
Other languages
Japanese (ja)
Other versions
JP2004207708A5 (en
JP4789412B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Yasuyuki Arai
康行 荒井
Yasuko Watanabe
康子 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2003411169A priority Critical patent/JP4789412B2/en
Publication of JP2004207708A publication Critical patent/JP2004207708A/en
Publication of JP2004207708A5 publication Critical patent/JP2004207708A5/en
Application granted granted Critical
Publication of JP4789412B2 publication Critical patent/JP4789412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma treatment apparatus and a plasma treatment method to precisely control a distance between a plasma and a treated subject and to easily carry a substrate whose thickness is thin and whose dimension is large-sized. <P>SOLUTION: The plasma treatment apparatus has a gas supplying means to introduce a process gas between a first electrode and a second electrode (between a pair of electrodes) under an atmospheric pressure or under a pressure close to the atmospheric pressure, a plasma generating means to generate the plasma by applying a high-frequency voltage to the first electrode or the second electrode in a state that the process gas is introduced, and a carrier means to carry the subject to be treated floating it by blowing the process gas or a carrier gas against the subject to be treated. Film forming (forming) of a thin film by etching-processing, ashing-processing, and a plasma CVD-processing the subject to be treated or a surface of the subject to be treated is achieved by moving a relative position of the first and second electrodes and the subject to be treated. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、薄膜の成膜、エッチング、アッシング等のプラズマ処理を効率よく行うプラズマ処理装置及びプラズマ処理方法に関する。   The present invention relates to a plasma processing apparatus and a plasma processing method for efficiently performing plasma processing such as thin film formation, etching, and ashing.

また本発明は、薄膜トランジスタの作製方法に関する。   The invention also relates to a method for manufacturing a thin film transistor.

絶縁体上に多結晶半導体により形成された半導体素子を用いて、画素や駆動回路を形成する技術は、小型化及び低消費電力化に大きく貢献するため、活発に開発が進められている。半導体素子の形成には、プラズマ装置が多くの場合に用いられるが、このプラズマ装置には、略々大気圧で動作し、ガス流によるプロセス空間等の隔離を行うことでロードロックが不必要のものがある(例えば、特許文献1参照。)。   Techniques for forming a pixel and a driver circuit using a semiconductor element formed of a polycrystalline semiconductor over an insulator are actively being developed because they greatly contribute to miniaturization and low power consumption. In many cases, a plasma device is used for forming a semiconductor element. However, this plasma device operates at substantially atmospheric pressure, and does not require a load lock by isolating a process space or the like by a gas flow. (For example, see Patent Document 1).

特開2001-93871号公報JP 2001-93871 A

生成されるプラズマと被処理物との距離の精密な制御は難しかった。また近年では軽量化及び作製工程の効率化に伴い、主な被処理物である基板の厚さは1〜10ミリと薄くなり、また幅や長さが1m以上と大型化している。そのため基板の搬送が難しく、搬送の途中で基板にそりが生じたり、破損したりしていた。   Precise control of the distance between the generated plasma and the object has been difficult. In recent years, the thickness of a substrate, which is a main object to be processed, has been reduced to 1 to 10 mm and its width and length have been increased to 1 m or more with the reduction in weight and the efficiency of the manufacturing process. Therefore, the transfer of the substrate is difficult, and the substrate is warped or damaged during the transfer.

そこで本発明は、プラズマと被処理物との距離の精密な制御を可能とし、厚さが薄く大型化した基板の搬送を容易にしたプラズマ処理装置及びプラズマ処理方法を提供する。   Therefore, the present invention provides a plasma processing apparatus and a plasma processing method that enable precise control of the distance between plasma and an object to be processed, and facilitate transfer of a thin and large substrate.

上述した課題を解決するために、本発明においては以下の手段を講じる。   In order to solve the above-mentioned problems, the present invention takes the following measures.

本発明のプラズマ処理装置は、大気圧もしくは大気圧近傍圧力下で第1及び第2の電極間(一対の電極間)にプロセス用ガスを導入するガス供給手段と、前記プロセス用ガスが導入された状態で、前記第1又は前記第2の電極に高周波電圧を印加してプラズマを発生させるプラズマ発生手段と、前記プロセス用ガス又は搬送用ガスを被処理物に吹き付けることで、前記被処理物を浮上させて搬送する搬送手段とを有する。そして、前記第1及び前記第2の電極間に発生する前記プラズマ、つまり、前記第1及び前記第2の電極と、前記被処理物との相対位置を移動して、前記被処理物又は前記被処理物の表面にエッチング処理、アッシング処理、プラズマCVD法による薄膜の成膜(形成)を行う。又は前記第1及び前記第2の電極間に発生する前記プラズマ、つまり、前記第1及び前記第2の電極を用いて部品のクリーニング処理を行う。また、プラズマ供給手段において、前記第1の電極は、前記第2の電極の周囲を取り囲み、かつ、その先端にノズル状の前記ガスの供給口を有する円筒状であることを特徴とする。   In the plasma processing apparatus of the present invention, a gas supply unit for introducing a process gas between the first and second electrodes (between a pair of electrodes) under an atmospheric pressure or a pressure near the atmospheric pressure, and the process gas is introduced. A plasma generating means for generating a plasma by applying a high-frequency voltage to the first or second electrode in a state in which the processing gas or the carrier gas is blown onto the workpiece, And a transport means for floating and transporting. The plasma generated between the first and second electrodes, that is, the relative position between the first and second electrodes and the object to be processed is moved, and the object to be processed or the The thin film is formed (formed) on the surface of the object by etching, ashing, or plasma CVD. Alternatively, a cleaning process for a component is performed using the plasma generated between the first and second electrodes, that is, the first and second electrodes. Further, in the plasma supply means, the first electrode has a cylindrical shape surrounding the second electrode and having a nozzle-like gas supply port at a tip thereof.

なお、プラズマCVD法による薄膜の成膜とは、被処理物の表面におけるガスを用いた化学反応を用いたものである。   Note that the formation of a thin film by a plasma CVD method uses a chemical reaction using a gas on the surface of an object to be processed.

上記プラズマ処理装置においては、用いるガスを適宜変更することで、プラズマCVD法による被膜の成膜、エッチング処理、アッシング処理、又は部品のクリーニング処理のいずれかを行うことができる。   In the above-described plasma processing apparatus, by appropriately changing a gas to be used, any one of film formation by plasma CVD, etching, ashing, and component cleaning can be performed.

本発明は、大気圧もしくは大気圧近傍圧力下で第1及び第2の電極間(一対の電極間)にプロセス用ガスを導入し、前記プロセス用ガスが導入された状態で、前記第1又は前記第2の電極に高周波電圧を印加してプラズマを発生させ、前記プロセス用ガス又は搬送用ガスを被処理物に吹き付けることで、前記被処理物を浮上させて搬送する。また前記プラズマ及び前記被処理物の相対位置を移動して、前記被処理物又は前記被処理物の表面にエッチング処理、アッシング処理、プラズマCVD法による薄膜の成膜(形成)、又は前記プラズマを用いて部品のクリーニング処理を行うことを特徴とする。   In the present invention, a process gas is introduced between the first and second electrodes (between a pair of electrodes) under an atmospheric pressure or a pressure near the atmospheric pressure, and the first or the second gas is introduced in a state where the process gas is introduced. A high-frequency voltage is applied to the second electrode to generate plasma, and the process gas or the carrier gas is sprayed on the object to float and convey the object. Further, the plasma and the object to be processed are moved relative to each other, and an etching process, an ashing process, a thin film formation (formation) by a plasma CVD method, or the plasma is applied to the object or the surface of the object to be processed. The cleaning process of the component is performed using the cleaning process.

本発明は、絶縁表面を有する基板上にゲート電極を形成するステップ、前記基板上にゲート絶縁膜を形成するステップ、前記ゲート絶縁膜上に非晶質半導体を形成するステップ、前記非晶質半導体を結晶化して結晶質半導体を形成するステップ、前記結晶質半導体上に絶縁膜を形成するステップを有する薄膜トランジスタの作製方法において、大気圧又は大気圧近傍圧力下で第1及び第2の電極間にプロセス用ガスを導入した状態で、前記第1又は前記第2の電極に高周波電圧を印加し、なお且つ前記第1及び前記第2の電極と前記基板の相対位置を移動して、前記ゲート電極、前記ゲート絶縁膜、前記非晶質半導体及び前記絶縁膜の形成を行うことを特徴とする薄膜トランジスタの作製方法を提供する。  Forming a gate electrode on a substrate having an insulating surface; forming a gate insulating film on the substrate; forming an amorphous semiconductor on the gate insulating film; Forming a crystalline semiconductor by crystallizing the same, and forming an insulating film on the crystalline semiconductor, wherein the method comprises the steps of: With the process gas introduced, a high-frequency voltage is applied to the first or second electrode, and the relative positions of the first and second electrodes and the substrate are moved to form the gate electrode. And forming the gate insulating film, the amorphous semiconductor, and the insulating film.

本発明は、絶縁表面を有する基板上にゲート電極を形成するステップ、前記基板上にゲート絶縁膜を形成するステップ、前記ゲート絶縁膜上に非晶質半導体を形成するステップ、前記非晶質半導体上に絶縁膜を形成するステップを有する薄膜トランジスタの作製方法において、大気圧又は大気圧近傍圧力下で第1及び第2の電極間にプロセス用ガスを導入した状態で、前記第1又は前記第2の電極に高周波電圧を印加し、なお且つ前記第1及び前記第2の電極と前記基板の相対位置を移動して、前記ゲート電極、前記ゲート絶縁膜、前記非晶質半導体及び前記絶縁膜の形成を行うことを特徴とする薄膜トランジスタの作製方法を提供する。   Forming a gate electrode on a substrate having an insulating surface; forming a gate insulating film on the substrate; forming an amorphous semiconductor on the gate insulating film; A method for manufacturing a thin film transistor having a step of forming an insulating film thereon, wherein the process gas is introduced between the first and second electrodes under atmospheric pressure or a pressure close to atmospheric pressure, and A high-frequency voltage is applied to the first and second electrodes, and the relative positions of the first and second electrodes and the substrate are moved so that the gate electrode, the gate insulating film, the amorphous semiconductor, and the insulating film A method for manufacturing a thin film transistor, which is characterized by performing formation, is provided.

本発明は、加熱したガスを吹き付けることで被処理物を均一に加熱し、また前記ガスにより被処理物を水平かつ非接触状態で浮上させるとともに移動させて、効率よくプラズマ処理を行うプラズマ処理装置及びプラズマ処理方法を提供する。また、垂直方向と斜め方向に気体を噴射する気流制御手段により被処理物の全面を移動させ、かつ気流制御手段において被処理物に対し吹き付けと吸引を同時に行って被処理物の浮上高さを調整し、また被処理物の水平精度をガス流量で調整して被処理物の高さを精密に調整する。上記構成を有する本発明は、プラズマと被処理物の間の制御を容易に行うことができる。   The present invention provides a plasma processing apparatus that uniformly heats an object to be processed by spraying a heated gas, and floats and moves the object to be processed horizontally and in a non-contact state by the gas to efficiently perform plasma processing. And a plasma processing method. In addition, the entire surface of the object to be processed is moved by airflow control means for injecting gas in a vertical direction and an oblique direction, and the airflow control means simultaneously performs spraying and suction on the object to be processed to reduce the flying height of the object to be processed. The height of the object to be processed is precisely adjusted by adjusting the horizontal accuracy of the object to be processed and the gas flow rate. In the present invention having the above structure, control between the plasma and the object can be easily performed.

本発明の実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。   Embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it is easily understood by those skilled in the art that the form and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention is not construed as being limited to the description of the embodiments below.

本実施の形態では、本発明のプラズマ処理装置について、図1〜3、図6を用いて説明する。図1(A)は本発明に係るプラズマ処理装置の上面図であり、図1(B)は断面図である。図1(A)(B)において、カセット室21には、表面処理が行われるガラス基板、樹脂基板、半導体基板等の被処理物12がセットされる。被処理物12としては、大型基板(例えば300mm×360mm)、通常基板(例えば127mm×127mm)問わず、所望のサイズの基板が用いられる。なおカセット室21にセットされる基板には、洗浄などの前処理をあらかじめ行っておくことが好ましい。   In this embodiment, a plasma processing apparatus of the present invention will be described with reference to FIGS. FIG. 1A is a top view of the plasma processing apparatus according to the present invention, and FIG. 1B is a cross-sectional view. 1A and 1B, an object to be processed 12 such as a glass substrate, a resin substrate, or a semiconductor substrate to be subjected to a surface treatment is set in a cassette chamber 21. Regardless of the large substrate (for example, 300 mm × 360 mm) or the normal substrate (for example, 127 mm × 127 mm), a substrate having a desired size is used as the processing target 12. It is preferable that the substrate set in the cassette chamber 21 is preliminarily subjected to pretreatment such as cleaning.

22は搬送室であり、搬送機構20(例えばロボットアーム)により、カセット室21に配置された被処理物12を、プラズマ処理室23に搬送する。搬送室22に隣接するプラズマ処理室23には、防塵のために外気を遮断するように空気の流れをつくり、且つ被処理物12の搬送も行う気流制御手段18、加熱手段19及びプラズマ発生手段25が設けられる。加熱手段19は、ハロゲンランプ等の公知の加熱手段を用いればよく、被処理物12の下面から加熱する。気流制御手段18と、ガスの吹き出し口26は、ガス供給手段29から供給される不活性ガスなどの搬送用ガスを用いて気流の制御を行う。本発明のプラズマ処理装置は、大気圧又は大気圧近傍下で動作させるため、気流制御手段18により、プラズマ発生手段25付近の気流を制御することのみで、外部からの汚染や反応生成物の逆流を防止することができる。つまり、外界との分離はこの気流制御手段18のみで行うことも可能であり、プラズマ処理室23を完全に密閉する必要がない。また本発明は、減圧装置に必要である真空引きや大気開放の時間が必要なく、複雑な真空系を配置する必要がない。   Reference numeral 22 denotes a transfer chamber, which transfers the workpiece 12 arranged in the cassette chamber 21 to the plasma processing chamber 23 by a transfer mechanism 20 (for example, a robot arm). In the plasma processing chamber 23 adjacent to the transfer chamber 22, an air flow control unit 18 that creates an air flow so as to block outside air for dust prevention and also transfers the workpiece 12, a heating unit 19, and a plasma generation unit 25 are provided. As the heating unit 19, a known heating unit such as a halogen lamp may be used, and the object to be processed 12 is heated from the lower surface. The airflow control means 18 and the gas outlet 26 control the airflow using a carrier gas such as an inert gas supplied from a gas supply means 29. Since the plasma processing apparatus of the present invention is operated at or near atmospheric pressure, only the airflow control means 18 controls the airflow in the vicinity of the plasma generation means 25, so that contamination from the outside and the backflow of reaction products can be achieved. Can be prevented. That is, the separation from the outside can be performed only by the airflow control means 18, and it is not necessary to completely seal the plasma processing chamber 23. Further, according to the present invention, there is no need for evacuation or opening to the atmosphere required for the decompression device, and there is no need to arrange a complicated vacuum system.

また、ガス供給手段29から供給されるガスは、加熱手段28により所望の温度(例えば50度〜800度)に加熱され、この加熱されたガスを被処理物12に吹き付けることで、被処理物12を加熱する。加熱手段28は、気体を加熱できるものであれば、特に限定されず、公知のものを用いればよい。本発明では、加熱されたガスを被処理物12の上面に吹き付けて加熱し、さらに、加熱手段19により被処理物12の下面を加熱する。このように、被処理物12の両面を加熱することで、当該被処理物12を均一に加熱する。また、ガス供給手段29から供給される搬送用ガスには、不活性ガスを用いればよい。   The gas supplied from the gas supply unit 29 is heated to a desired temperature (for example, 50 ° C. to 800 ° C.) by the heating unit 28, and the heated gas is sprayed on the object 12 to be processed. Heat 12 The heating means 28 is not particularly limited as long as it can heat the gas, and a known means may be used. In the present invention, the heated gas is blown onto the upper surface of the object 12 to be heated, and the heating unit 19 further heats the lower surface of the object 12. In this way, by heating both surfaces of the processing target 12, the processing target 12 is uniformly heated. In addition, an inert gas may be used as the carrier gas supplied from the gas supply unit 29.

プラズマ発生手段25は、第1の電極13及び第2の電極14により構成され、高周波電源17、排気系、ガス供給手段などに接続される(図2)。プラズマ処理室23において、所定の表面処理が終了した被処理物12は、搬送室24に搬送され、この搬送室24から別の処理室に搬送される。   The plasma generating means 25 includes the first electrode 13 and the second electrode 14, and is connected to the high-frequency power supply 17, an exhaust system, a gas supply means, and the like (FIG. 2). In the plasma processing chamber 23, the workpiece 12 on which the predetermined surface treatment has been completed is transported to the transport chamber 24, and is transported from the transport chamber 24 to another processing chamber.

なお、第1の電極13及び第2の電極14の一方又は両方は、固体誘電体で覆うとよい。固体誘電体としては、酸化アルミニウム、二酸化ジルコニウム及び二酸化チタン等の金属酸化物、ポリエチレンテレフタラ−ト及びポリテトラフルオロエチレン等の有機物、酸化珪素、ガラス及びチタン酸バリウム等の酸化物等が挙げられる。固体誘電体の形状は、シ−ト状でもフィルム状でもよいが、厚みが0.05〜4mmであることが好ましい。これは、放電プラズマを発生するのに高電圧を要するため、固体誘電体が薄すぎると、電圧印可時に絶縁破壊が起こって、ア−ク放電が発生してしまうからである。   Note that one or both of the first electrode 13 and the second electrode 14 may be covered with a solid dielectric. Examples of the solid dielectric include metal oxides such as aluminum oxide, zirconium dioxide and titanium dioxide, organic substances such as polyethylene terephthalate and polytetrafluoroethylene, silicon oxide, glass and oxides such as barium titanate. . The solid dielectric may be in the form of a sheet or a film, but preferably has a thickness of 0.05 to 4 mm. This is because a high voltage is required to generate discharge plasma, and if the solid dielectric is too thin, dielectric breakdown occurs when a voltage is applied, and an arc discharge occurs.

次いで、プラズマ発生手段25の詳細な構成について、図2の断面図を用いて説明する。図2における点線は、ガスの経路を示す。13、14はアルミニウム、銅、ステンレスなどの導電性を有する金属からなる電極であり、第1の電極13は電源(高周波電源)17に接続されている。なお第1の電極13には、冷却水を循環させるための冷却系(図示せず)が接続されていてもよい。冷却系を設けることによって、冷却水の循環により連続的に表面処理を行う場合の加熱を防止して、連続処理による効率の向上が可能となる。第2の電極14は、第1の電極13の周囲を取り囲む形状を有し、電気的に接地されている。そして、第1の電極13と第2の電極14は、その先端にノズル状のガスの供給口を有する円筒状を有する。この第1の電極13と第2の電極14の両電極間の空間には、加熱手段28により加熱されたガスが供給される。そうすると、この空間の雰囲気は置換され、この状態で高周波電源17により第1の電極13に高周波電圧(例えば10〜500MHz)が印加されて、前記空間内にプラズマ11が発生する。このプラズマ11により生成されるイオン、ラジカルなどの化学的に活性な励起種を含む反応性ガス流を被処理物12の表面に向けて照射することによって、該被処理物12の表面における薄膜の形成や洗浄などの表面処理を行う。   Next, the detailed configuration of the plasma generating means 25 will be described with reference to the cross-sectional view of FIG. Dotted lines in FIG. 2 indicate gas paths. Reference numerals 13 and 14 denote electrodes made of a conductive metal such as aluminum, copper, and stainless steel. The first electrode 13 is connected to a power supply (high-frequency power supply) 17. Note that a cooling system (not shown) for circulating cooling water may be connected to the first electrode 13. By providing the cooling system, it is possible to prevent the heating when the surface treatment is continuously performed by circulating the cooling water and to improve the efficiency by the continuous treatment. The second electrode 14 has a shape surrounding the first electrode 13 and is electrically grounded. Each of the first electrode 13 and the second electrode 14 has a cylindrical shape having a nozzle-like gas supply port at its tip. The gas heated by the heating means 28 is supplied to the space between the first electrode 13 and the second electrode 14. Then, the atmosphere in this space is replaced, and a high-frequency voltage (for example, 10 to 500 MHz) is applied to the first electrode 13 by the high-frequency power supply 17 in this state, and the plasma 11 is generated in the space. By irradiating a reactive gas flow containing chemically active excited species such as ions and radicals generated by the plasma 11 toward the surface of the processing target 12, a thin film on the surface of the processing target 12 is formed. Perform surface treatment such as formation and cleaning.

また図2中、27はバルブ、28は加熱手段、29〜31はガス供給手段、32は排気ガス、33はフィルタである。加熱手段28は、ガス供給手段29〜31より供給されるガスを所望の温度(例えば50〜800度)になるまで加熱する。なお、29は搬送用ガスのガス供給手段、30は精製ガスのガス供給手段、31はプロセス用ガスのガス供給手段である。搬送用ガスは、不活性ガスなどの処理室内で行う表面処理に影響を及ぼすことがないガスを用いる。また、プロセス用ガスは、処理室内で行う表面処理の種類に合わせて適宜設定する。排気ガス32は、バルブ27を介して、フィルタ28に導入される。フィルタ28では、排気ガスに混入したゴミを除去する。そして、フィルタ33により精製されたガスは再び精製ガスのガス供給手段30に導入されて、再度プロセス用ガスとして用いられる。   2, 27 is a valve, 28 is a heating means, 29 to 31 are gas supply means, 32 is exhaust gas, and 33 is a filter. The heating unit 28 heats the gas supplied from the gas supply units 29 to 31 until a desired temperature (for example, 50 to 800 degrees) is reached. Reference numeral 29 denotes a gas supply unit for a carrier gas, 30 denotes a gas supply unit for a purified gas, and 31 denotes a gas supply unit for a process gas. As a carrier gas, a gas such as an inert gas which does not affect surface treatment performed in a treatment chamber is used. Further, the process gas is appropriately set in accordance with the type of surface treatment performed in the processing chamber. The exhaust gas 32 is introduced into the filter 28 via the valve 27. The filter 28 removes dust mixed in the exhaust gas. Then, the gas purified by the filter 33 is introduced again into the gas supply means 30 for the purified gas, and is used again as a process gas.

また上述したように、気流制御手段18から斜め方向と垂直方向に吹き付けられるガスと両電極間の空間からのガスにより、被処理物12は、水平に浮上して、非接触状態で進行方向に搬送される。電極付近では、ガスは上向きに吹き出し、このガスにより被処理物12は浮上する。また気流制御手段18付近では、ガスの吹き付けとガスの吸引を同時に行って、被処理物12が浮上する高さを制御する。さらに、バルブ27を用いて、被処理物12の水平精度をガスの流量により調整し、被処理物12と第1及び第2の電極13、14との距離を精密に調整する。本構成により、搬送が困難である大型で薄い被処理物12に対しても、歪んだり、そりが生じたり、最悪の場合割れたりする事態を防止する。   Further, as described above, the processing target 12 floats horizontally by the gas blown in the oblique direction and the vertical direction from the airflow control unit 18 and the gas from the space between the two electrodes, and moves in the non-contact state in the traveling direction. Conveyed. In the vicinity of the electrode, gas is blown upward, and the processing object 12 floats by this gas. In the vicinity of the airflow control means 18, gas blowing and gas suction are performed simultaneously to control the height at which the workpiece 12 floats. Further, using the valve 27, the horizontal accuracy of the processing target 12 is adjusted by the flow rate of the gas, and the distance between the processing target 12 and the first and second electrodes 13 and 14 is precisely adjusted. This configuration prevents the large, thin workpiece 12 that is difficult to transport from being distorted, warped, or, in the worst case, broken.

また、上記の図1、2とは異なり、複数のプラズマ発生手段を進行方向に順に配置することで、被処理物12に複数の表面処理を連続的に行ってもよい。例えば、図3に示すように、複数のプラズマ発生手段25A〜25Cを順に配置し、被処理物12を進行方向に搬送することで、複数の表面処理を連続的に行う。これは、本発明のプラズマ処理装置が、大気圧もしくは大気圧近傍圧力下で動作するものであるため、各表面処理を行う処理室を別々に設ける必要はなく、気流制御手段18を設けることだけで、外部からの汚染を防止することができることによる。また、本発明では、プラズマ発生手段25を固定しておいて、気体を制御する気流制御手段18を被処理物12の搬送手段として用いる。その為、複数の表面処理を連続的に行う場合には、同じ処理室内にプラズマ発生手段を進行方向に順に配置し、気流制御手段18を用いて被処理物12を搬送すればよい。   In addition, unlike the above-described FIGS. 1 and 2, a plurality of surface treatments may be continuously performed on the workpiece 12 by arranging a plurality of plasma generating units in the traveling direction in order. For example, as shown in FIG. 3, a plurality of plasma generating means 25A to 25C are sequentially arranged, and a plurality of surface treatments are continuously performed by transporting the workpiece 12 in a traveling direction. This is because the plasma processing apparatus of the present invention operates under the atmospheric pressure or a pressure close to the atmospheric pressure. Therefore, it is not necessary to separately provide the processing chambers for performing each surface treatment, and only to provide the airflow control means 18. Therefore, contamination from the outside can be prevented. Further, in the present invention, the plasma generation unit 25 is fixed, and the airflow control unit 18 for controlling the gas is used as the transfer unit for the workpiece 12. Therefore, when performing a plurality of surface treatments successively, the plasma generation means may be arranged in the same processing chamber in the traveling direction in order, and the workpiece 12 may be transported using the airflow control means 18.

なお上記の図1〜3では、気流制御手段18を用いて、被処理物12を搬送していた。しかし、図6(A)(B)に示すように、気流制御手段18と機械式の搬送機構(ロボットアーム)51を用いて、被処理物12を搬送してもよい。そうすると、被処理物12を進行方向に水平に搬送することができる。また、ロボットアーム51ではなく、図6(C)に示すように、被処理物12の進行方向にレール53を設置して、そのレール53を走行する台車52に設けられた被処理物12の固定装置を用いて、被処理物12を水平に搬送してもよい。   In FIGS. 1 to 3 described above, the processing target 12 is transported by using the airflow control unit 18. However, as shown in FIGS. 6A and 6B, the workpiece 12 may be transported using the airflow control means 18 and a mechanical transport mechanism (robot arm) 51. Then, the workpiece 12 can be transported horizontally in the traveling direction. In addition, as shown in FIG. 6C, a rail 53 is installed in the traveling direction of the workpiece 12 instead of the robot arm 51, and a workpiece 52 provided on a carriage 52 running on the rail 53 is provided. The workpiece 12 may be transported horizontally using a fixing device.

本発明は、加熱したガスを吹き付けることで被処理物を均一に加熱し、また前記ガスにより被処理物を水平かつ非接触状態で浮上させるとともに移動させて、効率よくプラズマ処理を行うプラズマ処理装置及びプラズマ処理方法を提供する。また、垂直方向と斜め方向に気体を噴射する気流制御手段により被処理物(特に大型な基板に好適)全面を移動させ、かつ気流制御手段において被処理物に対し吹き付けとガスの吸引を同時に行って被処理物の浮上高さを調整し、また被処理物の水平精度をガス流量で調整して被処理物の高さを精密に調整する。上記構成を有する本発明は、プラズマと被処理物の間の制御を容易に行うことができる。さらに本発明は、被処理物の大きさに制約されず、また被処理物の表面の形状に沿わせて搬送することで、容易にプラズマ処理することができる。   The present invention provides a plasma processing apparatus that uniformly heats an object to be processed by spraying a heated gas, and floats and moves the object to be processed horizontally and in a non-contact state by the gas to efficiently perform plasma processing. And a plasma processing method. In addition, the entire surface of the object to be processed (particularly suitable for a large substrate) is moved by air flow control means for injecting gas in a vertical direction and an oblique direction, and the air flow control means simultaneously performs spraying and gas suction on the object to be processed. The height of the object to be processed is adjusted precisely by adjusting the floating height of the object to be processed and the horizontal accuracy of the object to be processed by the gas flow rate. In the present invention having the above structure, control between the plasma and the object can be easily performed. Further, according to the present invention, plasma processing can be easily performed by being conveyed along the shape of the surface of the object without being limited by the size of the object.

また上記構成を有する本発明は、被膜の成膜速度、エッチング処理の速度、アッシング処理の速度が向上する。さらに、同じ処理室内に、プラズマ発生手段を順に配置することで、複数回の表面処理を連続的に行うことができるため、製造装置が簡略化する。   Further, according to the present invention having the above structure, the film forming speed, the etching speed, and the ashing speed are improved. Further, by sequentially arranging the plasma generating means in the same processing chamber, a plurality of surface treatments can be continuously performed, so that the manufacturing apparatus is simplified.

本実施例では、本発明のプラズマ処理方法について説明する。以下には、被処理物の表面に化学気相成長法を用いて薄膜を成膜する場合、エッチング処理、アッシング処理、クリーニング処理を行う場合について説明する。   Example 1 In this example, a plasma processing method of the present invention will be described. Hereinafter, a case where a thin film is formed on a surface of a processing object by using a chemical vapor deposition method, a case where an etching process, an ashing process, and a cleaning process are performed will be described.

本発明のプラズマ処理方法を用いて、被処理物12、又は被処理物12の表面に化学気相成長法(CVD法)を用いて薄膜を形成する場合には、図1乃至図3、図6におけるプロセス用ガスのガス供給手段31からSixy、SiHxClyなどの原料ガスと、水素、酸素、窒素のうちの一つと希ガスとの混合ガスをプラズマ発生手段25に供給して、プラズマを発生させることにより行う。例えば、SiCl4(四塩化シリコンガス)と、水素ガスと希ガスとの混合ガスを用いて、シリコンの成膜を行う。 When a thin film is formed on the object 12 or on the surface of the object 12 by chemical vapor deposition (CVD) using the plasma processing method of the present invention, FIGS. Si x H y from the gas supply means 31 of the process gas in the 6, and supplies the raw material gas such as SiH x Cl y, hydrogen, oxygen, a mixed gas of one and a rare gas of nitrogen to the plasma generation means 25 This is performed by generating plasma. For example, a silicon film is formed using a mixed gas of SiCl 4 (silicon tetrachloride gas), hydrogen gas, and a rare gas.

被処理物12、又は被処理物12の表面にエッチング処理を行う場合には、ガス供給手段31からNF3、フロロカーボン(CF4)、SF6、COxなどの原料ガスと、水素、酸素のうちの一つと希ガスとの混合ガスをプラズマ発生手段25に供給して、プラズマを発生させることにより行う。例えば、NF3やSF6などの原料ガスを用いてフッ素原子を発生させ、これが固体のシリコンと反応して揮発性のSiF4ガスとして気化させ、外部に排気することにより、エッチング処理を行う。 In the case where the object 12 or the surface of the object 12 is subjected to an etching treatment, the gas supply means 31 supplies raw material gas such as NF 3 , fluorocarbon (CF 4 ), SF 6 , CO x , hydrogen and oxygen. This is performed by supplying a mixed gas of one of them and a rare gas to the plasma generating means 25 to generate plasma. For example, an etching process is performed by generating fluorine atoms using a source gas such as NF 3 or SF 6 and reacting with solid silicon to vaporize as volatile SiF 4 gas and exhausting the gas to the outside.

被処理物12、又は被処理物12の表面にアッシング処理を行う場合には、ガス供給手段31から酸素の原料ガスと、水素、フロロカーボン(CF4)、NF3、H2O、CHF3のうちの一つをプラズマ発生手段25に供給して、プラズマを発生させることにより行う。例えば、感光性有機レジストのアッシング処理は、酸素とフロロカーボンを導入して、CO2、CO、H2Oにして、レジストを剥離させることによってアッシング処理を行う。 When performing the ashing process on the object 12 or the surface of the object 12, the gas supply unit 31 supplies oxygen source gas and hydrogen, fluorocarbon (CF 4 ), NF 3 , H 2 O, and CHF 3 . One of them is supplied to the plasma generation means 25 to generate plasma. For example, in the ashing process of the photosensitive organic resist, the ashing process is performed by introducing CO 2 , CO, and H 2 O by introducing oxygen and fluorocarbon, and stripping the resist.

また、本発明のプラズマ処理装置を構成する部品のクリーニング処理を行ってもよく、特に電極13、14のクリーニング処理を行うとよい。その際、NF3、フロロカーボン、SF6、COxなどのガス、特に有機物の場合はO2を用いたプラズマによりクリーニングを行う。 Further, a cleaning process for components constituting the plasma processing apparatus of the present invention may be performed, and particularly, a cleaning process for the electrodes 13 and 14 may be performed. At this time, cleaning is performed by plasma using a gas such as NF 3 , fluorocarbon, SF 6 , CO x , and particularly in the case of an organic substance, O 2 .

本実施例は、実施の形態と自由に組み合わせることができる。   This embodiment can be freely combined with Embodiment Mode.

本実施例では、本発明のプラズマ処理装置を用いて、被処理物(主に基板)の表面処理を連続的に行って、薄膜トランジスタ(所謂ボトムゲート型)を作製する場合について説明する。ここでは、Nチャネル型TFT及びPチャネル型TFTを同一基板上に作製する作製工程について図4、5を用いて説明する。   In this embodiment, a case where a thin film transistor (a so-called bottom gate type) is manufactured by continuously performing surface treatment of an object to be processed (mainly a substrate) using the plasma processing apparatus of the present invention is described. Here, a manufacturing process for manufacturing an N-channel TFT and a P-channel TFT over the same substrate will be described with reference to FIGS.

基板200には、ガラス基板等の絶縁表面を有する基板を用いる(図4(A))。そして基板200上には、W−Si(タングステンシリコン)、Ag(銀)、TaN(窒化タンタル)などの金属に所定のパターン加工を行って、ゲート電極209、210を50〜500nmの厚さに形成する。本実施例では、ゲート電極209、210として、W−Si(タングステンシリコン)をW(タングステン)のターゲットを用いたスパッタリング法で200nmの厚さに形成した。このときの上面図を図4(F)に示す。   As the substrate 200, a substrate having an insulating surface such as a glass substrate is used (FIG. 4A). On the substrate 200, a predetermined pattern is formed on a metal such as W-Si (tungsten silicon), Ag (silver), or TaN (tantalum nitride) to form the gate electrodes 209 and 210 to a thickness of 50 to 500 nm. Form. In this embodiment, as the gate electrodes 209 and 210, W-Si (tungsten silicon) is formed to a thickness of 200 nm by a sputtering method using a W (tungsten) target. FIG. 4F shows a top view at this time.

続いて、ゲート電極209、210上にゲート絶縁膜211を形成する(図4(B))。ゲート絶縁膜211は本発明のプラズマ処理装置を用いて、プラズマCVD法により、膜厚を30〜200nmとして珪素を含む絶縁膜で形成する。またゲート絶縁膜211は2層構造とし、1層目として、TEOS(Tetraethyl Orthosilicate)とO2の混合ガスを用いて成膜される酸化珪素膜211aを10〜200nm(好ましくは50〜100nm)の厚さに形成し、2層目として、SiH4及びN2を反応ガスとして成膜される窒化珪素膜211bを50〜200nm(好ましくは100〜150nm)の厚さに形成する。本実施例では、酸化珪素膜211aを成膜するプラズマ発生手段と、窒化珪素膜211bを成膜するプラズマ発生手段とを進行方向に順に配置し、各プラズマ発生手段において、ガス供給手段から供給されるガスを適宜変えて、1層目の酸化珪素膜211aを50nm、2層目の窒化珪素膜を100nmの厚さに連続的に形成した。なお、各プラズマ発生手段は気流制御手段により分離され、また当該気流制御手段により被処理物12は非接触状態で浮上させて搬送した。 Subsequently, a gate insulating film 211 is formed over the gate electrodes 209 and 210 (FIG. 4B). The gate insulating film 211 is formed using a plasma treatment apparatus of the present invention with a thickness of 30 to 200 nm by a plasma CVD method using a silicon-containing insulating film. The gate insulating film 211 has a two-layer structure. As a first layer, a silicon oxide film 211a formed using a mixed gas of TEOS (Tetraethyl Orthosilicate) and O 2 is formed to a thickness of 10 to 200 nm (preferably 50 to 100 nm). As a second layer, a silicon nitride film 211b formed with SiH 4 and N 2 as a reaction gas is formed to a thickness of 50 to 200 nm (preferably 100 to 150 nm). In this embodiment, the plasma generating means for forming the silicon oxide film 211a and the plasma generating means for forming the silicon nitride film 211b are sequentially arranged in the traveling direction, and each plasma generating means is supplied from a gas supply means. The first silicon oxide film 211a was continuously formed to a thickness of 50 nm and the second silicon nitride film to a thickness of 100 nm by appropriately changing the gas used. Each plasma generating means was separated by the airflow control means, and the workpiece 12 was levitated and transported in a non-contact state by the airflow control means.

なおゲート絶縁膜211は2層構造に限らず、3層以上の構造にしてもよいし、また酸化珪素膜、窒化珪素膜以外の材料を用いて構成してもよいが、各々の層に用いる薄膜の誘電率を考慮して、TFTとして所望の容量が得られるように設定する。   Note that the gate insulating film 211 is not limited to a two-layer structure and may have a structure of three or more layers, or may be formed using a material other than a silicon oxide film and a silicon nitride film. In consideration of the dielectric constant of the thin film, the TFT is set so as to obtain a desired capacitance.

次いで、ゲート絶縁膜211上に非晶質半導体膜213を形成する(図4(C))。非晶質半導体膜213は、本発明のプラズマ処理装置を用いて、プラズマCVD法により、SiH4ガスを用いて25〜80nm(好ましくは30〜60nm)の厚さで成膜する。本実施例では、上記のゲート絶縁膜211を成膜したプラズマ発生手段の次に、非晶質半導体膜213を成膜するプラズマ発生手段を進行方向に順に配置することで、上記のゲート絶縁膜211に引き続き、膜厚50nmの非晶質半導体膜も連続的に成膜した。 Next, an amorphous semiconductor film 213 is formed over the gate insulating film 211 (FIG. 4C). The amorphous semiconductor film 213 is formed with a thickness of 25 to 80 nm (preferably 30 to 60 nm) using a SiH 4 gas by a plasma CVD method using the plasma treatment apparatus of the present invention. In the present embodiment, the plasma generation means for forming the amorphous semiconductor film 213 is disposed in the traveling direction next to the plasma generation means for forming the gate insulation film 211, so that the gate insulation film is formed. Subsequent to 211, an amorphous semiconductor film having a thickness of 50 nm was also formed continuously.

続いて、レーザ結晶化法により、非晶質半導体膜213を結晶化させて、結晶質半導体膜214を形成する(図4(D))。なお、レーザ結晶化法で結晶質半導体膜を作製する場合のレーザは、連続発振またはパルス発振の気体レーザ又は固体レーザを用いれば良い。前者の気体レーザとしては、エキシマレーザ等が挙げられ、後者の固体レーザとしては、Cr、Nd等がドーピングされたYAG、YVO4等の結晶を使ったレーザ等が挙げられる。なお非晶質半導体膜の結晶化に際し、大粒径に結晶を得るためには、連続発振が可能な固体レーザを用い、基本波の第2〜第4高調波を適用するのが好ましい。上記レーザを用いる場合には、レーザ発振器から放射されたレーザビームを光学系で線状に集光して、半導体膜に照射すると良い。結晶化の条件は適宜設定されるが、エキシマレーザを用いる場合はパルス発振周波数300Hzとし、レーザーエネルギー密度を100〜700mJ/cm2(好ましくは200〜300mJ/cm2)とすると良い。 Subsequently, the amorphous semiconductor film 213 is crystallized by a laser crystallization method to form a crystalline semiconductor film 214 (FIG. 4D). Note that when a crystalline semiconductor film is formed by a laser crystallization method, a continuous wave or pulsed gas laser or a solid laser may be used. The former gas laser includes an excimer laser and the like, and the latter solid laser includes a laser using a crystal such as YAG or YVO 4 doped with Cr, Nd or the like. In order to obtain a crystal having a large grain size in crystallization of the amorphous semiconductor film, it is preferable to use a solid-state laser capable of continuous oscillation and to apply second to fourth harmonics of a fundamental wave. In the case of using the above laser, it is preferable that a laser beam emitted from a laser oscillator be linearly condensed by an optical system and irradiated on a semiconductor film. The crystallization conditions are set as appropriate. When an excimer laser is used, the pulse oscillation frequency is set to 300 Hz, and the laser energy density is set to 100 to 700 mJ / cm 2 (preferably 200 to 300 mJ / cm 2 ).

本実施例では、YAGレーザを用い、その第2高調波を用いてパルス発振周波数1〜300Hzとし、レーザーエネルギー密度を300〜1000mJ/cm2(好ましくは350〜500mJ/cm2)して結晶質半導体膜214を形成した。このとき、幅100〜1000μm(好ましくは幅400μm)で線状に集光したレーザ光を基板全面に渡って照射し、このときの線状ビームの重ね合わせ率(オーバーラップ率)を50〜98%として行っても良い。また本実施例では、上記のゲート絶縁膜211と非晶質半導体膜213とを成膜した同じ処理室内に、基板200の進行方向に従って、レーザ照射装置を配置した。そして、同じ処理室内で、非晶質半導体膜213の成膜に引き続き、当該非晶質半導体膜213のレーザ結晶化までを連続的に行った。 In this embodiment, a YAG laser is used, a pulse oscillation frequency is set to 1 to 300 Hz using the second harmonic, and a laser energy density is set to 300 to 1000 mJ / cm 2 (preferably 350 to 500 mJ / cm 2 ). A semiconductor film 214 was formed. At this time, a laser beam condensed linearly with a width of 100 to 1000 μm (preferably 400 μm) is irradiated over the entire surface of the substrate, and the superposition rate (overlap rate) of the linear beam at this time is 50 to 98. %. In this embodiment, a laser irradiation apparatus is provided in the same processing chamber where the gate insulating film 211 and the amorphous semiconductor film 213 are formed in accordance with the traveling direction of the substrate 200. Then, subsequent to the formation of the amorphous semiconductor film 213, laser crystallization of the amorphous semiconductor film 213 was continuously performed in the same processing chamber.

続いて、結晶質半導体膜214上に絶縁膜215を形成する。本実施例では、プラズマCVD法を用いて、TEOSとO2の混合ガスを用いて成膜される酸化珪素膜211aを50nmの厚さに形成した。また、同じ処理室内に、上記のレーザ結晶化を行ったレーザ照射装置の次に、酸化珪素膜を成膜するプラズマ発生手段を配置した。その結果、同じ処理室内で、ゲート絶縁膜(2層)211の成膜、非晶質半導体膜213の成膜、レーザ結晶化、絶縁膜215の成膜の計5回の表面処理を連続的に行うことができた。このように、本発明では、プラズマ発生手段を固定して、被処理物の搬送方向に順に配置することで、同じ処理室内で複数の表面処理を連続的に行うことができる。その結果、外部からの汚染防止や所要時間の低減につながり、生産性が向上する。 Subsequently, an insulating film 215 is formed over the crystalline semiconductor film 214. In this embodiment, a silicon oxide film 211a formed with a mixed gas of TEOS and O 2 to a thickness of 50 nm is formed by a plasma CVD method. Further, in the same processing chamber, a plasma generating means for forming a silicon oxide film was arranged next to the laser irradiation apparatus which performed the above laser crystallization. As a result, in the same processing chamber, a total of five times of surface treatment including the formation of the gate insulating film (two layers) 211, the formation of the amorphous semiconductor film 213, the laser crystallization, and the formation of the insulating film 215 are continuously performed. Could be done. As described above, in the present invention, a plurality of surface treatments can be continuously performed in the same processing chamber by fixing the plasma generation means and sequentially arranging the same in the transport direction of the workpiece. As a result, external contamination is prevented and the required time is reduced, and productivity is improved.

次いで、結晶質半導体膜214及び絶縁膜215を所望の形状にパターン加工して、半導体層216、217を形成した(図4(E)(G))。続いて、フォトリソグラフィ法を用いて、裏面露光を行って、レジストからなるマスク218を形成した。そして、第1のドーピング処理を行い、半導体層216、217にN型を付与する不純物元素を低濃度に添加する。第1のドーピング処理はイオンドープ法又はイオン注入法で行えば良い。イオンドープ法の条件はドーズ量を1×1013〜5×1014/cm2とし、加速電圧を40〜80keVとして行う。またN型を付与する不純物元素としては、15族に属する元素を用いれば良く、代表的にはリン(P)又は砒素(As)を用いる。本実施の形態では、イオンドープ法でドーズ量を5.0×1014/cm2、加速電圧を50keV、N型を付与する不純物元素としてP(リン)を用いて、自己整合的に不純物領域を形成した。このとき、前記不純物領域には1×1018〜1×1020/cm2の濃度範囲でN型を付与する不純物元素が添加された。 Next, the crystalline semiconductor film 214 and the insulating film 215 were patterned into desired shapes to form semiconductor layers 216 and 217 (FIGS. 4E and 4G). Subsequently, back exposure was performed using a photolithography method to form a mask 218 made of a resist. Then, a first doping process is performed to add an N-type impurity element to the semiconductor layers 216 and 217 at a low concentration. The first doping treatment may be performed by an ion doping method or an ion implantation method. The conditions of the ion doping method are a dose of 1 × 10 13 to 5 × 10 14 / cm 2 and an acceleration voltage of 40 to 80 keV. As the impurity element imparting N-type, an element belonging to Group 15 may be used, and typically, phosphorus (P) or arsenic (As) is used. In this embodiment mode, a dose amount is 5.0 × 10 14 / cm 2 , an acceleration voltage is 50 keV, and P (phosphorus) is used as an N-type impurity element by ion doping. Was formed. At this time, an impurity element imparting N-type was added to the impurity region in a concentration range of 1 × 10 18 to 1 × 10 20 / cm 2 .

続いてレジストからなるマスク218を除去した後、新たにレジストからなるマスク219を形成して、第1のドーピング処理よりも高い加速電圧で第2のドーピング処理を行う(図5(A))。イオンドープ法の条件はドーズ量を1×1013〜3×1015/cm2とし、加速電圧を60〜120keVとして行う。本実施の形態では、ドーズ量を3.0×1015/cm2とし、加速電圧を65keVの条件下でドーピング処理を行った結果、不純物領域220には1×1019〜5×1021/cm2の濃度範囲でN型を付与する不純物元素が添加された。また、不純物元素が全く添加されない領域又は微量の不純物元素が添加された領域(総称してチャネル形成領域とよぶ)240が形成された。 Subsequently, after removing the resist mask 218, a new resist mask 219 is formed, and a second doping process is performed at an acceleration voltage higher than that of the first doping process (FIG. 5A). The conditions of the ion doping method are such that the dose is 1 × 10 13 to 3 × 10 15 / cm 2 and the acceleration voltage is 60 to 120 keV. In this embodiment mode, as a result of performing the doping process under the conditions of a dose amount of 3.0 × 10 15 / cm 2 and an acceleration voltage of 65 keV, the impurity region 220 has 1 × 10 19 to 5 × 10 21 / cm 2. An impurity element imparting N-type was added in a concentration range of cm 2 . Further, a region 240 to which no impurity element was added or a region to which a slight amount of impurity element was added (collectively referred to as a channel formation region) 240 was formed.

次いで、レジストからなるマスク219を除去した後、新たにレジストからなるマスク221を形成する(図5(B))。その後、第3のドーピング処理を行い、Pチャネル型TFTの活性層となる半導体層に、前記第1の導電型とは反対の導電型を付与する不純物元素が添加された不純物領域を形成する。本実施例では、レジストからなるマスク221を不純物元素に対するマスクとして用いて、P型を付与する不純物元素を添加し、自己整合的に不純物領域222を形成した。また、不純物領域222は、ドーズ量が1×1016/cm2、加速電圧が80keVの条件下で、ジボラン(B26)を用いたイオンドープ法で形成した。本ドーピング処理によって、P型を付与する不純物元素の濃度が1×1019〜5×1021atoms/cm2となるようにドーピング処理された。またチャネル形成領域241が形成された。 Next, after removing the resist mask 219, a new resist mask 221 is formed (FIG. 5B). After that, a third doping process is performed to form an impurity region to which an impurity element imparting a conductivity type opposite to the first conductivity type is added to a semiconductor layer serving as an active layer of the P-channel TFT. In this embodiment, the impurity region 222 is formed in a self-aligning manner by adding a p-type impurity element using the resist mask 221 as a mask for the impurity element. The impurity region 222 was formed by ion doping using diborane (B 2 H 6 ) under the conditions of a dose of 1 × 10 16 / cm 2 and an acceleration voltage of 80 keV. By this doping treatment, doping treatment was performed so that the concentration of the impurity element imparting the P-type becomes 1 × 10 19 to 5 × 10 21 atoms / cm 2 . Further, a channel formation region 241 was formed.

なお、ドーピング処理を行う条件を適宜変えて、2回以上の複数回のドーピング処理で所望の不純物領域を形成しても良い。   Note that a desired impurity region may be formed by performing doping processing two or more times by appropriately changing conditions for performing the doping processing.

そして、絶縁膜からなる第1の層間絶縁膜223を形成する(図5(C))。この第1の層間絶縁膜223としては、プラズマCVD法を用い、厚さを100〜200nmとして珪素を含む絶縁膜で形成する。本実施例では、プラズマCVD法により膜厚100nmの酸化窒化珪素膜223を形成した。次に、第1の層間絶縁膜223上に、第2の層間絶縁膜224を形成する。第2の層間絶縁膜224としては、CVD法によって形成された酸化珪素膜、もしくは、SOG(Spin On Glass)法又はスピンコート法によって塗布された酸化珪素膜及びアクリル等の有機絶縁膜並びに非感光性の有機絶縁膜から選択された薄膜を0.7〜5μm(好ましくは2〜4μm)の厚さで形成する。本実施例では、CVD法で膜厚1.6μmのアクリル膜50を形成した。なお第2の層間絶縁膜224は、基板200上に形成されたTFTによる凹凸を緩和し、平坦化する意味合いが強いので、平坦性に優れた膜が好ましい。   Then, a first interlayer insulating film 223 made of an insulating film is formed (FIG. 5C). The first interlayer insulating film 223 is formed of an insulating film containing silicon with a thickness of 100 to 200 nm by a plasma CVD method. In this embodiment, a 100-nm-thick silicon oxynitride film 223 is formed by a plasma CVD method. Next, a second interlayer insulating film 224 is formed over the first interlayer insulating film 223. As the second interlayer insulating film 224, a silicon oxide film formed by a CVD method, a silicon oxide film applied by an SOG (Spin On Glass) method or a spin coating method, an organic insulating film such as acrylic, and a non-photosensitive film A thin film selected from organic insulating films having a thickness of 0.7 to 5 μm (preferably 2 to 4 μm) is formed. In this embodiment, an acrylic film 50 having a thickness of 1.6 μm is formed by the CVD method. Note that the second interlayer insulating film 224 is preferably a film excellent in flatness because the second interlayer insulating film 224 has a strong meaning of alleviating unevenness due to the TFT formed over the substrate 200 and flattening.

次に、第2の層間絶縁膜224上に、第3の層間絶縁膜225を形成する。第3の層間絶縁膜225は、CVD法で、窒化珪素膜または窒化酸化珪素膜を0.1〜0.2μmの厚さで形成する。本実施例では、CVD法で窒化珪素膜225を0.1μmの厚さで形成した。第1乃至第3層間絶縁膜223〜225を設けることにより、酸素や空気中の水分をはじめ各種イオン性の不純物の侵入を阻止するブロッキング作用を得ることができる。本発明では、第1乃至第3の層間絶縁膜223〜225の成膜は、図3に示すようにプラズマ供給手段を進行方向に順に配置することで、連続的に行った。   Next, a third interlayer insulating film 225 is formed over the second interlayer insulating film 224. As the third interlayer insulating film 225, a silicon nitride film or a silicon nitride oxide film is formed with a thickness of 0.1 to 0.2 μm by a CVD method. In this embodiment, the silicon nitride film 225 is formed with a thickness of 0.1 μm by the CVD method. By providing the first to third interlayer insulating films 223 to 225, a blocking effect of preventing invasion of various ionic impurities such as oxygen and moisture in the air can be obtained. In the present invention, the first to third interlayer insulating films 223 to 225 were continuously formed by sequentially arranging the plasma supply means in the traveling direction as shown in FIG.

そして、ドライエッチング又はウエットエッチングを用い、1つ又は複数のコンタクトホールを形成する(図5(D))。本実施の形態では、第1乃至第3の層間絶縁膜223〜225をエッチングし、不純物領域220、222に達するコンタクトホールを形成した。次いで、各不純物領域と電気的に接続される配線226〜229を形成する。本実施の形態では、配線226〜229は、膜厚100nmのTi膜、膜厚350nmのAl膜、膜厚100nmのTi膜をスパッタリング法で連続形成して積層し、所望の形状にパターニング及びエッチングを行って形成した。なお、三層構造に限らず、二層以下の構造、四層以上の積層構造にしてもよい。また配線の材料としては、Al、Tiに限らず、他の導電膜を用いても良い。   Then, one or more contact holes are formed by dry etching or wet etching (FIG. 5D). In this embodiment mode, the first to third interlayer insulating films 223 to 225 are etched to form contact holes reaching the impurity regions 220 and 222. Next, wirings 226 to 229 electrically connected to the respective impurity regions are formed. In this embodiment mode, the wirings 226 to 229 are formed by continuously forming a 100-nm-thick Ti film, a 350-nm-thick Al film, and a 100-nm-thick Ti film by a sputtering method, and patterning and etching into a desired shape. And formed. The structure is not limited to the three-layer structure, but may be a structure having two or less layers or a stacked structure having four or more layers. Further, the material of the wiring is not limited to Al and Ti, and other conductive films may be used.

以上の工程により、Nチャネル型TFT242とPチャネル型TFT243とを有する画素部を同一基板上に形成することができる。このときの上面図を図5(E)に示す。   Through the above steps, a pixel portion including the N-channel TFT 242 and the P-channel TFT 243 can be formed over the same substrate. FIG. 5E shows a top view at this time.

Nチャネル型TFT242は、ゲート電極209と重なるチャネル形成領域240、ソース領域またはドレイン領域として機能する不純物領域220を有する。また、Pチャネル型TFT243は、ゲート電極210と重なるチャネル形成領域241、ソース領域またはドレイン領域として機能する不純物領域222を有する。   The N-channel TFT 242 includes a channel formation region 240 overlapping with the gate electrode 209, and an impurity region 220 functioning as a source or drain region. Further, the P-channel TFT 243 includes a channel formation region 241 overlapping with the gate electrode 210 and an impurity region 222 functioning as a source region or a drain region.

本実施例では、被処理物の複数回の表面処理を同一の処理室で連続的に行うことができる。そのため、作製工程における所要時間が減少し、生産性が向上する。また、異なる処理室で各々の表面処理を行う場合に比べて、作製工程が簡略化するため、製造歩留まりが改善され、製造コストが低減する。   In this embodiment, a plurality of surface treatments of an object to be processed can be continuously performed in the same processing chamber. Therefore, the time required for the manufacturing process is reduced, and the productivity is improved. Further, as compared with the case where the respective surface treatments are performed in different processing chambers, the manufacturing process is simplified, so that the manufacturing yield is improved and the manufacturing cost is reduced.

なお、本実施例では、結晶質半導体膜をTFTの作製に用いたが、本発明はこれに限定されない。本発明は、非晶質半導体や微結晶半導体を用いたTFTの作製に適用してもよい。   In this embodiment, the crystalline semiconductor film is used for manufacturing a TFT, but the present invention is not limited to this. The present invention may be applied to the manufacture of a TFT using an amorphous semiconductor or a microcrystalline semiconductor.

本発明のプラズマ処理装置を示す図。FIG. 1 shows a plasma processing apparatus of the present invention. 本発明のプラズマ処理装置を示す図。FIG. 1 shows a plasma processing apparatus of the present invention. 本発明のプラズマ処理装置を示す図。FIG. 1 shows a plasma processing apparatus of the present invention. 薄膜トランジスタの作製工程を示す図。4A to 4C illustrate a manufacturing process of a thin film transistor. 薄膜トランジスタの作製工程を示す図。4A to 4C illustrate a manufacturing process of a thin film transistor. 本発明のプラズマ処理装置を示す図。FIG. 1 shows a plasma processing apparatus of the present invention.

符号の説明Explanation of reference numerals

11 プラズマ、12 被処理物、13 第1の電極、14 第2の電極、17 高周波電源、18 気流制御手段、19 加熱手段、20 搬送機構、21 カセット室、22 搬送室、23 プラズマ処理室、24 搬送室、25 プラズマ発生手段、26 ガスの吹き出し口、27 バルブ、28 加熱手段、29 搬送ガス用のガス供給手段、30 精製ガスのガス供給手段、31 プロセス用ガスのガス供給手段、32 排気ガス、33 フィルタ、51 搬送機構、52 台車、53 レール
Reference Signs List 11 plasma, 12 workpiece, 13 first electrode, 14 second electrode, 17 high-frequency power supply, 18 airflow control means, 19 heating means, 20 transport mechanism, 21 cassette chamber, 22 transport chamber, 23 plasma processing chamber, 24 transfer chamber, 25 plasma generation means, 26 gas outlet, 27 valve, 28 heating means, 29 gas supply means for carrier gas, 30 gas supply means for purified gas, 31 gas supply means for process gas, 32 exhaust Gas, 33 filter, 51 transport mechanism, 52 bogie, 53 rail

Claims (15)

大気圧もしくは大気圧近傍圧力下で第1及び第2の電極間にプロセス用ガスを導入するガス供給手段と、
前記プロセス用ガスが導入された状態で、前記第1又は前記第2の電極に高周波電圧を印加してプラズマを発生させるプラズマ発生手段と、
前記プロセス用ガス又は搬送用ガスを被処理物に吹き付けることで、前記被処理物を浮上させて搬送する搬送手段とを有し、
前記第1及び前記第2の電極と、前記被処理物との相対位置を移動して、前記被処理物にエッチング処理、アッシング処理、又は薄膜の形成を行うことを特徴とするプラズマ処理装置。
Gas supply means for introducing a process gas between the first and second electrodes under atmospheric pressure or near atmospheric pressure;
Plasma generation means for generating a plasma by applying a high-frequency voltage to the first or second electrode while the process gas is introduced,
By blowing the process gas or the carrier gas to the object to be processed, and having a conveyance means to float and convey the object to be processed,
A plasma processing apparatus, wherein a relative position between the first and second electrodes and the object is moved to perform etching, ashing, or thin film formation on the object.
大気圧もしくは大気圧近傍圧力下で第1及び第2の電極間にプロセス用ガスを導入するガス供給手段と、
前記プロセス用ガスが導入された状態で、前記第1又は前記第2の電極に高周波電圧を印加してプラズマを発生させるプラズマ発生手段と、
前記プロセス用ガス又は搬送用ガスを被処理物に吹き付けることで、前記被処理物を浮上させて搬送する搬送手段とを有し、
前記第1及び前記第2の電極を用いて、部品のクリーニング処理を行うことを特徴とするプラズマ処理装置。
Gas supply means for introducing a process gas between the first and second electrodes under atmospheric pressure or near atmospheric pressure;
Plasma generation means for generating a plasma by applying a high-frequency voltage to the first or second electrode while the process gas is introduced,
By blowing the process gas or the carrier gas to the object to be processed, and having a conveyance means to float and convey the object to be processed,
A plasma processing apparatus for performing a cleaning process on a component using the first and second electrodes.
大気圧もしくは大気圧近傍圧力下で第1及び第2の電極間にプロセス用ガスを導入するガス供給手段と、
前記プロセス用ガスが導入された状態で、前記第1又は前記第2の電極に高周波電圧を印加してプラズマを発生させるプラズマ発生手段と、
前記プロセス用ガス又は搬送用ガスを被処理物に吹き付けることで、前記被処理物を浮上させて搬送する搬送手段とを有し、
前記第1及び前記第2の電極と、前記被処理物との相対位置を移動して、前記被処理物にエッチング処理、アッシング処理、又は薄膜の形成を行い、
前記第1の電極は、前記第2の電極の周囲を取り囲み、かつ、その先端にノズル状の前記ガスの供給口を有する円筒状であることを特徴とするプラズマ処理装置。
Gas supply means for introducing a process gas between the first and second electrodes under atmospheric pressure or near atmospheric pressure;
Plasma generation means for generating a plasma by applying a high-frequency voltage to the first or second electrode while the process gas is introduced,
By blowing the process gas or the carrier gas to the object to be processed, and having a conveyance means to float and convey the object to be processed,
The first and second electrodes and the relative position of the object to be processed are moved to perform an etching process, an ashing process, or a thin film on the object to be processed,
The plasma processing apparatus according to claim 1, wherein the first electrode surrounds the periphery of the second electrode, and has a cylindrical shape having a nozzle-shaped gas supply port at a tip thereof.
大気圧もしくは大気圧近傍圧力下で第1及び第2の電極間にプロセス用ガスを導入するガス供給手段と、
前記プロセス用ガスが導入された状態で、前記第1又は前記第2の電極に高周波電圧を印加してプラズマを発生させるプラズマ発生手段と、
前記プロセス用ガス又は搬送用ガスを被処理物に吹き付けることで、前記被処理物を浮上させて搬送する搬送手段とを有し、
前記第1及び前記第2の電極を用いて、部品のクリーニング処理を行い、
前記第1の電極は、前記第2の電極の周囲を取り囲み、かつ、その先端にノズル状の前記ガスの供給口を有する円筒状であることを特徴とするプラズマ処理装置。
Gas supply means for introducing a process gas between the first and second electrodes under atmospheric pressure or near atmospheric pressure;
Plasma generation means for generating a plasma by applying a high-frequency voltage to the first or second electrode while the process gas is introduced,
By blowing the process gas or the carrier gas to the object to be processed, and having a conveyance means to float and convey the object to be processed,
Performing a cleaning process on the component using the first and second electrodes;
The plasma processing apparatus according to claim 1, wherein the first electrode surrounds the periphery of the second electrode, and has a cylindrical shape having a nozzle-shaped gas supply port at a tip thereof.
請求項1乃至請求項4のいずれか一項において、前記搬送用ガスの吹き付けと吸引を同時に行うことにより、前記被処理物と前記第1及び前記第2の電極との距離を調整することを特徴とするプラズマ処理装置。   5. The method according to claim 1, wherein the distance between the workpiece and the first and second electrodes is adjusted by simultaneously spraying and suctioning the carrier gas. 6. Characteristic plasma processing apparatus. 請求項1乃至請求項4のいずれか一項において、前記プロセス用ガス及び前記搬送用ガスを加熱する加熱手段を有することを特徴とするプラズマ処理装置。   5. The plasma processing apparatus according to claim 1, further comprising a heating unit configured to heat the process gas and the carrier gas. 6. 請求項1乃至請求項4のいずれか一項において、前記第1及び前記第2の電極は前記搬送手段により外部と分離されることを特徴とするプラズマ処理装置。   5. The plasma processing apparatus according to claim 1, wherein the first and second electrodes are separated from the outside by the transfer unit. 6. 請求項1乃至請求項4のいずれか一項において、前記被処理物は、ガラス基板、樹脂基板及び半導体基板から選択された一つであることを特徴とするプラズマ処理装置。   5. The plasma processing apparatus according to claim 1, wherein the object to be processed is one selected from a glass substrate, a resin substrate, and a semiconductor substrate. 請求項1乃至請求項4のいずれか一項において、前記プロセス用ガスは、Sixy、SiHxClyの原料ガスと、水素、酸素、窒素のうちの一つと希ガスとの混合ガスであることを特徴とするプラズマ処理装置。 In any one of claims 1 to 4, wherein the process gas is, Si x H y, a mixed gas of the raw material gas of SiH x Cl y, hydrogen, oxygen, and one with a rare gas of nitrogen A plasma processing apparatus, characterized in that: 請求項1乃至請求項4のいずれか一項において、前記プロセス用ガスは、NF3、フロロカーボン、SF6、COxの原料ガスと、水素、酸素のうちの一つと希ガスとの混合ガスであることを特徴とするプラズマ処理装置。 5. The process gas according to claim 1, wherein the process gas is a mixed gas of a source gas of NF 3 , fluorocarbon, SF 6 , CO x , and one of hydrogen and oxygen and a rare gas. A plasma processing apparatus, comprising: 請求項1乃至請求項4のいずれか一項において、前記プロセス用ガスは、酸素と、水素、フロロカーボン、NF3、H2O、CHF3のうちの一つであることを特徴とするプラズマ処理装置。 5. The plasma processing according to claim 1, wherein the process gas is one of oxygen, hydrogen, fluorocarbon, NF 3 , H 2 O, and CHF 3. apparatus. 大気圧もしくは大気圧近傍圧力下で第1及び第2の電極間にプロセス用ガスを導入し、
前記プロセス用ガスが導入された状態で、前記第1又は前記第2の電極に高周波電圧を印加してプラズマを発生させ、
前記プロセス用ガス又は搬送用ガスを被処理物に吹き付けることで、前記被処理物を浮上させて搬送し、
前記第1及び前記第2の電極と、前記被処理物との相対位置を移動して、前記被処理物にエッチング処理、アッシング処理、又は薄膜の形成を行うことを特徴とするプラズマ処理方法。
Introducing a process gas between the first and second electrodes under atmospheric pressure or near atmospheric pressure;
In a state where the process gas is introduced, a high-frequency voltage is applied to the first or second electrode to generate plasma,
By blowing the process gas or the carrier gas onto the object, the object is levitated and conveyed,
A plasma processing method, wherein a relative position between the first and second electrodes and the object is moved to perform etching, ashing, or thin film formation on the object.
大気圧もしくは大気圧近傍圧力下で第1及び第2の電極間にプロセス用ガスを導入し、
前記プロセス用ガスが導入された状態で、前記第1又は前記第2の電極に高周波電圧を印加してプラズマを発生させ、
前記プロセス用ガス又は搬送用ガスを被処理物に吹き付けることで、前記被処理物を浮上させて搬送し、
前記第1及び前記第2の電極を用いて、部品のクリーニング処理を行うことを特徴とするプラズマ処理方法。
Introducing a process gas between the first and second electrodes under atmospheric pressure or near atmospheric pressure;
In a state where the process gas is introduced, a high-frequency voltage is applied to the first or second electrode to generate plasma,
By blowing the process gas or the carrier gas onto the object, the object is levitated and conveyed,
A plasma processing method comprising performing a component cleaning process using the first and second electrodes.
絶縁表面を有する基板上にゲート電極を形成し、
前記基板上にゲート絶縁膜を形成し、
前記ゲート絶縁膜上に非晶質半導体を形成し、
前記非晶質半導体を結晶化して結晶質半導体を形成し、
前記結晶質半導体上に絶縁膜を形成する薄膜トランジスタの作製方法において、
大気圧又は大気圧近傍圧力下で第1及び第2の電極間にプロセス用ガスを導入した状態で、前記第1又は前記第2の電極に高周波電圧を印加し、なお且つ前記第1及び前記第2の電極と前記基板の相対位置を移動して、前記ゲート電極、前記ゲート絶縁膜、前記非晶質半導体及び前記絶縁膜の形成を行うことを特徴とする薄膜トランジスタの作製方法。
Forming a gate electrode on a substrate having an insulating surface,
Forming a gate insulating film on the substrate,
Forming an amorphous semiconductor on the gate insulating film,
Crystallizing the amorphous semiconductor to form a crystalline semiconductor,
In a method for manufacturing a thin film transistor in which an insulating film is formed over the crystalline semiconductor,
With a process gas introduced between the first and second electrodes under atmospheric pressure or near atmospheric pressure, a high-frequency voltage is applied to the first or second electrode, and the first and second electrodes are applied. A method for manufacturing a thin film transistor, wherein a relative position between a second electrode and the substrate is moved to form the gate electrode, the gate insulating film, the amorphous semiconductor, and the insulating film.
絶縁表面を有する基板上にゲート電極を形成し、
前記基板上にゲート絶縁膜を形成し、
前記ゲート絶縁膜上に非晶質半導体を形成し、
前記非晶質半導体上に絶縁膜を形成する薄膜トランジスタの作製方法において、
大気圧又は大気圧近傍圧力下で第1及び第2の電極間にプロセス用ガスを導入した状態で、前記第1又は前記第2の電極に高周波電圧を印加し、なお且つ前記第1及び前記第2の電極と前記基板の相対位置を移動して、前記ゲート電極、前記ゲート絶縁膜、前記非晶質半導体及び前記絶縁膜の形成を行うことを特徴とする薄膜トランジスタの作製方法。


Forming a gate electrode on a substrate having an insulating surface,
Forming a gate insulating film on the substrate,
Forming an amorphous semiconductor on the gate insulating film,
In the method for manufacturing a thin film transistor in which an insulating film is formed over the amorphous semiconductor,
With a process gas introduced between the first and second electrodes under atmospheric pressure or near atmospheric pressure, a high-frequency voltage is applied to the first or second electrode, and the first and second electrodes are applied. A method for manufacturing a thin film transistor, wherein a relative position between a second electrode and the substrate is moved to form the gate electrode, the gate insulating film, the amorphous semiconductor, and the insulating film.


JP2003411169A 2002-12-10 2003-12-10 Plasma processing equipment Expired - Fee Related JP4789412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003411169A JP4789412B2 (en) 2002-12-10 2003-12-10 Plasma processing equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002358782 2002-12-10
JP2002358782 2002-12-10
JP2003411169A JP4789412B2 (en) 2002-12-10 2003-12-10 Plasma processing equipment

Publications (3)

Publication Number Publication Date
JP2004207708A true JP2004207708A (en) 2004-07-22
JP2004207708A5 JP2004207708A5 (en) 2006-11-16
JP4789412B2 JP4789412B2 (en) 2011-10-12

Family

ID=32828558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003411169A Expired - Fee Related JP4789412B2 (en) 2002-12-10 2003-12-10 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP4789412B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313669A (en) * 2005-05-06 2006-11-16 Sekisui Chem Co Ltd Plasma treatment method and plasma treatment device
JP2007194508A (en) * 2006-01-20 2007-08-02 Tokyo Electron Ltd Substrate transport device, substrate transport method, and computer program
JP2009152293A (en) * 2007-12-19 2009-07-09 Mitsubishi Electric Corp Thin film transistor, method for manufacturing the same, and display device
JP2010159164A (en) * 2008-12-12 2010-07-22 Tokyo Electron Ltd Vacuum processing device, vacuum processing system and processing method
KR101296659B1 (en) 2008-11-14 2013-08-14 엘지디스플레이 주식회사 Washing device
KR101760789B1 (en) * 2010-01-04 2017-07-24 마이어 버거 (저머니) 아게 Method for depositing multi-layered layers and/or gradient layers
KR20190128976A (en) * 2018-05-09 2019-11-19 캐논 톡키 가부시키가이샤 Substrate processing apparatus and manufacturing method of electronic component
JP2020184579A (en) * 2019-05-08 2020-11-12 日本電子株式会社 Gas levitation type transfer device and cleaning method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737251U (en) * 1980-08-13 1982-02-27
JPS5895550A (en) * 1982-11-01 1983-06-07 Shunpei Yamazaki Device for forming non-single crystal semiconductor layer
JPH10157851A (en) * 1996-12-02 1998-06-16 Ckd Corp Object-to-be-conveyed conveying method in floatation type conveying device and floatation type conveying device
JPH10178081A (en) * 1996-12-18 1998-06-30 Hitachi Ltd Method and system for fabricating semiconductor
JPH10275776A (en) * 1997-03-28 1998-10-13 Super Silicon Kenkyusho:Kk Semiconductor wafer manufacturing equipment
JP2001093871A (en) * 1999-09-24 2001-04-06 Tadahiro Omi Plasma arc cutting apparatus, manufacturing process and device
JP2001520320A (en) * 1997-10-20 2001-10-30 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Deposition of coatings using atmospheric pressure plasma jet
JP2002155371A (en) * 2000-11-15 2002-05-31 Sekisui Chem Co Ltd Method and system for manufacturing semiconductor device
JP2002237480A (en) * 2000-07-28 2002-08-23 Sekisui Chem Co Ltd Method of treating base material with discharge plasma

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737251U (en) * 1980-08-13 1982-02-27
JPS5895550A (en) * 1982-11-01 1983-06-07 Shunpei Yamazaki Device for forming non-single crystal semiconductor layer
JPH10157851A (en) * 1996-12-02 1998-06-16 Ckd Corp Object-to-be-conveyed conveying method in floatation type conveying device and floatation type conveying device
JPH10178081A (en) * 1996-12-18 1998-06-30 Hitachi Ltd Method and system for fabricating semiconductor
JPH10275776A (en) * 1997-03-28 1998-10-13 Super Silicon Kenkyusho:Kk Semiconductor wafer manufacturing equipment
JP2001520320A (en) * 1997-10-20 2001-10-30 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Deposition of coatings using atmospheric pressure plasma jet
JP2001093871A (en) * 1999-09-24 2001-04-06 Tadahiro Omi Plasma arc cutting apparatus, manufacturing process and device
JP2002237480A (en) * 2000-07-28 2002-08-23 Sekisui Chem Co Ltd Method of treating base material with discharge plasma
JP2002155371A (en) * 2000-11-15 2002-05-31 Sekisui Chem Co Ltd Method and system for manufacturing semiconductor device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313669A (en) * 2005-05-06 2006-11-16 Sekisui Chem Co Ltd Plasma treatment method and plasma treatment device
JP4733421B2 (en) * 2005-05-06 2011-07-27 積水化学工業株式会社 Plasma processing method and plasma processing apparatus
JP2007194508A (en) * 2006-01-20 2007-08-02 Tokyo Electron Ltd Substrate transport device, substrate transport method, and computer program
JP2009152293A (en) * 2007-12-19 2009-07-09 Mitsubishi Electric Corp Thin film transistor, method for manufacturing the same, and display device
KR101296659B1 (en) 2008-11-14 2013-08-14 엘지디스플레이 주식회사 Washing device
JP2010159164A (en) * 2008-12-12 2010-07-22 Tokyo Electron Ltd Vacuum processing device, vacuum processing system and processing method
KR101760789B1 (en) * 2010-01-04 2017-07-24 마이어 버거 (저머니) 아게 Method for depositing multi-layered layers and/or gradient layers
KR20190128976A (en) * 2018-05-09 2019-11-19 캐논 톡키 가부시키가이샤 Substrate processing apparatus and manufacturing method of electronic component
KR102496458B1 (en) 2018-05-09 2023-02-03 캐논 톡키 가부시키가이샤 Substrate processing apparatus and manufacturing method of electronic component
JP2020184579A (en) * 2019-05-08 2020-11-12 日本電子株式会社 Gas levitation type transfer device and cleaning method
JP7191764B2 (en) 2019-05-08 2022-12-19 日本電子株式会社 Gas floating transfer device and cleaning method

Also Published As

Publication number Publication date
JP4789412B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
US7064089B2 (en) Plasma treatment apparatus and method for plasma treatment
KR101061891B1 (en) How to make wiring
KR100386202B1 (en) Method for manufacturing a semiconductor device
KR100230485B1 (en) Semiconductor processing system
US7011866B1 (en) Method and apparatus for film deposition
KR101563136B1 (en) Laser processing apparatus and method for manufacturing semiconductor substrate
JP3161450B2 (en) Substrate processing apparatus, gas supply method, and laser light supply method
TWI613728B (en) Methods and apparatus for processing substrates using an ion shield
JPH08167596A (en) Plasma treatment device, plasma treatment method, and manufacture of semiconductor device
JP4789412B2 (en) Plasma processing equipment
JP3165324B2 (en) Method for manufacturing semiconductor device
US20210043757A1 (en) Plasma treatment on metal-oxide tft
JP3927634B2 (en) Laser annealing method and thin film transistor manufacturing method
JP4126517B2 (en) Vapor processing equipment
JP2004241769A (en) Method of framing resist pattern and method of manufacturing semiconductor device
JP4036278B2 (en) Ion doping equipment
KR20200096320A (en) High-K gate insulators for thin film transistors
WO2021015019A1 (en) Capacitor-forming system and capacitor-forming method
WO2003067643A1 (en) Etching method and etching apparatus
JP4391537B2 (en) Semiconductor device
JP2008098375A (en) Manufacturing method of semiconductor device, manufacturing method of electronic equipment, and semiconductor manufacturing apparatus
JP2000031081A (en) Fabrication of semiconductor device
JP2004119645A (en) Thin film transistor and method of manufacturing same
JP4585027B2 (en) Semiconductor device
JP3908905B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees