JP2006167925A - Conductive high corrosion-resistant material and its manufacturing method - Google Patents

Conductive high corrosion-resistant material and its manufacturing method Download PDF

Info

Publication number
JP2006167925A
JP2006167925A JP2004359149A JP2004359149A JP2006167925A JP 2006167925 A JP2006167925 A JP 2006167925A JP 2004359149 A JP2004359149 A JP 2004359149A JP 2004359149 A JP2004359149 A JP 2004359149A JP 2006167925 A JP2006167925 A JP 2006167925A
Authority
JP
Japan
Prior art keywords
intermediate layer
conductive
substrate
metal
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004359149A
Other languages
Japanese (ja)
Inventor
Shinichiro Mukohata
眞一郎 向畠
Kazato Yanada
風人 梁田
Hideki Nukui
秀樹 温井
Masafumi Oshima
雅史 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP2004359149A priority Critical patent/JP2006167925A/en
Publication of JP2006167925A publication Critical patent/JP2006167925A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive high corrosion-resistant material which is excellent in mass productivity, uses an inexpensive metal substrate, has excellent long-term corrosion resistance even in a corrosive environment and can hold high conductivity, and its manufacturing method. <P>SOLUTION: An inexpensive metal material is used as a substrate and, after the oxidized film layer on the surface of the substrate is removed, an intermediate layer having conductivity is provided on the surface of the substrate and a π-conjugated polymer film is formed on the upper surface of the intermediate layer. The intermediate layer comprises at least one resin, which is selected from the group consisting of a thermosetting resin, a thermoplastic resin and a photosetting resin and contains a conductive filler and the conductive filler comprises at least one component selected from the group consisting of a metal, an intermetallic compound, carbon, a metal carbide, a metal sulfide and a metal oxide. The π-conjugated conductive polymer film formed on the substrate, on which the intermediate layer is formed, as an upper layer is formed by an electrolytic polymerization method or by the electrolytic polymerization method after chemical polymerization. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、導電用高耐食材料およびその製造方法に関する。   The present invention relates to a conductive high corrosion-resistant material and a method for producing the same.

近年の特殊な有機合成プラント用構造材料、有機合成用の陽極材料、ターミナルや圧着端子等の給電用材料では、耐食性のみならず、優れた導電性を持つ材料が求められている。現在、このような要望に対しては、ハステロイ合金やモリブデン合金などに代表される耐食性合金、アモルファスカーボン材料、ステンレス鋼に貴金属めっき処理を施した材料、または耐食性合金めっき処理を施した材料などが提案されている。   Recent structural materials for organic synthesis plants, anode materials for organic synthesis, and power feeding materials such as terminals and crimp terminals are demanded not only for corrosion resistance but also for materials having excellent conductivity. Currently, in response to such demands, corrosion resistant alloys represented by Hastelloy alloys and molybdenum alloys, amorphous carbon materials, materials obtained by subjecting stainless steel to precious metal plating treatment, or materials subjected to corrosion resistance alloy plating treatment, etc. Proposed.

しかし、ステンレス鋼に貴金属あるいは耐食性合金めっきをした場合、ピンホールに起因する局部電池形成による腐食の問題があり、長期耐久性に劣る。また、耐食性合金は表面に絶縁性の不動態皮膜を形成することよって耐食性を向上させており、高い集電機能を求められるような用途に使用することができなかった。また、アモルファスカーボン材料は耐食性に優れ、高い電気伝導性をも有するが、製造に長期間を要する上に、機械加工性に劣るため複雑な形状の構造物には適応することが困難である。また、これらの耐食性合金やアモルファスカーボン材料は非常に高価であるといった問題点がある。   However, when precious metal or corrosion-resistant alloy plating is applied to stainless steel, there is a problem of corrosion due to local battery formation due to pinholes, and long-term durability is poor. In addition, the corrosion resistant alloy has improved corrosion resistance by forming an insulating passive film on the surface, and could not be used for applications requiring a high current collecting function. In addition, the amorphous carbon material has excellent corrosion resistance and high electrical conductivity. However, it takes a long time to manufacture, and it is difficult to adapt to a structure having a complicated shape because of poor machinability. Further, these corrosion resistant alloys and amorphous carbon materials have a problem that they are very expensive.

これらの問題に対して、安価な金属基体に導電性を持たせつつ、防食する様々な方法が提案されている。特許文献1では、金属基体上に、上側の層をより卑なNi層となるように、酸化還元電位が異なるNiめっき層を2層設け、さらにAuめっきを最上層に形成することによって、ピンホールに起因する孔食を防止し、寿命向上させた金属材料が開示されている。また、特許文献2では、金属基体上に、可溶性導電性高分子を含む溶液を浸漬または塗布、乾燥し、ドーパントを含む導電性高分子膜を形成することによって、長期間の耐食性を保持できる金属材料の防食方法が開示されている。   To solve these problems, various methods for preventing corrosion while providing conductivity to an inexpensive metal base have been proposed. In Patent Document 1, two Ni plating layers having different oxidation-reduction potentials are provided on a metal base so that the upper layer becomes a more basic Ni layer, and Au plating is further formed on the uppermost layer. A metal material that prevents pitting corrosion due to holes and has an improved life is disclosed. Further, in Patent Document 2, a metal that can maintain long-term corrosion resistance by immersing or coating a solution containing a soluble conductive polymer on a metal substrate, and drying to form a conductive polymer film containing a dopant. An anticorrosion method for the material is disclosed.

しかしながら、特許文献1の方法では、金めっき層と酸化還元電位が高いNiめっき層によって、卑なNiめっき層の自己犠牲によって金属基体を保護するために、酸化還元電位が低いNiめっき層は腐食が進行し続けるので、該Niめっき層の消失により、その効果も消え、長期に渡る耐食性が不十分である。また、特許文献2の方法では、導電性高分子に電気活性を与えるため、ドーパントとしてクエン酸やp−トルエンスルホン酸などの酸を含む酸性溶液中に基体を浸漬させることから、反応活性が高いAlなどの金属に適応した場合には、浸漬時に絶縁性の酸化皮膜が生成するため、基体と防食膜との導電性が不十分であるといった問題があった。   However, in the method of Patent Document 1, the Ni plating layer having a low oxidation-reduction potential is corroded in order to protect the metal substrate by self-sacrificing the base Ni plating layer by the gold plating layer and the Ni plating layer having a high oxidation-reduction potential. Since the Ni plating layer disappears, the effect disappears, and the corrosion resistance over a long period is insufficient. Further, in the method of Patent Document 2, since the substrate is immersed in an acidic solution containing an acid such as citric acid or p-toluenesulfonic acid as a dopant in order to impart electric activity to the conductive polymer, the reaction activity is high. When applied to a metal such as Al, an insulating oxide film is formed at the time of immersion, so that there is a problem that the conductivity between the substrate and the anticorrosion film is insufficient.

特開2001−234361号公報JP 2001-234361 A 特許第3129837号公報Japanese Patent No. 3129837

本発明は、量産性に優れた安価な金属基体を用いて、腐食環境でも長期間耐食性に優れ、かつ高い導電性を保持しうる導電用高耐食材料およびその製造方法を提供することを目的とする。   An object of the present invention is to provide a highly corrosion-resistant material for electroconductivity, which is excellent in long-term corrosion resistance even in a corrosive environment and can maintain high conductivity, and a method for producing the same, using an inexpensive metal substrate excellent in mass productivity. To do.

本発明者らは、鋭意研究を行った結果、金属材料からなる基体表面に、導電性を有する中間層を形成し、該中間層上にπ共役系導電性高分子を形成した構成からなる材料が、長期間に渡って耐食性と導電性とを保持しうることを見出し、本発明を完成するに至った。   As a result of intensive studies, the inventors have formed a material in which a conductive intermediate layer is formed on the surface of a substrate made of a metal material, and a π-conjugated conductive polymer is formed on the intermediate layer. However, the inventors have found that the corrosion resistance and the conductivity can be maintained over a long period of time, and have completed the present invention.

本発明は、以下、(1)から(8)の少なくとも1項から構成された導電用高耐食材料及びその製造方法である。   Hereinafter, the present invention is a highly corrosion-resistant conductive material composed of at least one item of (1) to (8) and a method for producing the same.

(1)金属材料からなる基体表面に、導電性を有する中間層が形成され、該中間層上にπ共役系導電性高分子が形成されていることを特徴とする導電用高耐食材料。   (1) A highly corrosion-resistant conductive material characterized in that a conductive intermediate layer is formed on the surface of a substrate made of a metal material, and a π-conjugated conductive polymer is formed on the intermediate layer.

(2)金属材料からなる基体がMg、Al、Ti、Zn、Fe、Mg基合金、Al基合金、Ti基合金、Zn基合金、Fe基合金からなる群から選ばれる少なくとも1種であることを特徴とする(1)に記載の導電用高耐食材料。   (2) The substrate made of a metal material is at least one selected from the group consisting of Mg, Al, Ti, Zn, Fe, Mg-based alloys, Al-based alloys, Ti-based alloys, Zn-based alloys, and Fe-based alloys. (1) The highly corrosion-resistant material for electric conduction according to (1).

(3)中間層上に形成されたπ共役系導電性高分子がポリピロールおよびその誘導体、ポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体からなる群から選ばれる少なくとも1つであることを特徴とする(1)〜(2)に記載の導電用高耐食材料。   (3) The π-conjugated conductive polymer formed on the intermediate layer is at least one selected from the group consisting of polypyrrole and derivatives thereof, polyaniline and derivatives thereof, polythiophene and derivatives thereof (1 The high corrosion-resistant material for electroconductivity as described in (2) to (2).

(4)導電性を有する中間層が導電性フィラーを含む熱硬化性樹脂、熱可塑性樹脂、光硬化性樹脂からなる群から選ばれる少なくとも1種であることを特徴とする(1)〜(3)に記載の導電用高耐食材料。   (4) The intermediate layer having conductivity is at least one selected from the group consisting of a thermosetting resin, a thermoplastic resin, and a photocurable resin containing a conductive filler (1) to (3) High corrosion resistance material for electric conduction as described in.

(5)導電性フィラーが金属、金属間化合物、カーボン、金属炭化物、金属硫化物、金属酸化物から選ばれる少なくとも1種からなることを特徴とする(1)〜(4)に記載の導電用高耐食材料。   (5) The conductive filler according to any one of (1) to (4), wherein the conductive filler comprises at least one selected from metals, intermetallic compounds, carbon, metal carbides, metal sulfides, and metal oxides. High corrosion resistance material.

(6)金属材料からなる基体表面の酸化皮膜層を除去する工程後に導電性を有する中間層が形成されていることを特徴とする(1)〜(5)に記載の導電用高耐食材料およびその製造方法。   (6) The conductive high corrosion-resistant material according to (1) to (5), wherein an intermediate layer having conductivity is formed after the step of removing the oxide film layer on the substrate surface made of a metal material, and Its manufacturing method.

(7)金属材料からなる基体表面の上層に形成されるπ共役系導電性高分子が、電解重合法によって形成されることを特徴とする(1)〜(6)に記載の導電用高耐食材料およびその製造方法。   (7) The high corrosion resistance for electrical conduction according to (1) to (6), wherein the π-conjugated conductive polymer formed on the upper surface of the substrate made of a metal material is formed by an electrolytic polymerization method Material and its manufacturing method.

(8)金属材料からなる基体表面の上層に形成されるπ共役系導電性高分子が、化学重合後に電解重合法によって形成されることを特徴とする(1)〜(6)のいずれかに記載の導電用高耐食材料およびその製造方法。   (8) In any one of (1) to (6), the π-conjugated conductive polymer formed in the upper layer of the substrate surface made of a metal material is formed by chemical polymerization after chemical polymerization The high corrosion-resistant material for electroconductivity of description and its manufacturing method.

本発明によれば、金属材料表面に導電性を有する中間層を形成した後、導電性高分子層を形成した構成とすることにより、金属基体の腐食を抑制でき、優れた導電用高耐食材料を提供することができる。また、導電性中間層を形成し、かつその上に導電性高分子膜を形成した構成にすることによって、導電性高分子膜形成時、あるいは腐食環境下において、金属基体の酸化皮膜形成が抑制され、長期に渡って基体−塗膜間の界面抵抗や表面抵抗が低い導電用高耐食材料が得られる。また、加工性の良い金属材料に安価で簡便な方法で塗膜できるため、生産性に優れた導電用高耐食材料及びその製造方法を提供することができる。   According to the present invention, by forming a conductive intermediate layer on the surface of a metal material and then forming a conductive polymer layer, corrosion of the metal substrate can be suppressed, and excellent high corrosion resistance material for conductivity. Can be provided. Also, by forming a conductive intermediate layer and forming a conductive polymer film on it, the formation of an oxide film on the metal substrate is suppressed during the formation of the conductive polymer film or in a corrosive environment. As a result, a highly corrosion-resistant material for electroconductivity having low interface resistance and surface resistance between the substrate and the coating film can be obtained over a long period of time. Moreover, since it can be coated on a metal material having good workability by an inexpensive and simple method, a highly corrosion-resistant conductive material having excellent productivity and a method for producing the same can be provided.

本発明を図面に基づいて説明をする。図1に示すように、金属材料からなる基体1を用意する。本発明の基体に用いる金属材料として安価な金属であるMg、Al、Ti、Zn、Feであることが好ましい。また、該金属を50原子%以上含む合金または金属間化合物または金属炭化物を用いても良い。安価なこれら合金、金属間化合物、金属炭化物としては、例えば、Mg基合金としては、Mg−Zn系合金、Mg−希土類元素系合金、Mg−Al−Zn系合金、Mg−Zn−Zr系合金などがあり、Al基合金としてはAl−Cu系合金、Al−Mn系合金、Al−Si系合金、Al−Mg系合金、Al−Mg−Si系合金、Al−Zn−Mg系合金などがあり、Ti基合金としては、Ti−Al系合金、Ti−Cu系合金、Ti−Pd系合金、Zn基合金としては、Zn−Al系合金、Zn−Cu系合金、Zn−Al−Cu系合金などがあり、Fe基合金としては、Fe−C系合金、Fe−Sn系合金などがあるが、加工性やコストの観点からAlまたはAl基合金を用いるのが特に好ましい。   The present invention will be described with reference to the drawings. As shown in FIG. 1, a base 1 made of a metal material is prepared. Mg, Al, Ti, Zn, and Fe, which are inexpensive metals, are preferable as the metal material used for the substrate of the present invention. Alternatively, an alloy, an intermetallic compound, or a metal carbide containing 50 atom% or more of the metal may be used. As these inexpensive alloys, intermetallic compounds, and metal carbides, for example, Mg-Zn alloys, Mg-rare earth elements alloys, Mg-Al-Zn alloys, Mg-Zn-Zr alloys as Mg-based alloys Al-based alloys include Al-Cu alloys, Al-Mn alloys, Al-Si alloys, Al-Mg alloys, Al-Mg-Si alloys, Al-Zn-Mg alloys, etc. Yes, Ti-based alloys include Ti-Al alloys, Ti-Cu alloys, Ti-Pd alloys, and Zn-based alloys include Zn-Al alloys, Zn-Cu alloys, Zn-Al-Cu alloys Examples of the Fe-based alloy include Fe-C alloys and Fe-Sn alloys. It is particularly preferable to use Al or an Al-based alloy from the viewpoint of workability and cost.

次いで、基体1の表面に生成している自然酸化皮膜を除去する。これら金属基体の自然酸化皮膜層を除去する方法としては、従来周知の方法が利用でき、例えば、湿式エッチング法、電解エッチング法、電解研磨法、機械的研磨法、逆スパッタリング法、ブラスト法、置換めっき法などがあるが、安価な機械的研磨法が好適である。この除去処理により接触抵抗を良好にし、また導電性中間層と基体との密着性も向上させる効果がある。   Next, the natural oxide film generated on the surface of the substrate 1 is removed. As a method for removing the natural oxide film layer of these metal bases, a conventionally known method can be used, for example, a wet etching method, an electrolytic etching method, an electrolytic polishing method, a mechanical polishing method, a reverse sputtering method, a blast method, a substitution method. Although there is a plating method, an inexpensive mechanical polishing method is preferable. This removal treatment has the effect of improving the contact resistance and improving the adhesion between the conductive intermediate layer and the substrate.

続いて、該基体表面に導電性中間層2を形成する。本発明では、π共役系導電性高分子形成時、金属基体に酸化皮膜が生成することを抑制するために導電性中間層2の形成を行う。使用できる金属基体としては、集電能を有する金属であれば用いることができるが、本発明では反応活性が高いMg、Al、Ti、Zn、Feやそれらを主成分とする合金になどに適応する場合に有効であり、特にMg、Al、Tiやそれらを主成分とする合金には効果を発揮する。すなわち、反応活性が高いMg、Al、Ti、Zn、Feなどの金属基体を電極として直接電解重合を行うと、該基体に導電性高分子層の形成と同時に絶縁性を有する酸化皮膜の生成も起こり、金属基体と導電性高分子層の界面抵抗が大きくなる。また、化学重合法を用いた場合においても、特に反応活性が高いMg、Al、Tiなどの金属を基体とする場合には、重合に使用する酸化剤溶液と金属基体が接触することにより、同様に酸化皮膜の生成が起こる。   Subsequently, the conductive intermediate layer 2 is formed on the surface of the substrate. In the present invention, when the π-conjugated conductive polymer is formed, the conductive intermediate layer 2 is formed in order to suppress the formation of an oxide film on the metal substrate. As a metal substrate that can be used, any metal having current collecting ability can be used. However, in the present invention, it is applicable to Mg, Al, Ti, Zn, Fe and alloys containing them as main components, which have high reaction activity. In particular, it is effective for Mg, Al, Ti and alloys containing them as a main component. That is, when direct polymerization is performed using a metal substrate such as Mg, Al, Ti, Zn, and Fe, which has high reaction activity, as an electrode, an electrically conductive polymer layer is formed on the substrate and an insulating oxide film is formed at the same time. As a result, the interface resistance between the metal substrate and the conductive polymer layer increases. In addition, even in the case of using a chemical polymerization method, when a metal such as Mg, Al, Ti or the like having a high reaction activity is used as a substrate, the same occurs when the oxidizer solution used for polymerization and the metal substrate are in contact Oxide film formation occurs.

この導電性中間層2は、導電用高耐食材料使用環境下において、基体表面に酸化皮膜または不動態皮膜の生成を抑制する作用効果を有する。   The conductive intermediate layer 2 has an effect of suppressing the formation of an oxide film or a passive film on the surface of the substrate in an environment where the conductive high corrosion-resistant material is used.

導電性中間層2としては、導電性フィラーを含む熱硬化性樹脂、熱可塑性樹脂、光硬化樹脂などがあげられるが、生産性や耐熱性、耐酸性の観点から導電性フィラーを含む熱硬化性樹脂を用いるのが好適である。熱硬化性樹脂としては、フェノール樹脂、ホルムアルデヒド樹脂、アミノ樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、アルキド樹脂、エポキシ樹脂、ケイ素樹脂、ポリウレタン樹脂およびその誘導体などがあげられるが、寸法精度の観点から収縮率の小さいエポキシ樹脂が好適である。また、熱可塑性樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリメチルペンテン樹脂、ポリ酢酸ビニル樹脂、AS樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、スチレンブタジエン樹脂、ポリエーテルイミド樹脂、ポリオレフィン樹脂などがあげられ、光硬化樹脂としてはアクリレート、エポキシアクリレート、ポリエステルアクリレート、ウレタンアクリレートなどがあげられる。   Examples of the conductive intermediate layer 2 include a thermosetting resin, a thermoplastic resin, and a photocurable resin containing a conductive filler. From the viewpoints of productivity, heat resistance, and acid resistance, a thermosetting resin containing a conductive filler is also included. It is preferable to use a resin. Examples of thermosetting resins include phenolic resins, formaldehyde resins, amino resins, unsaturated polyester resins, diallyl phthalate resins, alkyd resins, epoxy resins, silicon resins, polyurethane resins and derivatives thereof, but from the viewpoint of dimensional accuracy. An epoxy resin having a small shrinkage rate is suitable. Examples of the thermoplastic resin include polyethylene resin, polypropylene resin, polymethylpentene resin, polyvinyl acetate resin, AS resin, polystyrene resin, polycarbonate resin, styrene butadiene resin, polyetherimide resin, and polyolefin resin. Examples of the cured resin include acrylate, epoxy acrylate, polyester acrylate, and urethane acrylate.

また、上記導電性フィラーとしては金属、金属間化合物、カーボン、金属炭化物、金属硫化物、金属酸化物を用いることができ、例えば、C、Co、Ni、Fe、Cu、Zn、Zr、Nb、Mo、Ru、Rh、Pd、Ag、In、Sn、Ta、W、Ir、Pt、Au、ステンレス鋼、ハステロイ合金、TiCu、NiMo、NiMo、CoC、MoC、WC、In、NbS、NiTi、RuO、In−SnO、ZnO−Al、SnO−Sb、SnO−Fなどがあげられる。この中でも電解重合時に、酸化皮膜または不動態皮膜が生成し難いC、Co、Ni、Cu、Ru、Rh、Pd、Ag、Ir、Pt、Au、ステンレス鋼を用いることが好ましく、C、Co、Ni、Cu、Ag、Au、ステンレス鋼が安価で生産性が高くより好ましい。 The conductive filler may be a metal, an intermetallic compound, carbon, a metal carbide, a metal sulfide, or a metal oxide. For example, C, Co, Ni, Fe, Cu, Zn, Zr, Nb, Mo, Ru, Rh, Pd, Ag, In, Sn, Ta, W, Ir, Pt, Au, stainless steel, Hastelloy alloy, Ti 2 Cu, Ni 4 Mo, Ni 3 Mo, Co 2 C, Mo 2 C, W 3 C, such as In 2 S 2, NbS 2, NiTi 3 S 6, RuO 2, In 2 O 3 -SnO 2, ZnO-Al 2 O 3, SnO 2 -Sb 2 O 3, SnO 2 -F is mentioned It is done. Among these, it is preferable to use C, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, Au, and stainless steel, which are unlikely to form an oxide film or a passive film during electrolytic polymerization, and C, Co, Ni, Cu, Ag, Au, and stainless steel are more preferable because they are inexpensive and have high productivity.

導電性フィラーを含む熱硬化性樹脂、熱可塑性樹脂、光硬化樹脂などの導電性中間層として、一般的に市販されている導電性ペーストを使用しても良い。例えば、Agペースト、Cuペースト、Ptペースト、Niペースト、Auペースト、Cペースト、Ag−Cペーストなどが使用できる。   As a conductive intermediate layer such as a thermosetting resin, a thermoplastic resin, or a photocurable resin containing a conductive filler, a commercially available conductive paste may be used. For example, Ag paste, Cu paste, Pt paste, Ni paste, Au paste, C paste, Ag-C paste, etc. can be used.

導電性中間層の形成法は、従来周知の方法が利用できる。例えば、スクリーン印刷法、ディップコート法、ロールコート法、噴霧法、カーテンフローコート法、スピンコート法、バーコート法、ドクターブレード法等、刷毛塗布法などがあり、簡便で生産性が高いディップコート法が好ましく、硬化法は各樹脂に最適な乾燥や紫外線などによる光照射などの方法を選択すれば良い。   A conventionally well-known method can be used as a method for forming the conductive intermediate layer. For example, there are screen printing methods, dip coating methods, roll coating methods, spraying methods, curtain flow coating methods, spin coating methods, bar coating methods, doctor blade methods, brush coating methods, etc., which are simple and highly productive dip coatings. The curing method is preferably selected, and a curing method such as drying or light irradiation with ultraviolet rays may be selected.

また、導電性中間層を形成する前に、基体にプレス加工等の曲げ加工により、目的とする成型を行うことによって、複雑な形状でも、導電性中間層およびπ共役系導電性高分子膜を損傷することなく、該導電性中間層および該π共役系導電性高分子膜の効果を確実に得ることができる。但し、導電性中間層に導電性フィラーを含む熱可塑性樹脂を用いて、熱間プレス加工を行う場合にはこの限りではない。なお、導電性中間層およびπ共役系導電性高分子膜の形成に関し、上記のように導電中間層を形成後に電解重合を行えば、基体表面が凹凸状態であっても均一に導電性中間層およびπ共役系導電性高分子膜を形成することが可能となり、安定した耐食性および導電特性を得ることができる。   In addition, the conductive intermediate layer and the π-conjugated conductive polymer film can be formed in a complicated shape by forming the target by bending the substrate, such as pressing, before forming the conductive intermediate layer. The effects of the conductive intermediate layer and the π-conjugated conductive polymer film can be reliably obtained without being damaged. However, this is not the case when hot pressing is performed using a thermoplastic resin containing a conductive filler in the conductive intermediate layer. In addition, regarding the formation of the conductive intermediate layer and the π-conjugated conductive polymer film, if the electropolymerization is performed after the formation of the conductive intermediate layer as described above, the conductive intermediate layer can be uniformly formed even if the substrate surface is uneven. And π-conjugated conductive polymer film can be formed, and stable corrosion resistance and conductive characteristics can be obtained.

次に、導電性中間層2を設けた基体1にπ共役系導電性高分子膜3を形成する。本発明の導電性高分子形成方法としては、電解重合法が好ましい。電解重合法で得られるπ共役系導電性高分子膜は、緻密で規則性が高いため高い電気伝導度を有する。その結果、耐食性に優れ、接触抵抗が良好となる膜が基体上層に形成されることになる。電解重合法としては、導電性高分子モノマーと支持電解質を含んだ溶液中で、導電性中間層を陽極として電解することにより、該基体上層にπ共役系導電性高分子膜を形成することができる。   Next, a π-conjugated conductive polymer film 3 is formed on the substrate 1 provided with the conductive intermediate layer 2. As the conductive polymer forming method of the present invention, an electrolytic polymerization method is preferable. Since the π-conjugated conductive polymer film obtained by the electrolytic polymerization method is dense and highly regular, it has high electrical conductivity. As a result, a film having excellent corrosion resistance and good contact resistance is formed on the upper layer of the substrate. As the electrolytic polymerization method, a π-conjugated conductive polymer film can be formed on the upper layer of the substrate by electrolysis using a conductive intermediate layer as an anode in a solution containing a conductive polymer monomer and a supporting electrolyte. it can.

しかし、本電解重合法は該中間層を陽極としてπ共役系導電性高分子膜を形成する方法であるために、MoやWなどのような、耐食性には優れる反面、溶液中で電解中に発生した酸素と反応し酸化皮膜あるいは不動態皮膜を形成しやすい金属や合金を導電性フィラーに用いた場合には、接触抵抗値が高くなってしまうことがある。そのような場合には、図3に示したように、導電性中間層2を形成した後、化学重合法を用いて薄いπ共役系導電性高分子層4を設け、該π共役系導電性高分子層4を陽極として電解重合し、電解重合導電性高分子層3を形成することが好ましい。   However, since this electrolytic polymerization method is a method of forming a π-conjugated conductive polymer film using the intermediate layer as an anode, it is excellent in corrosion resistance, such as Mo and W, while it is electrolyzed in a solution. When a metal or alloy that reacts with the generated oxygen and easily forms an oxide film or a passive film is used for the conductive filler, the contact resistance value may increase. In such a case, as shown in FIG. 3, after forming the conductive intermediate layer 2, a thin π-conjugated conductive polymer layer 4 is provided using a chemical polymerization method, and the π-conjugated conductive property is provided. It is preferable to perform electropolymerization using the polymer layer 4 as an anode to form the electropolymerized conductive polymer layer 3.

上記化学重合法としては、導電性中間層2形成後の基体表面上でπ共役系導電性高分子モノマーと酸化剤溶液を接触させることで、π共役系導電性高分子膜を形成することができる。しかし、一般に化学重合で得られるπ共役系導電性高分子膜は、多孔質な微粒子からなり、緻密な膜でなく、電気電導性に劣る。そのため、化学重合後に電解重合法により、緻密で高い電気伝導度を有するπ共役系導電性高分子膜を形成する必要がある。   As the chemical polymerization method, a π-conjugated conductive polymer film can be formed by bringing a π-conjugated conductive polymer monomer and an oxidant solution into contact with each other on the surface of the substrate after the formation of the conductive intermediate layer 2. it can. However, a π-conjugated conductive polymer film generally obtained by chemical polymerization is composed of porous fine particles, is not a dense film, and is inferior in electrical conductivity. Therefore, it is necessary to form a π-conjugated conductive polymer film having a dense and high electric conductivity by chemical polymerization after chemical polymerization.

形成するπ共役系導電性高分子としては、ポリピロールならびにその誘導体、ポリチオフェンならびにその誘導体、ポリアニリンならびにその誘導体等、ポリフェニレンならびにその誘導体、ポリアセチレンならびにその誘導体、ポリフランならびにその誘導体、ポリフェニレンビニレンならびにその誘導体、ポリアセンならびにその誘導体、ポリアズレンならびにその誘導体があげられるが、特に、耐食性および電気伝導度に優れるポリピロールならびにその誘導体、ポリチオフェンならびにその誘導体、ポリアニリンならびにその誘導体が好ましい。   Examples of the π-conjugated conductive polymer to be formed include polypyrrole and derivatives thereof, polythiophene and derivatives thereof, polyaniline and derivatives thereof, polyphenylene and derivatives thereof, polyacetylene and derivatives thereof, polyfuran and derivatives thereof, polyphenylene vinylene and derivatives thereof, polyacene In addition, polypyrrole and derivatives thereof, polythiophene and derivatives thereof, polyaniline and derivatives thereof are particularly preferable.

該π共役系導電性高分子膜は、導電性中間層に欠陥がある場合には該高分子膜に含まれるドーパントを放出することによって、部分的に自己不動態化し、局部電池形成を抑制する作用も持つ。   When the conductive intermediate layer has a defect, the π-conjugated conductive polymer film is partially self-passivated by releasing the dopant contained in the polymer film, thereby suppressing local battery formation. It also has an effect.

図2に示すように、燃料電池セルとしてスタッキングされたとき、セパレータと電極が良好な接触抵抗を示すためには、基体上層に設けられるπ共役系導電性高分子膜の電気伝導度として0.1S/cm以上の物性が好ましい。これ以下であると接触抵抗値が増大し不適である。   As shown in FIG. 2, in order to show good contact resistance between the separator and the electrode when stacked as a fuel cell, the electrical conductivity of the π-conjugated conductive polymer film provided on the upper layer of the substrate is 0. A physical property of 1 S / cm or more is preferable. If it is less than this, the contact resistance value increases, which is not suitable.

また、π共役系導電性高分子にドーパントが含有されることによって電気伝導性が発現するが、該ドーパントは、陰イオンまたは陽イオンである。そのため、金属からなる導電性フィラーが腐食し、金属陽イオンとなっても、該π共役系導電性高分子膜に捕集されるために、プロトン伝導性電解質膜に悪影響を与えることを防ぐ効果も併せ持つ。   Moreover, although electrical conductivity is expressed when a dopant is contained in the π-conjugated conductive polymer, the dopant is an anion or a cation. Therefore, even if the conductive filler made of metal corrodes and becomes a metal cation, it is trapped in the π-conjugated conductive polymer film, thereby preventing the proton conductive electrolyte film from being adversely affected. Also has.

このように形成されたπ共役系導電性高分子膜は従来のめっき法などとは異なり、均一でピンホールがなく、耐食性および電気伝導性に優れる有機高分子膜を形成することができる。   Unlike the conventional plating method, the π-conjugated conductive polymer film formed in this way can form an organic polymer film that is uniform and free of pinholes and is excellent in corrosion resistance and electrical conductivity.

以上示した方法によって、金属基体に導電性中間層を形成後に、π共役系導電性高分子膜を形成することにより、導電性と耐食性に優れた材料を製造することができる。   By forming the π-conjugated conductive polymer film after forming the conductive intermediate layer on the metal substrate by the method described above, a material having excellent conductivity and corrosion resistance can be manufactured.

以下、本発明を実施例に基づいてより詳細に説明するが、本発明は実施例によりなんら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited at all by the Example.

実施例1
金属基体としてAl合金6063を用いた。Al合金6063は大きさが20×30mm、厚さが1mmの冷間圧延材である。本基体の自然酸化膜を除去するために、2質量%フッ酸水溶液に1分間浸漬後、エタノールで洗浄し、窒素ガスにて十分に乾燥させた。
Example 1
Al alloy 6063 was used as the metal substrate. The Al alloy 6063 is a cold rolled material having a size of 20 × 30 mm and a thickness of 1 mm. In order to remove the natural oxide film of the substrate, the substrate was immersed in a 2% by mass hydrofluoric acid aqueous solution for 1 minute, washed with ethanol, and sufficiently dried with nitrogen gas.

酢酸エチルにて粘度を調整された、市販されている藤倉化成株式会社製の銀ペーストであるD−500からなる導電性中間層溶液中に、プレス加工が施された基体を浸漬させ、1mm/sの速度にて引き上げて、約5μm厚みの導電性中間層を塗布し、続いて150℃の乾燥機中にて30分間乾燥行い、導電性中間層を形成させた。   A substrate subjected to press working is immersed in a conductive intermediate layer solution made of D-500, which is a commercially available silver paste manufactured by Fujikura Kasei Co., Ltd., whose viscosity is adjusted with ethyl acetate. The conductive intermediate layer having a thickness of about 5 μm was applied at a speed of s, followed by drying in a dryer at 150 ° C. for 30 minutes to form a conductive intermediate layer.

次に、電解重合法によってπ共役系導電性高分子膜を形成した。溶媒を純水として、モノマーとしてピロール0.45mol/L、支持電解質としてサリチル酸ナトリウム0.20mol/Lを含む電解液を用いて、導電性中間層を陽極、SUS304を陰極、電解重合時間は1時間、電流密度を5mA/cmとして電解重合を行い、ポリピロール膜を形成し、導電用高耐食材料を10枚作製した。 Next, a π-conjugated conductive polymer film was formed by electrolytic polymerization. Using a pure water solvent, an electrolyte containing 0.45 mol / L of pyrrole as a monomer and 0.20 mol / L of sodium salicylate as a supporting electrolyte, the conductive intermediate layer is an anode, SUS304 is a cathode, and the electropolymerization time is 1 hour Then, electrolytic polymerization was carried out at a current density of 5 mA / cm 2 to form a polypyrrole film, and 10 conductive highly corrosion-resistant materials were produced.

実施例2
金属基体としてZn合金ZDC1を用いた。Zn合金ZDC1は大きさが20×30mm、厚さが1mmの圧延材である。本基体の自然酸化膜を除去するために、ガラスビーズを用いたサンドブラスト法によって除去後、エタノールで洗浄し、窒素ガスにて十分に乾燥させた。
Example 2
Zn alloy ZDC1 was used as the metal substrate. The Zn alloy ZDC1 is a rolled material having a size of 20 × 30 mm and a thickness of 1 mm. In order to remove the natural oxide film of the substrate, it was removed by sand blasting using glass beads, washed with ethanol, and sufficiently dried with nitrogen gas.

エタノールにて粘度を調整された、一般的に市販されているテクノアルファ株式会社製の銀ペーストである175からなる導電性中間層溶液をバーコート法によって、約10μm厚みの導電性中間層を塗布し、続いて150℃の乾燥機中にて10分間の乾燥後、室温にまで冷却して導電性中間層を形成させた。   A conductive intermediate layer solution consisting of 175, a silver paste manufactured by Techno Alpha Co., Ltd., which is generally marketed and adjusted in viscosity, is coated with a conductive intermediate layer having a thickness of about 10 μm by the bar coating method. Subsequently, after drying for 10 minutes in a dryer at 150 ° C., the mixture was cooled to room temperature to form a conductive intermediate layer.

次に、化学重合法によってπ共役系導電性高分子膜を形成した。導電性中間層を形成した基体に、噴霧法によって均一にピロールモノマーを塗布後、エタノール/水混合溶媒中に、酸化剤としてペルオキソ二硫酸アンモニウム0.20mol/L、ドーパントとしてドデシルベンゼンスルホン酸ナトリウム0.20mol/Lを溶解し、アンモニア水によってpHを7に調整した酸化剤溶液を噴霧法によって吹きかけることによって、ポリピロール膜を形成した。   Next, a π-conjugated conductive polymer film was formed by chemical polymerization. After the pyrrole monomer is uniformly applied to the substrate on which the conductive intermediate layer has been formed by a spraying method, 0.20 mol / L of ammonium peroxodisulfate as an oxidant and sodium dodecylbenzenesulfonate as a dopant in an ethanol / water mixed solvent The polypyrrole film | membrane was formed by spraying the oxidizing agent solution which melt | dissolved 20 mol / L and adjusted pH to 7 with the aqueous ammonia by the spraying method.

続いて、先に化学重合法によって形成したポリピロール膜を電極として電解重合法によってπ共役系導電性高分子膜を形成した。溶媒を純水として、モノマーとしてピロール0.45mol/L、支持電解質としてサリチル酸ナトリウム0.20mol/Lを含む電解液を用いて、導電性中間層を陽極、SUS304を陰極、電解重合時間は1時間、電流密度を5mA/cmとして電解重合を行い、ポリピロール膜を形成し、導電用高耐食材料を10枚作製した。 Subsequently, a π-conjugated conductive polymer film was formed by electrolytic polymerization using the polypyrrole film previously formed by chemical polymerization as an electrode. Using a pure water solvent, an electrolyte containing 0.45 mol / L of pyrrole as a monomer and 0.20 mol / L of sodium salicylate as a supporting electrolyte, the conductive intermediate layer is an anode, SUS304 is a cathode, and the electropolymerization time is 1 hour Then, electrolytic polymerization was carried out at a current density of 5 mA / cm 2 to form a polypyrrole film, and 10 conductive highly corrosion-resistant materials were produced.

実施例3
金属基体としてTi−6Al−4V合金を用いた。Ti−6Al−4V合金は大きさが20×30mm、厚さが1mmの冷間圧延材である。本基体の自然酸化膜を除去するために、2質量%フッ酸水溶液に1分間浸漬後、エタノールで洗浄し、窒素ガスにて十分に乾燥させた。
Example 3
Ti-6Al-4V alloy was used as the metal substrate. The Ti-6Al-4V alloy is a cold rolled material having a size of 20 × 30 mm and a thickness of 1 mm. In order to remove the natural oxide film of the substrate, the substrate was immersed in a 2% by mass hydrofluoric acid aqueous solution for 1 minute, washed with ethanol, and sufficiently dried with nitrogen gas.

酢酸エチルにて粘度を調整された、一般的に市販されている藤倉化成株式会社製の銀ペーストであるD−500からなる導電性中間層溶液中に、基体を浸漬させ、1mm/sの速度にて引き上げて、約5μm厚みの導電性中間層を塗布し、続いて150℃の乾燥機中にて30分間乾燥行い、導電性中間層を形成させた。   The substrate is immersed in a conductive intermediate layer solution consisting of D-500, a silver paste manufactured by Fujikura Kasei Co., Ltd., which is generally marketed and adjusted in viscosity with ethyl acetate, and has a speed of 1 mm / s. And a conductive intermediate layer having a thickness of about 5 μm was applied, followed by drying in a dryer at 150 ° C. for 30 minutes to form a conductive intermediate layer.

次に、電解重合法によってπ共役系導電性高分子膜を形成する。溶媒をエタノールとして、モノマーとして3,4−エチレンジオキシチオフェン0.40mol/L、支持電解質としてドデシルベンゼンスルホン酸ナトリウム0.30mol/Lを含む電解液を用いて、導電性中間層を陽極、SUS304を陰極、電解重合時間は1時間、電流密度を0.25mA/cmとして電解重合を行い、3,4−エチレンジオキシチオフェン膜を形成し、導電用高耐食材料を10枚作製した。 Next, a π-conjugated conductive polymer film is formed by electrolytic polymerization. Using an electrolytic solution containing ethanol as a solvent, 0.40 mol / L of 3,4-ethylenedioxythiophene as a monomer, and 0.30 mol / L of sodium dodecylbenzenesulfonate as a supporting electrolyte, the conductive intermediate layer is an anode, SUS304 The cathode was subjected to electropolymerization with an electropolymerization time of 1 hour and a current density of 0.25 mA / cm 2 to form a 3,4-ethylenedioxythiophene film, and 10 high-corrosion-resistant materials for conduction were produced.

実施例4
金属基体としてMg合金AZ91Dを用いた。Mg合金AZ91Zは大きさが20×30mm、厚さが1mmの冷間圧延材である。本基体の自然酸化膜を除去するために、5質量%塩酸水溶液に1分間浸漬後、エタノールで洗浄し、窒素ガスにて十分に乾燥させた。
Example 4
Mg alloy AZ91D was used as the metal substrate. The Mg alloy AZ91Z is a cold rolled material having a size of 20 × 30 mm and a thickness of 1 mm. In order to remove the natural oxide film of the substrate, the substrate was immersed in a 5 mass% hydrochloric acid aqueous solution for 1 minute, washed with ethanol, and sufficiently dried with nitrogen gas.

2−(2−n−ブトキシエトキシ)エタノールにて粘度を調整された、一般的に市販されているタツタシステム・エレクトロニクス株式会社製の銅ペーストであるTH9910からなる導電性中間層溶液中に、プレス加工が施された基体を浸漬させ、1mm/sの速度にて引き上げて、約8μm厚みの導電性中間層を塗布し、続いて150℃の乾燥機中にて30分間乾燥行い、導電性中間層を形成させた。   In a conductive intermediate layer solution consisting of TH9910, a copper paste manufactured by Tatsuta System Electronics Co., Ltd., which is generally marketed and adjusted in viscosity with 2- (2-n-butoxyethoxy) ethanol The processed substrate is dipped, pulled up at a speed of 1 mm / s, and a conductive intermediate layer having a thickness of about 8 μm is applied, followed by drying in a dryer at 150 ° C. for 30 minutes. Layers were formed.

次に、電解重合法によってπ共役系導電性高分子膜を形成した。溶媒を純水として、モノマーとしてピロール0.45mol/L、支持電解質としてp−フェノールスルホン酸ナトリウム0.20mol/Lを含む電解液を用いて、導電性中間層を陽極、SUS304を陰極、電解重合時間は1時間、電流密度を5mA/cmとして電解重合を行い、ポリピロール膜を形成し、導電用高耐食材料を10枚作製した。 Next, a π-conjugated conductive polymer film was formed by electrolytic polymerization. Using an electrolytic solution containing 0.45 mol / L of pyrrole as a monomer and 0.20 mol / L of sodium p-phenolsulfonate as a supporting electrolyte, the conductive intermediate layer is an anode, SUS304 is a cathode, and electropolymerization is performed using pure water as a solvent and 0.45 mol / L as a supporting electrolyte The time was 1 hour, the current density was 5 mA / cm 2 , electropolymerization was performed to form a polypyrrole film, and 10 high corrosion-resistant materials for conduction were produced.

実施例5
金属基体として炭素鋼SS330を用いた。炭素鋼SS330は大きさが20×30mm、厚さが1mmの冷間圧延材である。本基体の自然酸化膜を除去するために、2質量%フッ酸水溶液に1分間浸漬後、エタノールで洗浄し、窒素ガスにて十分に乾燥させた。
Example 5
Carbon steel SS330 was used as the metal substrate. The carbon steel SS330 is a cold rolled material having a size of 20 × 30 mm and a thickness of 1 mm. In order to remove the natural oxide film of the substrate, the substrate was immersed in a 2% by mass hydrofluoric acid aqueous solution for 1 minute, washed with ethanol, and sufficiently dried with nitrogen gas.

酢酸ブチルにて粘度を調整された、一般的に市販されている日本黒鉛商事株式会社製のカーボンペーストであるバニーハイトFからなる導電性中間層溶液中に基体を浸漬させ、1mm/sの速度にて引き上げて、約2μm厚みの導電性中間層を塗布し、続いて150℃の乾燥機中にて30分間乾燥行い、導電性中間層を形成させた。   The substrate is immersed in a conductive intermediate layer solution made of bunny height F, which is a carbon paste manufactured by Nippon Graphite Trading Co., Ltd., whose viscosity is adjusted with butyl acetate, and the speed is 1 mm / s. Then, a conductive intermediate layer having a thickness of about 2 μm was applied, followed by drying in a dryer at 150 ° C. for 30 minutes to form a conductive intermediate layer.

次に、電解重合法によってπ共役系導電性高分子膜を形成した。溶媒を純水とし、硫酸によってpH3に調整し、モノマーとしてアニリン0.30mol/L、支持電解質としてテトラエチルアンモニウムドデシルベンゼンスルホン酸0.20mol/Lを含む電解液を用いて、導電性中間層を陽極、SUS304を陰極、電解重合時間は1時間、電流密度を5mA/cmとして電解重合を行い、ポリアニリン膜を形成し、導電用高耐食材料を10枚作製した。 Next, a π-conjugated conductive polymer film was formed by electrolytic polymerization. The solvent is pure water, the pH is adjusted to 3 with sulfuric acid, and an electrolysis intermediate layer is formed by using an electrolyte containing 0.30 mol / L of aniline as a monomer and 0.20 mol / L of tetraethylammonium dodecylbenzenesulfonic acid as a supporting electrolyte. SUS304 was used as the cathode, the electropolymerization time was 1 hour, the current density was 5 mA / cm 2 , the electropolymerization was carried out to form a polyaniline film, and 10 conductive highly corrosion-resistant materials were produced.

比較例1
特開2001−234361号公報に準じて、金属基体として純度99.6%のCu板(20×30mm、厚さが1mm)を用いた。本基体をアルカリ脱脂液にて脱脂、続いて希硝酸にて酸洗後、めっき基体として供した。まず、硫酸ニッケル6水和物1.00mol/L、塩化ニッケル6水和物0.25mol/L、ホウ酸0.65mol/Lとする塩化ニッケルを多く含むワット浴を用いて、電流密度100mA/cm、浴温度50℃にて硫黄含有率の低い第1Niめっき層を形成した。続いて、硫酸ニッケル6水和物1.2mol/L、塩化ニッケル6水和物0.19mol/L、ホウ酸0.65mol/L、1,5‐ナフタリンジスルホン酸ナトリウム2.33×10−2mol/L、チオ尿素1.31×10−3mol/Lとするワット浴を用いて、電流密度100mA/cm、浴温度50℃にて、第2Niめっき層を形成した。次に、市販のシアン金めっき浴を用いて、電流密度100mA/cm、浴温度30℃にて、金めっき層を形成した材料を10枚作製した。
Comparative Example 1
In accordance with Japanese Patent Laid-Open No. 2001-234361, a 99.6% pure Cu plate (20 × 30 mm, thickness 1 mm) was used as the metal substrate. The substrate was degreased with an alkaline degreasing solution, subsequently pickled with dilute nitric acid, and then used as a plating substrate. First, using a watt bath containing a large amount of nickel chloride, nickel sulfate hexahydrate 1.00 mol / L, nickel chloride hexahydrate 0.25 mol / L, boric acid 0.65 mol / L, current density 100 mA / A first Ni plating layer having a low sulfur content was formed at cm 2 and a bath temperature of 50 ° C. Subsequently, nickel sulfate hexahydrate 1.2 mol / L, nickel chloride hexahydrate 0.19 mol / L, boric acid 0.65 mol / L, sodium 1,5-naphthalene disulfonate 2.33 × 10 −2 A second Ni plating layer was formed at a current density of 100 mA / cm 2 and a bath temperature of 50 ° C. using a Watt bath having mol / L and thiourea of 1.31 × 10 −3 mol / L. Next, using a commercially available cyan gold plating bath, 10 materials having a gold plating layer formed at a current density of 100 mA / cm 2 and a bath temperature of 30 ° C. were produced.

比較例2
特開平4−1562232号公報に準じて、純水150gにアニリン9.3gを加えて、0〜10℃に保ちながら36質量%過硫酸アンモニウム水溶液を滴下させて化学重合させ、アンモニア水によって脱ドーピングし、銅色の可溶性ポリアニリン8.3gを得た。メタノール200ml中に該ポリアニリンを分散させながらヒドラジン一水和物20gを加え15時間攪拌し、可溶性の灰青色ポリアニリン7.5gを得た。それをクエン酸3.5質量%およびポリアニリン5.0質量%となるようにN−メチル−2−ピロリドンに溶解し、ドーパントを含むポリアニリン溶液を得た。
Comparative Example 2
According to Japanese Patent Laid-Open No. 4-1562322, 9.3 g of aniline is added to 150 g of pure water, and a 36% by mass aqueous ammonium persulfate solution is dropped while keeping the temperature at 0 to 10 ° C., followed by de-doping with ammonia water. 8.3 g of copper-soluble soluble polyaniline was obtained. While dispersing the polyaniline in 200 ml of methanol, 20 g of hydrazine monohydrate was added and stirred for 15 hours to obtain 7.5 g of a soluble grayish blue polyaniline. It was dissolved in N-methyl-2-pyrrolidone so as to be 3.5% by mass of citric acid and 5.0% by mass of polyaniline to obtain a polyaniline solution containing a dopant.

金属基体として純度99.6%のAl板(20×30mm、厚さが1mm)を用いた。本基体をアルカリ脱脂液にて脱脂、続いて2質量%フッ酸水溶液に1分間浸漬後、得られたポリアニリン溶液に、浸漬した後に、温度130℃で1時間乾燥し、深緑色のドーパントを含むポリアニリン皮膜を形成させた材料を10枚作製した。   An Al plate (20 × 30 mm, thickness 1 mm) having a purity of 99.6% was used as the metal substrate. The substrate is degreased with an alkaline degreasing solution, subsequently immersed in a 2% by mass hydrofluoric acid aqueous solution for 1 minute, then immersed in the obtained polyaniline solution, and then dried at a temperature of 130 ° C. for 1 hour to contain a dark green dopant. Ten materials on which a polyaniline film was formed were prepared.

以上において実施例で作製した導電用高耐食材料と比較例に対して、JIS−Z2371に準じた塩水噴霧試験を90日間行い、外観検査法により耐食性を比較した結果を表1に示す。また集電特性を調べるために、塩水噴霧試験後の試験片に対して、4端子測定法により体積抵抗を比較した結果を表2に示す。   Table 1 shows the results of performing a salt spray test in accordance with JIS-Z2371 for 90 days on the highly corrosion-resistant material for conduction and the comparative example prepared in the above examples and comparing the corrosion resistance by an appearance inspection method. Table 2 shows the results of comparing the volume resistance of the test piece after the salt spray test by the four-terminal measurement method in order to investigate the current collection characteristics.

表1の結果によれば、本発明にかかる各材料は、塩水噴霧試験2160時間後においても外観が変化することなく、優れた耐食性を有することが認められた。これに対し、同様に塩水噴霧試験を行った比較例1で作製した材料は、264時間後に緑錆が発生し、基体の防食性に対して効果がないことが認められた。   According to the results of Table 1, it was recognized that each material according to the present invention has excellent corrosion resistance without changing its appearance even after 2160 hours of the salt spray test. On the other hand, the material produced in Comparative Example 1 which was similarly subjected to the salt spray test generated green rust after 264 hours, and was found to have no effect on the corrosion resistance of the substrate.

表2の結果によれば、本発明にかかる各材料は、塩水噴霧試験2160時間後においても良好な体積抵抗を保持し、優れた集電特性を有することが認められた。これに対し、同様に塩水噴霧試験を行った比較例1で作製した材料は、2160時間後に原型をとどめないまでに腐食が進行し、測定することができなかった。また、比較例2で作製した材料は、体積抵抗が高く、集電特性には劣ることが認められた。   According to the results in Table 2, it was confirmed that each material according to the present invention retained a good volume resistance even after 2160 hours of the salt spray test and had excellent current collecting characteristics. On the other hand, the material produced in Comparative Example 1 which was similarly subjected to the salt spray test was not able to be measured because corrosion progressed until the prototype was not retained after 2160 hours. Moreover, it was recognized that the material produced in Comparative Example 2 has a high volume resistance and is inferior in current collecting characteristics.

Figure 2006167925
Figure 2006167925

Figure 2006167925
Figure 2006167925

本発明の導電用高耐食材料の製造工程を示すフロー図の一例。An example of the flowchart which shows the manufacturing process of the highly corrosion-resistant material for electroconductivity of this invention. 本発明の導電用高耐食材料の製造工程を示すフロー図の一例。An example of the flowchart which shows the manufacturing process of the highly corrosion-resistant material for electroconductivity of this invention.

符号の説明Explanation of symbols

1 基体
2 導電性中間層
3 電解重合法により形成されたπ共役系導電性高分子層
4 化学重合法により形成されたπ共役系導電性高分子層
5 導電用高耐食材料
6 導電用高耐食材料
DESCRIPTION OF SYMBOLS 1 Substrate 2 Conductive intermediate layer 3 π-conjugated conductive polymer layer formed by electropolymerization method 4 π-conjugated conductive polymer layer formed by chemical polymerization method 5 High corrosion resistance material for conductive 6 High corrosion resistance for conductive material

Claims (8)

金属材料からなる基体表面に、導電性を有する中間層が形成され、該中間層上にπ共役系導電性高分子が形成されていることを特徴とする導電用高耐食材料。 A highly corrosion-resistant material for electroconductivity, characterized in that an intermediate layer having conductivity is formed on a surface of a substrate made of a metal material, and a π-conjugated conductive polymer is formed on the intermediate layer. 金属材料からなる基体がMg、Al、Ti、Zn、Fe、Mg基合金、Al基合金、Ti基合金、Zn基合金、Fe基合金からなる群から選ばれる少なくとも1種であることを特徴とする請求項1に記載の導電用高耐食材料。 The substrate made of a metal material is at least one selected from the group consisting of Mg, Al, Ti, Zn, Fe, Mg-based alloys, Al-based alloys, Ti-based alloys, Zn-based alloys, and Fe-based alloys. The conductive high corrosion-resistant material according to claim 1. 中間層上に形成されたπ共役系導電性高分子がポリピロールおよびその誘導体、ポリチオフェンおよびその誘導体、ポリアニリンおよびその誘導体からなる群から選ばれる少なくとも1種であることを特徴とする請求項1〜請求項2に記載の導電用高耐食材料。 The π-conjugated conductive polymer formed on the intermediate layer is at least one selected from the group consisting of polypyrrole and its derivatives, polythiophene and its derivatives, polyaniline and its derivatives. Item 3. A highly corrosion-resistant material for electrical conduction according to Item 2. 導電性を有する中間層が導電性フィラーを含む熱硬化性樹脂、熱可塑性樹脂、光硬化性樹脂からなる群から選ばれる少なくとも1種であることを特徴とする請求項1〜3に記載の導電用高耐食材料。 The conductive intermediate layer according to any one of claims 1 to 3, wherein the conductive intermediate layer is at least one selected from the group consisting of a thermosetting resin, a thermoplastic resin, and a photocurable resin containing a conductive filler. High corrosion resistance material. 導電性フィラーが金属、金属間化合物、カーボン、金属炭化物、金属硫化物、金属酸化物から選ばれる少なくとも1種であることを特徴とする請求項1〜4に記載の導電用高耐食材料。 The conductive highly corrosion-resistant material according to claim 1, wherein the conductive filler is at least one selected from metals, intermetallic compounds, carbon, metal carbides, metal sulfides, and metal oxides. 金属材料からなる基体表面の酸化皮膜層を除去する工程後に導電性を有する中間層が形成されていることを特徴とする請求項1〜5に記載の導電用高耐食材料およびその製造方法。 6. The conductive high corrosion-resistant material according to claim 1 and a method for producing the same, wherein an intermediate layer having conductivity is formed after the step of removing the oxide film layer on the substrate surface made of a metal material. 金属材料からなる基体表面の上層に形成されるπ共役系導電性高分子が、電解重合法によって形成されることを特徴とする請求項1〜6に記載の導電用高耐食材料およびその製造方法。 7. A highly corrosion-resistant conductive material and a method for producing the same according to claim 1, wherein the π-conjugated conductive polymer formed on the upper surface of the substrate made of a metal material is formed by electrolytic polymerization. . 金属材料からなる基体表面の上層に形成されるπ共役系導電性高分子が、化学重合後に電解重合法によって形成されることを特徴とする請求項1〜6に記載の導電用高耐食材料およびその製造方法。 The high corrosion-resistant material for electrical conduction according to claim 1, wherein the π-conjugated conductive polymer formed on the upper surface of the substrate made of a metal material is formed by chemical polymerization after chemical polymerization, and Its manufacturing method.
JP2004359149A 2004-12-10 2004-12-10 Conductive high corrosion-resistant material and its manufacturing method Pending JP2006167925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004359149A JP2006167925A (en) 2004-12-10 2004-12-10 Conductive high corrosion-resistant material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004359149A JP2006167925A (en) 2004-12-10 2004-12-10 Conductive high corrosion-resistant material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006167925A true JP2006167925A (en) 2006-06-29

Family

ID=36669187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004359149A Pending JP2006167925A (en) 2004-12-10 2004-12-10 Conductive high corrosion-resistant material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006167925A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02238613A (en) * 1989-03-13 1990-09-20 Japan Carlit Co Ltd:The Solid electrolytic capacitor
JPH02310034A (en) * 1989-05-25 1990-12-25 Kawasaki Steel Corp Composite steel plate
JPH05320958A (en) * 1992-05-25 1993-12-07 Japan Carlit Co Ltd:The Rust preventing method of metal
JPH0794016A (en) * 1993-09-22 1995-04-07 Shin Etsu Polymer Co Ltd Conductive resin mold
JPH07246679A (en) * 1994-01-21 1995-09-26 Nippon Parkerizing Co Ltd Resin coated aluminum-containing metal composite material excellent in conductivity and production thereof
JP2004139951A (en) * 2002-08-21 2004-05-13 Japan Steel Works Ltd:The Separator for fuel cell and its manufacturing method
JP2004183080A (en) * 2002-12-06 2004-07-02 Nippon Steel Corp Coated metallic sheet having excellent electroconductivity, corrosion resistance and formability

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02238613A (en) * 1989-03-13 1990-09-20 Japan Carlit Co Ltd:The Solid electrolytic capacitor
JPH02310034A (en) * 1989-05-25 1990-12-25 Kawasaki Steel Corp Composite steel plate
JPH05320958A (en) * 1992-05-25 1993-12-07 Japan Carlit Co Ltd:The Rust preventing method of metal
JPH0794016A (en) * 1993-09-22 1995-04-07 Shin Etsu Polymer Co Ltd Conductive resin mold
JPH07246679A (en) * 1994-01-21 1995-09-26 Nippon Parkerizing Co Ltd Resin coated aluminum-containing metal composite material excellent in conductivity and production thereof
JP2004139951A (en) * 2002-08-21 2004-05-13 Japan Steel Works Ltd:The Separator for fuel cell and its manufacturing method
JP2004183080A (en) * 2002-12-06 2004-07-02 Nippon Steel Corp Coated metallic sheet having excellent electroconductivity, corrosion resistance and formability

Similar Documents

Publication Publication Date Title
JPS58161785A (en) Electrode clad with lead or lead alloy and manufacture
US4157943A (en) Composite electrode for electrolytic processes
JP4931127B2 (en) Corrosion-resistant conductive coating material and method for producing the same
TWI224632B (en) Method of producing copper foil
TWI449809B (en) Electrical and electronic components for the use of composite materials and electrical and electronic components
CA1041944A (en) Non-contaminating anode suitable for electrowinning applications
JP4714945B2 (en) Manufacturing method of product made of magnesium or magnesium alloy
Mekhalif et al. Self-assembled monolayers of n-hexanethiol and 6-[2′, 5′-di (2 ″-thienyl) pyrrol-1′-yl] hexanethiol on polycrystalline nickel substrates
JP4655689B2 (en) Solid electrolytic capacitor and its use
KR101321420B1 (en) Method of reactivating electrode for electrolysis
JP2004139951A (en) Separator for fuel cell and its manufacturing method
JP4840966B2 (en) Conductive polymer coated metal material
JP6515509B2 (en) ELECTRODE FOR HYDROGEN GENERATION, METHOD FOR PRODUCING THE SAME, AND ELECTROLYTIC METHOD USING THE SAME
CN102610829B (en) Cadmium-free copper, aluminum and rare earth alloy grid of power type lead-acid battery and preparation method of cadmium-free copper, aluminum and rare earth alloy grid
JP2006172719A (en) Separator for fuel cell and its manufacturing method
JP2006167925A (en) Conductive high corrosion-resistant material and its manufacturing method
JP2006172720A (en) Separator for fuel cell and its manufacturing method
CN101235526B (en) Plating liquor for electroplating low-antimony-lead alloy and preparation method thereof
JP2006169543A (en) Highly corrosion resistant material for electric conduction and production method therefor
CN105420699B (en) A kind of plating of tungsten alloy or the pre-treating method of chemical plating and application thereof
JP5388162B2 (en) Method for producing corrosion-resistant conductive coating material
Md et al. Electrodeposition of copper from a choline chloride based ionic liquid
JP2010174273A (en) Corrosion-preventing film and corrosion-resistant metal material
JP3658823B2 (en) Electrode for electrolysis and method for producing the same
WO2021132400A1 (en) Cathode for producing electrolytic manganese dioxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071204

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100416

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A521 Written amendment

Effective date: 20100701

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100701

A131 Notification of reasons for refusal

Effective date: 20101025

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110318