JP2006169543A - Highly corrosion resistant material for electric conduction and production method therefor - Google Patents

Highly corrosion resistant material for electric conduction and production method therefor Download PDF

Info

Publication number
JP2006169543A
JP2006169543A JP2004359150A JP2004359150A JP2006169543A JP 2006169543 A JP2006169543 A JP 2006169543A JP 2004359150 A JP2004359150 A JP 2004359150A JP 2004359150 A JP2004359150 A JP 2004359150A JP 2006169543 A JP2006169543 A JP 2006169543A
Authority
JP
Japan
Prior art keywords
based alloys
alloy
intermediate layer
substrate
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004359150A
Other languages
Japanese (ja)
Inventor
Shinichiro Mukohata
眞一郎 向畠
Kazato Yanada
風人 梁田
Hideki Nukui
秀樹 温井
Masafumi Oshima
雅史 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP2004359150A priority Critical patent/JP2006169543A/en
Publication of JP2006169543A publication Critical patent/JP2006169543A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly corrosion resistant material for electric conduction which uses an inexpensive metallic substrate having excellent mass productivity, is excellent in corrosion resistance over a long period of time even in a corrosive environment and also can maintain its high electrical conductivity, and to provide a production method therefor. <P>SOLUTION: Inexpensive metallic material is used as a substrate, an oxide film layer lying on the surface layer of the substrate is removed, thereafter, an intermediate layer having electrical conductivity is provided, and a π-conjugated electrically conductive polymer film is formed on the upper layer of the surface of the intermediate layer. The intermediate layer is at least one kind selected from the group consisting of C, Ni, Co, Zr, Sn, Pt, Au, Ag, Pd, Ir, Ru, Ni based alloys, Fe based alloys, Co based alloys, Zr based alloys, Sn based alloys, Pt based alloys, Au based alloys, Ag based alloys, Pd based alloys, Ir based alloys, Ru based alloys, Ru oxides, Zn oxides, Ir oxides, In oxides and Sn oxides. The π-conjugated electrically conductive polymer formed on the upper layer of the substrate on which the intermediate layer is formed is formed by an electrolytic polymerization process or an electrolytic polymerization process after chemical polymerization. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、導電用高耐食材料およびその製造方法に関する。   The present invention relates to a conductive highly corrosion-resistant material and a method for producing the same.

近年の特殊な有機合成プラント用構造材料、有機合成用の陽極材料、ターミナルや圧着端子等の給電用材料では、耐食性のみならず、優れた導電性を持つ材料が求められている。現在、このような要望に対しては、ハステロイ合金やモリブデン合金などに代表される耐食性合金、アモルファスカーボン材料、ステンレス鋼に貴金属めっき処理を施した材料、または耐食性合金めっき処理を施した材料などが提案されている。   Recent structural materials for organic synthesis plants, anode materials for organic synthesis, and power feeding materials such as terminals and crimp terminals are demanded not only for corrosion resistance but also for materials having excellent conductivity. Currently, in response to such demands, corrosion resistant alloys represented by Hastelloy alloys and molybdenum alloys, amorphous carbon materials, materials obtained by subjecting stainless steel to precious metal plating treatment, or materials subjected to corrosion resistance alloy plating treatment, etc. Proposed.

しかし、ステンレス鋼に貴金属あるいは耐食性合金めっきをした場合、ピンホールに起因する局部電池形成による腐食の問題があり、長期耐久性に劣る。また、耐食性合金は表面に絶縁性の不動態皮膜を形成することよって耐食性を向上させており、高い集電機能を求められるような用途に使用することができなかった。また、アモルファスカーボン材料は耐食性に優れ、高い電気伝導性をも有するが、製造に長期間を要する上に、機械加工性に劣るため複雑な形状の構造物には適応することが困難である。また、これらの耐食性合金やアモルファスカーボン材料は非常に高価であるといった問題点がある。   However, when precious metal or corrosion-resistant alloy plating is applied to stainless steel, there is a problem of corrosion due to local battery formation due to pinholes, and long-term durability is poor. In addition, the corrosion resistant alloy has improved corrosion resistance by forming an insulating passive film on the surface, and could not be used for applications requiring a high current collecting function. In addition, the amorphous carbon material has excellent corrosion resistance and high electrical conductivity. However, it takes a long time to manufacture, and it is difficult to adapt to a structure having a complicated shape because of poor machinability. Further, these corrosion resistant alloys and amorphous carbon materials have a problem that they are very expensive.

これらの問題に対して、安価な金属基体に導電性をもたせつつ、防食する様々な方法が提案されている。特許文献1では、金属基体上に、上側の層をより卑なNi層となるように、酸化還元電位が異なるNiめっき層を2層設け、さらにAuめっきを最上層に形成することによって、ピンホールに起因する孔食を防止し、寿命向上させた金属材料が開示されている。また、特許文献2では、金属基体上に、可溶性導電性高分子を含む溶液を浸漬または塗布、乾燥し、ドーパントを含む導電性高分子膜を形成することによって、長期間の耐食性を保持できる金属材料の防食方法が開示されている。   To solve these problems, various methods for preventing corrosion while providing conductivity to an inexpensive metal substrate have been proposed. In Patent Document 1, two Ni plating layers having different oxidation-reduction potentials are provided on a metal base so that the upper layer becomes a more basic Ni layer, and Au plating is further formed on the uppermost layer. A metal material that prevents pitting corrosion due to holes and has an improved life is disclosed. Further, in Patent Document 2, a metal that can maintain long-term corrosion resistance by immersing or coating a solution containing a soluble conductive polymer on a metal substrate, and drying to form a conductive polymer film containing a dopant. An anticorrosion method for the material is disclosed.

しかしながら、特許文献1の方法では、金めっき層と酸化還元電位が高いNiめっき層によって、卑なNiめっき層の自己犠牲によって金属基体を保護するために、酸化還元電位が低いNiめっき層は腐食が進行し続けるので、該Niめっき層の消失により、その効果も消え、長期に渡る耐食性が不十分である。また、特許文献2の方法では、導電性高分子に電気活性を与えるため、ドーパントとしてクエン酸やp−トルエンスルホン酸などのルイス酸を含む酸性溶液中に基体を浸漬させることから、反応活性が高いAlなどの金属に適応した場合には、浸漬時に絶縁性の酸化皮膜が生成するため、基体と耐食膜との導電性が不十分であるといった問題があった。   However, in the method of Patent Document 1, the Ni plating layer having a low oxidation-reduction potential is corroded in order to protect the metal substrate by self-sacrificing the base Ni plating layer by the gold plating layer and the Ni plating layer having a high oxidation-reduction potential. Since the Ni plating layer disappears, the effect disappears, and the corrosion resistance over a long period is insufficient. Further, in the method of Patent Document 2, in order to impart electric activity to the conductive polymer, since the substrate is immersed in an acidic solution containing Lewis acid such as citric acid or p-toluenesulfonic acid as a dopant, the reaction activity is high. When applied to a high metal such as Al, an insulating oxide film is formed at the time of immersion, so that there is a problem that the conductivity between the substrate and the corrosion-resistant film is insufficient.

特開2001−234361号公報JP 2001-234361 A 特許第3129837号公報Japanese Patent No. 3129837

本発明は、量産性に優れた安価な金属基体を用いて、腐食環境でも長期間耐食性に優れ、かつ高い導電性を保持しうる導電用高耐食材料およびその製造方法を提供することを目的とする。   An object of the present invention is to provide a highly corrosion-resistant material for electroconductivity, which is excellent in long-term corrosion resistance even in a corrosive environment and can maintain high conductivity, and a method for producing the same, using an inexpensive metal substrate excellent in mass productivity. To do.

本発明者らは、鋭意研究を行った結果、金属材料からなる基体表面に、導電性を有する中間層を形成し、該中間層上にπ共役系導電性高分子を形成した構成からなる材料が、長期間に渡って耐食性と導電性とを保持しうることを見出し、本発明を完成するに至った。   As a result of intensive studies, the inventors have formed a material in which a conductive intermediate layer is formed on the surface of a substrate made of a metal material, and a π-conjugated conductive polymer is formed on the intermediate layer. However, the inventors have found that the corrosion resistance and the conductivity can be maintained over a long period of time, and have completed the present invention.

本発明は、以下、(1)から(7)の少なくとも1項から構成された導電用高耐食材料及びその製造方法である。   Hereinafter, the present invention is a highly corrosion-resistant material for electric conduction composed of at least one item of (1) to (7) and a method for producing the same.

(1)金属材料からなる基体表面に、導電性を有する中間層が形成され、該中間層上にπ共役系導電性高分子が形成されていることを特徴とする導電用高耐食材料。   (1) A highly corrosion-resistant conductive material characterized in that a conductive intermediate layer is formed on the surface of a substrate made of a metal material, and a π-conjugated conductive polymer is formed on the intermediate layer.

(2)金属材料からなる基体がMg、Al、Ti、Zn、Fe、Mg基合金、Al基合金、Ti基合金、Zn基合金、Fe基合金からなる群から選ばれる少なくとも1種であることを特徴とする(1)に記載の導電用高耐食材料。   (2) The substrate made of a metal material is at least one selected from the group consisting of Mg, Al, Ti, Zn, Fe, Mg-based alloys, Al-based alloys, Ti-based alloys, Zn-based alloys, and Fe-based alloys. (1) The highly corrosion-resistant material for electric conduction according to (1).

(3)中間層上に形成されたπ共役系導電性高分子がポリピロールおよびその誘導体、ポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体からなる群から選ばれる少なくとも1つであることを特徴とする(1)〜(2)に記載の導電用高耐食材料。   (3) The π-conjugated conductive polymer formed on the intermediate layer is at least one selected from the group consisting of polypyrrole and derivatives thereof, polyaniline and derivatives thereof, polythiophene and derivatives thereof (1 The high corrosion-resistant material for electroconductivity as described in (2) to (2).

(4)導電性を有する中間層がC、Ni、Co、Zr、Sn、Cu、Pt、Au、Ag、Pd、Ir、Ru、Ni基合金、Fe基合金、Co基合金、Zr基合金、Sn基合金、Cu基合金、Pt基合金、Au基合金、Ag基合金、Pd基合金、Ir基合金、Ru基合金、Ru酸化物、Zn酸化物、Ir酸化物、In酸化物、Sn酸化物なる群から選ばれる少なくとも1種であることを特徴とする(1)〜(3)に記載の導電用高耐食材料。   (4) The intermediate layer having conductivity is C, Ni, Co, Zr, Sn, Cu, Pt, Au, Ag, Pd, Ir, Ru, Ni base alloy, Fe base alloy, Co base alloy, Zr base alloy, Sn base alloy, Cu base alloy, Pt base alloy, Au base alloy, Ag base alloy, Pd base alloy, Ir base alloy, Ru base alloy, Ru oxide, Zn oxide, Ir oxide, In oxide, Sn oxidation The high corrosion-resistant material for electric conduction according to (1) to (3), which is at least one selected from the group consisting of:

(5)金属材料からなる基体表面の酸化皮膜層を除去する工程後に導電性を有する中間層が形成されていることを特徴とする(1)〜(4)に記載の導電用高耐食材料およびその製造方法。   (5) The conductive highly corrosion-resistant material according to any one of (1) to (4), wherein a conductive intermediate layer is formed after the step of removing the oxide film layer on the substrate surface made of a metal material; Its manufacturing method.

(6)金属材料からなる基体表面の上層に形成されるπ共役系導電性高分子が、電解重合法によって形成されることを特徴とする(1)〜(5)に記載の導電用高耐食材料およびその製造方法。   (6) The high corrosion resistance for conduction according to any one of (1) to (5), wherein the π-conjugated conductive polymer formed on the upper surface of the substrate made of a metal material is formed by electrolytic polymerization. Material and its manufacturing method.

(7)金属材料からなる基体表面の上層に形成されるπ共役系導電性高分子が、化学重合後に電解重合法によって形成されることを特徴とする(1)〜(5)のいずれかに記載の導電用高耐食材料およびその製造方法。   (7) In any one of (1) to (5), the π-conjugated conductive polymer formed on the upper surface of the substrate made of a metal material is formed by chemical polymerization after chemical polymerization The high corrosion-resistant material for electroconductivity of description and its manufacturing method.

本発明によれば、金属材料表面に導電性を有する中間層を形成した後、導電性高分子層を形成した構成とすることにより、金属基体の腐食を抑制でき、優れた導電用高耐食材料を提供することができる。また、導電性中間層を形成し、かつその上に導電性高分子膜を形成した構成にすることによって、導電性高分子膜形成時、あるいは腐食環境下において、金属基体の酸化侵食が抑制され、長期に渡って基体−塗膜間の界面抵抗や表面抵抗が低い導電用高耐食材料が得られる。また、加工性の良い金属材料に安価で簡便な方法で塗膜できるため、生産性に優れた導電用高耐食材料及びその製造方法を提供することができる。   According to the present invention, by forming a conductive intermediate layer on the surface of a metal material and then forming a conductive polymer layer, corrosion of the metal substrate can be suppressed, and excellent high corrosion resistance material for conductivity. Can be provided. Further, by forming a conductive intermediate layer and forming a conductive polymer film thereon, the oxidative attack of the metal substrate is suppressed during the formation of the conductive polymer film or in a corrosive environment. A highly corrosion-resistant conductive material having a low interface resistance and surface resistance between the substrate and the coating film over a long period of time can be obtained. Moreover, since it can be coated on a metal material having good workability by an inexpensive and simple method, a highly corrosion-resistant conductive material having excellent productivity and a method for producing the same can be provided.

本発明を図面に基づいて説明をする。図1に示すように、金属材料からなる基体1を用意する。本発明の基体に用いる金属材料として安価な金属であるMg、Al、Ti、Zn、Feであることが好ましい。また、該金属を50原子%以上含む合金または金属間化合物または金属炭化物を用いても良い。安価なこれら合金、金属間化合物、金属炭化物としては、例えば、Mg基合金としては、Mg−Zn系合金、Mg−希土類元素系合金、Mg−Al−Zn系合金、Mg−Zn−Zr系合金などがあり、Al基合金としてはAl−Cu系合金、Al−Mn系合金、Al−Si系合金、Al−Mg系合金、Al−Mg−Si系合金、Al−Zn−Mg系合金などがあり、Ti基合金としては、Ti−Al系合金、Ti−Cu系合金、Ti−Pd系合金、Zn合金としては、Zn−Al系合金、Zn−Cu系合金、Zn−Al−Cu系合金などがあり、Fe基合金としては、Fe−C系合金、Fe−Sn系合金などがあるが、加工性やコストの観点からAlまたはAl基合金を用いるのが特に好ましい。   The present invention will be described with reference to the drawings. As shown in FIG. 1, a base 1 made of a metal material is prepared. Mg, Al, Ti, Zn, and Fe, which are inexpensive metals, are preferable as the metal material used for the substrate of the present invention. Alternatively, an alloy, an intermetallic compound, or a metal carbide containing 50 atom% or more of the metal may be used. As these inexpensive alloys, intermetallic compounds, and metal carbides, for example, Mg-Zn alloys, Mg-rare earth elements alloys, Mg-Al-Zn alloys, Mg-Zn-Zr alloys as Mg-based alloys Al-based alloys include Al-Cu alloys, Al-Mn alloys, Al-Si alloys, Al-Mg alloys, Al-Mg-Si alloys, Al-Zn-Mg alloys, etc. Yes, Ti-based alloys include Ti-Al alloys, Ti-Cu alloys, Ti-Pd alloys, and Zn alloys include Zn-Al alloys, Zn-Cu alloys, Zn-Al-Cu alloys Examples of Fe-based alloys include Fe-C alloys and Fe-Sn alloys, but it is particularly preferable to use Al or Al-based alloys from the viewpoint of workability and cost.

次に、上記に記載の金属または合金は基体表面に酸化皮膜層を有するために、その酸化皮膜層を除去する。該金属基体の自然酸化皮膜層を除去する方法としては、従来周知の方法が利用でき、例えば、湿式エッチング法、電解エッチング法、電解研磨法、機械的研磨法、逆スパッタリング法、ブラスト法、置換めっき法などがあるが、安価な機械的研磨法が好適である。この除去処理により接触抵抗を良好にし、また導電性中間層と基体との密着性も向上させる効果がある。   Next, since the metal or alloy described above has an oxide film layer on the substrate surface, the oxide film layer is removed. As a method for removing the natural oxide film layer of the metal substrate, conventionally known methods can be used, for example, a wet etching method, an electrolytic etching method, an electrolytic polishing method, a mechanical polishing method, a reverse sputtering method, a blast method, a substitution method. Although there is a plating method, an inexpensive mechanical polishing method is preferable. This removal treatment has the effect of improving the contact resistance and improving the adhesion between the conductive intermediate layer and the substrate.

続いて、該基体表面に導電性中間層2を形成する。本発明では、π共役系導電性高分子形成時、金属基体に酸化皮膜が生成することを抑制するために導電性中間層2の形成を行う。使用できる金属基体としては、集電能を有する金属であれば用いることができるが、本発明では反応活性が高いMg、Al、Ti、Zn、Feやそれらを主成分とする合金になどに適応する場合に有効であり、特にMg、Al、Tiやそれらを主成分とする合金には効果を発揮する。すなわち、反応活性が高いMg、Al、Ti、Zn、Feなどの金属基体を電極として直接電解重合を行うと、該基体に導電性高分子層の形成と同時に絶縁性を有する酸化皮膜の生成も起こり、金属基体と導電性高分子層の界面抵抗が大きくなる。また、化学重合法を用いた場合においても、特に反応活性が高いMg、Al、Tiなどの金属を基体とする場合には、重合に使用する酸化剤溶液と金属基体が接触することにより、同様に酸化皮膜の生成が起こる。   Subsequently, the conductive intermediate layer 2 is formed on the surface of the substrate. In the present invention, when the π-conjugated conductive polymer is formed, the conductive intermediate layer 2 is formed in order to suppress the formation of an oxide film on the metal substrate. As a metal substrate that can be used, any metal having current collecting ability can be used. However, in the present invention, it is applicable to Mg, Al, Ti, Zn, Fe and alloys containing them as main components, which have high reaction activity. In particular, it is effective for Mg, Al, Ti and alloys containing them as a main component. That is, when direct polymerization is performed using a metal substrate such as Mg, Al, Ti, Zn, and Fe, which has high reaction activity, as an electrode, an electrically conductive polymer layer is formed on the substrate and an insulating oxide film is formed at the same time. As a result, the interface resistance between the metal substrate and the conductive polymer layer increases. In addition, even in the case of using a chemical polymerization method, when a metal such as Mg, Al, Ti or the like having a high reaction activity is used as a substrate, the same occurs when the oxidizer solution used for polymerization and the metal substrate are in contact Oxide film formation occurs.

この導電性中間層2は、導電用高耐食材料使用環境下において、基体表面に酸化皮膜または不動態皮膜の生成を抑制する作用効果を有する。   The conductive intermediate layer 2 has an effect of suppressing the formation of an oxide film or a passive film on the surface of the substrate in an environment where the conductive high corrosion-resistant material is used.

この導電性中間層としては、C、Ni、Co、Zr、Sn、Cu、Pt、Au、Ag、Pd、Ir、Ru、Ni基合金、Fe基合金、Co基合金、Zr基合金、Sn基合金、Cu基合金、Pt基合金、Au基合金、Ag基合金、Pd基合金、Ir基合金、Ru基合金、Ru酸化物、Zn酸化物、Ir酸化物、In酸化物、Sn酸化物などがあげられるが、生産性や耐熱性、耐酸性の観点からC、Ni、Co、Au、Ag、Ir、Ru、Ni基合金、Fe基合金、Co基合金、Au基合金、Ag基合金、Ir基合金、Ru基合金、Ru酸化物を用いるのが好ましいが、C、Ni、Co、Au、Ag、Ni基合金、Fe基合金、Co基合金、Au基合金、Ag基合金を用いるのがより好ましい。Ni基合金としては、Ni−Mo合金、Ni−W合金、Ni−P合金、Ni−Co合金、Ni−Sn合金、Ni−Co−B合金、Ni−Fe−P合金などがあげられ、Fe基合金としては、Fe−Cr合金、Fe−Mo合金、Fe−W合金、Fe−P合金、Fe−Co合金、Fe−Sn合金、Fe−Co−B合金、Fe−Ni−P合金などがあげられ、Co基合金としては、Co−Mo合金、Co−W合金、Co−P合金、Co−Ni合金、Co−Sn合金、Co−Ni−B合金、Co−Fe−P合金などがあげられ、Zr基合金としては、Zr−Ni合金、Zr−Fe合金、Zr−Co合金、Zr−Cu合金などがあげられ、Sn基合金としては、Sn−Ni合金、Sn−Cu合金、Cu合金としては、Cu−Ni合金、Cu−Fe合金、Cu−Zn合金、Cu−Al合金などがあげられ、Pt基合金としては、Pt−Ir合金、Pt−Pd合金、Pt−Fe合金、Pt−Pd−Ag合金、Pt−Rh合金、Pt−Au合金、Pt−Ag合金などがあげられ、Au基合金としては、Au−Ir合金、Au−Pd合金、Au−Sn合金、Au−Ag合金、Au−Ag−Cu合金などがあげられ、Ag基合金としては、Ag−Pd合金、Ag−Au合金、Ag−Pd−Cu合金、Ag−Mg合金、Ag−Sn合金、Ag−Ir合金などがあげられ、Pd基合金としては、Pd−Au合金、Pd−Ag合金、Pd−Au‐Ag合金、Pd−Pt合金、Pd−Cu合金、Pd−Ir合金などがあげられ、Ir基合金としては、Ir−W合金、Ir−Ni−Al合金、Ir−Mo合金、Ir−Pt合金、Ir−Rh合金、Ir−Ta合金、Ir−Ti合金などがあげられ、Ru基合金としては、Ru−Ta合金、Ru−Ti合金、Ru−W合金、Ru−W合金、Ru−Rh合金、Ru−Ir合金、Ru−Pt合金、Ru−Ag合金、Ru−Au合金、Ru酸化物としてはRuO、Zn酸化物としてはZnO−Al、Ir酸化物としてはIrO、In酸化物としてはIn−SnO、Sn酸化物としてはSnO−Sb、SnO−Fなどがあげられる。 This conductive intermediate layer includes C, Ni, Co, Zr, Sn, Cu, Pt, Au, Ag, Pd, Ir, Ru, Ni-based alloy, Fe-based alloy, Co-based alloy, Zr-based alloy, Sn-based Alloy, Cu base alloy, Pt base alloy, Au base alloy, Ag base alloy, Pd base alloy, Ir base alloy, Ru base alloy, Ru oxide, Zn oxide, Ir oxide, In oxide, Sn oxide, etc. From the viewpoint of productivity, heat resistance, and acid resistance, C, Ni, Co, Au, Ag, Ir, Ru, Ni base alloy, Fe base alloy, Co base alloy, Au base alloy, Ag base alloy, Ir-based alloys, Ru-based alloys, and Ru oxides are preferably used, but C, Ni, Co, Au, Ag, Ni-based alloys, Fe-based alloys, Co-based alloys, Au-based alloys, and Ag-based alloys are used. Is more preferable. Examples of Ni-based alloys include Ni-Mo alloys, Ni-W alloys, Ni-P alloys, Ni-Co alloys, Ni-Sn alloys, Ni-Co-B alloys, Ni-Fe-P alloys, and the like. Examples of the base alloy include Fe—Cr alloy, Fe—Mo alloy, Fe—W alloy, Fe—P alloy, Fe—Co alloy, Fe—Sn alloy, Fe—Co—B alloy, and Fe—Ni—P alloy. Examples of the Co-based alloy include a Co—Mo alloy, a Co—W alloy, a Co—P alloy, a Co—Ni alloy, a Co—Sn alloy, a Co—Ni—B alloy, and a Co—Fe—P alloy. Zr-based alloys include Zr-Ni alloys, Zr-Fe alloys, Zr-Co alloys, Zr-Cu alloys, etc., and Sn-based alloys include Sn-Ni alloys, Sn-Cu alloys, Cu alloys. As Cu-Ni alloy, Cu-Fe alloy, Examples include Pt-Ir alloys, Pt-Pd alloys, Pt-Fe alloys, Pt-Pd-Ag alloys, Pt-Rh alloys, and Pt-Au. Alloys, Pt-Ag alloys, etc., and Au-based alloys include Au-Ir alloys, Au-Pd alloys, Au-Sn alloys, Au-Ag alloys, Au-Ag-Cu alloys, and the like. Examples of the alloy include an Ag—Pd alloy, an Ag—Au alloy, an Ag—Pd—Cu alloy, an Ag—Mg alloy, an Ag—Sn alloy, an Ag—Ir alloy, and the like, and examples of the Pd based alloy include a Pd—Au alloy. , Pd—Ag alloy, Pd—Au—Ag alloy, Pd—Pt alloy, Pd—Cu alloy, Pd—Ir alloy, etc., and Ir-based alloys include Ir—W alloy, Ir—Ni—Al alloy, Ir-Mo alloy, Ir Pt alloy, Ir-Rh alloy, Ir-Ta alloy, Ir-Ti alloy, etc. are listed. Examples of the Ru-based alloy include Ru-Ta alloy, Ru-Ti alloy, Ru-W alloy, Ru-W alloy, Ru--. Rh alloy, Ru—Ir alloy, Ru—Pt alloy, Ru—Ag alloy, Ru—Au alloy, Ru oxide as RuO 2 , Zn oxide as ZnO—Al 2 O 3 , Ir oxide as IrO 2 In oxides include In 2 O 3 —SnO 2 , and Sn oxides include SnO 2 —Sb 2 O 3 and SnO 2 —F.

上記に記載の導電性中間層2の形成法は従来周知の方法が利用できる。例えば、めっき法、無電解めっき法、物理気相成長法、イオンプレーティング法、真空蒸着法、溶射法、化学気相成長法などがあるが、安価で生産性が高いめっき法または無電解めっき法が好ましい。   As a method for forming the conductive intermediate layer 2 described above, a conventionally known method can be used. For example, there are plating methods, electroless plating methods, physical vapor deposition methods, ion plating methods, vacuum deposition methods, thermal spraying methods, chemical vapor deposition methods, etc., but inexpensive and highly productive plating methods or electroless plating methods. The method is preferred.

導電性中間層2の厚さとしては、耐食性を高め、かつ体積抵抗を低くするために0.01μm〜50μmが好ましいが、より好ましくは0.01μm〜20μmである。   The thickness of the conductive intermediate layer 2 is preferably 0.01 μm to 50 μm, more preferably 0.01 μm to 20 μm in order to increase the corrosion resistance and reduce the volume resistance.

また、めっき法などに代表される液相法を用いて導電性中間層2を形成する場合には、該導電性中間層を形成する前に、基体にプレス加工等の曲げ加工により、目的とする成型を行うことによって、複雑な形状でも、導電性中間層およびπ共役系導電性高分子膜を損傷することなく、該導電性中間層および該π共役系導電性高分子膜の効果を確実に得ることができる。また、延性の高いAuやその合金などを導電性中間層として用いる場合には、該導電性中間層2を形成後にプレス加工することも可能である。なお、導電性中間層およびπ共役系導電性高分子膜の形成に関し、上記のように導電中間層を形成後に電解重合を行えば、基体表面が凹凸状態であっても均一に導電性中間層およびπ共役系導電性高分子膜を形成することが可能となり、安定した耐食性および導電特性を得ることができる。   Further, when the conductive intermediate layer 2 is formed using a liquid phase method typified by a plating method or the like, before forming the conductive intermediate layer, the substrate is bent by pressing or the like. By performing molding, the effect of the conductive intermediate layer and the π-conjugated conductive polymer film can be ensured even in a complicated shape without damaging the conductive intermediate layer and the π-conjugated conductive polymer film. Can get to. In addition, when Au having high ductility or an alloy thereof is used as the conductive intermediate layer, it is possible to press the conductive intermediate layer 2 after forming it. In addition, regarding the formation of the conductive intermediate layer and the π-conjugated conductive polymer film, if the electropolymerization is performed after the formation of the conductive intermediate layer as described above, the conductive intermediate layer can be uniformly formed even if the substrate surface is uneven. And π-conjugated conductive polymer film can be formed, and stable corrosion resistance and conductive characteristics can be obtained.

次に、導電性中間層2を設けた基体1にπ共役系導電性高分子膜3を形成する。本発明の導電性高分子形成方法としては、電解重合法が好ましい。電解重合法で得られるπ共役系導電性高分子膜は、緻密で規則性が高いため高い電気伝導度を有する。その結果、耐食性に優れ、接触抵抗が良好となる膜が基体上層に形成されることになる。電解重合法としては、導電性高分子モノマーと支持電解質を含んだ溶液中で、導電性中間層を陽極として電解することにより、該基体上層にπ共役系導電性高分子膜を形成することができる。   Next, a π-conjugated conductive polymer film 3 is formed on the substrate 1 provided with the conductive intermediate layer 2. As the conductive polymer forming method of the present invention, an electrolytic polymerization method is preferred. Since the π-conjugated conductive polymer film obtained by the electrolytic polymerization method is dense and highly regular, it has high electrical conductivity. As a result, a film having excellent corrosion resistance and good contact resistance is formed on the upper layer of the substrate. As the electrolytic polymerization method, a π-conjugated conductive polymer film can be formed on the upper layer of the substrate by electrolysis using a conductive intermediate layer as an anode in a solution containing a conductive polymer monomer and a supporting electrolyte. it can.

しかし、本電解重合法は該中間層を陽極としてπ共役系導電性高分子膜を形成する方法であるために、Ni基合金などのような、耐食性には優れる反面、溶液中で電解中に発生した酸素と反応し酸化皮膜あるいは不動態皮膜を形成しやすい金属や合金を導電性フィラーに用いた場合には、接触抵抗値が高くなってしまうことがある。そのような場合には、図3に示したように、導電性中間層2を形成した後、化学重合法を用いて薄いπ共役系導電性高分子層4を設け、該π共役系導電性高分子層4を陽極として電解重合し、電解重合導電性高分子層3を形成することが好ましい。   However, since this electropolymerization method is a method of forming a π-conjugated conductive polymer film using the intermediate layer as an anode, it is excellent in corrosion resistance, such as a Ni-based alloy, but it can be used during electrolysis in a solution. When a metal or alloy that reacts with the generated oxygen and easily forms an oxide film or a passive film is used for the conductive filler, the contact resistance value may increase. In such a case, as shown in FIG. 3, after forming the conductive intermediate layer 2, a thin π-conjugated conductive polymer layer 4 is provided using a chemical polymerization method, and the π-conjugated conductive property is provided. It is preferable to perform electropolymerization using the polymer layer 4 as an anode to form the electropolymerized conductive polymer layer 3.

上記化学重合法としては、導電性中間層2形成後の基体表面上でπ共役系導電性高分子モノマーと酸化剤溶液を接触させることで、π共役系導電性高分子膜を形成することができる。しかし、一般に化学重合で得られるπ共役系導電性高分子膜は、多孔質な微粒子からなり、緻密な膜でなく、電気電導性に劣る。そのため、化学重合後に電解重合法により、緻密で高い電気伝導度を有するπ共役系導電性高分子膜を形成する必要がある。   As the chemical polymerization method, a π-conjugated conductive polymer film can be formed by bringing a π-conjugated conductive polymer monomer and an oxidant solution into contact with each other on the surface of the substrate after the formation of the conductive intermediate layer 2. it can. However, a π-conjugated conductive polymer film generally obtained by chemical polymerization is composed of porous fine particles, is not a dense film, and is inferior in electrical conductivity. Therefore, it is necessary to form a π-conjugated conductive polymer film having a dense and high electric conductivity by chemical polymerization after chemical polymerization.

形成するπ共役系導電性高分子としては、ポリピロールならびにその誘導体、ポリチオフェンならびにその誘導体、ポリアニリンならびにその誘導体等、ポリフェニレンならびにその誘導体、ポリアセチレンならびにその誘導体、ポリフランならびにその誘導体、ポリフェニレンビニレンならびにその誘導体、ポリアセンならびにその誘導体、ポリアズレンならびにその誘導体があげられるが、特に、耐食性および電気伝導度に優れるポリピロールならびにその誘導体、ポリチオフェンならびにその誘導体、ポリアニリンならびにその誘導体が好ましい。   Examples of the π-conjugated conductive polymer to be formed include polypyrrole and derivatives thereof, polythiophene and derivatives thereof, polyaniline and derivatives thereof, polyphenylene and derivatives thereof, polyacetylene and derivatives thereof, polyfuran and derivatives thereof, polyphenylene vinylene and derivatives thereof, polyacene In addition, polypyrrole and derivatives thereof, polythiophene and derivatives thereof, polyaniline and derivatives thereof are particularly preferable.

該π共役系導電性高分子膜は、導電性中間層に欠陥がある場合には該高分子膜に含まれるドーパントを放出することによって、部分的に自己不動態化し、局部電池形成を抑制する作用も持つ。   When the conductive intermediate layer has a defect, the π-conjugated conductive polymer film is partially self-passivated by releasing the dopant contained in the polymer film, thereby suppressing local battery formation. It also has an effect.

図2に示すように、燃料電池セルとしてスタッキングされたとき、セパレータと電極が良好な接触抵抗を示すためには、基体上層に設けられるπ共役系導電性高分子膜の電気伝導度として0.1S/cm以上の物性が好ましい。これ以下であると接触抵抗値が増大し不適である。   As shown in FIG. 2, in order to show good contact resistance between the separator and the electrode when stacked as a fuel cell, the electrical conductivity of the π-conjugated conductive polymer film provided on the upper layer of the substrate is 0. A physical property of 1 S / cm or more is preferable. If it is less than this, the contact resistance value increases, which is not suitable.

また、π共役系導電性高分子にドーパントが含有されることによって電気伝導性が発現するが、該ドーパントは、陰イオンまたは陽イオンである。そのため、金属からなる導電性フィラーが腐食し、金属陽イオンとなっても、該π共役系導電性高分子膜に捕集されるために、プロトン伝導性電解質膜に悪影響を与えることを防ぐ効果も併せ持つ。   Moreover, although electrical conductivity is expressed when a dopant is contained in the π-conjugated conductive polymer, the dopant is an anion or a cation. Therefore, even if the conductive filler made of metal corrodes and becomes a metal cation, it is trapped in the π-conjugated conductive polymer film, thereby preventing the proton conductive electrolyte film from being adversely affected. Also has.

このように形成されたπ共役系導電性高分子膜は従来のめっき法などとは異なり、均一でピンホールがなく、耐食性および電気伝導性に優れる有機高分子膜を形成することができる。   Unlike the conventional plating method, the π-conjugated conductive polymer film formed in this way can form an organic polymer film that is uniform and free of pinholes and is excellent in corrosion resistance and electrical conductivity.

以上示した方法によって、金属基体に導電性中間層を形成後に、π共役系導電性高分子膜を形成することにより、導電性と耐食性に優れた材料を製造することができる。   By forming the π-conjugated conductive polymer film after forming the conductive intermediate layer on the metal substrate by the method described above, a material having excellent conductivity and corrosion resistance can be manufactured.

以下、本発明を実施例に基づいてより詳細に説明するが、本発明は実施例によりなんら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited at all by the Example.

実施例1
金属基体としてAl合金6063を用いた。Al合金6063は大きさが20×30mm、厚さが1mmの冷間圧延材である。本基体の自然酸化膜を除去するために、2質量%フッ酸水溶液に1分間浸漬後、エタノールで洗浄し、窒素ガスにて十分に乾燥させた。
Example 1
Al alloy 6063 was used as the metal substrate. The Al alloy 6063 is a cold rolled material having a size of 20 × 30 mm and a thickness of 1 mm. In order to remove the natural oxide film of the substrate, the substrate was immersed in a 2% by mass hydrofluoric acid aqueous solution for 1 minute, washed with ethanol, and sufficiently dried with nitrogen gas.

基体をZn置換めっき液(水酸化ナトリウム120g/L、酸化亜鉛20g/L、酒石酸カリウムナトリウム50g/L、塩化第二鉄2g/L、硝酸ナトリウム1g/L)中に浸漬させ後に、Cuストライクめっき(硫酸銅五水和物21g/L、硫酸アンモニウム2.2g/L、ジエチレントリアミン10g/L、浴温60℃、電流密度300mA/cm)をおこなった。続いて、20μm厚みとなるようにNiめっき(硫酸ニッケル六水和物330g/L、塩化ニッケル六水和物45g/L、ホウ酸40g/L、浴温60℃、電流密度500mA/cm)を行い、導電性中間層を形成させた。 After immersing the substrate in a Zn displacement plating solution (sodium hydroxide 120 g / L, zinc oxide 20 g / L, potassium sodium tartrate 50 g / L, ferric chloride 2 g / L, sodium nitrate 1 g / L), Cu strike plating (Copper sulfate pentahydrate 21 g / L, ammonium sulfate 2.2 g / L, diethylenetriamine 10 g / L, bath temperature 60 ° C., current density 300 mA / cm 2 ). Subsequently, Ni plating to a thickness of 20 μm (nickel sulfate hexahydrate 330 g / L, nickel chloride hexahydrate 45 g / L, boric acid 40 g / L, bath temperature 60 ° C., current density 500 mA / cm 2 ) To form a conductive intermediate layer.

次に、電解重合法によってπ共役系導電性高分子膜を形成した。溶媒を純水として、モノマーとしてピロール0.45mol/L、支持電解質としてサリチル酸ナトリウム0.20mol/Lを含む電解液を用いて、導電性中間層を陽極、SUS304を陰極、電解重合時間は1時間、電流密度を5mA/cmとして電解重合を行い、ポリピロール膜を形成し、導電用高耐食材料を10枚作製した。 Next, a π-conjugated conductive polymer film was formed by electrolytic polymerization. Using a pure water solvent, an electrolyte containing 0.45 mol / L of pyrrole as a monomer and 0.20 mol / L of sodium salicylate as a supporting electrolyte, the conductive intermediate layer is an anode, SUS304 is a cathode, and the electropolymerization time is 1 hour Then, electrolytic polymerization was carried out at a current density of 5 mA / cm 2 to form a polypyrrole film, and 10 conductive highly corrosion-resistant materials were produced.

実施例2
金属基体としてZn合金ZDC1を用いた。Zn合金ZDC1は大きさが20×30mm、厚さが1mmの圧延材である。本基体の自然酸化膜を除去するために、ガラスビーズを用いたサンドブラスト法によって除去後、エタノールで洗浄し、窒素ガスにて十分に乾燥させた。
Example 2
Zn alloy ZDC1 was used as the metal substrate. The Zn alloy ZDC1 is a rolled material having a size of 20 × 30 mm and a thickness of 1 mm. In order to remove the natural oxide film of the substrate, it was removed by sand blasting using glass beads, washed with ethanol, and sufficiently dried with nitrogen gas.

基体をZn置換めっき液(水酸化ナトリウム120g/L、酸化亜鉛20g/L、酒石酸カリウムナトリウム50g/L、塩化第二鉄2g/L、硝酸ナトリウム1g/L)中に浸漬させ後に、Cuストライクめっき(硫酸銅五水和物21g/L、硫酸アンモニウム2.2g/L、ジエチレントリアミン10g/L、浴温60℃、電流密度300mA/cm)をおこなった。続いて、2μm厚みとなるようにNi−Wめっき(硫酸ニッケル六水和物79g/L、タングステン酸ナトリウム二水和物66g/L、酒石酸二水和物69g/L、pH3、浴温25℃、電流密度50mA/cm)を行い、導電性中間層を形成させた。 After immersing the substrate in a Zn displacement plating solution (sodium hydroxide 120 g / L, zinc oxide 20 g / L, potassium sodium tartrate 50 g / L, ferric chloride 2 g / L, sodium nitrate 1 g / L), Cu strike plating (Copper sulfate pentahydrate 21 g / L, ammonium sulfate 2.2 g / L, diethylenetriamine 10 g / L, bath temperature 60 ° C., current density 300 mA / cm 2 ). Subsequently, Ni-W plating (nickel sulfate hexahydrate 79 g / L, sodium tungstate dihydrate 66 g / L, tartaric acid dihydrate 69 g / L, pH 3, bath temperature 25 ° C. to a thickness of 2 μm , A current density of 50 mA / cm 2 ) was performed to form a conductive intermediate layer.

次に、化学重合法によってπ共役系導電性高分子膜を形成した。導電性中間層を形成した基体に、噴霧法によって均一にピロールモノマーを塗布後、エタノール/水混合溶媒中に、酸化剤としてペルオキソ二硫酸アンモニウム0.20mol/L、ドーパントとしてドデシルベンゼンスルホン酸ナトリウム0.20mol/Lを溶解し、アンモニア水によってpHを7に調整した酸化剤溶液を噴霧法によって吹きかけることによって、ポリピロール膜を形成した。   Next, a π-conjugated conductive polymer film was formed by chemical polymerization. After the pyrrole monomer is uniformly applied to the substrate on which the conductive intermediate layer has been formed by a spraying method, 0.20 mol / L of ammonium peroxodisulfate as an oxidant and sodium dodecylbenzenesulfonate as a dopant in an ethanol / water mixed solvent The polypyrrole film | membrane was formed by spraying the oxidizing agent solution which melt | dissolved 20 mol / L and adjusted pH to 7 with the aqueous ammonia by the spraying method.

続いて、先に化学重合法によって形成したポリピロール膜を電極として電解重合法によってπ共役系導電性高分子膜を形成した。溶媒を純水として、モノマーとしてピロール0.45mol/L、支持電解質としてサリチル酸ナトリウム0.20mol/Lを含む電解液を用いて、導電性中間層を陽極、SUS304を陰極、電解重合時間は1時間、電流密度を0.5mA/cmとして電解重合を行い、ポリピロール膜を形成し、導電用高耐食材料を10枚作製した。 Subsequently, a π-conjugated conductive polymer film was formed by electrolytic polymerization using the polypyrrole film previously formed by chemical polymerization as an electrode. Using a pure water solvent, an electrolyte containing 0.45 mol / L of pyrrole as a monomer and 0.20 mol / L of sodium salicylate as a supporting electrolyte, the conductive intermediate layer is an anode, SUS304 is a cathode, and the electropolymerization time is 1 hour Then, electrolytic polymerization was carried out at a current density of 0.5 mA / cm 2 to form a polypyrrole film, and 10 conductive highly corrosion-resistant materials were produced.

実施例3
金属基体としてTi−6Al−4V合金を用いた。Ti−6Al−4V合金は大きさが20×30mm、厚さが1mmの冷間圧延材である。本基体の自然酸化膜を除去するために、2質量%フッ酸水溶液に1分間浸漬後、エタノールで洗浄し、窒素ガスにて十分に乾燥させた。
Example 3
Ti-6Al-4V alloy was used as the metal substrate. The Ti-6Al-4V alloy is a cold rolled material having a size of 20 × 30 mm and a thickness of 1 mm. In order to remove the natural oxide film of the substrate, the substrate was immersed in a 2% by mass hydrofluoric acid aqueous solution for 1 minute, washed with ethanol, and sufficiently dried with nitrogen gas.

基体をZn置換めっき液(水酸化ナトリウム120g/L、酸化亜鉛20g/L、酒石酸カリウムナトリウム50g/L、塩化第二鉄2g/L、硝酸ナトリウム1g/L)中に浸漬させ後に、Cuストライクめっき(硫酸銅五水和物21g/L、硫酸アンモニウム2.2g/L、ジエチレントリアミン10g/L、浴温60℃、電流密度300mA/cm)をおこなった。続いて、2μm厚みとなるようにAg無電解めっき(Agめっき液:硝酸銀20g/L、アンモニア水約45g/L、還元液:酒石酸ナトリウムカリウム100g/L、浴温10℃)を行い、導電性中間層を形成させた。 After immersing the substrate in a Zn displacement plating solution (sodium hydroxide 120 g / L, zinc oxide 20 g / L, potassium sodium tartrate 50 g / L, ferric chloride 2 g / L, sodium nitrate 1 g / L), Cu strike plating (Copper sulfate pentahydrate 21 g / L, ammonium sulfate 2.2 g / L, diethylenetriamine 10 g / L, bath temperature 60 ° C., current density 300 mA / cm 2 ). Subsequently, Ag electroless plating (Ag plating solution: silver nitrate 20 g / L, ammonia water about 45 g / L, reducing solution: sodium potassium tartrate 100 g / L, bath temperature 10 ° C.) is performed so that the thickness becomes 2 μm. An intermediate layer was formed.

次に、電解重合法によってπ共役系導電性高分子膜を形成する。溶媒をエタノールとして、モノマーとして3,4−エチレンジオキシチオフェン0.40mol/L、支持電解質としてドデシルベンゼンスルホン酸ナトリウム0.30mol/Lを含む電解液を用いて、導電性中間層を陽極、SUS304を陰極、電解重合時間は3時間、電流密度を0.25mA/cmとして電解重合を行い、3,4−エチレンジオキシチオフェン膜を形成し、導電用高耐食材料を10枚作製した。 Next, a π-conjugated conductive polymer film is formed by electrolytic polymerization. Using an electrolytic solution containing ethanol as a solvent, 0.40 mol / L of 3,4-ethylenedioxythiophene as a monomer, and 0.30 mol / L of sodium dodecylbenzenesulfonate as a supporting electrolyte, the conductive intermediate layer is an anode, SUS304 The cathode was subjected to electropolymerization with an electropolymerization time of 3 hours and a current density of 0.25 mA / cm 2 to form a 3,4-ethylenedioxythiophene film, and 10 conductive highly corrosion-resistant materials were produced.

実施例4
金属基体としてMg合金AZ91Dを用いた。Mg合金AZ91Zは大きさが20×30mm、厚さが1mmの冷間圧延材である。本基体の自然酸化膜を除去するために、5質量%塩酸水溶液に1分間浸漬後、エタノールで洗浄し、窒素ガスにて十分に乾燥させた。
Example 4
Mg alloy AZ91D was used as the metal substrate. The Mg alloy AZ91Z is a cold rolled material having a size of 20 × 30 mm and a thickness of 1 mm. In order to remove the natural oxide film of the substrate, the substrate was immersed in a 5 mass% hydrochloric acid aqueous solution for 1 minute, washed with ethanol, and sufficiently dried with nitrogen gas.

Ag−Pdターゲットを用いたO−Arスパッタリング法(成膜温度250℃)によって、基体上に導電性中間層として0.3μm厚みのAg−Pd合金層を形成した。 An Ag—Pd alloy layer having a thickness of 0.3 μm was formed as a conductive intermediate layer on the substrate by an O 2 —Ar sputtering method using an Ag—Pd target (film formation temperature: 250 ° C.).

次に、電解重合法によってπ共役系導電性高分子膜を形成した。溶媒を純水として、モノマーとしてピロール0.45mol/L、支持電解質としてp−フェノールスルホン酸ナトリウム0.20mol/Lを含む電解液を用いて、導電性中間層を陽極、SUS304を陰極、電解重合時間は1時間、電流密度を5mA/cmとして電解重合を行い、ポリピロール膜を形成し、導電用高耐食材料を10枚作製した。 Next, a π-conjugated conductive polymer film was formed by electrolytic polymerization. Using an electrolytic solution containing 0.45 mol / L of pyrrole as a monomer and 0.20 mol / L of sodium p-phenolsulfonate as a supporting electrolyte, the conductive intermediate layer is an anode, SUS304 is a cathode, and electropolymerization is performed using pure water as a solvent and 0.45 mol / L as a supporting electrolyte The time was 1 hour, the current density was 5 mA / cm 2 , electropolymerization was performed to form a polypyrrole film, and 10 high corrosion-resistant materials for conduction were produced.

実施例5
金属基体として炭素鋼SS330を用いた。炭素鋼SS330は大きさが20×30mm、厚さが1mmの冷間圧延材である。本基体の自然酸化膜を除去するために、2質量%フッ酸水溶液に1分間浸漬後、エタノールで洗浄し、窒素ガスにて十分に乾燥させた。
Example 5
Carbon steel SS330 was used as the metal substrate. The carbon steel SS330 is a cold rolled material having a size of 20 × 30 mm and a thickness of 1 mm. In order to remove the natural oxide film of the substrate, the substrate was immersed in a 2% by mass hydrofluoric acid aqueous solution for 1 minute, washed with ethanol, and sufficiently dried with nitrogen gas.

Ni−Snターゲットを用いたO−Arスパッタリング法(成膜温度350℃)によって、基体上に導電性中間層として0.35μm厚みのNi−Sn合金層を形成した。 A Ni—Sn alloy layer having a thickness of 0.35 μm was formed as a conductive intermediate layer on the substrate by an O 2 —Ar sputtering method using a Ni—Sn target (film formation temperature: 350 ° C.).

次に、化学重合法によってπ共役系導電性高分子膜を形成した。導電性中間層を形成した基体に、噴霧法によって均一にピロールモノマーを塗布後、エタノール/水混合溶媒中に、酸化剤としてペルオキソ二硫酸アンモニウム0.20mol/L、ドーパントとしてテトラエチルアンモニウムジエチルナフタレンスルホン酸0.20mol/Lを溶解し、アンモニア水によってpHを7に調整した酸化剤溶液を噴霧法によって吹きかけることによって、ポリピロール膜を形成した。   Next, a π-conjugated conductive polymer film was formed by chemical polymerization. After the pyrrole monomer is uniformly applied by spraying to the substrate on which the conductive intermediate layer has been formed, 0.20 mol / L of ammonium peroxodisulfate as an oxidizing agent and tetraethylammonium diethylnaphthalenesulfonic acid as a dopant in an ethanol / water mixed solvent The polypyrrole film | membrane was formed by spraying the oxidizing agent solution which melt | dissolved 20 mol / L and adjusted pH to 7 with the aqueous ammonia by the spraying method.

次に、電解重合法によってπ共役系導電性高分子膜を形成した。溶媒を純水とし、硫酸によってpH3に調整し、モノマーとしてアニリン0.30mol/L、支持電解質としてテトラエチルアンモニウムドデシルベンゼンスルホン酸0.20mol/Lを含む電解液を用いて、導電性中間層を陽極、SUS304を陰極、電解重合時間は1時間、電流密度を5mA/cmとして電解重合を行い、ポリアニリン膜を形成し、導電用高耐食材料を10枚作製した。 Next, a π-conjugated conductive polymer film was formed by electrolytic polymerization. The solvent is pure water, the pH is adjusted to 3 with sulfuric acid, and an electrolysis intermediate layer is formed by using an electrolyte containing 0.30 mol / L of aniline as a monomer and 0.20 mol / L of tetraethylammonium dodecylbenzenesulfonic acid as a supporting electrolyte. SUS304 was used as the cathode, the electropolymerization time was 1 hour, the current density was 5 mA / cm 2 , the electropolymerization was carried out to form a polyaniline film, and 10 conductive highly corrosion-resistant materials were produced.

比較例1
特開2001−234361号公報に準じて、金属基体として純度99.6%のCu板(20×30mm、厚さが1mm)を用いた。本基体をアルカリ脱脂液にて脱脂、続いて希硝酸にて酸洗後、めっき基体として供した。まず、硫酸ニッケル6水和物1.00mol/L、塩化ニッケル6水和物0.25mol/L、ホウ酸0.65mol/Lとする塩化ニッケルを多く含むワット浴を用いて、電流密度100mA/cm、浴温度50℃にて硫黄含有率の低い第1Niめっき層を形成した。続いて、硫酸ニッケル6水和物1.2mol/L、塩化ニッケル6水和物0.19mol/L、ホウ酸0.65mol/L、1,5‐ナフタリンジスルホン酸ナトリウム2.33×10−2mol/L、チオ尿素1.31×10−3mol/Lとするワット浴を用いて、電流密度100mA/cm、浴温度50℃にて、第2Niめっき層を形成した。次に、市販のシアン金めっき浴を用いて、電流密度100mA/cm、浴温度30℃にて、金めっき層を形成した材料を10枚作製した。
Comparative Example 1
In accordance with Japanese Patent Laid-Open No. 2001-234361, a 99.6% pure Cu plate (20 × 30 mm, thickness 1 mm) was used as the metal substrate. The substrate was degreased with an alkaline degreasing solution, subsequently pickled with dilute nitric acid, and then used as a plating substrate. First, using a watt bath containing a large amount of nickel chloride, nickel sulfate hexahydrate 1.00 mol / L, nickel chloride hexahydrate 0.25 mol / L, boric acid 0.65 mol / L, current density 100 mA / A first Ni plating layer having a low sulfur content was formed at cm 2 and a bath temperature of 50 ° C. Subsequently, nickel sulfate hexahydrate 1.2 mol / L, nickel chloride hexahydrate 0.19 mol / L, boric acid 0.65 mol / L, sodium 1,5-naphthalene disulfonate 2.33 × 10 −2 A second Ni plating layer was formed at a current density of 100 mA / cm 2 and a bath temperature of 50 ° C. using a Watt bath having mol / L and thiourea of 1.31 × 10 −3 mol / L. Next, using a commercially available cyan gold plating bath, 10 materials having a gold plating layer formed at a current density of 100 mA / cm 2 and a bath temperature of 30 ° C. were produced.

比較例2
特開平4−1562232号公報に準じて、純水150gにアニリン9.3gを加えて、0〜10℃に保ちながら36質量%過硫酸アンモニウム水溶液を滴下させて化学重合させ、アンモニア水によって脱ドーピングし、銅色の可溶性ポリアニリン8.3gを得た。メタノール200ml中に該ポリアニリンを分散させながらヒドラジン一水和物20gを加え15時間攪拌し、可溶性の灰青色ポリアニリン7.5gを得た。それをクエン酸3.5質量%およびポリアニリン5.0質量%となるようにN−メチル−2−ピロリドンに溶解し、ドーパントを含むポリアニリン溶液を得た。
Comparative Example 2
According to Japanese Patent Laid-Open No. 4-1562322, 9.3 g of aniline is added to 150 g of pure water, and a 36% by mass aqueous ammonium persulfate solution is dropped while keeping the temperature at 0 to 10 ° C., followed by de-doping with ammonia water. 8.3 g of copper-soluble soluble polyaniline was obtained. While dispersing the polyaniline in 200 ml of methanol, 20 g of hydrazine monohydrate was added and stirred for 15 hours to obtain 7.5 g of a soluble grayish blue polyaniline. It was dissolved in N-methyl-2-pyrrolidone so as to be 3.5% by mass of citric acid and 5.0% by mass of polyaniline to obtain a polyaniline solution containing a dopant.

金属基体として純度99.6%のAl板(20×30mm、厚さが1mm)を用いた。本基体をアルカリ脱脂液にて脱脂、続いて2質量%フッ酸水溶液に1分間浸漬後、得られたポリアニリン溶液に、浸漬した後に、温度130℃で1時間乾燥し、深緑色のドーパントを含むポリアニリン皮膜を形成させた材料を10枚作製した。   An Al plate (20 × 30 mm, thickness 1 mm) having a purity of 99.6% was used as the metal substrate. The substrate is degreased with an alkaline degreasing solution, subsequently immersed in a 2% by mass hydrofluoric acid aqueous solution for 1 minute, then immersed in the obtained polyaniline solution, and then dried at a temperature of 130 ° C. for 1 hour to contain a dark green dopant. Ten materials on which a polyaniline film was formed were prepared.

以上において実施例で作製した導電用高耐食材料と比較例に対して、JIS−Z2371に準じた塩水噴霧試験を90日間行い、外観検査法により耐食性を比較した結果を表1に示す。また集電特性を調べるために、塩水噴霧試験後の試験片に対して、4端子測定法により体積抵抗を比較した結果を表2に示す。   Table 1 shows the results of performing a salt spray test in accordance with JIS-Z2371 for 90 days on the highly corrosion-resistant material for conduction and the comparative example prepared in the above examples and comparing the corrosion resistance by an appearance inspection method. Table 2 shows the results of comparing the volume resistance of the test piece after the salt spray test by the four-terminal measurement method in order to investigate the current collection characteristics.

表1の結果によれば、本発明にかかる各材料は、塩水噴霧試験2160時間後においても外観が変化することなく、優れた耐食性を有することが認められた。これに対し、同様に塩水噴霧試験を行った比較例1で作製した材料は、264時間後に緑錆が発生し、基体の防食性に対して効果がないことが認められた。   According to the results of Table 1, it was recognized that each material according to the present invention has excellent corrosion resistance without changing its appearance even after 2160 hours of the salt spray test. On the other hand, the material produced in Comparative Example 1 which was similarly subjected to the salt spray test generated green rust after 264 hours, and was found to have no effect on the corrosion resistance of the substrate.

表2の結果によれば、本発明にかかる各材料は、塩水噴霧試験2160時間後においても良好な体積抵抗を保持し、優れた集電特性を有することが認められた。これに対し、同様に塩水噴霧試験を行った比較例1で作製した材料は、2160時間後に原型をとどめないまでに腐食が進行し、測定することができなかった。また、比較例2で作製した材料は、体積抵抗が高く、集電特性には劣ることが認められた。   According to the results in Table 2, it was confirmed that each material according to the present invention retained a good volume resistance even after 2160 hours of the salt spray test and had excellent current collecting characteristics. On the other hand, the material produced in Comparative Example 1 which was similarly subjected to the salt spray test was not able to be measured because corrosion progressed until the prototype was not retained after 2160 hours. Moreover, it was recognized that the material produced in Comparative Example 2 has a high volume resistance and is inferior in current collecting characteristics.

Figure 2006169543
Figure 2006169543

Figure 2006169543
Figure 2006169543

本発明の導電用高耐食材料の製造工程を示すフロー図の一例。An example of the flowchart which shows the manufacturing process of the highly corrosion-resistant material for electroconductivity of this invention. 本発明の導電用高耐食材料の製造工程を示すフロー図の一例。An example of the flowchart which shows the manufacturing process of the highly corrosion-resistant material for electroconductivity of this invention.

符号の説明Explanation of symbols

1 基体
2 導電性中間層
3 電解重合法により形成されたπ共役系導電性高分子層
4 化学重合法により形成されたπ共役系導電性高分子層
5 導電用高耐食材料
6 導電用高耐食材料
DESCRIPTION OF SYMBOLS 1 Substrate 2 Conductive intermediate layer 3 π-conjugated conductive polymer layer formed by electropolymerization method 4 π-conjugated conductive polymer layer formed by chemical polymerization method 5 High corrosion resistance material for conductive 6 High corrosion resistance for conductive material

Claims (7)

金属材料からなる基体表面に、導電性を有する中間層が形成され、該中間層上にπ共役系導電性高分子が形成されていることを特徴とする導電用高耐食材料。 A highly corrosion-resistant material for electroconductivity, characterized in that an intermediate layer having conductivity is formed on a surface of a substrate made of a metal material, and a π-conjugated conductive polymer is formed on the intermediate layer. 金属材料からなる基体がMg、Al、Ti、Zn、Fe、Mg基合金、Al基合金、Ti基合金、Zn基合金、Fe基合金からなる群から選ばれる少なくとも1種であることを特徴とする請求項1に記載の導電用高耐食材料。 The substrate made of a metal material is at least one selected from the group consisting of Mg, Al, Ti, Zn, Fe, Mg-based alloys, Al-based alloys, Ti-based alloys, Zn-based alloys, and Fe-based alloys. The conductive high corrosion-resistant material according to claim 1. 中間層上に形成されたπ共役系導電性高分子がポリピロールおよびその誘導体、ポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体からなる群から選ばれる少なくとも1つであることを特徴とする請求項1〜2に記載の導電用高耐食材料。 The π-conjugated conductive polymer formed on the intermediate layer is at least one selected from the group consisting of polypyrrole and its derivatives, polyaniline and its derivatives, polythiophene and its derivatives. High corrosion resistance material for electric conduction as described in 2. 導電性を有する中間層がC、Ni、Co、Zr、Sn、Cu、Pt、Au、Ag、Pd、Ir、Ru、Ni基合金、Fe基合金、Co基合金、Zr基合金、Sn基合金、Cu基合、Pt基合金、Au基合金、Ag基合金、Pd基合金、Ir基合金、Ru基合金、Ru酸化物、Zn酸化物、Ir酸化物、In酸化物、Sn酸化物なる群から選ばれる少なくとも1種であることを特徴とする請求項1〜3に記載の導電用高耐食材料。 Conductive intermediate layer is C, Ni, Co, Zr, Sn, Cu, Pt, Au, Ag, Pd, Ir, Ru, Ni base alloy, Fe base alloy, Co base alloy, Zr base alloy, Sn base alloy , Cu-based alloy gold, Pt-based alloy, Au-based alloys, Ag-based alloys, Pd-based alloys, Ir-based alloy, Ru base alloy, Ru oxide, Zn oxide, Ir oxide, In oxide, comprising Sn oxide The highly corrosion-resistant material for electrical conduction according to claim 1, wherein the material is at least one selected from the group. 金属材料からなる基体表面の酸化皮膜層を除去する工程後に導電性を有する中間層が形成されていることを特徴とする請求項1〜4に記載の導電用高耐食材料およびその製造方法。 5. The highly corrosion-resistant material for electroconductivity and the method for producing the same according to claim 1, wherein an intermediate layer having conductivity is formed after the step of removing the oxide film layer on the substrate surface made of a metal material. 金属材料からなる基体表面の上層に形成されるπ共役系導電性高分子が、電解重合法によって形成されることを特徴とする請求項1〜5に記載の導電用高耐食材料およびその製造方法。 6. A highly corrosion-resistant material for electroconductivity and a method for producing the same according to claim 1, wherein the π-conjugated conductive polymer formed on the upper surface of the substrate made of a metal material is formed by an electrolytic polymerization method. . 金属材料からなる基体表面の上層に形成されるπ共役系導電性高分子が、化学重合後に電解重合法によって形成されることを特徴とする請求項1〜5に記載の導電用高耐食材料およびその製造方法。 The high corrosion-resistant material for electroconductivity according to claim 1, wherein the π-conjugated conductive polymer formed on the upper surface of the base material made of a metal material is formed by chemical polymerization after chemical polymerization and Its manufacturing method.
JP2004359150A 2004-12-10 2004-12-10 Highly corrosion resistant material for electric conduction and production method therefor Pending JP2006169543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004359150A JP2006169543A (en) 2004-12-10 2004-12-10 Highly corrosion resistant material for electric conduction and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004359150A JP2006169543A (en) 2004-12-10 2004-12-10 Highly corrosion resistant material for electric conduction and production method therefor

Publications (1)

Publication Number Publication Date
JP2006169543A true JP2006169543A (en) 2006-06-29

Family

ID=36670606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004359150A Pending JP2006169543A (en) 2004-12-10 2004-12-10 Highly corrosion resistant material for electric conduction and production method therefor

Country Status (1)

Country Link
JP (1) JP2006169543A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266744A (en) * 2007-04-23 2008-11-06 Japan Carlit Co Ltd:The Corrosion resistant conductive coating material, and its use
CN104800888A (en) * 2015-05-12 2015-07-29 北京航空航天大学 Magnesium and magnesium alloy surface modification zinc tin composite film and preparing method thereof
JP2018044240A (en) * 2016-09-08 2018-03-22 Jfeスチール株式会社 High strength steel sheet excellent in delayed fracture resistance, and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243266A (en) * 1988-04-07 1990-02-13 Ricoh Co Ltd Junction material
JPH0539596A (en) * 1991-08-06 1993-02-19 Tdk Corp Rare earth alloy
JP2003086459A (en) * 2001-07-02 2003-03-20 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor
JP2004139951A (en) * 2002-08-21 2004-05-13 Japan Steel Works Ltd:The Separator for fuel cell and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243266A (en) * 1988-04-07 1990-02-13 Ricoh Co Ltd Junction material
JPH0539596A (en) * 1991-08-06 1993-02-19 Tdk Corp Rare earth alloy
JP2003086459A (en) * 2001-07-02 2003-03-20 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor
JP2004139951A (en) * 2002-08-21 2004-05-13 Japan Steel Works Ltd:The Separator for fuel cell and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266744A (en) * 2007-04-23 2008-11-06 Japan Carlit Co Ltd:The Corrosion resistant conductive coating material, and its use
CN104800888A (en) * 2015-05-12 2015-07-29 北京航空航天大学 Magnesium and magnesium alloy surface modification zinc tin composite film and preparing method thereof
JP2018044240A (en) * 2016-09-08 2018-03-22 Jfeスチール株式会社 High strength steel sheet excellent in delayed fracture resistance, and method for producing the same

Similar Documents

Publication Publication Date Title
EP2749673B1 (en) Silver plating and production method therefor
JPS58161785A (en) Electrode clad with lead or lead alloy and manufacture
WO2015098058A1 (en) Electrode for hydrogen generation, process for producing same, and method of electrolysis therewith
JP6450639B2 (en) Silver plating material and method for producing the same
JP5737787B2 (en) Silver plating material and method for producing the same
JP6694941B2 (en) Silver plated material and manufacturing method thereof
CN1938453A (en) Electrode for generating hydrogen, manufacturing method therefor and electrolysis method using it
JP6515509B2 (en) ELECTRODE FOR HYDROGEN GENERATION, METHOD FOR PRODUCING THE SAME, AND ELECTROLYTIC METHOD USING THE SAME
US9534307B2 (en) Silver-plated product and method for producing same
JP2006169543A (en) Highly corrosion resistant material for electric conduction and production method therefor
JP2006172720A (en) Separator for fuel cell and its manufacturing method
JP6086531B2 (en) Silver plating material
JP5055496B2 (en) Electroless plating method
US20050123784A1 (en) Terminal having surface layer formed of Sn-Ag-Cu ternary alloy formed thereon, and part and product having the same
JP3678196B2 (en) Chip type electronic component manufacturing method and chip type electronic component
KR102295180B1 (en) Ag-Nano Alloy Plating Solution Compositions for Improving of Conductivity and Durability and Plating Methods Using Thereof
JP2007069376A (en) Conductive polymer coated metal material
JP5353253B2 (en) High corrosion resistance plated steel
JP2006118023A (en) Method for manufacturing electrode for generating hydrogen
TWI525225B (en) Electrolyte for electrodepositing molybdenum and method for forming molybdenum-containing layer
JP2006167925A (en) Conductive high corrosion-resistant material and its manufacturing method
GB1285417A (en) Production of protective coatings on metals by anodic oxidation
JP6609913B2 (en) Electrode for hydrogen generation, method for producing the same, and electrolysis method using the same
JP3561504B2 (en) Stainless steel conductive member and method of manufacturing the same
JP3658823B2 (en) Electrode for electrolysis and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071204

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A02 Decision of refusal

Effective date: 20110307

Free format text: JAPANESE INTERMEDIATE CODE: A02