JP2009235201A - Electroconductive resin film - Google Patents

Electroconductive resin film Download PDF

Info

Publication number
JP2009235201A
JP2009235201A JP2008081680A JP2008081680A JP2009235201A JP 2009235201 A JP2009235201 A JP 2009235201A JP 2008081680 A JP2008081680 A JP 2008081680A JP 2008081680 A JP2008081680 A JP 2008081680A JP 2009235201 A JP2009235201 A JP 2009235201A
Authority
JP
Japan
Prior art keywords
resin film
conductive
tetrapod
conductive resin
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008081680A
Other languages
Japanese (ja)
Other versions
JP5061005B2 (en
Inventor
Eiichiro Yoshikawa
英一郎 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008081680A priority Critical patent/JP5061005B2/en
Publication of JP2009235201A publication Critical patent/JP2009235201A/en
Application granted granted Critical
Publication of JP5061005B2 publication Critical patent/JP5061005B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive resin film having excellent electroconductivity. <P>SOLUTION: The electroconductive resin film comprises a fine carbonaceous fibrous material produced by reacting with gas containing methane and carbon dioxide in the presence of a catalyst at a temperature of not less than 300°C to less than 850°C, a tetrapod-like conductive filler and a matrix resin. As the tetrapod-like conductive filler is suitably used one composed of a tetrapod-like zinc oxide whisker and an outer surface layer covering the surface of the whisker and having better electroconductivity than zinc oxide. It is preferable that the material of the outer surface layer is silver. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鋼板、アルミニウム板等の金属板を基材とするプレコートメタルの皮膜などに適用することができる導電性樹脂皮膜に関するものである。   The present invention relates to a conductive resin film that can be applied to a pre-coated metal film using a metal plate such as a steel plate or an aluminum plate as a base material.

オーディオビジュアル(AV)機器、パーソナルコンピュータ周辺機器、インターネット接続機器、車載用情報端末等の電子機器の構成部材として使用されている金属板には、樹脂皮膜が形成されたプレコートメタルが採用されることがある。この皮膜には電磁波による電子機器の誤動作を防止するための導電性(電磁波シールド性)が求められ、その誤動作を十分に防止するべく、より高い導電性を有する樹脂皮膜が望まれている。   Pre-coated metal with a resin film is used for metal plates used as components of electronic equipment such as audio visual (AV) equipment, personal computer peripheral equipment, Internet connection equipment, and in-vehicle information terminals. There is. This film is required to have conductivity (electromagnetic wave shielding property) for preventing malfunction of electronic equipment due to electromagnetic waves, and a resin film having higher conductivity is desired in order to sufficiently prevent the malfunction.

ポリアセチレン、ポリ(パラフェニレン)、ポリピロール、ポリチオフェン、ポリアニリン等のπ共役高分子構造を有する樹脂はそれ自体が導電性を有することが知られており、また、カーボン系フィラー、金属系フィラー、金属酸化物系フィラー、表面に導電性樹脂皮膜が形成されたフィラー等の導電性フィラーを樹脂皮膜中に含ませて、当該皮膜に導電性を付与する方法が知られている。この中で、適用の自由度、汎用性、コスト等を考慮に入れると、導電性フィラーの活用が導電性を有する樹脂皮膜を形成するためには最も実用的である。   Resins having a π-conjugated polymer structure such as polyacetylene, poly (paraphenylene), polypyrrole, polythiophene, and polyaniline are known to have conductivity per se, and carbon-based fillers, metal-based fillers, metal oxides A method is known in which a conductive filler such as a physical filler or a filler having a conductive resin film formed on the surface thereof is included in the resin film to impart conductivity to the film. Among these, taking into consideration the degree of freedom of application, versatility, cost, etc., the use of the conductive filler is most practical for forming a resin film having conductivity.

近年、導電性フィラーの中で次世代型のフィラーとして注目されているのがカーボンナノチューブである。これは従来のカーボン系フィラーと比較して著しく高い導電性を有しており、市販されている代表的なカーボンナノチューブの電気抵抗値は、単繊維あたり10-4Ωという低い値を示す。しかしながら、単独では高い導電性を有するカーボンナノチューブを樹脂皮膜に含ませても、その低い嵩密度と分散性不良により、樹脂皮膜の表面導電性が予想よりも低くなってしまう場合が多々ある。それが故、カーボンナノチューブを含ませた樹脂皮膜の電磁波シールド機能には改善の余地が十分にある。また、樹脂皮膜の表面導電性には金属並の高いレベルが要求されることもあり、この要求に応えるためにも、樹脂皮膜の導電性を更に高めることが望まれる。 In recent years, carbon nanotubes have attracted attention as a next-generation filler among conductive fillers. This has remarkably high conductivity as compared with the conventional carbon-based filler, and the electric resistance value of typical carbon nanotubes on the market shows a low value of 10 −4 Ω per single fiber. However, even if carbon nanotubes having high conductivity alone are included in the resin film, the surface conductivity of the resin film often becomes lower than expected due to its low bulk density and poor dispersibility. Therefore, there is a room for improvement in the electromagnetic wave shielding function of the resin film containing carbon nanotubes. Further, the surface conductivity of the resin film may be required to be as high as that of a metal. In order to meet this requirement, it is desired to further increase the conductivity of the resin film.

また、例えば特許文献1にカーボンナノチューブ以外の公知の導電性フィラーが開示されている。当該文献に開示されているフィラーは、導電性樹脂シールドに適用できる樹脂皮膜等に含ませて使用できる酸化亜鉛ウィスカーであり、4軸方向に向けて針状酸化亜鉛が伸びたテトラポッド状のものである。そして、特許文献1は、前記テトラポッド状酸化亜鉛ウィスカーの表面に導電性材料をコーティングすることを開示すると共に、高導電性カーボンを樹脂皮膜中に併存させることも開示している。
特公平7−7876号公報
For example, Patent Document 1 discloses a known conductive filler other than carbon nanotubes. The filler disclosed in this document is a zinc oxide whisker that can be used by being included in a resin film that can be applied to a conductive resin shield, and has a tetrapod shape in which acicular zinc oxide extends in the direction of four axes. It is. Patent Document 1 discloses that the surface of the tetrapod-like zinc oxide whisker is coated with a conductive material, and also discloses that highly conductive carbon coexists in the resin film.
Japanese Patent Publication No. 7-7876

カーボンナノチューブとテトラポッド状酸化亜鉛ウィスカー等のテトラポッド状導電性フィラーとを樹脂皮膜に含ませる場合でも、上述の通り、導電性を更に高めることが望まれる。   Even in the case where carbon nanotubes and tetrapod-like conductive fillers such as tetrapod-like zinc oxide whiskers are included in the resin film, it is desired to further increase the conductivity as described above.

本発明は、上記事情に鑑み、導電性に優れた樹脂皮膜の提供を目的とする。   An object of this invention is to provide the resin film excellent in electroconductivity in view of the said situation.

本発明者は、カーボンナノチューブとテトラポッド状導電性フィラーとを含ませた導電性樹脂皮膜に関して鋭意検討した結果、カーボンナノチューブとして炭素質微細繊維状体を選択すれば、導電性樹脂皮膜の導電性が飛躍的に向上(表面電気抵抗が飛躍的に低減)することを見出し、本発明を完成するに至った。   As a result of intensive studies on a conductive resin film containing carbon nanotubes and a tetrapod-like conductive filler, the present inventor has selected a carbonaceous fine fibrous body as the carbon nanotube, and the conductivity of the conductive resin film is as follows. Has been found to drastically improve (surface electrical resistance is drastically reduced), and the present invention has been completed.

すなわち本発明に係る導電性樹脂皮膜は、触媒存在下、300℃以上、850℃未満の温度でメタンおよび二酸化炭素を含むガスを反応させることにより得られる炭素質微細繊維状体と、テトラポッド状導電性フィラーと、マトリックス樹脂とを含むことを特徴とする。本発明に係る導電性樹脂皮膜は、炭素質微細繊維状体を20〜50質量%、テトラポッド状導電性フィラーを5〜25質量%含むものであると良い。   That is, the conductive resin film according to the present invention comprises a carbonaceous fine fibrous body obtained by reacting a gas containing methane and carbon dioxide at a temperature of 300 ° C. or higher and lower than 850 ° C. in the presence of a catalyst, A conductive filler and a matrix resin are included. The conductive resin film according to the present invention preferably contains 20 to 50% by mass of a carbonaceous fine fibrous body and 5 to 25% by mass of a tetrapod-like conductive filler.

前記テトラポッド状導電性フィラーは、テトラポッド状酸化亜鉛ウィスカーと、該ウィスカーの表面を被覆し且つ前記酸化亜鉛よりも良導電性の外表面層とからなるものが好適である。前記外表面層の材質は、銀が好ましい。   The tetrapod-like conductive filler is preferably composed of a tetrapod-like zinc oxide whisker and an outer surface layer that covers the surface of the whisker and is more conductive than the zinc oxide. The material of the outer surface layer is preferably silver.

本発明に係る導電性樹脂皮膜を形成する対象は、例えば、金属板である。   The object for forming the conductive resin film according to the present invention is, for example, a metal plate.

カーボンナノチューブとして炭素質微細繊維状体を選定し、これをテトラポッド状導電性フィラーと組み合わせることによって、炭素質微細繊維状体とテトラポッド状導電性フィラーとの間の導電性向上に関する相乗効果を発揮するので、本発明に係る導電性樹脂皮膜は極めて優れた導電性を有する。   By selecting a carbonaceous fine fibrous body as a carbon nanotube and combining it with a tetrapod-like conductive filler, there is a synergistic effect on the conductivity improvement between the carbonaceous fine fibrous body and the tetrapod-like conductive filler. Since it exhibits, the conductive resin film according to the present invention has extremely excellent conductivity.

本発明に係る導電性樹脂皮膜は、炭素質微細繊維状体、テトラポッド状導電性フィラー、マトリックス樹脂を含む。   The conductive resin film according to the present invention includes a carbonaceous fine fibrous body, a tetrapod-shaped conductive filler, and a matrix resin.

(炭素質微細繊維状体)
炭素質微細繊維状体は、カーボンナノチューブの一種であり、300℃以上、850℃未満の温度でメタンおよび二酸化炭素を含むガス(以下、「メタンおよび二酸化炭素を含むガス」を「原料ガス」と称することがある。)を反応させることにより得られるものである。前記反応においては触媒を存在させることが必要であり、ニッケル、コバルト、鉄などの遷移金属および遷移金属の酸化物から選択された一種または二種以上を触媒として使用する。この触媒の活性を高めるために、シリカなどの担体に触媒を担持させる等、触媒活性を高めるための公知の手段をとっても良い。なお、原料ガスから炭素質微細繊維状体が生成するときの反応式は、次の通りである。
CO2+CH4 → 2C+2H2
(Carbonaceous fine fiber)
The carbonaceous fine fibrous body is a kind of carbon nanotube, and a gas containing methane and carbon dioxide at a temperature of 300 ° C. or higher and lower than 850 ° C. (hereinafter, “gas containing methane and carbon dioxide” is referred to as “source gas”. It is obtained by reacting. The reaction requires the presence of a catalyst, and one or two or more selected from transition metals such as nickel, cobalt and iron and transition metal oxides are used as the catalyst. In order to increase the activity of the catalyst, a known means for increasing the catalyst activity may be taken, such as loading the catalyst on a carrier such as silica. In addition, the reaction formula when a carbonaceous fine fibrous body produces | generates from source gas is as follows.
CO 2 + CH 4 → 2C + 2H 2 O

例えば流動層反応器を使用し、炭素質微細繊維状体を得るための反応を行なわせる。反応圧力および反応器内への原料ガス導入量は、適宜に設定されるべきものであり、例えば、反応圧が1〜200kPa、触媒に対する反応器内への原料ガス導入量が10〜60L/g・hrであると良い。   For example, a fluidized bed reactor is used to carry out a reaction for obtaining a carbonaceous fine fiber. The reaction pressure and the amount of raw material gas introduced into the reactor should be appropriately set. For example, the reaction pressure is 1 to 200 kPa, and the amount of raw material gas introduced into the reactor with respect to the catalyst is 10 to 60 L / g. -It should be hr.

以上の反応条件等により炭素質微細繊維状体を得ることができる。また、炭素質微細繊維状体を得るための方法、および当該方法に使用される装置については、特開2002−211909号公報、特開2002−201013号公報、特開2004−18290号公報、特開2004−19018号公報、特開2004−19019号公報、特開2004−360099号公報等に開示されている。   A carbonaceous fine fibrous body can be obtained by the above reaction conditions and the like. Moreover, about the method for obtaining a carbonaceous fine fibrous body, and the apparatus used for the said method, Unexamined-Japanese-Patent No. 2002-21909, Unexamined-Japanese-Patent No. 2002-201013, Unexamined-Japanese-Patent No. 2004-18290, Special JP-A-2004-19018, JP-A-2004-19019, JP-A-2004-360099, and the like.

本発明に係る炭素質微細繊維状体の特徴としては、嵩密度が高いこと、および導電性樹脂皮膜材料である塗料に用いられている溶剤との相溶性が良く、導電性樹脂皮膜への充填添加量を多くできること等がある。しかしながら塗料への分散性が良く、充填添加量が増やせることなどの特徴を有しているこの炭素質微細繊維状体であっても、これを単独で導電性樹脂皮膜に含ませた場合には、金属並みに低い表面電気抵抗を実現できない。つまり、炭素質微細繊維状体を単独で使用して表面電気抵抗を極めて低くするためには、当該繊維状体が導電性樹脂皮膜表面に高い密度である程度露出すると共に導電性樹脂皮膜の被形成面に接することが必要となってくる。この状況を実現すれば導電性に非常に優れた樹脂皮膜になると推測されるが、そのためには大過剰の炭素質微細繊維状体を使用しなければならず、導電性樹脂皮膜形成のために使用する塗料の粘度が極端に高くなって、その皮膜形成が非常に困難になる。しかし、本発明のようにテトラポッド状導電性フィラーを使用すれば、炭素質微細繊維状体が導電性フィラー間の導電配線機能を発揮し、その繊維状体に欠けていた導電性樹脂皮膜表面と当該皮膜の被形成面との導電部材の露出等はテトラポッド状導電性フィラーが役割を果たす。その結果として、本発明に係る導電性樹脂皮膜は、非常に高い表面導電性を有することになる。   The carbonaceous fine fibrous body according to the present invention is characterized by high bulk density and good compatibility with the solvent used in the coating material, which is a conductive resin film material, and filling the conductive resin film. For example, the amount added can be increased. However, even if it is this carbonaceous fine fibrous material having good dispersibility in the paint and increasing the amount of filler added, if it is included alone in the conductive resin film The surface electrical resistance as low as metal cannot be realized. In other words, in order to use the carbonaceous fine fibrous material alone to make the surface electrical resistance extremely low, the fibrous material is exposed to the conductive resin film surface to a certain extent at a high density and the conductive resin film is formed. It is necessary to touch the surface. If this situation is realized, it is presumed that the resin film will be very excellent in conductivity, but in order to do so, a large excess of carbonaceous fine fibrous material must be used. The viscosity of the paint used becomes extremely high, and the film formation becomes very difficult. However, if a tetrapod-like conductive filler is used as in the present invention, the carbonaceous fine fibrous body exhibits a conductive wiring function between the conductive fillers, and the surface of the conductive resin film lacking in the fibrous body The tetrapod-like conductive filler plays a role in exposing the conductive member to the surface on which the film is formed. As a result, the conductive resin film according to the present invention has a very high surface conductivity.

なお、炭素質微細繊維状体を他のカーボンナノチューブに替えた場合には、本発明に係る導電性樹脂皮膜の表面導電性を実現できないことは後記実施例と比較例との対比で明らかにする通りである。   In addition, it will be clarified by comparison between Examples and Comparative Examples described later that the surface conductivity of the conductive resin film according to the present invention cannot be realized when the carbonaceous fine fibrous body is replaced with another carbon nanotube. Street.

上述の原料ガスの反応により得られる炭素質微細繊維状体であれば、その窒素吸着によって測定される比表面積等の値は特に限定されない。概ね、カーボンブラックの分析として適用されるJIS K6217−2に基づいて決定される比表面積が50〜200m2/gであると良い。また、嵩密度が0.2〜12.0g/cm3の炭素質微細繊維状体であると良い。 If it is a carbonaceous fine fibrous body obtained by reaction of the above-mentioned raw material gas, values, such as a specific surface area measured by the nitrogen adsorption, will not be specifically limited. In general, the specific surface area determined based on JIS K6217-2 applied as an analysis of carbon black is preferably 50 to 200 m 2 / g. Moreover, it is good in it being a carbonaceous fine fibrous body with a bulk density of 0.2-12.0 g / cm < 3 >.

導電性樹脂皮膜中における炭素質微細繊維状体の量は、テトラポッド状導電性フィラー間の導電配線としての機能を十分に発揮させるためには、導電性樹脂皮膜における固形分換算で20質量%以上であると好ましく、更に、導電性樹脂皮膜の被形成面を完全に隠蔽して当該皮膜の意匠性を十分とするためには30質量%以上である。一方で、炭素質微細繊維状体の量が過剰であると、導電性樹脂皮膜形成のための塗料の粘度が上昇して塗布容易な実用的塗料を調製できないため、好ましくは50質量%以下、より好ましくは45質量%以下である。   The amount of the carbonaceous fine fibrous material in the conductive resin film is 20% by mass in terms of solid content in the conductive resin film in order to sufficiently exhibit the function as the conductive wiring between the tetrapod-shaped conductive fillers. Preferably, the amount is 30% by mass or more in order to completely conceal the surface on which the conductive resin film is to be formed so that the design of the film is sufficient. On the other hand, if the amount of the carbonaceous fine fibrous body is excessive, the viscosity of the coating for forming the conductive resin film is increased and a practical coating that is easy to apply cannot be prepared. More preferably, it is 45 mass% or less.

(テトラポッド状導電性フィラー)
テトラポッド状導電性フィラーは、マトリックス樹脂よりも導電性に優れる材質(例えば、酸化亜鉛ウィスカー)のフィラーであり、この構成部材が4軸伸長方向に位置する形状のものである。そのフィラーの先端形状は、針状など、特に限定されない。
(Tetrapod-like conductive filler)
The tetrapod-like conductive filler is a filler made of a material (for example, zinc oxide whisker) that is more excellent in conductivity than the matrix resin, and has a shape in which this constituent member is positioned in the four-axis extension direction. The tip shape of the filler is not particularly limited, such as a needle shape.

テトラポッド状導電性フィラーは、テトラポッド状の基材と、当該基材の外表面を被覆し且つ基材よりも良電導性の外表面層とからなるものが好適である。外表面層の材質としては、例えばテトラポッド状基材が酸化亜鉛ウィスカーである場合、銀、ニッケル、銅等が挙げられ、銀が好適である。外表面層の形成は、無電解メッキ等の公知のメッキ方法で行なうと良い。   The tetrapod-like conductive filler is preferably composed of a tetrapod-like base material and an outer surface layer that covers the outer surface of the base material and has better conductivity than the base material. As a material of the outer surface layer, for example, when the tetrapod-shaped base material is a zinc oxide whisker, silver, nickel, copper and the like can be mentioned, and silver is preferable. The outer surface layer may be formed by a known plating method such as electroless plating.

上記フィラーの寸法が限定されることはないが、4軸方向の夫々の長さが2〜50μmであると良く、夫々の径が0.2〜3μmであると良い。   The size of the filler is not limited, but the length in each of the four axes is preferably 2 to 50 μm, and the diameter is preferably 0.2 to 3 μm.

以上に詳述したテトラポッド状導電性フィラーは市販されており、例えば松下電器産業株式会社製「パナテトラ」が挙げられる。   The tetrapod-like conductive fillers detailed above are commercially available, for example, “Panatetra” manufactured by Matsushita Electric Industrial Co., Ltd.

上述の炭素質微細繊維状体の量範囲内で、導電性樹脂皮膜の優れた導電性を発揮させるためのテトラポッド状導電性フィラー量は、導電性樹脂皮膜における固形分換算で5質量%以上であり、10質量%以上が好ましい。一方で、当該フィラーの量が過剰であると、導電性樹脂皮膜形成のための塗料粘度が非実用的な程度まで上昇するので、25質量%以下、より好ましくは20質量%以下である。   The amount of the tetrapod-like conductive filler for exhibiting the excellent conductivity of the conductive resin film within the amount range of the above-mentioned carbonaceous fine fibrous material is 5% by mass or more in terms of solid content in the conductive resin film. And 10 mass% or more is preferable. On the other hand, when the amount of the filler is excessive, the viscosity of the coating for forming the conductive resin film increases to an impractical level, and is 25% by mass or less, more preferably 20% by mass or less.

(マトリックス樹脂)
本発明に係る樹脂皮膜におけるマトリックス樹脂は、公知の樹脂皮膜に適用されるマトリックス樹脂から任意に選択したものを使用することができる。例えば、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、ポリオレフィン樹脂、フッ素樹脂、シリコーン樹脂、およびこれら樹脂の混合物または変性した樹脂が挙げられる。樹脂皮膜を形成した金属板を曲げ加工して電子機器の筐体等に使用する場合、曲げ加工性、皮膜密着性、耐食性等の特性が良好なことが望まれることを考慮すると、有機溶剤可溶型(非晶性)のポリエステル樹脂が好ましい。ポリエステル樹脂をメラミン樹脂等で架橋してもよく、この架橋剤の使用量は、例えば、樹脂皮膜を100質量%としたときに0.5〜30質量%である。
(Matrix resin)
As the matrix resin in the resin film according to the present invention, a matrix resin arbitrarily selected from matrix resins applied to known resin films can be used. Examples thereof include polyester resins, acrylic resins, urethane resins, polyolefin resins, fluororesins, silicone resins, and mixtures or modified resins of these resins. In the case of bending a metal plate with a resin film and using it for a housing of an electronic device, it is possible to use an organic solvent considering that it is desired to have good properties such as bending workability, film adhesion, and corrosion resistance. A solution type (amorphous) polyester resin is preferred. The polyester resin may be crosslinked with a melamine resin or the like. The amount of the crosslinking agent used is, for example, 0.5 to 30% by mass when the resin film is 100% by mass.

(導電性樹脂皮膜の形成方法)
導電性樹脂皮膜を形成するには、後記の塗料を調製し、これを導電性樹脂皮膜の形成対象物に塗布し、乾燥すると良い。
(Method for forming conductive resin film)
In order to form the conductive resin film, it is preferable to prepare a paint described later, apply it to an object for forming the conductive resin film, and dry it.

塗料は、炭素質微細繊維状体、テトラポッド状導電性フィラー、およびマトリックス樹脂を配合して調製される。塗料の調製では、必要に応じて架橋剤等も配合する。また、各塗料原料の混合の容易化や塗料の塗布を容易化するために、有機溶剤を適宜に使用する。適宜に選択した有機溶剤を使用してよく、例えば、トルエン、キシレン等の芳香族系炭化水素;酢酸エチル、酢酸ブチル等の脂肪族エステル;シクロヘキサン等の脂環族炭化水素;ヘキサン、ペンタン等の脂肪族炭化水素;2−ブタノン、シクロヘキサノン等のケトン;が挙げられる。塗布適正を考慮した有機溶剤の使用量は、塗料の粘度がフォードカップNo.4で30〜100秒程度になる量、または塗料中の固形分濃度が5〜45%程度になる量であると良い。   The paint is prepared by blending a carbonaceous fine fiber, a tetrapod-like conductive filler, and a matrix resin. In preparation of the paint, a crosslinking agent or the like is also blended as necessary. In addition, an organic solvent is appropriately used in order to facilitate the mixing of each paint raw material and the application of the paint. An appropriately selected organic solvent may be used, for example, aromatic hydrocarbons such as toluene and xylene; aliphatic esters such as ethyl acetate and butyl acetate; alicyclic hydrocarbons such as cyclohexane; hexane, pentane, etc. Aliphatic hydrocarbons; ketones such as 2-butanone and cyclohexanone; The amount of organic solvent used in consideration of the appropriateness of coating is such that the viscosity of the paint is Ford Cup No. 4 is an amount that is about 30 to 100 seconds, or an amount that a solid content concentration in the coating is about 5 to 45%.

上記塗料には、本発明に係る樹脂皮膜の効果を阻害しない範囲で、艶消し剤、体質顔料、防錆剤、沈降防止剤、ワックス等の導電性樹脂皮膜分野で用いられる公知の添加剤を配合しても良い。   To the coating material, known additives used in the field of conductive resin films such as matting agents, extender pigments, rust preventives, anti-settling agents, and waxes, as long as the effects of the resin film according to the present invention are not impaired. You may mix.

塗料の塗布では、バーコーター法、ロールコーター法、スプレー法、カーテンフローコーター法等の公知の塗布方法から選択した任意の方法を使用できる。塗布した塗料の乾燥は特に限定されることのない乾燥態様を採ることができる。   In coating the paint, any method selected from known coating methods such as a bar coater method, a roll coater method, a spray method, and a curtain flow coater method can be used. The applied paint can be dried without any particular limitation.

なお、乾燥を経て形成された導電性樹脂皮膜表面に、必要に応じて、耐疵付き性や耐指紋性等を高めるために更に別の樹脂皮膜を形成しても良いが、この場合、本発明に係る導電性樹脂皮膜の導電性を低下させることがない薄膜(例えば、厚み0.2〜1.5μm)にすることが重要である。   If necessary, another resin film may be formed on the surface of the conductive resin film formed after drying in order to improve scratch resistance, fingerprint resistance, etc. It is important to use a thin film (for example, a thickness of 0.2 to 1.5 μm) that does not lower the conductivity of the conductive resin film according to the invention.

形成された導電性樹脂皮膜の厚みは特に限定されないが、一般的には8〜10μmであると良い。また、以上の方法によって形成された樹脂皮膜の表面抵抗値を、100Ω以下にも設定可能である。   Although the thickness of the formed conductive resin film is not particularly limited, it is generally 8 to 10 μm. Further, the surface resistance value of the resin film formed by the above method can be set to 100Ω or less.

導電性樹脂皮膜を金属板表面上に形成する場合、その金属板としては、例えば、アルミニウム板、銅板、冷延鋼板、溶融亜鉛メッキ鋼板、電気亜鉛メッキ鋼板、合金化溶融亜鉛メッキ鋼板が挙げられる。また、金属板には、耐食性向上、樹脂皮膜との密着性向上等を目的としてクロメート処理やリン酸塩処理等の公知の表面処理(下地処理)がなされたもの、環境を考慮したノンクロメート処理がなされたものを使用しても良い。   When the conductive resin film is formed on the surface of the metal plate, examples of the metal plate include an aluminum plate, a copper plate, a cold-rolled steel plate, a hot-dip galvanized steel plate, an electrogalvanized steel plate, and an alloyed hot-dip galvanized steel plate. . In addition, the metal plate has been subjected to well-known surface treatment (primary treatment) such as chromate treatment and phosphate treatment for the purpose of improving corrosion resistance and adhesion to the resin film, and non-chromate treatment in consideration of the environment. You may use what was made.

導電性樹脂皮膜が形成された金属板は、例えば、オーディオビジュアル機器、パーソナルコンピュータ周辺機器、インターネット接続機器、車載用情報端末等の電子機器や電子部品の構成部材として用いることができる。より具体的には、CD、LD、DVD、CD−ROM、CD−RAM、PDP、LCD等の情報記録製品;パソコン、カーナビ、カーオーディオビジュアル等の電気・電子・通信関連製品;プロジェクター、テレビ、ビデオ、ゲーム機等のオーディオビジュアル機器;コピー機、プリンター等の複写機;エアコン室外機等の電源ボックスカバー、制御ボックスカバー、自動販売機、冷蔵庫等である。本発明に係る樹脂皮膜は導電性(電磁波シールド性)に優れるので、電子機器の誤動作防止が可能となる。   The metal plate on which the conductive resin film is formed can be used, for example, as a constituent member of electronic devices and electronic parts such as audiovisual equipment, personal computer peripheral equipment, Internet connection equipment, and in-vehicle information terminals. More specifically, information recording products such as CDs, LDs, DVDs, CD-ROMs, CD-RAMs, PDPs, and LCDs; electrical / electronic / communication related products such as personal computers, car navigation systems, and car audio visuals; projectors, televisions, Audio visual equipment such as video and game machines; copiers such as copiers and printers; power supply box covers for air conditioner outdoor units, control box covers, vending machines, refrigerators, and the like. Since the resin film according to the present invention is excellent in conductivity (electromagnetic wave shielding property), malfunction of electronic equipment can be prevented.

以下に実施例および比較例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the following examples, and may be appropriately modified within a range that can meet the gist of the preceding and following descriptions. Any of these can be carried out and are included in the technical scope of the present invention.

(導電性樹脂皮膜形成用塗料)
実施例、比較例(比較例3を除く)、参考例では、ビヒクルであるプレコート用ポリエステル樹脂(三井化学社製「アルマテックス HMP90S」、固形分含量50質量%)に、後記の製法で得た炭素質微細繊維状体と、硝酸銀を用いた無電解メッキで銀メッキ処理されたテトラポッド状酸化亜鉛ウィスカー(松下電器産業社製「パナテトラ」、当該ウィスカー中の銀メッキ層含有量:36.2質量%)とを、後記表1の通りの導電性樹脂皮膜成分量となるように添加して塗料を調製し、2−ブタノン:トルエン=1:1(質量比)の溶剤を塗料に混合して固形分濃度を調整した。比較例3では、炭素質微細繊維状体に替えて、市販のカーボンナノチューブ(昭和電工社製気相法炭素繊維「VGCF−H」、窒素吸着による比表面積25m2/g、嵩密度0.04g/cm3)を使用した。
(Paint for forming conductive resin film)
In Examples, Comparative Examples (excluding Comparative Example 3), and Reference Examples, a precoat polyester resin (“Almatex HMP90S” manufactured by Mitsui Chemicals, solid content: 50% by mass) was obtained by the following method. Tetrapod-like zinc oxide whisker (“Panatetra” manufactured by Matsushita Electric Industrial Co., Ltd. manufactured by Matsushita Electric Industrial Co., Ltd., silver plating layer content in said whisker: 36.2) (Mass%) is added so that the amount of the conductive resin film component is as shown in Table 1 below, and a paint is prepared, and a solvent of 2-butanone: toluene = 1: 1 (mass ratio) is mixed with the paint. The solid content concentration was adjusted. In Comparative Example 3, instead of the carbonaceous fine fibrous material, a commercially available carbon nanotube (Showa Denko Co. vapor phase carbon fiber “VGCF-H”, specific surface area by nitrogen adsorption 25 m 2 / g, bulk density 0.04 g / Cm 3 ) was used.

(炭素質微細繊維状体)
触媒が存在する流動層反応器内で原料ガスを反応させることにより炭素質微細繊維状体を得た。ここで、原料ガスには、二酸化炭素とメタンとのモル比が1:1である混合ガスを使用し、触媒には金属ニッケルを使用し、当該金属ニッケルを平均粒径が15μmのシリカ担体に担持させて使用した。また、反応条件は、温度を550℃、反応圧を40kPa、流動層反応器への原料ガス導入量を触媒に対して30L/g・hrとした。
(Carbonaceous fine fiber)
A carbonaceous fine fiber was obtained by reacting the raw material gas in a fluidized bed reactor in which a catalyst was present. Here, a mixed gas having a molar ratio of carbon dioxide and methane of 1: 1 is used as the raw material gas, metallic nickel is used as the catalyst, and the metallic nickel is applied to a silica carrier having an average particle diameter of 15 μm. Used in support. The reaction conditions were such that the temperature was 550 ° C., the reaction pressure was 40 kPa, and the amount of raw material gas introduced into the fluidized bed reactor was 30 L / g · hr with respect to the catalyst.

(導電性樹脂皮膜の形成)
縦10cm、横15cm、厚み0.5mmの電気亜鉛メッキ鋼板に調製した塗料をバーコーターで塗布後、260℃、60秒間の焼き付け乾燥を行なった。電気亜鉛メッキ鋼板の表面に形成された導電性樹脂皮膜の厚みは、10μmであった。
(Formation of conductive resin film)
A paint prepared on an electrogalvanized steel sheet having a length of 10 cm, a width of 15 cm, and a thickness of 0.5 mm was applied with a bar coater, and then baked and dried at 260 ° C. for 60 seconds. The thickness of the conductive resin film formed on the surface of the electrogalvanized steel sheet was 10 μm.

(導電性の評価)
三和電気計器社製絶縁抵抗計「MG1000」を用いて、テスターの端子間隔を5cm、導電性樹脂皮膜表面への圧力を端子の自重のみとして当該皮膜表面の電気抵抗を5点測定した。導電性の評価では、測定した表面電気抵抗の平均値を採用した。
(Evaluation of conductivity)
Using an insulation resistance meter “MG1000” manufactured by Sanwa Denki Keiki Co., Ltd., the electrical resistance on the surface of the film was measured at 5 points with the terminal interval of the tester being 5 cm and the pressure on the surface of the conductive resin film being only the dead weight of the terminal. In the evaluation of conductivity, the average value of the measured surface electrical resistance was adopted.

Figure 2009235201
Figure 2009235201

表1から以下のことを確認できる。
(1)実施例1と、比較例1および2との対比から、炭素質微細繊維状体とテトラポッド状導電性フィラーを併用しなければ優れた導電性(表面固有抵抗)を実現できないこと。
(2)実施例3と比較例3との対比から、カーボンナノチューブの中でも炭素質微細繊維状体を使用すれば、導電性が飛躍的に向上すること。
(3)実施例5と参考例によれば、テトラポッド状導電性フィラーを5質量%以上にすると、導電性が飛躍的に向上すること。
(4)実施例4では本発明の効果(導電性に優れること)を実現しているものの、炭素質微細繊維状体が30質量%未満、かつ、導電性フィラーが25質量%以上であったため、目視で確認した意匠性が悪いものであった。
From Table 1, the following can be confirmed.
(1) From the comparison between Example 1 and Comparative Examples 1 and 2, excellent conductivity (surface resistivity) cannot be realized unless a carbonaceous fine fibrous body and a tetrapod-like conductive filler are used in combination.
(2) From the comparison between Example 3 and Comparative Example 3, if a carbonaceous fine fibrous body is used among carbon nanotubes, the conductivity is dramatically improved.
(3) According to Example 5 and the reference example, when the tetrapod-like conductive filler is 5% by mass or more, the conductivity is drastically improved.
(4) In Example 4, although the effect of the present invention (excellent conductivity) was realized, the carbonaceous fine fibrous body was less than 30% by mass and the conductive filler was 25% by mass or more. The design property visually confirmed was poor.

Claims (5)

触媒存在下、300℃以上、850℃未満の温度でメタンおよび二酸化炭素を含むガスを反応させることにより得られる炭素質微細繊維状体と、テトラポッド状導電性フィラーと、マトリックス樹脂とを含むことを特徴とする導電性樹脂皮膜。   It contains a carbonaceous fine fiber obtained by reacting a gas containing methane and carbon dioxide at a temperature of 300 ° C. or higher and lower than 850 ° C. in the presence of a catalyst, a tetrapod-like conductive filler, and a matrix resin. Conductive resin film characterized by 前記炭素質微細繊維状体を20〜50質量%、前記テトラポッド状導電性フィラーを5〜25質量%含む請求項1に記載の導電性樹脂皮膜。   The conductive resin film according to claim 1, comprising 20 to 50% by mass of the carbonaceous fine fibrous body and 5 to 25% by mass of the tetrapod-like conductive filler. 前記テトラポッド状導電性フィラーが、テトラポッド状酸化亜鉛ウィスカーと、該ウィスカーの表面を被覆し且つ前記酸化亜鉛よりも良導電性の外表面層とからなるものである請求項1または2に記載の導電性樹脂皮膜。   The said tetrapod-like electroconductive filler consists of a tetrapod-like zinc oxide whisker and the outer surface layer which coat | covers the surface of this whisker and is more electroconductive than the said zinc oxide. Conductive resin film. 前記外表面層の材質が、銀である請求項3に記載の導電性樹脂皮膜。   The conductive resin film according to claim 3, wherein a material of the outer surface layer is silver. 請求項1〜4のいずれか1項に記載の導電性樹脂皮膜が形成された金属板。   The metal plate in which the conductive resin film of any one of Claims 1-4 was formed.
JP2008081680A 2008-03-26 2008-03-26 Conductive resin film Expired - Fee Related JP5061005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008081680A JP5061005B2 (en) 2008-03-26 2008-03-26 Conductive resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008081680A JP5061005B2 (en) 2008-03-26 2008-03-26 Conductive resin film

Publications (2)

Publication Number Publication Date
JP2009235201A true JP2009235201A (en) 2009-10-15
JP5061005B2 JP5061005B2 (en) 2012-10-31

Family

ID=41249564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008081680A Expired - Fee Related JP5061005B2 (en) 2008-03-26 2008-03-26 Conductive resin film

Country Status (1)

Country Link
JP (1) JP5061005B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260945A (en) * 1988-08-29 1990-03-01 Matsushita Electric Ind Co Ltd Conductive resin composition
JPH02168698A (en) * 1988-09-08 1990-06-28 Matsushita Electric Ind Co Ltd Conductive resin film and manufacture thereof
JPH05117447A (en) * 1991-10-31 1993-05-14 Matsushita Electric Ind Co Ltd Conductive resin composition and container for electronic part
JPH05226092A (en) * 1992-02-07 1993-09-03 Matsushita Electric Ind Co Ltd Electrostatic diffusion resin complex
JP2000177053A (en) * 1998-12-17 2000-06-27 Kansai Paint Co Ltd Coated metallic plate
JP2003322217A (en) * 2002-05-07 2003-11-14 Mitsuboshi Belting Ltd High-load transmission belt
JP2004019019A (en) * 2002-06-13 2004-01-22 Mitsubishi Chemical Engineering Corp Carbonaceous fine fiber article
JP2006143827A (en) * 2004-11-18 2006-06-08 Polyplastics Co Polyarylene sulfide resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260945A (en) * 1988-08-29 1990-03-01 Matsushita Electric Ind Co Ltd Conductive resin composition
JPH02168698A (en) * 1988-09-08 1990-06-28 Matsushita Electric Ind Co Ltd Conductive resin film and manufacture thereof
JPH05117447A (en) * 1991-10-31 1993-05-14 Matsushita Electric Ind Co Ltd Conductive resin composition and container for electronic part
JPH05226092A (en) * 1992-02-07 1993-09-03 Matsushita Electric Ind Co Ltd Electrostatic diffusion resin complex
JP2000177053A (en) * 1998-12-17 2000-06-27 Kansai Paint Co Ltd Coated metallic plate
JP2003322217A (en) * 2002-05-07 2003-11-14 Mitsuboshi Belting Ltd High-load transmission belt
JP2004019019A (en) * 2002-06-13 2004-01-22 Mitsubishi Chemical Engineering Corp Carbonaceous fine fiber article
JP2006143827A (en) * 2004-11-18 2006-06-08 Polyplastics Co Polyarylene sulfide resin composition

Also Published As

Publication number Publication date
JP5061005B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
CN104170023B (en) Electrically conductive microparticle and manufacture method, electroconductive resin constituent, conductive sheet and electromagnetic shielding sheet
CN102272253B (en) Resin composition for surface treatment of steel sheet and surface-treated steel sheet using the same
KR101982010B1 (en) Metal-graphene powder and coating composition for shielding electromagnetic wave comprising the same
US20110236710A1 (en) Electrically conductive and anti-corrosive coating composition, a method for preparing the same and an article coated with the same
CN111183192B (en) Antistatic powder coating composition
JP4134134B2 (en) Conductive paint composition and electromagnetic wave shielding conductive film using the same
JP5563607B2 (en) Flaky conductive filler
JP2011525034A (en) Dispersion for applying metal layer
CN104163928A (en) Conductive heat-conductive graphene slurry and coating
JP4280742B2 (en) Conductive paint composition and method for producing the same
JP2006335976A (en) Conductive coating
Ehsanjoo et al. Long-term corrosion resistance of zinc-rich paint using functionalised multi-layer graphene-tripolyphosphate: in situ creation of zinc phosphate as corrosion inhibitor
JP4767822B2 (en) Surface-treated metal plate
JP5061005B2 (en) Conductive resin film
JPH01159905A (en) Conductive paste
JP5036363B2 (en) Conductive resin coated metal plate
JP4782043B2 (en) Surface-treated metal plate
JP2005239765A (en) Inorganic filler-dispersed insulating paint and insulated wire
JP6122249B2 (en) Resin-coated metal plate with excellent electromagnetic shielding properties
JP2005267859A (en) Conductive paste
KR100582659B1 (en) Electrically conductive paint compositions and preparation method thereof
JPH01297475A (en) Copper powder for electrically conductive coating material and electrically conductive coating composition
JP3954421B2 (en) Double-sided precoated aluminum plate excellent in press formability and conductivity and press working method using the same
JPH0214258A (en) Copper powder for electroconductive coating compound and electroconductive coating compound composition
JP5276794B2 (en) Conductive resin coated metal plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5061005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees