JP2005317395A - Conductive material containing metal nanowires and its intended use - Google Patents

Conductive material containing metal nanowires and its intended use Download PDF

Info

Publication number
JP2005317395A
JP2005317395A JP2004134725A JP2004134725A JP2005317395A JP 2005317395 A JP2005317395 A JP 2005317395A JP 2004134725 A JP2004134725 A JP 2004134725A JP 2004134725 A JP2004134725 A JP 2004134725A JP 2005317395 A JP2005317395 A JP 2005317395A
Authority
JP
Japan
Prior art keywords
metal
conductive
conductive material
metal nanowire
metal nanowires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004134725A
Other languages
Japanese (ja)
Other versions
JP4524745B2 (en
Inventor
Yoshiaki Takada
佳明 高田
Hiroki Hirata
寛樹 平田
Sumiyoshi Sato
純悦 佐藤
Hirotsuyo Mizoguchi
大剛 溝口
Masahito Murouchi
聖人 室内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Mitsubishi Materials Corp
Original Assignee
Dai Nippon Toryo KK
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK, Mitsubishi Materials Corp filed Critical Dai Nippon Toryo KK
Priority to JP2004134725A priority Critical patent/JP4524745B2/en
Publication of JP2005317395A publication Critical patent/JP2005317395A/en
Application granted granted Critical
Publication of JP4524745B2 publication Critical patent/JP4524745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive material with excellent conductivity using fine wire-shaped metallic fine particles (metal nanowires) having a nano grain size. <P>SOLUTION: This conductive material contains metal nanowires having major axes of 400 nm or more and minor axes of 50 nm or less and also contains rod-shaped metal nanorods having major axes less than 400 nm and an aspect ratio (major axis/minor axis ratio) larger than 1. The conductive material containing the metal nanowires is used for a conductive paste, an electrode material, a wiring material, a conductive paint, a conductive coating film, a conductive film, etc. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属ナノワイヤーを含有した導電性材料、およびこの導電性材料によって形成した導電性ペーストや導電性塗膜などの用途に関する。   The present invention relates to a conductive material containing metal nanowires, and uses such as a conductive paste and a conductive coating film formed from the conductive material.

近年、情報端末機器の急速な小型化に伴い、実装配線幅の狭ピッチ化が進んでいる。このため導電性に優れたペーストが求められており、粒径がサブミクロンサイズの金属粒子を配合した導電性ペーストが用いらている。しかし、このようなサブミクロン金属粒子を用いた従来のペーストは導電性のばらつきが顕著であり、これを克服するためにナノサイズの粒径を有する金属微粒子を使用した導電性ペーストの開発が進んでいる。   In recent years, with the rapid miniaturization of information terminal equipment, the mounting wiring width has been narrowed. For this reason, a paste excellent in conductivity is required, and a conductive paste containing metal particles having a submicron size is used. However, the conventional paste using such sub-micron metal particles has a remarkable variation in conductivity, and in order to overcome this, development of a conductive paste using metal fine particles having a nano-sized particle size has progressed. It is out.

例えば、インクジェット方式を利用して導電性ペーストを印刷し、配線基板の回路パターンを形成する方法において、有機溶剤を含む熱硬化性樹脂組成物中に、球状の平均粒子径1〜100nmの金属微粒子であって表面に窒素、酸素、硫黄原子を含む化合物によって被覆したものを均一に分散させてなる導電性ペーストを用い、樹脂が熱硬化する際に、金属微粒子表面の被覆を形成している化合物を、樹脂に含まれている有機酸無水物等と反応させて除去することによって、金属微粒子相互の低温での融着行わせて微細な線幅の回路パターンを形成することが知られている(特許文献1)。しかし、従来の導電性ペーストは、金属微粒子の分散安定性を高めるために分散剤の使用量が多くなる傾向があり、導電性にばらつきが生じるとともに低温焼成域においては高い導電性を得難いと云う問題がある。
特開2002−324966号公報
For example, in a method of printing a conductive paste using an ink jet method to form a circuit pattern of a wiring board, a spherical fine metal particle having an average particle diameter of 1 to 100 nm in a thermosetting resin composition containing an organic solvent A compound that forms a coating on the surface of metal fine particles when a resin is thermally cured using a conductive paste in which a surface coated with a compound containing nitrogen, oxygen, and sulfur atoms is uniformly dispersed. Is removed by reacting with an organic acid anhydride contained in the resin to form a circuit pattern with a fine line width by fusing metal fine particles at a low temperature. (Patent Document 1). However, the conventional conductive paste tends to increase the amount of the dispersant used to increase the dispersion stability of the metal fine particles, resulting in variations in conductivity and difficulty in obtaining high conductivity in the low temperature firing region. There's a problem.
JP 2002-324966 A

従来のナノサイズの粒径を有する金属微粒子を使用した導電性ペーストは、何れも球状の金属微粒子を用いており、高い導電性を得るために分散剤含有量および金属含有量を多くしなければならず、これに起因して上記問題を招いている。本発明は、従来の導電性ペーストにおける上記問題を解決したものであり、従来の球状金属微粒子に代えて、ナノサイズの粒径を有する微細なワイヤー状金属粒子(金属ナノワイヤー)を用いることによって、金属微粒子含有量を抑制しながらも高い導電性を有する導電性材料を得ることができるようにしたものであり、この導電性材料による導電性ペースト等を提供する。   Conventional conductive pastes using metal fine particles having a nano-sized particle diameter use spherical metal fine particles, and in order to obtain high conductivity, the dispersant content and the metal content must be increased. However, this causes the above problem. This invention solves the said problem in the conventional electrically conductive paste, and it replaces with the conventional spherical metal fine particle by using the fine wire-shaped metal particle (metal nanowire) which has a particle size of nanosize. The present invention provides a conductive material having high conductivity while suppressing the content of metal fine particles, and provides a conductive paste or the like using this conductive material.

本発明によれば以下の導電性材料が提供される。
(1)長軸400nm以上および短軸50nm以下であるワイヤー状金属繊維(金属ナノワイヤーと云う)を含有することを特徴とする金属ナノワイヤー含有導電性材料。
(2)長軸400nm以上および短軸50nm以下である金属ナノワイヤーと共に、長軸400nm未満であってアスペクト比が1より大きいロッド状金属繊維(金属ナノロッドと云う)を含有する上記(1)の金属ナノワイヤー含有導電性材料。
(3)金属ナノワイヤーと共に、または金属ナノワイヤーと金属ナノロッドの混合物と共に、分散剤および分散媒を含む上記(1)または(2)の金属ナノワイヤー含有導電性材料。
(4)分散剤が窒素原子および/または硫黄原子を含有する上記(3)の金属ナノワイヤー含有導電性材料。
(5)上記(1)〜(4)の何れかに記載する導電性材料をバインダーに配合してなる導電性塗料組成物、または該導電性塗料組成物によって形成された導電性塗膜。

(6)上記(1)〜(4)の何れかに記載する導電性材料によって形成された導電性ペースト、配線材料、電極材料、または導電性フィルム。
According to the present invention, the following conductive materials are provided.
(1) A metal nanowire-containing conductive material containing a wire-like metal fiber (referred to as metal nanowire) having a major axis of 400 nm or more and a minor axis of 50 nm or less.
(2) The metal nanowire having a major axis of 400 nm or more and a minor axis of 50 nm or less, and a rod-shaped metal fiber (referred to as a metal nanorod) having a major axis of less than 400 nm and an aspect ratio of greater than 1 Metal nanowire-containing conductive material.
(3) The metal nanowire-containing conductive material according to (1) or (2) above, which contains a dispersant and a dispersion medium together with the metal nanowire or a mixture of the metal nanowire and the metal nanorod.
(4) The metal nanowire-containing conductive material according to (3) above, wherein the dispersant contains a nitrogen atom and / or a sulfur atom.
(5) A conductive coating composition formed by blending a conductive material described in any one of (1) to (4) above with a binder, or a conductive coating film formed from the conductive coating composition.

(6) A conductive paste, a wiring material, an electrode material, or a conductive film formed of the conductive material described in any one of (1) to (4) above.

〔具体的な説明〕
本発明の導電性材料は、長軸400nm以上および短軸50nm以下であるワイヤー状金属繊維(金属ナノワイヤーと云う)を含有することを特徴とする金属ナノワイヤー含有導電性材料であり、さらに、長軸400nm以上および短軸50nm以下である金属ナノワイヤーと共に、長軸400nm未満であってアスペクト比が1より大きいロッド状金属繊維(金属ナノロッドと云う)を含有する金属ナノワイヤー含有導電性材料である。なお、以下の説明において金属ナノワイヤーと金属ナノロッドを含めて金属ナノ繊維と云う場合がある。
[Specific description]
The conductive material of the present invention is a metal nanowire-containing conductive material characterized by containing wire-like metal fibers (referred to as metal nanowires) having a major axis of 400 nm or more and a minor axis of 50 nm or less, A metal nanowire-containing conductive material containing a metal nanowire having a major axis of 400 nm or more and a minor axis of 50 nm or less and a rod-shaped metal fiber (referred to as a metal nanorod) having a major axis of less than 400 nm and an aspect ratio of greater than 1. is there. In the following description, metal nanowires and metal nanorods may be referred to as metal nanofibers.

上記金属ナノワイヤーはナノサイズの粒径を有する微細粒子であるが、短軸に対して長軸が格段に長いので相互に絡み合った状態で含有されるものが多い。また、同様にナノサイズの粒径を有する金属ナノロッドは長軸の長さが金属ナノワイヤーより短いが、短軸に対して長軸が十分に長いので、相互に絡み合った状態で含有されるものが多い。具体的には、例えば、金属ナノワイヤーを分散剤と共に溶媒を含む塗料組成物に含有させた場合、塗料組成物の段階では良好な分散性を示し、かつ溶媒を蒸発させて塗膜の状態にすると、これらの金属ナノワイヤーが相互に絡み合い、あるいは接触した状態で塗膜中に存在するので、等重量の球状微粒子を用いた場合に比べて、球状微粒子よりも優れた導電性を有することができ、かつ導電性のバラツキが少ない。また、金属ナノワイヤーと共に金属ナノロッドを分散させたものは、金属ナノワイヤーが相互に絡み合った隙間に金属ナノロッドが入り込んだ状態で存在するので、導電性に優れている。このような作用効果の点から、上記金属ナノワイヤーは、上記長軸および上記短軸の範囲において、長軸450〜1500nm、短軸1〜45nmのものが好ましい。また、上記金属ナノロッドは、上記長軸および上記短軸の範囲において、長軸30〜300nmであってアスペクト比2〜10のものが好ましい。   The metal nanowire is a fine particle having a nano-sized particle diameter, but since the major axis is remarkably long with respect to the minor axis, it is often contained in an intertwined state. Similarly, metal nanorods with nano-sized particle diameters are longer in length than metal nanowires, but are long enough for the short axis to be intertwined with each other. There are many. Specifically, for example, when metal nanowires are contained in a coating composition containing a solvent together with a dispersant, good dispersibility is exhibited at the coating composition stage, and the solvent is evaporated to form a coating film. Then, since these metal nanowires are intertwined with each other or are in contact with each other in the coating film, the metal nanowires may have a conductivity superior to that of spherical fine particles as compared with the case of using equal weight spherical fine particles. And there is little variation in conductivity. Moreover, what disperse | distributed the metal nanorod with the metal nanowire is excellent in electroconductivity, since it exists in the state which the metal nanorod entered in the clearance gap where the metal nanowire was mutually entangled. From the viewpoint of such effects, the metal nanowires preferably have a major axis of 450 to 1500 nm and a minor axis of 1 to 45 nm in the range of the major axis and the minor axis. The metal nanorods preferably have a major axis of 30 to 300 nm and an aspect ratio of 2 to 10 in the range of the major axis and the minor axis.

上記金属ナノワイヤーおよび金属ナノロッドは、例えば分散剤と共にペースト材料やインク材料などに配合される。この分散剤は窒素原子および/または硫黄原子を含有するものが好ましい。窒素原子や硫黄原子は金属ナノ繊維に対して高い吸着性を示すので、これらの原子を含む分散剤は金属ナノ繊維を均一に分散させることができ、金属ナノ繊維の分散性が良い組成物を得ることができる。この金属ナノ繊維含有組成物は金属ナノ繊維の分散性が良いので、金属ナノ繊維の含有量を抑制しても優れた導電性を有し、かつ導電性のバラツキが少ない。従って、導電性ペースト、配線材料、電極材料、導電性塗料、導電性塗膜、導電性フィルムなどに好適である。   The said metal nanowire and metal nanorod are mix | blended with paste material, ink material, etc. with a dispersing agent, for example. This dispersant preferably contains a nitrogen atom and / or a sulfur atom. Since nitrogen atoms and sulfur atoms exhibit high adsorptivity to metal nanofibers, a dispersant containing these atoms can uniformly disperse metal nanofibers, and a composition with good dispersibility of metal nanofibers can be obtained. Can be obtained. Since the metal nanofiber-containing composition has good dispersibility of the metal nanofibers, it has excellent conductivity even when the content of the metal nanofibers is suppressed, and there is little variation in conductivity. Therefore, it is suitable for conductive paste, wiring material, electrode material, conductive paint, conductive coating film, conductive film and the like.

本発明の金属ナノ繊維を含有する導電性材料を用いた導電性ペーストや導電性インクは通常の導電性ペースト、導電性インクなどと同様の材料によって形成すれば良い。例えばバインダーとしては、通常の塗料用や成型用に利用されている各種樹脂が特に制限無く使用できる。具体的には、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、ウレタン樹脂、シリコーン樹脂、フッ素樹脂、エポキシ樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、ポリピニルアルコール等の各種有機樹脂や、ラジカル重合性のオリゴマーやモノマー(場合により硬化剤やラジカル重合剤開始剤と併用する)が代表的なものとして挙げられる。また溶媒としては、バインダーが溶解もしくは安定に分散するような溶媒を適宜選択すればよく、具体的には、水;メタノール、エタノール、プロパノール、ヘキサノール、エチレングリコール等のアルコール;キシレン、トルエン等の芳香族炭化水素;シクロヘキサン等の脂環式炭化水素:アセトン、メチルエチルケトン等のケトン;酢酸ブチル等のエステル、セルソルブアセテート等のエーテル等あるいはこれらの混合物が代表的なものとして挙げられるが、これらに限定されるものではない。   The conductive paste or conductive ink using the conductive material containing the metal nanofibers of the present invention may be formed of the same material as that of a normal conductive paste or conductive ink. For example, as the binder, various resins used for ordinary paints and moldings can be used without particular limitation. Specifically, various organic resins such as acrylic resin, polyester resin, alkyd resin, urethane resin, silicone resin, fluorine resin, epoxy resin, polycarbonate resin, polyvinyl chloride resin, and polypinyl alcohol, and radical polymerizable oligomers And monomers (sometimes used in combination with a curing agent or a radical polymerization initiator). Further, as the solvent, a solvent in which the binder is dissolved or stably dispersed may be appropriately selected. Specifically, water; alcohol such as methanol, ethanol, propanol, hexanol, and ethylene glycol; aroma such as xylene and toluene. Typical examples include aliphatic hydrocarbons; alicyclic hydrocarbons such as cyclohexane; ketones such as acetone and methyl ethyl ketone; esters such as butyl acetate; ethers such as cellosolve acetate; and mixtures thereof. Is not to be done.

上記金属ナノ繊維の配合量は目的の導電性が得られる量であれば良い。例えば、バインダー100重量部に対して0.01〜1900重量部、好ましくは5〜1900重量部であれば良い。金属ナノ繊維の量がこれより少ないと、例えば塗膜にしたときの表面抵抗値が高くなる。また、金属ナノワイヤーと金属ナノロッドの重量割合は100:0〜70:30が適当である。   The compounding quantity of the said metal nanofiber should just be the quantity from which the target electroconductivity is acquired. For example, it may be 0.01 to 1900 parts by weight, preferably 5 to 1900 parts by weight with respect to 100 parts by weight of the binder. When the amount of the metal nanofiber is less than this, for example, the surface resistance value when the coating film is formed becomes high. The weight ratio between the metal nanowires and the metal nanorods is suitably 100: 0 to 70:30.

本発明の導電性材料に用いる金属ナノワイヤーおよび金属ナノロッドは、界面活性剤を含む水溶液中で金属イオンを還元する方法によって得ることができる。具体的な還元方法としては、化学還元、電気化学的還元、光還元、または化学還元と光照射を組み合わせた方法などを利用することができる。   The metal nanowire and metal nanorod used for the conductive material of the present invention can be obtained by a method of reducing metal ions in an aqueous solution containing a surfactant. As a specific reduction method, chemical reduction, electrochemical reduction, photoreduction, a method in which chemical reduction and light irradiation are combined, or the like can be used.

金属ナノワイヤーおよび金属ナノロッドが、これらの金属ナノ繊維および水に対して親和性を有する界面活性剤を含む水溶液中で製造されたものであるとき、これらの金属ナノ繊維が分散する水分散液を、上記界面活性剤を溶解する脱離液および非水系分散剤の存在下で、非水溶媒と混合することによって、金属ナノ繊維を非水溶媒に安定に抽出することができる。また、上記分散剤として窒素原子や硫黄原子を含有するものを用いれば、この抽出方法によって得た金属ナノ繊維の非水系分散液を導電性材料の原料として好適に用いることができる。   When metal nanowires and metal nanorods are produced in an aqueous solution containing a surfactant having an affinity for these metal nanofibers and water, an aqueous dispersion in which these metal nanofibers are dispersed is used. The metal nanofibers can be stably extracted into a non-aqueous solvent by mixing with a non-aqueous solvent in the presence of a desorbing solution that dissolves the surfactant and a non-aqueous dispersant. Further, if a dispersant containing a nitrogen atom or a sulfur atom is used as the dispersant, a non-aqueous dispersion of metal nanofibers obtained by this extraction method can be suitably used as a raw material for the conductive material.

具体的には、ヘキサデシルトリメチルアンモニウムブロミド(CTAB)等を含む水溶液中で製造された金属ナノ繊維は、その表面にCTAB等が吸着することによって安定に水中に分散している。これを導電性材料などに利用するには、水分散液からベンゼンやエーテルなどの有機溶媒(非水溶媒ないし非水系の分散媒)に抽出すれば適用範囲が広がるので好ましい。この抽出法として、界面活性剤を溶解する脱離液および非水系分散剤の存在下で、金属ナノ繊維の水分散液を非水溶媒に混合する方法を利用することができる。   Specifically, metal nanofibers produced in an aqueous solution containing hexadecyltrimethylammonium bromide (CTAB) or the like are stably dispersed in water by adsorbing CTAB or the like on the surface thereof. In order to use this as a conductive material or the like, it is preferable to extract from an aqueous dispersion into an organic solvent such as benzene or ether (a non-aqueous solvent or a non-aqueous dispersion medium) because the applicable range is widened. As this extraction method, a method of mixing an aqueous dispersion of metal nanofibers with a nonaqueous solvent in the presence of a desorbing solution that dissolves the surfactant and a nonaqueous dispersant can be used.

界面活性剤を溶解する脱離液としては、例えばメタノール、エタノールなどのアルコール類、アセトン、エチルメチルケトンなどのケトン類を用いることができる。   As the desorbing solution for dissolving the surfactant, for example, alcohols such as methanol and ethanol, and ketones such as acetone and ethyl methyl ketone can be used.

非水系分散剤としては、金属ナノ繊維に対して吸着性の高い元素である窒素原子、硫黄原子の何れかを吸着部位として有し、かつ非水溶媒に溶解する化合物が好ましい。例えば、(イ)窒素原子を主鎖中に有し、かつ非水溶媒に対して親和性のある側鎖を有する化合物、(ロ)チオール基を有し、かつ非水溶媒に対して親和性の側鎖を有する化合物、(ハ)アミノ基を有し、かつ非水溶媒に対して親和性のある側鎖を有する化合物などが挙げられる。 As the non-aqueous dispersant, a compound that has either a nitrogen atom or a sulfur atom, which is an element having high adsorptivity to metal nanofibers, as an adsorption site and is soluble in a non-aqueous solvent is preferable. For example, (a) a compound having a nitrogen atom in the main chain and a side chain having affinity for a nonaqueous solvent, (b) having a thiol group and affinity for a nonaqueous solvent And (c) a compound having an amino group and having a side chain having affinity for a non-aqueous solvent.

上記(イ)の化合物は市販品を使用することができる。上記(ロ)の化合物としては、ブタンチオール、ヘキサンチオール、オクタンチオール、デカンチオール、ドデカンチオールなどが挙げられる。また、上記(ハ)の化合物としては、グリシン、アラニン、リシン、グルタミン酸、アスパラギン酸、フェニルアラニン、バリン、ロイシンなどが挙げられる。   A commercially available product can be used as the compound (a). Examples of the compound (b) include butanethiol, hexanethiol, octanethiol, decanethiol, and dodecanethiol. Examples of the compound (c) include glycine, alanine, lysine, glutamic acid, aspartic acid, phenylalanine, valine, and leucine.

上記脱離液および上記分散剤の存在下で、金属ナノ繊維水分散液を有機溶媒に混合すると、水分散液中の金属ナノ繊維の表面に吸着している界面活性剤が脱離液によって除去され、この界面活性剤に代わって上記分散剤が置換するので、金属ナノ繊維が水相から有機相に移行し、金属ナノ繊維を有機溶媒に抽出することができる。この金属ナノ繊維が分散した有機分散液は、窒素原子や硫黄原子を含む分散剤が金属ナノ繊維の表面に強く吸着しているので、金属ナノ繊維の分散性が良く、導電性材料の原料として好適である。   When the metal nanofiber aqueous dispersion is mixed with an organic solvent in the presence of the desorbing liquid and the dispersing agent, the surfactant adsorbed on the surface of the metal nanofibers in the aqueous dispersion is removed by the desorbing liquid. In addition, since the dispersant is substituted for the surfactant, the metal nanofibers are transferred from the aqueous phase to the organic phase, and the metal nanofibers can be extracted into the organic solvent. In the organic dispersion liquid in which the metal nanofibers are dispersed, the dispersing agent containing nitrogen atoms and sulfur atoms is strongly adsorbed on the surface of the metal nanofibers. Is preferred.

本発明に係る金属ナノワイヤーを含有する導電性材料は、金属ナノワイヤーが相互に絡み合い、あるいは接触した状態で存在し、球状微粒子に比べて接触面積が大きいので、優れた導電性を有することができ、かつ導電性のバラツキが少なく、球状金属微粒子を多量に配合したときに見られる経時的な不安定性がない。さらに、球状金属微粒子を用いた場合に比べて分散剤の量を低減することができ、分散剤に起因する導電性のバラツキを生じることがない。従って、本発明の金属ナノワイヤー含有導電性材料によれば、安定性、導電性に優れた導電性ペースト、配線材料、電極材料、導電性塗料、導電性塗膜、導電性フィルムなどを得ることができる。   The conductive material containing the metal nanowire according to the present invention exists in a state where the metal nanowires are intertwined with each other or in contact with each other, and has a large contact area compared to the spherical fine particles, and thus has excellent conductivity. And there is little variation in electrical conductivity, and there is no instability over time seen when a large amount of spherical metal fine particles are blended. Furthermore, the amount of the dispersant can be reduced as compared with the case where spherical metal fine particles are used, and there is no variation in conductivity due to the dispersant. Therefore, according to the conductive material containing metal nanowires of the present invention, a conductive paste, wiring material, electrode material, conductive paint, conductive coating film, conductive film, etc. excellent in stability and conductivity can be obtained. Can do.

以下に本発明の実施例を示す。なお、各例において、窒素含有分散剤として市販品(商品名ソルスパース24000SC)を用いた。また、塗膜を形成した基板の表面抵抗値を測定した。測定器は三菱化学製機器(ロレスタ・GP)を用い、4端針法によって測定した。さらに、上記金ナノ繊維塗料の分散安定性を評価した(1ケ月放置後の粒子沈降の有無)。この結果を表1に示した。   Examples of the present invention are shown below. In each example, a commercially available product (trade name Solsperse 24000SC) was used as the nitrogen-containing dispersant. Further, the surface resistance value of the substrate on which the coating film was formed was measured. The measuring instrument was a Mitsubishi Chemical equipment (Loresta GP) and measured by the four-end needle method. Furthermore, the dispersion stability of the gold nanofiber coating was evaluated (presence or absence of particle sedimentation after standing for 1 month). The results are shown in Table 1.

銀ナノワイヤー(長軸:約1μm、短軸:約10nm)6g、窒素含有分散剤0.6g、トルエン10g、アクリル樹脂0.4gからなる銀ナノワイヤー含有塗料を作製した。この塗料をガラス基板に塗布(膜厚1μm)し、乾燥(200℃、1時間)して塗布基板を得た。 A silver nanowire-containing coating composed of 6 g of silver nanowires (long axis: about 1 μm, short axis: about 10 nm), 0.6 g of a nitrogen-containing dispersant, 10 g of toluene, and 0.4 g of acrylic resin was prepared. This paint was applied to a glass substrate (film thickness: 1 μm) and dried (200 ° C., 1 hour) to obtain a coated substrate.

銀ナノワイヤー(長軸:約1μm、短軸:約10nm)5g、銀ナノロツド(長軸:約50nm、短軸:約10nm)1g、窒素含有分散剤0.6g、トルエン10g、アクリル樹脂0.4gからなる銀ナノワイヤー含有塗料を作製した。この塗料をガラス基板に塗布(膜厚:1μm)し、乾燥(200℃、1時間)して塗布基板を得た。 Silver nanowire (long axis: about 1 μm, short axis: about 10 nm) 5 g, silver nanorod (long axis: about 50 nm, short axis: about 10 nm) 1 g, nitrogen-containing dispersant 0.6 g, toluene 10 g, acrylic resin 0.5 g A silver nanowire-containing paint consisting of 4 g was prepared. This paint was applied to a glass substrate (film thickness: 1 μm) and dried (200 ° C., 1 hour) to obtain a coated substrate.

〔比較例1〕
球状銀ナノ粒子(直径:約10nm)6g、窒素含有分散剤0.6g、トルエン10g、アクリル樹脂0.4gからなる球状銀ナノ粒子含有塗料を作製した。この塗料をガラス基板に塗布(膜厚:1μm)し、乾燥(200℃、1時間)して塗布基板を得た。
[Comparative Example 1]
A spherical silver nanoparticle-containing coating comprising 6 g of spherical silver nanoparticles (diameter: about 10 nm), 0.6 g of a nitrogen-containing dispersant, 10 g of toluene, and 0.4 g of acrylic resin was prepared. This paint was applied to a glass substrate (film thickness: 1 μm) and dried (200 ° C., 1 hour) to obtain a coated substrate.

Figure 2005317395
Figure 2005317395

表1に示すように、金属ナノワイヤーを有する導電性塗料の表面抵抗は、球状銀ナノ粒子を含む導電性塗料より低く、導電性に優れる。


As shown in Table 1, the surface resistance of the conductive coating material having metal nanowires is lower than that of the conductive coating material containing spherical silver nanoparticles and is excellent in conductivity.


Claims (6)

長軸400nm以上および短軸50nm以下であるワイヤー状金属繊維(金属ナノワイヤーと云う)を含有することを特徴とする金属ナノワイヤー含有導電性材料。
A metal nanowire-containing conductive material comprising a wire-like metal fiber (referred to as metal nanowire) having a major axis of 400 nm or more and a minor axis of 50 nm or less.
長軸400nm以上および短軸50nm以下である金属ナノワイヤーと共に、長軸400nm未満であってアスペクト比が1より大きいロッド状金属繊維(金属ナノロッドと云う)を含有する請求項1の金属ナノワイヤー含有導電性材料。
The metal nanowire-containing material according to claim 1, comprising a metal nanowire having a major axis of 400 nm or more and a minor axis of 50 nm or less, and a rod-shaped metal fiber (referred to as a metal nanorod) having an aspect ratio of greater than 1 and a major axis of less than 400 nm. Conductive material.
金属ナノワイヤーと共に、または金属ナノワイヤーと金属ナノロッドの混合物と共に、分散剤および分散媒を含む請求項1または2の金属ナノワイヤー含有導電性材料。
The metal nanowire-containing conductive material according to claim 1, comprising a dispersant and a dispersion medium together with the metal nanowire or with a mixture of the metal nanowire and the metal nanorod.
分散剤が窒素原子および/または硫黄原子を含有する請求項3の金属ナノワイヤー含有導電性材料。
The metal nanowire-containing conductive material according to claim 3, wherein the dispersant contains a nitrogen atom and / or a sulfur atom.
請求項1〜4の何れかに記載する導電性材料をバインダーに配合してなる導電性塗料組成物、または該導電性塗料組成物によって形成された導電性塗膜。
The electroconductive coating composition formed by mix | blending the electroconductive material in any one of Claims 1-4 in the binder, or this electroconductive paint composition.
請求項1〜4の何れかに記載する導電性材料によって形成された導電性ペースト、配線材料、電極材料、または導電性フィルム。


A conductive paste, a wiring material, an electrode material, or a conductive film formed of the conductive material according to claim 1.


JP2004134725A 2004-04-28 2004-04-28 Metal nanowire-containing conductive material and use thereof Expired - Fee Related JP4524745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004134725A JP4524745B2 (en) 2004-04-28 2004-04-28 Metal nanowire-containing conductive material and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004134725A JP4524745B2 (en) 2004-04-28 2004-04-28 Metal nanowire-containing conductive material and use thereof

Publications (2)

Publication Number Publication Date
JP2005317395A true JP2005317395A (en) 2005-11-10
JP4524745B2 JP4524745B2 (en) 2010-08-18

Family

ID=35444582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004134725A Expired - Fee Related JP4524745B2 (en) 2004-04-28 2004-04-28 Metal nanowire-containing conductive material and use thereof

Country Status (1)

Country Link
JP (1) JP4524745B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070660A (en) * 2007-09-12 2009-04-02 Kuraray Co Ltd Transparent conductive film and its manufacturing method
WO2009113342A1 (en) * 2008-03-14 2009-09-17 コニカミノルタホールディングス株式会社 Dye-sensitized solar cell
JP2009224183A (en) * 2008-03-17 2009-10-01 Fujifilm Corp Metal oxide microparticles, transparent conductive film, dispersion, and device
JP2009231029A (en) * 2008-03-22 2009-10-08 Konica Minolta Holdings Inc Method of manufacturing transparent conductive film, and transparent conductive film
JP2009277466A (en) * 2008-05-14 2009-11-26 Konica Minolta Holdings Inc Transparent conductive film and its manufacturing method
JP2010121040A (en) * 2008-11-19 2010-06-03 Panasonic Electric Works Co Ltd Coating agent composition for forming transparent electroconductive coating film and article coated with same
WO2010082428A1 (en) * 2009-01-19 2010-07-22 コニカミノルタホールディングス株式会社 Transparent electrode, method for producing same, and organic electroluminescent element
US20100288531A1 (en) * 2009-05-12 2010-11-18 Konica Minolta Holdings, Inc. Transparent conductive film, method of manufacturing transparent conductive film, and transparent electrode for electronic device
JP2010287406A (en) * 2009-06-11 2010-12-24 Chung-Shan Inst Of Science & Technology Armaments Bureau Ministry Of National Defense Silver nanowire compound having polymer and metal nano structured compound having polymer
JP2011070968A (en) * 2009-09-25 2011-04-07 Panasonic Electric Works Co Ltd Conductive paste, and conductor pattern
CN102044309A (en) * 2009-10-21 2011-05-04 财团法人工业技术研究院 Conductive material shaped through optical energy or heat energy, method for preparing conductive material and conductive composition
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8018563B2 (en) 2007-04-20 2011-09-13 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
US8049333B2 (en) 2005-08-12 2011-11-01 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
US8094247B2 (en) 2006-10-12 2012-01-10 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8883045B2 (en) 2008-09-30 2014-11-11 Fujifilm Corporation Metal nanowire-containing composition, and transparent conductor
KR20160017063A (en) 2013-06-07 2016-02-15 세이코 피엠씨 가부시키가이샤 Metal nanowire-containing composition
JP2016121241A (en) * 2014-12-24 2016-07-07 昭和電工株式会社 Conductive composition for thin film printing and thin film conductive pattern formation method
US9534124B2 (en) 2010-02-05 2017-01-03 Cam Holding Corporation Photosensitive ink compositions and transparent conductors and method of using the same
JP2017032790A (en) * 2015-07-31 2017-02-09 富士フイルム株式会社 Heat ray reflective material, window, and manufacturing method for heat ray reflective material
KR20190086530A (en) 2016-12-20 2019-07-22 세이코 피엠씨 가부시키가이샤 A weather resistance improver, a resin composition for covering a metal nanowire layer, and a metal nanowire-containing laminate
CN113150723A (en) * 2020-12-29 2021-07-23 江苏卓高新材料科技有限公司 Conductive adhesive, and composite current collector, battery and object with conductive adhesive

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324324A (en) * 1996-06-07 1997-12-16 Mitsubishi Materials Corp Fine metallic fiber, its production and electroconductive coating produced by using the fiber
JP2002299833A (en) * 2001-03-30 2002-10-11 Harima Chem Inc Multilayered wiring board and its forming method
JP2003313506A (en) * 2002-02-25 2003-11-06 Mitsubishi Materials Corp Metal nanorod-containing composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324324A (en) * 1996-06-07 1997-12-16 Mitsubishi Materials Corp Fine metallic fiber, its production and electroconductive coating produced by using the fiber
JP2002299833A (en) * 2001-03-30 2002-10-11 Harima Chem Inc Multilayered wiring board and its forming method
JP2003313506A (en) * 2002-02-25 2003-11-06 Mitsubishi Materials Corp Metal nanorod-containing composition

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9899123B2 (en) 2005-08-12 2018-02-20 Jonathan S. Alden Nanowires-based transparent conductors
US8865027B2 (en) 2005-08-12 2014-10-21 Cambrios Technologies Corporation Nanowires-based transparent conductors
US8618531B2 (en) 2005-08-12 2013-12-31 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
US8049333B2 (en) 2005-08-12 2011-11-01 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
US8094247B2 (en) 2006-10-12 2012-01-10 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US10749048B2 (en) 2006-10-12 2020-08-18 Cambrios Film Solutions Corporation Nanowire-based transparent conductors and applications thereof
US8760606B2 (en) 2006-10-12 2014-06-24 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8174667B2 (en) 2006-10-12 2012-05-08 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8018563B2 (en) 2007-04-20 2011-09-13 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
JP2009070660A (en) * 2007-09-12 2009-04-02 Kuraray Co Ltd Transparent conductive film and its manufacturing method
JPWO2009113342A1 (en) * 2008-03-14 2011-07-21 コニカミノルタホールディングス株式会社 Dye-sensitized solar cell
WO2009113342A1 (en) * 2008-03-14 2009-09-17 コニカミノルタホールディングス株式会社 Dye-sensitized solar cell
JP2009224183A (en) * 2008-03-17 2009-10-01 Fujifilm Corp Metal oxide microparticles, transparent conductive film, dispersion, and device
JP2009231029A (en) * 2008-03-22 2009-10-08 Konica Minolta Holdings Inc Method of manufacturing transparent conductive film, and transparent conductive film
JP2009277466A (en) * 2008-05-14 2009-11-26 Konica Minolta Holdings Inc Transparent conductive film and its manufacturing method
US8883045B2 (en) 2008-09-30 2014-11-11 Fujifilm Corporation Metal nanowire-containing composition, and transparent conductor
JP2010121040A (en) * 2008-11-19 2010-06-03 Panasonic Electric Works Co Ltd Coating agent composition for forming transparent electroconductive coating film and article coated with same
WO2010082428A1 (en) * 2009-01-19 2010-07-22 コニカミノルタホールディングス株式会社 Transparent electrode, method for producing same, and organic electroluminescent element
JP5533669B2 (en) * 2009-01-19 2014-06-25 コニカミノルタ株式会社 Transparent electrode, method for producing the same, and organic electroluminescence device
US20100288531A1 (en) * 2009-05-12 2010-11-18 Konica Minolta Holdings, Inc. Transparent conductive film, method of manufacturing transparent conductive film, and transparent electrode for electronic device
JP2010287406A (en) * 2009-06-11 2010-12-24 Chung-Shan Inst Of Science & Technology Armaments Bureau Ministry Of National Defense Silver nanowire compound having polymer and metal nano structured compound having polymer
JP2011070968A (en) * 2009-09-25 2011-04-07 Panasonic Electric Works Co Ltd Conductive paste, and conductor pattern
CN102044309A (en) * 2009-10-21 2011-05-04 财团法人工业技术研究院 Conductive material shaped through optical energy or heat energy, method for preparing conductive material and conductive composition
US9534124B2 (en) 2010-02-05 2017-01-03 Cam Holding Corporation Photosensitive ink compositions and transparent conductors and method of using the same
KR20160017063A (en) 2013-06-07 2016-02-15 세이코 피엠씨 가부시키가이샤 Metal nanowire-containing composition
JP2016121241A (en) * 2014-12-24 2016-07-07 昭和電工株式会社 Conductive composition for thin film printing and thin film conductive pattern formation method
JP2017032790A (en) * 2015-07-31 2017-02-09 富士フイルム株式会社 Heat ray reflective material, window, and manufacturing method for heat ray reflective material
WO2017022348A1 (en) * 2015-07-31 2017-02-09 富士フイルム株式会社 Heat-ray reflecting material, window, and method for manufacturing heat-ray reflecting material
CN107835952A (en) * 2015-07-31 2018-03-23 富士胶片株式会社 The manufacture method of heat ray reflecting material and window and heat ray reflecting material
KR20190086530A (en) 2016-12-20 2019-07-22 세이코 피엠씨 가부시키가이샤 A weather resistance improver, a resin composition for covering a metal nanowire layer, and a metal nanowire-containing laminate
US11400693B2 (en) 2016-12-20 2022-08-02 Seiko Pmc Corporation Weather resistance improver, resin composition for coating metal-nanowire layer, and metal nanowire-containing laminate
CN113150723A (en) * 2020-12-29 2021-07-23 江苏卓高新材料科技有限公司 Conductive adhesive, and composite current collector, battery and object with conductive adhesive

Also Published As

Publication number Publication date
JP4524745B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
JP4524745B2 (en) Metal nanowire-containing conductive material and use thereof
KR101099237B1 (en) Conductive Paste and Conductive Circuit Board Produced Therewith
KR101248447B1 (en) Conductive paste for screen printing
JP5596609B2 (en) Metal colloid solution and paint using the same
JP4517230B2 (en) Composition containing fine metal particles and use thereof
WO2012133627A1 (en) Silver-coated copper powder and method for producing same, silver-coated copper powder-containing conductive paste, conductive adhesive agent, conductive film, and electric circuit
JP4660701B2 (en) Silver-coated copper powder, method for producing the same, and conductive paste
WO2012105682A1 (en) Coated metal microparticle and manufacturing method thereof
JP5181434B2 (en) Fine copper powder and method for producing the same
JP2007042301A (en) Conductive composition, conductive paste, and conductive film
JP2005294254A (en) Conductive silver paste and electromagnetic wave shielding member using it
TW200519968A (en) A dispersion of nano-size metal particles and a process for forming a layer of an electric conductor with use thereof
JP6224933B2 (en) Silver-coated copper alloy powder and method for producing the same
WO2018169012A1 (en) Dispersion, method for producing conductive pattern-equipped structure by using dispersion, and conductive pattern-equipped structure
KR20160088444A (en) Silver fine particle dispersion liquid
JPWO2014054618A1 (en) Silver hybrid copper powder and manufacturing method thereof, conductive paste containing the silver hybrid copper powder, conductive adhesive, conductive film, and electric circuit
TWI682007B (en) Fine silver particle dispersing solution
JP2012230866A (en) Conductive paste
JP4947509B2 (en) Nickel slurry, method for producing the same, and nickel paste or nickel ink using the nickel slurry
JP4491776B2 (en) Method for producing conductive paste, etc.
JP2010199196A (en) Composition for forming electrode for solar cell, method of forming electrode, and solar cell using electrode obtained by method
JP2005281781A (en) Method for producing copper nanoparticle
WO2015008628A1 (en) Silver-coated copper alloy powder and process for producing same
JP2008135416A (en) Composition for forming electrode in solar cell, method of forming electrode, and solar cell using electrode obtained by the same
JP5435063B2 (en) Method for producing composition for forming electrode of solar cell and method for forming the electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4524745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees