JP2006143827A - Polyarylene sulfide resin composition - Google Patents

Polyarylene sulfide resin composition Download PDF

Info

Publication number
JP2006143827A
JP2006143827A JP2004334030A JP2004334030A JP2006143827A JP 2006143827 A JP2006143827 A JP 2006143827A JP 2004334030 A JP2004334030 A JP 2004334030A JP 2004334030 A JP2004334030 A JP 2004334030A JP 2006143827 A JP2006143827 A JP 2006143827A
Authority
JP
Japan
Prior art keywords
polyarylene sulfide
sulfide resin
resin composition
weight
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004334030A
Other languages
Japanese (ja)
Other versions
JP4684629B2 (en
Inventor
Katsuhira Oonishi
克平 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2004334030A priority Critical patent/JP4684629B2/en
Publication of JP2006143827A publication Critical patent/JP2006143827A/en
Application granted granted Critical
Publication of JP4684629B2 publication Critical patent/JP4684629B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyarylene sulfide resin composition remarkably reduced in occurrence of corrosive gas in molding, having little occurrence of burr and improved in a crystallization rate. <P>SOLUTION: The resin composition is obtained by formulating (A) 100 pts.wt. polyarylene sulfide resin having 10-500 Pa s melting viscosity (at 310°C and 1,200 sec<SP>-1</SP>shearing rate) with (B) 0.05-1.2 pts.wt. carbon nano tube having 5-100 nm average diameter and 50-2,000 aspect ratio and (C) 0-250 pts.wt. inorganic filler. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、成形時の腐食ガス発生が著しく低減され、且つバリの発生が少なく、結晶化速度が向上したポリアリーレンサルファイド樹脂組成物に関する。   The present invention relates to a polyarylene sulfide resin composition in which the generation of corrosive gas during molding is remarkably reduced, the occurrence of burrs is small, and the crystallization speed is improved.

ポリフェニレンサルファイド(以下PPSと略す場合がある)樹脂に代表されるポリアリーレンサルファイド(以下PASと略す場合がある)樹脂は、高い耐熱性、機械的物性、耐化学薬品性、寸法安定性、難燃性を有していることから、電気・電子機器部品材料、自動車機器部品材料、化学機器部品材料等に広く使用されている。   Polyarylene sulfide (hereinafter sometimes abbreviated as PAS) resin, represented by polyphenylene sulfide (hereinafter sometimes abbreviated as PPS) resin, has high heat resistance, mechanical properties, chemical resistance, dimensional stability, flame resistance Therefore, it is widely used for electrical / electronic equipment part materials, automotive equipment part materials, chemical equipment part materials, and the like.

しかしながら、PAS樹脂は、射出成形時に金型を腐食させる、結晶化速度が遅いため成形時のサイクル時間が長い、また成形時にバリの発生が多いという問題があった。   However, the PAS resin has a problem that it corrodes the mold at the time of injection molding, the crystallization speed is slow, the cycle time at the time of molding is long, and there are many burrs during the molding.

金型の腐食問題を解決する従来の方法としては、PAS樹脂の樹脂構造や製造原料から発生する腐食性ガスの捕捉のために、酸化亜鉛ウィスカまたは燐酸、もしくは次亜燐酸、またはそれらの塩を添加する技術が知られている(例えば、特許文献1)。しかしながら、この方法では、腐食性ガスの抑制効果が十分ではなく、また燐酸、次亜燐酸、またはそれらの塩を使用する場合は機械的物性の低下を生じるという問題もあった。   As a conventional method for solving the mold corrosion problem, zinc oxide whisker or phosphoric acid, or hypophosphorous acid, or a salt thereof is used for capturing a corrosive gas generated from the resin structure of PAS resin or a raw material for production. The technique to add is known (for example, patent document 1). However, this method has a problem that the corrosive gas is not sufficiently suppressed, and when phosphoric acid, hypophosphorous acid, or a salt thereof is used, mechanical properties are deteriorated.

また、結晶化速度を速くする方法としては、窒化ホウ素を添加する技術が開示されているが(特許文献2)、核剤としての効果が十分でなものではなく、また腐食性ガスを抑制する効果は示されない。また、窒化ホウ素を多量に添加すると機械的物性の低下を生じるという問題もあった。   Moreover, as a method for increasing the crystallization speed, a technique of adding boron nitride is disclosed (Patent Document 2), but the effect as a nucleating agent is not sufficient, and corrosive gas is suppressed. The effect is not shown. In addition, when a large amount of boron nitride is added, there is a problem that mechanical properties are deteriorated.

またさらに、バリの発生を低減する方法としては、各種アルコキシシラン化合物を添加することが知られている(例えば、特許文献3〜5)。各種アルコキシシラン化合物とPAS樹脂は、反応性が高く、機械的物性の改良、バリ発生を抑制する効果等が認められているものの、そのバリ発生の抑制効果には限界があり、市場の要求を充分満足させるには至っておらず、また結晶化速度を速くする効果を併せ持っていない。
特開平11−100505号公報 特開平8−157716号公報 特開平1−89208号公報 特開平9−153383号公報 特開平1−146955号公報
Furthermore, as a method of reducing the generation of burrs, it is known to add various alkoxysilane compounds (for example, Patent Documents 3 to 5). Although various alkoxysilane compounds and PAS resins have high reactivity, and the improvement of mechanical properties and the effect of suppressing the generation of burrs are recognized, the effect of suppressing the generation of burrs is limited and there is a demand from the market. They are not fully satisfied and do not have the effect of increasing the crystallization rate.
Japanese Patent Laid-Open No. 11-1000050 JP-A-8-157716 JP-A-1-89208 JP-A-9-153383 JP-A-1-146955

本発明は、成形時の腐食ガス発生が著しく低減され、且つバリの発生が少なく、結晶化速度が向上したポリアリーレンサルファイド樹脂組成物の提供を目的とするものである。   An object of the present invention is to provide a polyarylene sulfide resin composition in which the generation of corrosive gas during molding is remarkably reduced, the generation of burrs is small, and the crystallization speed is improved.

本発明者らは上記目的を達成するため鋭意検討した結果、特定のPAS樹脂を使用し、これに特定のカーボンナノチューブ及び必要により無機充填剤の夫々特定量を配合した樹脂組成物は、成形時の腐食ガス発生が著しく低減され、且つバリの発生が少なく、結晶化速度も向上していることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have used a specific PAS resin, and a resin composition containing a specific amount of a specific carbon nanotube and, if necessary, a specific amount of an inorganic filler, The present inventors have found that the generation of corrosive gas is remarkably reduced, the generation of burrs is small, and the crystallization speed is improved, and the present invention has been completed.

即ち本発明は、
(A) 溶融粘度(310℃・ズリ速度1200sec-1)が10〜500Pa・sであるポリアリーレンサルファイド樹脂100重量部に対して、
(B) 平均直径が5〜100nm、アスペクト比が50〜2000であるカーボンナノチューブ0.05〜1.2重量部
(C) 無機充填剤0〜250重量部
を配合してなるポリアリーレンサルファイド樹脂組成物である。
That is, the present invention
(A) For 100 parts by weight of polyarylene sulfide resin having a melt viscosity (310 ° C., shear rate 1200 sec −1 ) of 10 to 500 Pa · s,
(B) 0.05 to 1.2 parts by weight of carbon nanotubes having an average diameter of 5 to 100 nm and an aspect ratio of 50 to 2000
(C) A polyarylene sulfide resin composition comprising 0 to 250 parts by weight of an inorganic filler.

以下本発明の構成成分について詳細に説明する。本発明に用いる(A) 成分としてのPAS樹脂は、主として繰返し単位として-(Ar-S)-(但しArはアリーレン基)で構成された高分子化合物であり、本発明では一般的に知られている分子構造のPAS樹脂を使用することができる。   Hereinafter, the constituent components of the present invention will be described in detail. The PAS resin as the component (A) used in the present invention is a polymer compound composed mainly of-(Ar-S)-(where Ar is an arylene group) as a repeating unit, and is generally known in the present invention. A PAS resin having a molecular structure can be used.

上記アリーレン基としては、例えば、p−フェニレン基、m−フェニレン基、o−フェニレン基、置換フェニレン基、p,p’−ジフェニレンスルフォン基、p,p’−ビフェニレン基、p,p’−ジフェニレンエーテル基、p,p’−ジフェニレンカルボニル基、ナフタレン基などが挙げられる。PAS樹脂は、上記繰返し単位のみからなるホモポリマーでも良いし、下記の異種繰返し単位を含んだコポリマーが加工性等の点から好ましい場合もある。   Examples of the arylene group include a p-phenylene group, m-phenylene group, o-phenylene group, substituted phenylene group, p, p′-diphenylene sulfone group, p, p′-biphenylene group, p, p′-. A diphenylene ether group, p, p′-diphenylenecarbonyl group, naphthalene group and the like can be mentioned. The PAS resin may be a homopolymer consisting only of the above repeating units, or a copolymer containing the following different types of repeating units may be preferable from the viewpoint of processability and the like.

ホモポリマーとしては、アリーレン基としてp−フェニレン基を用いた、p−フェニレンサルファイド基を繰返し単位とするPPSが好ましく用いられる。また、コポリマーとしては、前記のアリーレン基からなるアリーレンサルファイド基の中で、相異なる2種以上の組み合わせが使用できるが、中でもp−フェニレンサルファイド基とm−フェニレンサルファイド基を含む組み合わせが特に好ましく用いられる。この中で、p−フェニレンサルファイド基を70モル%以上、好ましくは80モル%以上含むものが、耐熱性、成形性、機械的特性等の物性上の点から適当である。また、m−フェニレンサルファイド基は5〜30モル%、特に10〜20モル%含むものが共重合体としては好ましい。この場合、成分の繰り返し単位がランダム状のものより、ブロック状に含まれているもの(例えば、特開昭61−14228号公報に記載のもの)が加工性に優れ、且つ耐熱性、機械的物性も優れており、好ましく使用できる。又、これらのPAS樹脂の中で、2官能性ハロゲン芳香族化合物を主体とするモノマーから縮重合によって得られる実質的に直鎖状構造の高分子量ポリマーが、特に好ましく使用できる。   As the homopolymer, PPS using a p-phenylene sulfide group as an arylene group and a p-phenylene sulfide group as a repeating unit is preferably used. As the copolymer, among the arylene sulfide groups comprising the above-mentioned arylene groups, two or more different combinations can be used, and among them, a combination containing a p-phenylene sulfide group and an m-phenylene sulfide group is particularly preferably used. It is done. Among these, those containing 70 mol% or more, preferably 80 mol% or more of p-phenylene sulfide groups are suitable from the viewpoint of physical properties such as heat resistance, moldability and mechanical properties. Moreover, what contains 5-30 mol%, especially 10-20 mol% of m-phenylene sulfide groups is preferable as a copolymer. In this case, the repeating unit of the component is contained in a block rather than a random one (for example, the one described in JP-A-61-1228) has excellent processability, heat resistance, mechanical properties. It has excellent physical properties and can be preferably used. Further, among these PAS resins, a high molecular weight polymer having a substantially linear structure obtained by condensation polymerization from a monomer mainly composed of a bifunctional halogen aromatic compound can be particularly preferably used.

尚、直鎖状構造のPAS樹脂以外にも、縮重合させさせるときに、3個以上のハロゲン置換基を有するポリハロ芳香族化合物等のモノマーを少量用いて、部分的に分岐構造又は架橋構造を形成させたポリマーも使用できるし、低分子量の直鎖状構造ポリマーを酸素等の存在下、高温で加熱して酸化架橋又は熱架橋により溶融粘度を上昇させ、成形加工性を改良したポリマー、あるいはこれらの混合物も使用可能である。   In addition to the PAS resin having a linear structure, when polycondensation is performed, a small amount of a monomer such as a polyhaloaromatic compound having three or more halogen substituents is used to partially form a branched structure or a crosslinked structure. The formed polymer can also be used, a low molecular weight linear structure polymer is heated at a high temperature in the presence of oxygen or the like, and the melt viscosity is increased by oxidative crosslinking or thermal crosslinking to improve molding processability, or Mixtures of these can also be used.

本発明に使用する基体樹脂としてのPAS樹脂の溶融粘度(310℃・ズリ速度1200sec-1)は、上記混合系の場合も含め10〜500Pa・sであることが必要であり、中でも20〜300Pa・sの範囲にあるものは、機械的物性と流動性のバランスが優れており、特に好ましい。溶融粘度が過小の場合は機械強度が十分でないため好ましくなく、溶融粘度が過大であると射出成形時に樹脂組成物の流動性が悪く成形作業が困難になるため好ましくない。 The melt viscosity (310 ° C., shear rate 1200 sec −1 ) of the PAS resin as the base resin used in the present invention is required to be 10 to 500 Pa · s including the above mixed system, and in particular, 20 to 300 Pa. -The thing in the range of s is especially preferable since the balance between mechanical properties and fluidity is excellent. An excessively low melt viscosity is not preferable because the mechanical strength is not sufficient, and an excessively high melt viscosity is not preferable because the flowability of the resin composition is poor during injection molding and the molding operation becomes difficult.

また、本発明で使用する(A) PAS樹脂としては、窒素元素の含有量が樹脂1kg当たり0.55gを超えるものが好ましい。   The (A) PAS resin used in the present invention preferably has a nitrogen element content exceeding 0.55 g per kg of the resin.

PAS樹脂中の窒素元素の含有量は、例えば、重合系内のpHを制御することによって調整できる。一例を挙げると、前段重合開始時の系内のpHが12を超えるように設定し、重合を開始することにより樹脂1kg当たり0.55gを超える窒素元素含有量のPAS樹脂を得ることができる。尚、窒素元素の含有量の上限は特に限定されないが、多く成りすぎると射出成形時の発生ガス量が増大し、モールドデポジットが多くなるという問題が生じるため、一般的に樹脂1kg当たり0.6〜1.5g程度が好ましい。   The content of elemental nitrogen in the PAS resin can be adjusted, for example, by controlling the pH in the polymerization system. For example, a PAS resin having a nitrogen element content of more than 0.55 g per 1 kg of the resin can be obtained by setting the pH in the system at the start of the pre-stage polymerization to exceed 12, and starting the polymerization. The upper limit of the content of nitrogen element is not particularly limited, but if it is too large, the amount of gas generated at the time of injection molding will increase, resulting in a problem that the mold deposit will increase, so generally 0.6 to 1.5 per kg of resin. About g is preferable.

次に、本発明で(B) 成分として使用されるカーボンナノチューブは、平均直径が5〜100nm、アスペクト比が50〜2000のカーボンナノチューブである。平均直径が過小であるとカーボンナノチューブの製造が困難になる場合があり好ましくない。一方、平均直径が過大であると腐食性ガス低減効果が得られず好ましくない。また、アスペクト比は腐食性ガス低減効果を得る目的から50以上が好ましいが、過大なアスペクト比は製造上困難であるため好ましくない。   Next, the carbon nanotube used as the component (B) in the present invention is a carbon nanotube having an average diameter of 5 to 100 nm and an aspect ratio of 50 to 2000. If the average diameter is too small, it may be difficult to produce carbon nanotubes. On the other hand, if the average diameter is excessive, the corrosive gas reduction effect cannot be obtained, which is not preferable. Further, the aspect ratio is preferably 50 or more for the purpose of obtaining a corrosive gas reduction effect, but an excessive aspect ratio is not preferable because it is difficult to manufacture.

(B) カーボンナノチューブの配合量は、(A) PAS樹脂100重量部に対して0.05〜1.2重量部である。配合量が過少であると十分な腐食性ガス低減効果が得られず好ましない。また、配合量が多すぎると、機械的物性が低下する、コストが高くなる、といった問題点が発生するため好ましくない。   (B) The compounding quantity of a carbon nanotube is 0.05-1.2 weight part with respect to 100 weight part of (A) PAS resin. If the amount is too small, a sufficient corrosive gas reduction effect cannot be obtained, which is not preferable. Moreover, when there are too many compounding quantities, since the mechanical property falls and the problem that cost becomes high generate | occur | produces, it is unpreferable.

尚、本発明に使用するカーボンナノチューブの製造方法は特に限定されず、例えばアーク放電法、レーザー蒸発法、CVD法、二酸化炭素の接触水素還元法により製造されたものを使用できる。また、多層カーボンナノチューブは特に好ましく用いられる。   In addition, the manufacturing method of the carbon nanotube used for this invention is not specifically limited, For example, what was manufactured by the arc discharge method, the laser evaporation method, CVD method, and the catalytic hydrogen reduction method of a carbon dioxide can be used. Multi-walled carbon nanotubes are particularly preferably used.

次に、本発明では、十分な機械的強度を得るために(C) 無機充填材を配合することが好ましい。無機充填剤としては、例えば軽質炭酸カルシウム、重質ないし微粉化炭酸カルシウム、特殊カルシウム系充填材等の炭酸カルシウム;霞石、閃長石微粉末、モンモリロナイト、ベントナイト等の焼成クレー、シラン改質クレー等のクレー(珪酸アルミニウム粉末);タルク;溶融シリカ、結晶シリカ等のシリカ(二酸化珪素)粉末;珪藻土、珪砂等の珪酸含有化合物;軽石粉、軽石バルーン、スレート粉、雲母粉等の天然鉱物の粉砕品;アルミナ、アルミナコロイド(アルミナゾル)、アルミナ・ホワイト、硫酸アルミニウム等のアルミナ含有化合物;硫酸バリウム、リトポン、硫酸カルシウム、二硫化モリブデン、グラファイト(黒鉛)等の鉱物;ガラスビーズ、ガラスフレーク、発泡ガラスビーズ等のガラス系フィラー;フライアッシュ球、火山ガラス中空体、合成無機中空体、単結晶チタン酸カリウム、カーボンナノチューブ、炭素中空球、炭素64フラーレン、無煙炭粉末、人造氷晶石(クリオライト)、酸化チタン、酸化マグネシウム、塩基性マグネシウム、ドロマイト、チタン酸カリウム、亜硫酸カルシウム、マイカ、アスベスト、珪酸カルシウム、アルモニウム粉、硫化モリブデン等が挙げられる。   Next, in the present invention, it is preferable to blend (C) an inorganic filler in order to obtain sufficient mechanical strength. Examples of inorganic fillers include, for example, calcium carbonate such as light calcium carbonate, heavy or finely powdered calcium carbonate, special calcium-based fillers; calcined clay such as nepheline, feldspar fine powder, montmorillonite, bentonite, silane modified clay, etc. Clay (aluminum silicate powder); talc; silica (silicon dioxide) powder such as fused silica and crystalline silica; silicic acid-containing compounds such as diatomaceous earth and silica sand; pulverization of natural minerals such as pumice powder, pumice balloon, slate powder and mica powder Products: Alumina, alumina colloid (alumina sol), alumina white compounds such as alumina white, aluminum sulfate, etc .; minerals such as barium sulfate, lithopone, calcium sulfate, molybdenum disulfide, graphite (graphite); glass beads, glass flakes, foam glass Glass-based fillers such as beads; fly ash , Volcanic glass hollow body, synthetic inorganic hollow body, single crystal potassium titanate, carbon nanotube, carbon hollow sphere, carbon 64 fullerene, anthracite powder, artificial cryolite, titanium oxide, magnesium oxide, basic magnesium, Examples thereof include dolomite, potassium titanate, calcium sulfite, mica, asbestos, calcium silicate, aluminum powder, and molybdenum sulfide.

繊維状無機充填材としては、例えば、ガラス繊維、アスベスト繊維、炭素繊維、シリカ繊維、シリカ・アルミナ繊維、チタン酸カリウム繊維、ボロン繊維、カーボン繊維、炭化珪素繊維等が挙げられる。   Examples of the fibrous inorganic filler include glass fiber, asbestos fiber, carbon fiber, silica fiber, silica / alumina fiber, potassium titanate fiber, boron fiber, carbon fiber, and silicon carbide fiber.

(C) 成分の配合量は、(A) 成分のPAS樹脂100重量部に対し、0〜250重量部であり、好ましくは10〜200重量部である。(C) 成分の配合量が過少であると十分な機械的強度が得られず、また過大であると成形性、熱安定性、機械的強度が低下し、好ましくない。   The amount of the component (C) is 0 to 250 parts by weight, preferably 10 to 200 parts by weight, based on 100 parts by weight of the PAS resin as the component (A). If the amount of component (C) is too small, sufficient mechanical strength cannot be obtained, and if it is too large, moldability, thermal stability and mechanical strength are lowered, which is not preferable.

また、本発明のPAS樹脂組成物には、必要に応じて更に(D) アミノアルコキシシランを配合することができる。アミノアルコキシシランの例としては、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリエトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等が挙げられ、特にγ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリエトキシシランが好ましい。   The PAS resin composition of the present invention can further contain (D) aminoalkoxysilane as required. Examples of aminoalkoxysilane include γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, N- (β-aminoethyl)- γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltriethoxysilane, N- (β-aminoethyl) -γ-aminopropylmethyldimethoxysilane, N-phenyl-γ-aminopropyl Examples include trimethoxysilane, and particularly, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, and N- (β-aminoethyl) -γ-aminopropyltriethoxysilane are preferable.

これらのアミノアルコキシシラン化合物は各単独で使用できる他、2種以上を混合して使用することができる。   These aminoalkoxysilane compounds can be used alone or in combination of two or more.

また、これらのアミノアルコキシシラン化合物は単体でもよいが、予め上記単体が重合された構造に相当するポリマー、2種以上が共重合された構造に相当するコポリマー、又はこれらのオリゴマーも使用することができる。   These aminoalkoxysilane compounds may be used alone, but a polymer corresponding to a structure obtained by previously polymerizing the above simple substance, a copolymer corresponding to a structure obtained by copolymerizing two or more kinds, or an oligomer thereof may be used. it can.

(D) アミノアルコキシシラン化合物の配合量は、(A) PAS樹脂100重量部に対して0.05〜1重量部であり、好ましくは0.1〜0.8重量部である。アミノアルコキシシラン化合物の配合量が少なすぎると、相溶性が悪く成形剥離等の問題が生じ、バリの抑制能力としても不十分である。また、アミノアルコキシシラン化合物の配合量が多すぎると、発生ガスが多くなる等の問題が生じ、好ましくない。   (D) The compounding quantity of an amino alkoxysilane compound is 0.05-1 weight part with respect to 100 weight part of (A) PAS resin, Preferably it is 0.1-0.8 weight part. If the compounding amount of the aminoalkoxysilane compound is too small, the compatibility is poor and problems such as molding peeling occur, and the burr suppressing ability is insufficient. Moreover, when there are too many compounding quantities of an amino alkoxysilane compound, problems, such as generation | occurrence | production gas increasing, will arise and it is unpreferable.

更に、本発明のPAS樹脂組成物には、その特性を損なわない範囲で、必要に応じて他の熱可塑性樹脂、有機充填材、各種配合剤を添加することができる。   Furthermore, other thermoplastic resins, organic fillers, and various compounding agents can be added to the PAS resin composition of the present invention as needed within a range that does not impair the properties.

他の熱可塑性樹脂としては、例えば、ポリフェニレンエーテル、ポリエーテルスルホン、ポリスルホン、ポリカーボネート、ポリアセタール等の他、液晶性ポリマー、芳香族ポリエステル、ポリアリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のエステル系樹脂;ポリエチレン、ポリプロピレン、ポリ−4−メチルペンテン−1等のオレフィン系樹脂;ナイロン6、ナイロン66、芳香族ナイロン等のアミド系樹脂;ポリメチル(メタ)アクリレート、ポリアクリロニトリルスチレン(AS樹脂)、ポリスチレン、ノルボルネン樹脂等の環状オレフィン樹脂などが上げられる。   Other thermoplastic resins include, for example, ester resins such as polyphenylene ether, polyethersulfone, polysulfone, polycarbonate, polyacetal, etc., liquid crystalline polymers, aromatic polyesters, polyarylate, polyethylene terephthalate, polybutylene terephthalate; polyethylene Olefin resins such as polypropylene and poly-4-methylpentene-1; amide resins such as nylon 6, nylon 66 and aromatic nylon; polymethyl (meth) acrylate, polyacrylonitrile styrene (AS resin), polystyrene, norbornene resin Cyclic olefin resins such as

他の熱可塑性樹脂として用いられるオレフィン系樹脂としては、反応性官能基を有するポリオレフィンあるいはオレフィン系共重合体等も使用することができる。これらのポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレン、ポリブテン、各種のエチレン/プロピレン基等が挙げられ、反応性官能基としては、酸無水物基、グリシジル基、カルボキシル基等が挙げられ、α−オレフィンとα,β−不飽和酸のグリシジルエステルからなる共重合体が好ましい。該α−オレフィンとしては、エチレンが好ましく、α,β−不飽和酸のグリシジルエステルとしては、アクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル等が挙げられ、好ましくはメタクリル酸グリシジルである。該ポリオレフィンとしては、他の不飽和モノマー、例えばビニルエーテル、酢酸ビニル、プロピオン酸ビニル、(メタ)アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリロニトリル、スチレン等を含有率40重量%以下で共重合したものでもよい。   As the olefin resin used as another thermoplastic resin, a polyolefin having a reactive functional group, an olefin copolymer, or the like can also be used. Examples of these polyolefin resins include polyethylene, polypropylene, polybutene, various ethylene / propylene groups, and examples of reactive functional groups include acid anhydride groups, glycidyl groups, and carboxyl groups. And a copolymer consisting of glycidyl ester of α, β-unsaturated acid is preferable. The α-olefin is preferably ethylene, and the glycidyl ester of α, β-unsaturated acid includes glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, and preferably glycidyl methacrylate. As the polyolefin, other unsaturated monomers such as vinyl ether, vinyl acetate, vinyl propionate, methyl (meth) acrylate, ethyl acrylate, butyl acrylate, acrylonitrile, styrene and the like are copolymerized at a content of 40% by weight or less. You may have done.

有機充填材としては、例えば、ポリエチレン繊維、ポリプロピレン繊維、ポリエステル繊維、ポリアミド繊維、フッ素繊維、ポリアラミド繊維、エボナイト粉末、熱硬化性樹脂中空球、熱硬化性樹脂フィラー、エポキシ樹脂フィラー、シリコーン系フィラー、サラン中空球、セラック、木粉、コルク粉末、ポリビニルアルコール繊維、セルロースパウダー、木材パルプ等が挙げられる。   Examples of the organic filler include polyethylene fiber, polypropylene fiber, polyester fiber, polyamide fiber, fluorine fiber, polyaramid fiber, ebonite powder, thermosetting resin hollow sphere, thermosetting resin filler, epoxy resin filler, silicone filler, Examples include Saran hollow sphere, shellac, wood powder, cork powder, polyvinyl alcohol fiber, cellulose powder, and wood pulp.

その他の配合剤としては、熱可塑性樹脂材料で通常用いられているものであれば格別な制限はなく、例えば、酸化防止剤、紫外線吸収剤、光安定剤、近紫外線吸収剤、染料や顔料等の着色剤、滑剤、可塑剤、帯電防止剤、蛍光増白剤、難燃剤等が挙げられる。   Other compounding agents are not particularly limited as long as they are usually used in thermoplastic resin materials. For example, antioxidants, ultraviolet absorbers, light stabilizers, near ultraviolet absorbers, dyes and pigments, etc. Colorants, lubricants, plasticizers, antistatic agents, fluorescent brighteners, flame retardants, and the like.

本発明の樹脂組成物は、上記成分を必要に応じて混合して調製される。混合方法はこれらの成分が十分に分散する方法であれば特に限定されない。例えば、ミキサーや二軸混練機、ロール、ブラベンダー、一軸もしくは二軸押出機等で溶融状態で混練する方法等がある。特に押出機を用いて溶融状態で混練したのち押出し、これを適当な長さに切ってペレットとするのが、生産性が高く、好適である。溶融混練時の温度は、樹脂成分が溶融する温度より5℃ないし100℃高い温度であり、特に好ましくは樹脂の融点より10℃ないし60℃高い温度である。   The resin composition of the present invention is prepared by mixing the above components as necessary. The mixing method is not particularly limited as long as these components are sufficiently dispersed. For example, there is a method of kneading in a molten state with a mixer, a twin screw kneader, a roll, a Brabender, a single screw or twin screw extruder, or the like. In particular, it is preferable to extrude after being kneaded in a molten state using an extruder, and then cut into an appropriate length to obtain pellets because of high productivity. The temperature at the time of melt kneading is 5 to 100 ° C. higher than the temperature at which the resin component melts, and particularly preferably 10 to 60 ° C. higher than the melting point of the resin.

本発明のPAS樹脂組成物は、射出成形、射出圧縮成形、圧縮成形、ブロー成形等により成形することができる。本発明の上記成形品の用途としては、電気・電子機器部品材料、自動車機器部品材料、化学機器部品材料、水廻り関連部品材料等が挙げられる。   The PAS resin composition of the present invention can be molded by injection molding, injection compression molding, compression molding, blow molding or the like. Applications of the molded article of the present invention include electrical / electronic equipment part materials, automotive equipment part materials, chemical equipment part materials, water-related part materials, and the like.

次に実施例、比較例で本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例および比較例に用いた各(A) 、(B) 、(C) 、(D) 、(E) の具体的物質は以下の通りである。
(A) PAS樹脂
以下のポリマーの調製例により、(A-1) 〜(A-2) のPAS樹脂を得た。
(A-1)
20LのオートクレーブにNMP(N−メチル−2−ピロリドン)5700gを仕込み、窒素ガスで置換後、約1時間かけて、攪拌機の回転数250rpmで撹拌しながら、100℃まで昇温した。100℃に到達後、濃度74.7重量%のNaOH水溶液1170g、硫黄源水溶液1990g(NaSH=21.8モル及びNaS=0.50モルを含む)、及びNMP1000gを加え、約2時間かけて、徐々に200℃まで昇温し、水945g、NMP1590g、及び0.31モルの硫化水素を系外に排出した。
Next, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these. The specific substances (A), (B), (C), (D) and (E) used in Examples and Comparative Examples are as follows.
(A) PAS resin The PAS resins (A-1) to (A-2) were obtained by the following polymer preparation examples.
(A-1)
Into a 20 L autoclave, 5700 g of NMP (N-methyl-2-pyrrolidone) was charged, and after replacing with nitrogen gas, the temperature was raised to 100 ° C. while stirring at a rotation speed of 250 rpm for about 1 hour. After reaching 100 ° C., 1170 g of a NaOH aqueous solution having a concentration of 74.7% by weight, 1990 g of an aqueous sulfur source solution (including NaSH = 21.8 mol and Na 2 S = 0.50 mol), and NMP 1000 g were added and gradually increased to 200 ° C. over about 2 hours. Then, 945 g of water, 1590 g of NMP, and 0.31 mol of hydrogen sulfide were discharged out of the system.

上記脱水工程の後、170℃まで冷却し、p−ジクロロベンゼン3283g、NMP2800g、水133g、及び濃度97重量%のNaOHを23g加えたところ、缶内温度は130℃、pHは13.2になった。引き続き、攪拌機の回転数250rpmで撹拌しながら、180℃まで30分間かけて昇温し、更に180℃から220℃の間は60分間かけて昇温した。その温度で60分間反応させた後、230℃まで30分間かけて昇温し、230℃で90分間反応を行い、前段重合を行った。   After the dehydration step, the mixture was cooled to 170 ° C., and 3283 g of p-dichlorobenzene, 2800 g of NMP, 133 g of water, and 23 g of NaOH having a concentration of 97% by weight were added. Subsequently, while stirring at a rotational speed of 250 rpm of the stirrer, the temperature was raised to 180 ° C. over 30 minutes, and further between 180 ° C. and 220 ° C. over 60 minutes. After reacting at that temperature for 60 minutes, the temperature was raised to 230 ° C. over 30 minutes, and the reaction was carried out at 230 ° C. for 90 minutes to perform pre-stage polymerization.

前段重合終了後、直ちに攪拌機の回転数を400rpmに上げ、水340gを圧入した。水圧入後、260℃まで1時間かけて昇温し、その温度で5時間反応させ、後段重合を行った。後段重合終了時点での系のpHは10.1であった。   Immediately after completion of the pre-polymerization, the rotation speed of the stirrer was increased to 400 rpm, and 340 g of water was injected. After water injection, the temperature was raised to 260 ° C. over 1 hour, and the reaction was carried out at that temperature for 5 hours to carry out post polymerization. The pH of the system at the end of the latter polymerization was 10.1.

後段重合終了後、反応混合物を室温付近まで冷却してから、内容物を100メッシュのスクリーンにかけ、粒状ポリマーを濾別し、次いで、アセトン洗いを3回、水洗を3回、0.3%酢酸洗を行い、その後、水洗を4回行い、洗浄した粒状ポリマーを得た。粒状ポリマーは、105℃で13時間乾燥した。このようにして得られた粒状ポリマーは、溶融粘度(310℃、ズリ速度1200sec-1)が140Pa・s、窒素元素の含有量が樹脂1kg当たり0.85gであった。
(A-2)
20LのオートクレーブにNMP(N−メチル−2−ピロリドン)5700gを仕込み、窒素ガスで置換後、約1時間かけて、攪拌機の回転数250rpmで撹拌しながら、100℃まで昇温した。100℃に到達後、硫黄源水溶液1990g(NaSH=21.9モル及びNaS=0.4モルを含む)、及びNMP1000gを加え、約2時間かけて、徐々に200℃まで昇温し、水729g、NMP1370g、及び0.70モルの硫化水素を系外に排出した。
After the post-polymerization is completed, the reaction mixture is cooled to near room temperature, the contents are passed through a 100 mesh screen, the particulate polymer is filtered off, then washed three times with acetone, three times with water, and 0.3% acetic acid. After that, washing with water was performed 4 times to obtain a washed granular polymer. The granular polymer was dried at 105 ° C. for 13 hours. The granular polymer thus obtained had a melt viscosity (310 ° C., shear rate of 1200 sec −1 ) of 140 Pa · s and a nitrogen element content of 0.85 g per kg of resin.
(A-2)
Into a 20 L autoclave, 5700 g of NMP (N-methyl-2-pyrrolidone) was charged, and after replacing with nitrogen gas, the temperature was raised to 100 ° C. while stirring at a rotation speed of 250 rpm for about 1 hour. After reaching 100 ° C., 1990 g of sulfur source aqueous solution (including NaSH = 21.9 mol and Na 2 S = 0.4 mol) and NMP 1000 g were added, and gradually heated to 200 ° C. over about 2 hours, 729 g of water, 1370 g of NMP , And 0.70 mol of hydrogen sulfide was discharged out of the system.

上記脱水工程の後、170℃まで冷却し、p−ジクロロベンゼン3236g、及びNMP2800gを加えたところ、缶内温度は130℃になった。180℃まで30分間かけて昇温した後、水酸化ナトリウム(NaOH)の添加を開始し、重合反応系のpHを11.5〜12.0に制御した。引き続き、攪拌機の回転数250rpmで撹拌しつつ、180℃まで30分間かけて昇温し、更に180℃から220℃の間は60分間かけて昇温した。その温度で60分間反応させた後、230℃まで30分間かけて昇温し、230℃で90分間反応を行い、前段重合を行った。   After the dehydration step, the mixture was cooled to 170 ° C., and 3236 g of p-dichlorobenzene and 2800 g of NMP were added. As a result, the temperature in the can reached 130 ° C. After heating up to 180 ° C. over 30 minutes, addition of sodium hydroxide (NaOH) was started, and the pH of the polymerization reaction system was controlled to 11.5 to 12.0. Subsequently, while stirring at a rotation speed of 250 rpm of the stirrer, the temperature was raised to 180 ° C. over 30 minutes, and further between 180 ° C. and 220 ° C. over 60 minutes. After reacting at that temperature for 60 minutes, the temperature was raised to 230 ° C. over 30 minutes, and the reaction was carried out at 230 ° C. for 90 minutes to perform pre-stage polymerization.

前段重合工程を通して、重合反応系のpHを11.5〜12.0の範囲に維持するように、ポンプを用いて濃度73.7重量%のNaOH水溶液1180gを連続的に添加した。   Through the previous polymerization step, 1180 g of a 73.7 wt% NaOH aqueous solution was continuously added using a pump so as to maintain the pH of the polymerization reaction system in the range of 11.5 to 12.0.

前段重合終了後、直ちに攪拌機の回転数を400rpmに上げ、水340gを圧入した。水圧入後、260℃まで1時間かけて昇温し、その温度で4時間反応させ、後段重合を行った。後段重合終了時点での系のpHは10.0であった。   Immediately after completion of the pre-polymerization, the rotation speed of the stirrer was increased to 400 rpm, and 340 g of water was injected. After water injection, the temperature was raised to 260 ° C. over 1 hour and reacted at that temperature for 4 hours to carry out post polymerization. The pH of the system at the end of the latter polymerization was 10.0.

後段重合終了後、反応混合物を室温付近まで冷却してから、内容物を100メッシュのスクリーンにかけ、粒状ポリマーを濾別し、次いで、アセトン洗いを3回、水洗を3回、0.3%酢酸洗を行い、その後、水洗を4回行い、洗浄した粒状ポリマーを得た。粒状ポリマーは、105℃で13時間乾燥した。このようにして得られた粒状ポリマーは、溶融粘度(310℃、ズリ速度1200sec-1)が151Pa・s、窒素元素の含有量が樹脂1kg当たり0.32gであった。
(B) カーボンナノチューブ
(B-1)
RMB7015−01(ポリフェニレンサルファイド樹脂の15重量%マスターバッチ、ハイペリオン・キャタリシス・インターナショナル製、カーボンナノチューブの平均直径10nm、アスペクト100〜1000、1kg当たりの窒素含有量0.82g)
(C) 無機充填剤
(C-1)
ガラス繊維 13μmφチョップドストランド(日本電気ガラス製、ECS03T−717)
(C-2)
炭酸カルシウム(東洋ファインケミカル製、平均粒子径4μm)
(D) アミノアルコキシシラン
(D-1)
γ−アミノプロピルトリエトキシシラン
(D-2)
γ−(2−アミノエチル)アミノプロピルトリエトキシシラン
(E) 亜鉛化合物
(E-1)
酸化亜鉛(松下アムテック製、ウィスカ、平均繊維径(短径)=0.3μm、平均繊維長(長径)=4μm)
また、実施例および比較例での評価方法は以下の通りである。
[窒素量の分析法]
微量窒素硫黄分析計(ANTEK社製、ANTEK7000)を用いてPAS樹脂中の窒素含有量を測定した(窒素量の検量線はトリフェニルアミンのエチルベンゼン溶液を用いて作成した)。
[PAS樹脂のpHの測定法]
室温(15〜25℃)にて、サンプル5gとアセトン15ml、及び精製水30mlをフラスコに入れ、振とう機を用いて30分間振とうした後、分液ロートで濾過した。その上澄みのpHをpHメーターで測定した。
[腐食ガス発生量の測定]
理研計器(株)製高感度毒性ガスモニター(FP−300、検知テープFC−005)を用い、セラミック製ボード上にペレット0.2gないし2.0gを精秤し、350℃に設定された加熱炉内に置き、発生する塩化水素量を測定した。塩化水素量は、350℃、40分間に発生する総発生塩化水素ガス量(μg)を仕込みサンプル重量(g)で除した濃度(単位ppm)で表した。
[結晶化温度(Tc)の測定]
パーキンエルマー製DSC7を使用し、340℃から10℃/分で冷却した時に現れる結晶化による発熱ピークのピークトップの温度を結晶化温度(Tc)として測定した。
[曲げ強度の測定]
ISO3167に準じた試験片(幅10mm、厚み4mm)を成形し、ISO178に準じて測定した。
[バリ発生の評価]
一部に20μmの金型間隙を有するバリ測定部が外周に設けられている円盤状キャビティーの金型を用いて、シリンダー温度320℃、金型温度150℃で、キャビティーが完全に充填するのに必要な最小圧力で射出成形し、その部分に発生するバリ長さを写像投影機にて拡大して測定した。
実施例1〜6、比較例1〜7
(A) 成分、(B) 成分および(C) 成分と必要に応じて(D) 成分又は(E) 成分を表1、2に示す比率でヘンシェルミキサーにより2〜5分間混合した。この混合物をシリンダー温度320℃の二軸押出機に投入し、ポリフェニレンサルファイド樹脂組成物のペレットを作った。得られたペレットについて、上述の方法にて各種評価を行った。結果を表1、2に示す。
After the post-polymerization is completed, the reaction mixture is cooled to near room temperature, the contents are passed through a 100 mesh screen, the particulate polymer is filtered off, then washed three times with acetone, three times with water, and 0.3% acetic acid. After that, washing with water was performed 4 times to obtain a washed granular polymer. The granular polymer was dried at 105 ° C. for 13 hours. The granular polymer thus obtained had a melt viscosity (310 ° C., shear rate of 1200 sec −1 ) of 151 Pa · s and a nitrogen element content of 0.32 g per kg of resin.
(B) Carbon nanotube
(B-1)
RMB7015-01 (15% by weight masterbatch of polyphenylene sulfide resin, manufactured by Hyperion Catalysis International, average diameter of carbon nanotubes 10 nm, aspect 100-1000, nitrogen content 0.82 g per kg)
(C) Inorganic filler
(C-1)
Glass fiber 13μmφ chopped strand (NEC Glass, ECS03T-717)
(C-2)
Calcium carbonate (Toyo Fine Chemical, average particle size 4μm)
(D) Aminoalkoxysilane
(D-1)
γ-aminopropyltriethoxysilane
(D-2)
γ- (2-aminoethyl) aminopropyltriethoxysilane
(E) Zinc compound
(E-1)
Zinc oxide (manufactured by Matsushita Amtec, whisker, average fiber diameter (minor axis) = 0.3 μm, average fiber length (major axis) = 4 μm)
Moreover, the evaluation method in an Example and a comparative example is as follows.
[Analytical method of nitrogen content]
The nitrogen content in the PAS resin was measured using a trace nitrogen sulfur analyzer (ANTEK 7000, manufactured by ANTEK) (a calibration curve for the nitrogen content was prepared using an ethylbenzene solution of triphenylamine).
[Method for measuring pH of PAS resin]
At room temperature (15 to 25 ° C.), 5 g of a sample, 15 ml of acetone, and 30 ml of purified water were placed in a flask, shaken for 30 minutes using a shaker, and then filtered through a separatory funnel. The pH of the supernatant was measured with a pH meter.
[Measurement of corrosive gas generation]
Using a high-sensitivity toxic gas monitor (FP-300, detection tape FC-005) manufactured by Riken Keiki Co., Ltd., accurately weigh 0.2 g to 2.0 g of pellets on a ceramic board, and set it in a heating furnace set at 350 ° C. The amount of hydrogen chloride generated was measured. The amount of hydrogen chloride was represented by the concentration (unit: ppm) obtained by dividing the total amount of hydrogen chloride gas (μg) generated at 350 ° C. for 40 minutes by the sample weight (g).
[Measurement of crystallization temperature (Tc)]
Using a Perkin Elmer DSC7, the temperature at the peak top of the exothermic peak due to crystallization that appears when cooling from 340 ° C. to 10 ° C./min was measured as the crystallization temperature (Tc).
[Measurement of bending strength]
A test piece (width 10 mm, thickness 4 mm) according to ISO 3167 was molded and measured according to ISO 178.
[Evaluation of burrs]
Using a disk cavity mold with a burr measuring part with a 20μm mold gap in the outer periphery, the cavity is completely filled at a cylinder temperature of 320 ° C and a mold temperature of 150 ° C. The minimum burr required for the injection molding was performed, and the burr length generated at that portion was enlarged and measured with a mapping projector.
Examples 1-6, Comparative Examples 1-7
The components (A), (B) and (C) were mixed with the components (D) or (E) as necessary using a Henschel mixer at the ratio shown in Tables 1 and 2 for 2 to 5 minutes. This mixture was put into a twin-screw extruder having a cylinder temperature of 320 ° C. to produce pellets of a polyphenylene sulfide resin composition. About the obtained pellet, various evaluation was performed by the above-mentioned method. The results are shown in Tables 1 and 2.

Figure 2006143827
Figure 2006143827

Figure 2006143827
Figure 2006143827

Claims (7)

(A) 溶融粘度(310℃・ズリ速度1200sec-1)が10〜500Pa・sであるポリアリーレンサルファイド樹脂100重量部に対して、
(B) 平均直径が5〜100nm、アスペクト比が50〜2000であるカーボンナノチューブ0.05〜1.2重量部
(C) 無機充填剤0〜250重量部
を配合してなるポリアリーレンサルファイド樹脂組成物。
(A) For 100 parts by weight of polyarylene sulfide resin having a melt viscosity (310 ° C., shear rate 1200 sec −1 ) of 10 to 500 Pa · s,
(B) 0.05 to 1.2 parts by weight of carbon nanotubes having an average diameter of 5 to 100 nm and an aspect ratio of 50 to 2000
(C) A polyarylene sulfide resin composition comprising 0 to 250 parts by weight of an inorganic filler.
(B) カーボンナノチューブが多層カーボンナノチューブである請求項1記載のポリアリーレンサルファイド樹脂組成物。   (B) The polyarylene sulfide resin composition according to claim 1, wherein the carbon nanotube is a multi-walled carbon nanotube. (C) 無機充填剤が、ガラス系充填剤(ガラス繊維、ガラスビーズ又はガラスフレーク)、炭酸カルシウム及びタルクから選ばれる1種又は2種以上である請求項1又は2記載のポリアリーレンサルファイド樹脂組成物。   (C) The polyarylene sulfide resin composition according to claim 1 or 2, wherein the inorganic filler is one or more selected from glass fillers (glass fibers, glass beads or glass flakes), calcium carbonate and talc. object. 更に、(A) ポリアリーレンサルファイド樹脂100重量部に対して(D) アミノアルコキシシラン化合物0.05〜1重量部を配合してなる請求項1〜3の何れか1項記載のポリアリーレンサルファイド樹脂組成物。   The polyarylene sulfide resin composition according to any one of claims 1 to 3, further comprising 0.05 to 1 part by weight of (D) an aminoalkoxysilane compound per 100 parts by weight of (A) polyarylene sulfide resin. . (D) アミノアルコキシシラン化合物が、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリエトキシシラン又はこれらの混合物である請求項4記載のポリアリーレンサルファイド樹脂組成物。   (D) The aminoalkoxysilane compound is γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N- (β-aminoethyl) -γ-aminopropyltriethoxysilane, or a mixture thereof. The polyarylene sulfide resin composition described. (A) ポリアリーレンサルファイド樹脂が、窒素元素の含有量が樹脂1kg当たり0.55gを超えるポリアリーレンサルファイド樹脂である請求項1〜5の何れか1項記載のポリアリーレンサルファイド樹脂組成物。   (A) The polyarylene sulfide resin composition according to any one of claims 1 to 5, wherein the polyarylene sulfide resin is a polyarylene sulfide resin having a nitrogen element content of more than 0.55 g per kg of the resin. 請求項1〜6の何れか1項記載のポリアリーレンサルファイド樹脂組成物からなる成形品。   A molded article comprising the polyarylene sulfide resin composition according to any one of claims 1 to 6.
JP2004334030A 2004-11-18 2004-11-18 Polyarylene sulfide resin composition Expired - Fee Related JP4684629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004334030A JP4684629B2 (en) 2004-11-18 2004-11-18 Polyarylene sulfide resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004334030A JP4684629B2 (en) 2004-11-18 2004-11-18 Polyarylene sulfide resin composition

Publications (2)

Publication Number Publication Date
JP2006143827A true JP2006143827A (en) 2006-06-08
JP4684629B2 JP4684629B2 (en) 2011-05-18

Family

ID=36623896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004334030A Expired - Fee Related JP4684629B2 (en) 2004-11-18 2004-11-18 Polyarylene sulfide resin composition

Country Status (1)

Country Link
JP (1) JP4684629B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127532A (en) * 2006-11-24 2008-06-05 Dic Corp Polyarylene sulfide resin composition
JP2009235201A (en) * 2008-03-26 2009-10-15 Kobe Steel Ltd Electroconductive resin film
JP2010006856A (en) * 2008-06-24 2010-01-14 Nissei Plastics Ind Co Carbon nanocomposite resin material
WO2010021437A1 (en) * 2008-08-19 2010-02-25 Cheil Industries Inc. Thermoplastic resin composition having excellent electrical conductivity, wear resistant and high heat resistance
JP2013023579A (en) * 2011-07-21 2013-02-04 Tosoh Corp Master batch
JP2013023608A (en) * 2011-07-22 2013-02-04 Tosoh Corp Polyarylene sulfide-based composition
JP2021024883A (en) * 2019-07-31 2021-02-22 ポリプラスチックス株式会社 Polyarylene sulfide resin molded product
KR20220088326A (en) 2020-12-18 2022-06-27 포리프라스틱 가부시키가이샤 Polyarylene sulfide resin composition
KR20220141301A (en) 2020-02-14 2022-10-19 포리프라스틱 가부시키가이샤 Polyarylene sulfide resin composition
WO2023008153A1 (en) * 2021-07-30 2023-02-02 ポリプラスチックス株式会社 Method for producing polyarylene sulfide resin composition
WO2023008417A1 (en) * 2021-07-30 2023-02-02 ポリプラスチックス株式会社 Polyarylene sulfide resin composition and insert-molded article
KR20230035574A (en) 2020-07-10 2023-03-14 포리프라스틱 가부시키가이샤 Burr suppression method of polyarylene sulfide resin composition
WO2023089962A1 (en) 2021-11-18 2023-05-25 Dic株式会社 Poly(arylene sulfide) resin mixture, resin composition, molded article, and production methods therefor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438211A (en) * 1987-08-03 1989-02-08 Polyplastics Co Polyarylene sulfide resin molded product having welded part
JPH1199546A (en) * 1997-09-29 1999-04-13 Kureha Chem Ind Co Ltd Manufacture of polyallylene sulfide molding
JP2002097375A (en) * 2000-09-22 2002-04-02 Toray Ind Inc Thermoplastic resin composition and molding
JP2003012939A (en) * 2001-07-03 2003-01-15 Toray Ind Inc Carbon-containing resin composition, molding material and molded product
JP2003306607A (en) * 2002-02-12 2003-10-31 Toray Ind Inc Resin composition and method for producing the same
JP2004244619A (en) * 2003-01-21 2004-09-02 Kureha Chem Ind Co Ltd Polyarylene sulfide and process for producing the same
JP2005232247A (en) * 2004-02-18 2005-09-02 Toray Ind Inc Method for producing polyarylene sulfide resin composition
JP2005298669A (en) * 2004-04-12 2005-10-27 Polyplastics Co Polyarylene sulfide resin composition and its molded article
JP2006045451A (en) * 2004-08-09 2006-02-16 Polyplastics Co Polyarylene sulfide resin composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438211A (en) * 1987-08-03 1989-02-08 Polyplastics Co Polyarylene sulfide resin molded product having welded part
JPH1199546A (en) * 1997-09-29 1999-04-13 Kureha Chem Ind Co Ltd Manufacture of polyallylene sulfide molding
JP2002097375A (en) * 2000-09-22 2002-04-02 Toray Ind Inc Thermoplastic resin composition and molding
JP2003012939A (en) * 2001-07-03 2003-01-15 Toray Ind Inc Carbon-containing resin composition, molding material and molded product
JP2003306607A (en) * 2002-02-12 2003-10-31 Toray Ind Inc Resin composition and method for producing the same
JP2004244619A (en) * 2003-01-21 2004-09-02 Kureha Chem Ind Co Ltd Polyarylene sulfide and process for producing the same
JP2005232247A (en) * 2004-02-18 2005-09-02 Toray Ind Inc Method for producing polyarylene sulfide resin composition
JP2005298669A (en) * 2004-04-12 2005-10-27 Polyplastics Co Polyarylene sulfide resin composition and its molded article
JP2006045451A (en) * 2004-08-09 2006-02-16 Polyplastics Co Polyarylene sulfide resin composition

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127532A (en) * 2006-11-24 2008-06-05 Dic Corp Polyarylene sulfide resin composition
JP2009235201A (en) * 2008-03-26 2009-10-15 Kobe Steel Ltd Electroconductive resin film
JP2010006856A (en) * 2008-06-24 2010-01-14 Nissei Plastics Ind Co Carbon nanocomposite resin material
WO2010021437A1 (en) * 2008-08-19 2010-02-25 Cheil Industries Inc. Thermoplastic resin composition having excellent electrical conductivity, wear resistant and high heat resistance
KR101003345B1 (en) 2008-08-19 2010-12-22 제일모직주식회사 Thermoplastic Resin Composition Having Excellent Electrical Conductivity, Anti-Wear Property and High Heat Resistance
US8419979B2 (en) 2008-08-19 2013-04-16 Cheil Industries Inc. Thermoplastic resin composition having electrical conductivity, wear resistance and high heat resistance
JP2013023579A (en) * 2011-07-21 2013-02-04 Tosoh Corp Master batch
JP2013023608A (en) * 2011-07-22 2013-02-04 Tosoh Corp Polyarylene sulfide-based composition
JP2021024883A (en) * 2019-07-31 2021-02-22 ポリプラスチックス株式会社 Polyarylene sulfide resin molded product
JP7465639B2 (en) 2019-07-31 2024-04-11 ポリプラスチックス株式会社 Polyarylene sulfide resin molded products
KR20220141301A (en) 2020-02-14 2022-10-19 포리프라스틱 가부시키가이샤 Polyarylene sulfide resin composition
KR20230035574A (en) 2020-07-10 2023-03-14 포리프라스틱 가부시키가이샤 Burr suppression method of polyarylene sulfide resin composition
KR20220088326A (en) 2020-12-18 2022-06-27 포리프라스틱 가부시키가이샤 Polyarylene sulfide resin composition
WO2023008153A1 (en) * 2021-07-30 2023-02-02 ポリプラスチックス株式会社 Method for producing polyarylene sulfide resin composition
WO2023008417A1 (en) * 2021-07-30 2023-02-02 ポリプラスチックス株式会社 Polyarylene sulfide resin composition and insert-molded article
JP7309790B2 (en) 2021-07-30 2023-07-18 ポリプラスチックス株式会社 Method for producing polyarylene sulfide resin composition
JP7382541B2 (en) 2021-07-30 2023-11-16 ポリプラスチックス株式会社 Polyarylene sulfide resin composition and insert molded products
WO2023089962A1 (en) 2021-11-18 2023-05-25 Dic株式会社 Poly(arylene sulfide) resin mixture, resin composition, molded article, and production methods therefor
KR20240046583A (en) 2021-11-18 2024-04-09 디아이씨 가부시끼가이샤 Polyarylene sulfide resin mixtures, resin compositions and molded articles, and methods for producing them

Also Published As

Publication number Publication date
JP4684629B2 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
JP4912620B2 (en) Polyarylene sulfide resin composition and injection molded article
EP1849834B1 (en) Polyarylene sulfide resin composition and method for producing same
JP4684629B2 (en) Polyarylene sulfide resin composition
TWI379858B (en) Polyarylene sulfide resin composition and molded article therefrom
JP2010070706A (en) Polyarylene sulfide resin composition
JP6231243B1 (en) Liquid crystalline resin composition
JPWO2009125556A1 (en) Polyarylene sulfide resin composition and polyarylene sulfide resin molded product in contact with organic solvent
JP4954516B2 (en) Polyarylene sulfide resin composition
JP4777080B2 (en) Polyarylene sulfide resin composition for molded article having box shape and molded article having box shape
JP4626951B2 (en) Polyarylene sulfide resin composition
JP2009155419A (en) Polyarylene sulfide resin composition
JP2004182895A (en) Electrically conductive resin composition
JP6976366B2 (en) Polyarylene sulfide resin composition
JP4813196B2 (en) Polyarylene sulfide resin composition for molded article having cylindrical shape and molded article having cylindrical shape
JP5446555B2 (en) Method for increasing elongation of polyarylene sulfide resin, and polyarylene sulfide molded article
JPWO2007046451A1 (en) Polyarylene sulfide resin composition and polyarylene sulfide resin molded product in contact with organic solvent
WO2022009660A1 (en) Method for suppressing burrs of polyarylene sulfide resin composition
JPH1180517A (en) Resin composition
JP4775609B2 (en) Polyarylene sulfide resin composition and optical pickup parts
JP3920387B2 (en) Polyarylene sulfide resin composition
JP7309790B2 (en) Method for producing polyarylene sulfide resin composition
JP2007137983A (en) Polyarylene sulfide resin composition for molded article having cylindrical part
JP5976292B2 (en) Polyarylene sulfide resin composition
JPH07119063B2 (en) Adhesive processing method for polyarylen sulfide resin molded product and adhesive molded product
JP3038794B2 (en) Resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4684629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees