WO2012133627A1 - Silver-coated copper powder and method for producing same, silver-coated copper powder-containing conductive paste, conductive adhesive agent, conductive film, and electric circuit - Google Patents

Silver-coated copper powder and method for producing same, silver-coated copper powder-containing conductive paste, conductive adhesive agent, conductive film, and electric circuit Download PDF

Info

Publication number
WO2012133627A1
WO2012133627A1 PCT/JP2012/058327 JP2012058327W WO2012133627A1 WO 2012133627 A1 WO2012133627 A1 WO 2012133627A1 JP 2012058327 W JP2012058327 W JP 2012058327W WO 2012133627 A1 WO2012133627 A1 WO 2012133627A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
copper powder
powder
coated copper
coated
Prior art date
Application number
PCT/JP2012/058327
Other languages
French (fr)
Japanese (ja)
Inventor
岩崎敬介
大杉峰子
森井弘子
林一之
Original Assignee
戸田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 戸田工業株式会社 filed Critical 戸田工業株式会社
Priority to CN2012800070520A priority Critical patent/CN103379973A/en
Priority to KR1020137020075A priority patent/KR20140002725A/en
Publication of WO2012133627A1 publication Critical patent/WO2012133627A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure

Definitions

  • the present invention relates to a silver-coated copper powder excellent in conductivity and migration resistance and a method for producing the same, a conductive paste containing the silver-coated copper powder, a conductive adhesive, a conductive film, and an electric circuit.
  • Metal fine particle powder is used as conductive particle powder for circuit forming members of printed wiring boards, various electrical contact members, electrode members such as capacitors, etc., and these members are widely used in various electronic devices. .
  • conductive metal fine particles such as gold, silver, palladium, copper, and aluminum are known.
  • gold and palladium are expensive, in general, they have high conductivity.
  • silver is often used as the conductive particle powder, and in other fields, copper is often used as the conductive particle powder.
  • conductive copper paste is less conductive than conductive silver paste and has poor oxidation resistance, so the conductive paste is heated. At this time, it is easy to oxidize, and there is a problem that an oxide film is formed on the surface of the copper particles and the conductivity is lowered.
  • Patent Document 1 -Copper composite powder
  • Patent Document 2 silver-coated copper powder
  • Patent Document 5 silver-plated copper powder
  • JP 56-155259 A Japanese Patent Laid-Open No. 2002-245849 JP 2004-68111 A JP 2006-161081 A JP-A-9-282935
  • the above-mentioned patent document 1 describes a silver-copper composite powder in which silver powder and copper powder are mechanically forcibly joined.
  • the surface property (surface treatment) of the silver powder adhered to the copper powder surface is described. Since no consideration is given to the case, as shown in the comparative example below, when silver particles not surface-treated with an organic compound are mechanically attached to copper powder, the silver particles tend to aggregate together Therefore, there is a problem that a migration phenomenon is likely to occur.
  • Patent Documents 2 to 4 silver-coated copper powder in which silver is coated on the surface of copper particles by a substitution reaction between silver ions and metallic copper and a method for producing the same are described. Since it is a wet reaction in an aqueous solution, the copper powder is oxidized and the particle surface is uniformly coated with silver, thereby causing a problem that a migration phenomenon is likely to occur.
  • the silver-plated copper powder has a problem that silver plating is easily peeled off during paste kneading and a migration phenomenon easily occurs. Yes.
  • the silver fine particle powder whose particle surface is coated with the dispersant is attached to the surface of the copper powder, and the average particle size (D 50 ) of the copper powder and the average particle size (D SEM ) of the silver fine particles.
  • D 50 average particle size of the copper powder and the average particle size of the silver fine particles.
  • D SEM average particle size of the silver fine particles.
  • the present invention is the silver-coated copper powder of the present invention 1 (Invention 2), wherein the average particle diameter (D 50 ) by laser diffraction scattering particle size distribution is 0.1 to 30 ⁇ m.
  • the present invention is characterized in that the amount of silver fine particles whose particle surfaces are coated with a dispersing agent is 1 to 100 parts by weight with respect to 100 parts by weight of copper powder. It is a coated copper powder (Invention 3).
  • the dispersant used for the surface coating of the silver fine particle powder is composed of one or more selected from polymer dispersants having a number average molecular weight of 1,000 or more.
  • the present invention provides a silver coated copper powder manufacturing method in which a copper fine particle powder and a silver fine particle powder are mixed and stirred to adhere the silver fine particle powder to the surface of the copper powder.
  • the present invention is a conductive adhesive containing the silver-coated copper powder according to any one of the present inventions 1 to 4 (Invention 6).
  • the present invention is a conductive paste containing the silver-coated copper powder according to any one of the first to fourth aspects of the present invention (Invention 7).
  • the present invention is a conductive film formed using the conductive paste according to the present invention 7 (the present invention 8).
  • the present invention is an electric circuit formed using the conductive paste according to the present invention 7 (the present invention 9).
  • the silver-coated copper powder according to the present invention is excellent in conductivity, conductivity and migration resistance, it is suitable as a raw material for conductive paste, conductive adhesive and the like.
  • the conductive paste and the conductive adhesive using the silver-coated copper powder according to the present invention can provide a printed wiring board and the like excellent in migration resistance and conductivity, the conductivity used in various electronic devices. Suitable as paste and conductive adhesive.
  • the silver-coated copper powder according to the present invention is a silver-coated copper powder characterized in that a silver fine particle powder whose particle surface is coated with a dispersant is attached to the surface of the copper powder.
  • the copper powder in the present invention is not limited in its type, production method, and the like, and copper powder obtained from a normal electrolysis method, reduction method, atomization method, mechanical grinding, or the like can be used.
  • the particle shape of the copper powder in the present invention is not particularly limited, and a spherical shape, a dendritic shape, a scale shape, a flake shape, a needle shape, a plate shape, a granular shape, and the like can be used. Moreover, you may use combining the copper powder from which a shape differs.
  • the average particle diameter (D 50 ) according to laser diffraction / scattering particle size distribution of the copper powder is 0.1 to 30 ⁇ m, preferably 0.1 to 20 ⁇ m, more preferably 0.1 to 10 ⁇ m. It may be used in combination with different copper powder of an average particle diameter (D 50).
  • the average particle size (D 50 ) is less than 0.1 ⁇ m, surface oxidation is likely to occur due to particle miniaturization, and conductivity is lowered, which is not preferable.
  • the average particle diameter (D 50) is more than 30 ⁇ m, since the printability and filling properties of the silver-coated copper powder and silver coated copper powder from the obtained conductive paste obtained is reduced with this It becomes difficult to obtain a conductive paste having high conductivity.
  • the BET specific surface area value of the copper powder in the present invention is preferably 0.1 to 4.0 m 2 / g, more preferably 0.2 to 3.0 m 2 / g.
  • the BET specific surface area value exceeds 4.0 m 2 / g, the surface area of the particle powder is too large, so that surface oxidation is liable to occur and conductivity is lowered, which is not preferable.
  • the silver fine particle powder in the present invention is not limited in its type, production method, and the like, and silver fine particles obtained by a known method such as a normal mechanical pulverization method, an atomization method, a wet reduction method, an electrolysis method, or a gas phase method. Powder can be used.
  • the particle shape of the silver fine particles in the present invention is not particularly limited, and may be spherical, granular, amorphous, dendritic, flake, flaky, plate-like, needle-like, etc., but spherical, granular or amorphous Preferably there is.
  • the average particle diameter (D SEM ) of the silver fine particle powder is preferably 0.01 to 3 ⁇ m, more preferably 0.02 to 2 ⁇ m, and still more preferably 0.03 to 1 ⁇ m.
  • D SEM average particle diameter
  • the silver-coated copper powder according to the present invention has a ratio (D 50 / D SEM ) of the average particle diameter (D 50 ) of the copper powder and the average particle diameter (D SEM ) of the silver fine particle powder in the range of 3 to 200. , Preferably 4 to 150, more preferably 5 to 100.
  • the ratio of the average particle size of the copper powder and the (D 50) and the average particle diameter of the silver fine powder (D SEM) in the case of less than (D 50 / D SEM) is 3, the average particle diameter (D 50) of copper powder
  • the average particle diameter (D SEM ) of the silver fine particle powder is too large, it becomes difficult to coat the silver fine particle powder on the particle surface of the copper powder.
  • the ratio (D 50 / D SEM ) of the average particle diameter (D 50 ) of the copper powder and the average particle diameter (D SEM ) of the silver fine particle powder exceeds 200, it is difficult to easily produce industrially. It is.
  • a polymer dispersant having a number average molecular weight of 1,000 or more can be used as the dispersant for covering the particle surface of the silver fine particle powder.
  • polymeric dispersant examples include ANTI-TERRA-U, ANTI-TERRA-205, DISPERBYK-101, DISPERBYK-102, DISPERBYK-106, DISPERBYK-108, DISPERBYK-109, DISPERBYK-110, DISPERBYK- 111, DISPERBYK-112, DISPERBYK-116, DISPERBYK-130, DISPERBYK-140, DISPERBYK-142, DISPERBYK-145, DISPERBYK-161, DISPERBYK-162, DISPERBYK-163, DISPERBYK-164, DISPERBY67-166 DISPERBYK-168, DISPER YK-170, DISPERBYK-171, DISPERBYK-174, DISPERBYK-180, DISPERBYK-182, DISPERBYK-183, DISPERBYK-184
  • the number average molecular weight of the dispersant is preferably 1,000 or more, more preferably 1,000 to 150,000, and still more preferably 5,000 to 100,000.
  • the silver fine particle powder surface-treated with a dispersant having a number average molecular weight of less than 1,000 is insufficient in the effect of the treatment with the dispersant, and the silver fine particles tend to aggregate, making it difficult to adhere to the copper powder. It is.
  • the number average molecular weight exceeds 150,000 the viscosity of the dispersant is increased, which makes it difficult to coat the surface of the silver fine particle powder.
  • the dispersant it is preferable to use a dispersant having both an acid value and an amine value, or a dispersant having an acid value and a dispersant having an amine value in combination.
  • a dispersant having both an acid value and an amine value or a dispersant having an acid value and a dispersant having an amine value in combination.
  • Typical examples of the dispersant having an acid value include DISPERBYK-102, DISPERBYK-110, DISPERBYK-111, DISPERBYK-170, DISPERBYK-171, DISPERBYK-174, BYK-P104, BYK-P104S, BYK-P105.
  • dispersant having an amine value examples include DISPERBYK-108, DISPERBYK-109, DISPERBYK-112, DISPERBYK-116, DISPERBYK-161, DISPERBYK-162, DISPERBYK-163, DISPERBYK-164, DISPERBYK-166.
  • dispersant having both acid value and amine value include: ANTI-TERRA-U, ANTI-TERRA-205, DISPERBYK-101, DISPERBYK-106, DISPERBYK-130, DISPERBYK-140, DISPERBYK- 142, DISPERBYK-145, DISPERBYK-180, DISPERBYK-2001, DISPERBYK-2020, DISPERBYK-2025, DISPERBYK-2070, BYK-9076, EFKA 4008, EFKA 4009, EFKA40K4 406 , EFKA 5055, EFKA 5063, EFKA 5064, SOLSP RSE 13240, SOLSPERSE 13940, SOLSPERSE 24000SC, SOLSPERSE 24000GR, SOLSPERSE 26000, SOLSPERSE 31845, SOLSPERSE 32000, SOLSPERSE 32500, SOLSPERSE 32550, SOLSPER 3537,
  • the coating amount of the dispersant is preferably 0.1 to 5.0% by weight, more preferably 0.2 to 4.0% by weight based on the silver fine particle powder, although it depends on the BET surface area value of the silver fine particles. .
  • the amount is less than 0.1% by weight, the treatment amount of the dispersant is insufficient, and the silver fine particle powder tends to aggregate, so that the adhesion treatment to the copper powder is difficult.
  • the amount exceeds 5.0% by weight, aggregation of the silver fine particle powder can be suppressed, but an organic component not involved in conductivity increases, which is not preferable.
  • the average particle diameter (D 50 ) according to the laser diffraction / scattering particle size distribution of the silver-coated copper powder according to the present invention is 0.1 to 30 ⁇ m, preferably 0.1 to 20 ⁇ m, more preferably 0.1 to 10 ⁇ m.
  • Silver-coated copper powders having different average particle diameters (D 50 ) may be used in combination.
  • the average particle size (D 50 ) is less than 0.1 ⁇ m, surface oxidation is likely to occur due to particle miniaturization, and conductivity is lowered, which is not preferable.
  • the average particle diameter (D 50) is more than 30 ⁇ m, since the printing property and filling property of the resulting conductive paste decreases by using this, is possible to obtain a conductive paste having high conductivity It becomes difficult.
  • the particle shape of the silver-coated copper powder according to the present invention is not particularly limited, and a spherical shape, a dendritic shape, a flake shape, a scale shape, a needle shape, a plate shape, a granular shape, and the like can be used. Moreover, you may use combining silver coating copper powder from which a shape differs.
  • the BET specific surface area value of the silver-coated copper powder according to the present invention is preferably 0.1 to 7.0 m 2 / g, more preferably 0.2 to 6.0 m 2 / g.
  • the BET specific surface area value exceeds 7.0 m 2 / g, the surface area of the particle powder is too large, so that surface oxidation is liable to occur and conductivity is lowered, which is not preferable.
  • the ratio of the silver fine particles adhering to the silver coat copper powder which concerns on this invention is based also on the BET specific surface area value of copper powder
  • covered with the dispersing agent with respect to 100 weight part of copper powder Is preferably 1 to 100 parts by weight, more preferably 2 to 80 parts by weight, and even more preferably 3 to 60 parts by weight.
  • the coating amount of the silver fine particles whose particle surface is coated with the dispersant is less than 1 part by weight, the adhesion amount of the silver fine particles is too small, so that a sufficient conductivity improving effect by coating the silver fine particles can be obtained. Absent.
  • the exposed surface of the copper powder which is a core material increases, and copper powder is oxidized and it becomes difficult to ensure sufficient electroconductivity.
  • the upper limit is 100 parts by weight in consideration of the balance between the effect of improving oxidation resistance and conductivity and the cost of the resulting silver-coated copper powder. Further, since the abundance of silver fine particles on the particle surface is increased, a silver migration phenomenon tends to occur, which is not preferable.
  • the TC amount (total carbon amount) of the silver-coated copper powder according to the present invention is preferably in the range of 0.1 to 4%, more preferably 0.1 to 3%, still more preferably 0.00. 1 to 2%.
  • amount of TC exceeds 4%, it is not preferable because organic components not involved in conductivity increase.
  • the surface of the copper powder particles need not be uniformly coated with silver fine particles, and a part of the copper powder may be exposed.
  • the particle surface of the copper powder is uniformly coated, the migration resistance is lowered, which is not preferable.
  • the silver-coated copper powder according to the present invention can be obtained by mixing and stirring the copper powder and the silver fine particle powder whose particle surface is coated with a dispersing agent and attaching the silver fine particle powder to the particle surface of the copper powder. .
  • the coating treatment of the silver fine particles with the dispersant is performed by mixing and stirring the dispersant and the silver fine particles in an appropriate solvent, followed by filtration and drying. Any solvent may be used as long as it dissolves the dispersant. Drying is preferably performed at a low temperature so that silver fine particles are not sintered.
  • an apparatus capable of applying mechanical energy to the powder layer is preferable.
  • a ball-type kneader or a wheel-type kneader is used.
  • a ball-type kneader can be used more effectively.
  • the ball-type kneader includes a vibration mill, a rotary mill, a sand grinder, and preferably a vibration mill.
  • the wheel-type kneader include edge runners (synonymous with “mix muller”, “Simpson mill”, “sand mill”), multi-mal, stotz mill, wet pan mill, conner mill, ring muller, and the like.
  • the mixing and stirring of the copper powder and the silver fine particle powder whose surface is coated with a dispersing agent is performed in a dry manner, and the N 2 atmosphere is used in order to prevent a decrease in conductivity due to oxidation of the copper powder. It is preferable to carry out with.
  • the conductive paste according to the present invention is composed of the silver-coated copper powder according to the present invention and a solvent, and may contain other components such as a binder resin, a curing agent, a dispersant, and a rheology modifier as necessary. .
  • arbitrary conductive fillers such as metal powder, such as platinum, gold
  • binder resin those known in the art can be used, for example, cellulose resins such as methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, nitrocellulose, ethyl cellulose derivatives, polyester resins, urethane-modified polyester resins, epoxy-modified polyester resins.
  • Various modified polyester resins such as acrylic modified polyester, polyurethane resin, vinyl chloride / vinyl acetate copolymer, acrylic resin, epoxy resin, phenolic resin, melamine resin, alkyd resin, butyral resin, polyvinyl alcohol, polyimide resin, Examples thereof include inorganic binders such as polyamideimide resin, amino resin, styrene resin, resol resin, and glass frit. These binder resins can be used alone or in combination of two or more.
  • solvent those known in the art can be used, and examples thereof include tetradecane, toluene, xylene, ethylbenzene, diethylbenzene, isopropylbenzene, amylbenzene, p-cymene, tetralin, and petroleum aromatic hydrocarbon mixtures.
  • Hydrocarbon solvents ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-butyl ether, propylene glycol mono-t-butyl ether, diethylene glycol monoethyl ether, diethylene glycol Monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tri Ether or glycol ether solvents such as propylene glycol monomethyl ether; glycol ester solvents such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate Ester solvents such as ethyl acetate and butyl acetate; ketone solvents such
  • the content of the silver-coated copper powder in the conductive paste varies depending on the application, but it is preferably as close to 100% by weight as possible, for example, in the case of wiring formation.
  • the conductive paste according to the present invention is obtained by mixing and dispersing each component using various kneaders and dispersers such as a laika machine, a pot mill, a three roll mill, a rotary mixer, a twin screw mixer, and the like. Can do.
  • the conductive paste according to the present invention is applied to various coating methods such as screen printing, intaglio printing, flat plate printing, inkjet method, gravure printing, transfer printing, roll coating, flow coating, spray coating, spin coating, dipping, blade coating, plating, etc. Applicable.
  • the conductive paste according to the present invention is used for forming electrodes such as FPD (flat panel display), solar cell, organic EL, wiring for LSI substrates, and wiring for filling fine trenches, via holes, contact holes, etc. It can be used as a material.
  • FPD flat panel display
  • organic EL organic EL
  • wiring for LSI substrates and wiring for filling fine trenches, via holes, contact holes, etc.
  • It can be used as a material.
  • FPD flat panel display
  • organic EL organic EL
  • the silver-coated copper powder in which the silver fine particle powder whose particle surface is coated with a dispersant is attached to the surface of the copper powder, is excellent in conductivity and migration resistance. It is the fact that
  • the production method of the present invention is a method of coating silver on the surface of copper particles by a known substitution reaction between silver ions and metallic copper, or a treatment in an aqueous solution like a silver plating method. Therefore, the electroconductive fall by copper powder oxidizing in aqueous solution can be prevented.
  • the particle surface is covered with silver as in the plating process, a migration phenomenon is likely to occur, but the silver-coated copper powder of the present invention is not uniformly coated with the copper particle surface, so the migration phenomenon We think that we were able to suppress outbreak of.
  • the fact that the surface of the silver fine particles is treated with a dispersant, and thus the silver fine particles are not easily peeled off from the surface of the attached copper particles is considered to be one of the reasons for excellent migration resistance.
  • the average particle diameter (D SEM ) of the silver fine particles surface-treated with the dispersant was measured by taking a photograph of the particles using a scanning electron micrograph “S-4800” (manufactured by HITACHI), and using the photograph, the particles 100 The particle diameter was measured for at least one particle, the average value was calculated, and the average particle diameter ( DSEM ) was obtained.
  • the covering state of the copper powder with the silver fine particles of the silver-coated copper powder was performed by observing the particles with the scanning electron micrograph “S-4800” (manufactured by HITACHI).
  • the average particle size (D 50 ) of the copper powder and silver-coated copper powder was measured using a laser diffraction / scattering particle size distribution analyzer “LMS-2000e” (manufactured by Seishin Enterprise Co., Ltd.). The particle diameter is shown as 50%.
  • the specific surface area of the copper fine particles, the silver fine particles surface-treated with the dispersing agent and the silver-coated copper powder was represented by a value measured by the BET method using “Monosorb MS-11” (manufactured by Kantachrome Co., Ltd.).
  • the amount of carbon (TC) of the copper powder, the dispersant treated on the surface of the silver fine particles and the silver-coated copper powder (TC) is “Horiba Metal Carbon / Sulfur Analyzer EMIA-2200” (manufactured by Horiba, Ltd.) Was determined by measuring the carbon content.
  • the content of copper and silver constituting the silver-coated copper powder is as follows: 0.2 g of sample, 5 ml of nitric acid and 10 ml of ion-exchanged water are placed in a 50 ml fluororesin beaker and kept at 240 ° C. for 15 minutes for dissolution. was measured using an “inductively coupled plasma optical emission spectrometer iCAP6500Duo” (manufactured by Thermo Fisher Scientific Co., Ltd.).
  • the specific resistance of the conductive coating film was obtained by applying a conductive paste described later on a polyimide film having a thickness of 50 ⁇ m, predrying at 120 ° C. for 10 minutes, and heating at 210 ° C. for 10 minutes.
  • the specific resistance was calculated from the sheet resistance and film thickness using a four-terminal electrical resistance measuring device “Loresta GP / MCP-T610” (manufactured by Dia Instruments Co., Ltd.).
  • the migration resistance of the conductive coating film is obtained by forming a pattern with a line width of 0.75 mm and a length of 25.0 mm with a gap of 0.75 mm in the center using a conductive paste described later on a polyimide film having a thickness of 50 ⁇ m.
  • a sample was screen-printed so as to have a dry film thickness of 10 to 30 ⁇ m, and dried by heating at 150 ° C. for 30 minutes.
  • Silver fine particles 1 After adding 155 g of methanol to 100 g of silver fine particles and stirring, DISPERBYK-106 prepared by adding 1.4 g of DISPERBYK-106 (corresponding to 1.4 wt% of the silver fine particles) to 20 g of methanol and stirring. was added to the methanol solution of the silver fine particles and stirred and mixed at a temperature of 40 ° C. for 100 minutes.
  • the obtained mixed solution was dried under reduced pressure at 40 ° C. to obtain silver fine particles 1 whose particle surfaces were coated with a dispersant.
  • the obtained silver fine particles 1 were amorphous particles having an average particle diameter DSEM of 78 nm, a BET specific surface area value of 3.4 m 2 / g, and TC of 0.91%.
  • Silver fine particles 2-7 A silver fine particle powder having the particle surface coated with a dispersant was obtained in the same manner as the silver fine particle 1 except that the type of silver fine particles, the type of dispersant, and the amount added were changed. The characteristics of the obtained silver fine particle powder are shown in Table 1.
  • Copper powder 1-4 Copper powder having the characteristics shown in Table 2 was prepared as copper powder.
  • Example 1-1 Production of silver-coated copper powder> Copper powder 1 (shape: dendritic, average particle diameter D 50 : 4.0 ⁇ m, BET specific surface area value: 0.35 m 2 / g, TC: 0.02%) 2 kg of vibration mill “MB1” (media: Fai11m / resin coated spheres 3.9kg of m) (product name, was placed in the center Kakoki Co., Ltd.), then the silver particles 1 (shape: amorphous, average particle diameter D SEM: 78 nm, BET specific surface area: (3.4 m 2 / g) 200 g was added, and the mixture was stirred for 180 minutes at a rotational speed of 1200 rpm and an amplitude of 6 mm to obtain a silver-coated copper powder of Example 1-1.
  • Copper powder 1 shape: dendritic, average particle diameter D 50 : 4.0 ⁇ m, BET specific surface area value: 0.35 m 2 / g, TC: 0.02%
  • the resulting silver-coated copper powder has a resinous particle shape, an average particle diameter (D 50 ) of 3.7 nm, a BET specific surface area value of 0.40 m 2 / g, TC of 0.15%, Ag The content was 8.92% and the Cu content was 90.93%.
  • the ratio (D 50 / D SEM ) between the average particle size (D 50 ) of the copper powder and the average particle size (D SEM ) of the silver fine particle powder was 51. As a result of SEM observation, it was confirmed that silver was present on the surface of the copper powder.
  • Example 2-1 Production of conductive paste> Polyethylene resin diethylene glycol monobutyl ether acetate solution (solid content 35%) and curing agent 1.4 parts by weight with respect to 100 parts by weight of silver-coated copper powder of Example 1-1, and inclusion of silver-coated copper powder in the conductive paste Add a mixed solution of diethylene glycol monobutyl ether acetate and diethylene glycol monoethyl ether acetate so that the amount becomes 70 wt%, and after premixing, uniformly knead and disperse using three rolls to obtain the conductive paste. Obtained.
  • the obtained conductive paste was applied onto a polyimide film having a thickness of 50 ⁇ m, and was dried by heating at 210 ° C. for 10 minutes for specific resistance measurement, and heated and dried at 150 ° C. for 10 minutes for measurement of migration resistance. A membrane was obtained.
  • the resulting conductive coating film had a specific resistance value of 1.6 ⁇ 10 ⁇ 2 ⁇ ⁇ cm and migration resistance of 592 sec.
  • a silver-coated copper powder and a conductive paste were prepared according to Example 1-1 and Example 2-1. Various characteristics of each production condition and the obtained silver-coated copper powder and conductive paste are shown.
  • Examples 1-2 to 1-5 and Comparative Examples 1-1 to 1-4 A silver-coated copper powder was obtained in the same manner as in Example 1-1 except that the type of copper powder, the type of silver fine particles, and the amount added were changed.
  • Examples 2-2 to 2-5 and comparative examples 2-1 to 2-7 A conductive paste and a conductive coating film were produced according to the method for producing a conductive paste of Example 2-1 except that the type of silver-coated copper powder was variously changed.
  • the conductive particles of Comparative Example 2-7 were commercially available silver-plated copper powder (particle shape: resinous, average particle diameter (D 50 ): 12.27 nm, BET specific surface area value: 0.55 m 2 / g, T -C: 0.09%, Ag content: 10.08%, Cu content: 89.92%).
  • Table 5 shows the manufacturing conditions and various characteristics of the obtained conductive coating film.
  • the silver-coated copper powder according to the present invention is excellent in conductivity, conductivity and migration resistance, it is suitable as a raw material for conductive paste, conductive adhesive and the like.
  • the conductive paste and the conductive adhesive using the silver-coated copper powder according to the present invention can provide a printed wiring board and the like excellent in migration resistance and conductivity, the conductivity used in various electronic devices. Suitable as paste and conductive adhesive.

Abstract

The present invention provides a silver-coated copper powder exhibiting excellent conductivity and migration resistance and a method for producing the same, and a conductive paste, conductive adhesive agent, conductive film and electric circuit containing the silver-coated copper powder. A method for producing a silver-coated copper powder in which a copper powder and a silver fine-particle powder are mixed and stirred and the silver fine-particle powder is adhered to the particle surfaces of the copper powder; wherein a silver-coated copper powder exhibiting excellent conductivity and migration resistance can be obtained by carrying out all the treatment processes as dry processes, and by using, as the silver fine-particle powder, silver fine-particle powder in which the particle surfaces have been surface coated with a dispersing agent.

Description

銀コート銅粉及びその製造法、該銀コート銅粉を含有する導電性ペースト、導電性接着剤、導電性膜、及び電気回路Silver-coated copper powder and method for producing the same, conductive paste containing the silver-coated copper powder, conductive adhesive, conductive film, and electric circuit
 本発明は、導電性及び耐マイグレーション性に優れた銀コート銅粉とその製造法、該銀コート銅粉を含有する導電性ペースト、導電性接着剤、導電性膜、及び電気回路に関する。 The present invention relates to a silver-coated copper powder excellent in conductivity and migration resistance and a method for producing the same, a conductive paste containing the silver-coated copper powder, a conductive adhesive, a conductive film, and an electric circuit.
 金属微粒子粉末は、プリント配線板の回路形成用部材、各種電気的接点用部材、コンデンサ等の電極用部材などへの導電性粒子粉末として用いられ、これら部材は各種電子デバイスに幅広く使用されている。 Metal fine particle powder is used as conductive particle powder for circuit forming members of printed wiring boards, various electrical contact members, electrode members such as capacitors, etc., and these members are widely used in various electronic devices. .
 前述の用途に用いられる導電性粒子粉末としては、金、銀、パラジウム、銅、アルミニウム等の導電性金属微粒子が知られているが、金やパラジウムは高価であるため、一般には、高い導電性が要求される分野では銀が、それ以外の分野では銅が導電性粒子粉末として用いられることが多い。 As the conductive particle powder used in the above-mentioned applications, conductive metal fine particles such as gold, silver, palladium, copper, and aluminum are known. However, since gold and palladium are expensive, in general, they have high conductivity. In other fields, silver is often used as the conductive particle powder, and in other fields, copper is often used as the conductive particle powder.
 しかしながら、銀は金やパラジウムに次いで高価であり、また、長期にわたって高湿環境において電圧が印加された場合、マイグレーション現象が起き易く、電極間又は配線間がショートするという問題を有している。 However, silver is expensive next to gold and palladium. Further, when a voltage is applied in a high humidity environment for a long period of time, a migration phenomenon easily occurs, and there is a problem that a short circuit occurs between electrodes or wirings.
 一方、銅は安価であり、マイグレーション現象の発生が比較的少ないが、導電性銅ペーストは導電性銀ペーストに比べると導電性が低く、また、耐酸化性に劣るため、導電性ペーストを加熱する際酸化し易く、銅粒子表面に酸化膜を形成して導電性が低下するという問題を有している。 On the other hand, copper is inexpensive and the occurrence of migration phenomenon is relatively small. However, conductive copper paste is less conductive than conductive silver paste and has poor oxidation resistance, so the conductive paste is heated. At this time, it is easy to oxidize, and there is a problem that an oxide film is formed on the surface of the copper particles and the conductivity is lowered.
 これまでに、銅粉の導電性及び耐酸化性を向上させることを目的として、銅粒子表面に銀を被覆させる方法が提案されており、銀粉末と銅粉末を機械的に強制接合させた銀-銅複合粉末(特許文献1)、銀イオンと金属銅との置換反応により、銅粒子の表面に銀が被覆された銀被覆銅粉(特許文献2乃至4)、銀めっき銅粉(特許文献5)等が知られている。 So far, for the purpose of improving the electrical conductivity and oxidation resistance of copper powder, a method of coating the surface of the copper particles with silver has been proposed. -Copper composite powder (Patent Document 1), silver-coated copper powder (Patent Documents 2 to 4) whose surface is coated with silver by a substitution reaction between silver ions and metallic copper, and silver-plated copper powder (Patent Document) 5) etc. are known.
特開昭56-155259号公報JP 56-155259 A 特開2002-245849号公報Japanese Patent Laid-Open No. 2002-245849 特開2004-68111号公報JP 2004-68111 A 特開2006-161081号公報JP 2006-161081 A 特開平9-282935号公報JP-A-9-282935
 即ち、前出特許文献1には、銀粉末と銅粉末を機械的に強制接合させた銀-銅複合粉末が記載されているが、銅粉末表面に付着させる銀粉末の表面性(表面処理)については何も考慮されていないことから、後出比較例に示す通り、有機化合物によって表面処理されていない銀粒子を銅粉末に機械的に付着させた場合には、銀粒子同士が凝集する傾向にあるため、マイグレーション現象が生じやすいという問題を有している。 That is, the above-mentioned patent document 1 describes a silver-copper composite powder in which silver powder and copper powder are mechanically forcibly joined. However, the surface property (surface treatment) of the silver powder adhered to the copper powder surface is described. Since no consideration is given to the case, as shown in the comparative example below, when silver particles not surface-treated with an organic compound are mechanically attached to copper powder, the silver particles tend to aggregate together Therefore, there is a problem that a migration phenomenon is likely to occur.
 また、前出特許文献2~4には、銀イオンと金属銅との置換反応により、銅粒子の表面に銀が被覆された銀被覆銅粉とその製造方法が記載されているが、いずれも水溶液中での湿式反応であるため、銅粉の酸化が生じると共に、粒子表面が銀によって均一に被覆されることにより、マイグレーション現象が生じやすいという問題を有している。 Also, in the above-mentioned Patent Documents 2 to 4, silver-coated copper powder in which silver is coated on the surface of copper particles by a substitution reaction between silver ions and metallic copper and a method for producing the same are described. Since it is a wet reaction in an aqueous solution, the copper powder is oxidized and the particle surface is uniformly coated with silver, thereby causing a problem that a migration phenomenon is likely to occur.
 また、前出特許文献5には、銀めっき銅粉が記載されているが、銀めっき銅粉は、ペースト混練時に銀めっきの剥離が発生し易く、マイグレーション現象が生じやすいという問題を有している。 Moreover, although the above-mentioned patent document 5 describes silver-plated copper powder, the silver-plated copper powder has a problem that silver plating is easily peeled off during paste kneading and a migration phenomenon easily occurs. Yes.
 そこで、本発明は、導電性及び耐マイグレーション性に優れた銀コート銅粉を提供することを技術的課題とする。 Therefore, it is a technical object of the present invention to provide a silver-coated copper powder excellent in conductivity and migration resistance.
 前記技術的課題は、次の通りの本発明によって達成できる。 The technical problem can be achieved by the present invention as follows.
 即ち、本発明は、銅粉の表面に、分散剤により粒子表面が被覆された銀微粒子粉末が付着しており、銅粉の平均粒子径(D50)と銀微粒子の平均粒子径(DSEM)との比(D50/DSEM)が3~200の範囲であることを特徴とする銀コート銅粉である(本発明1)。 That is, in the present invention, the silver fine particle powder whose particle surface is coated with the dispersant is attached to the surface of the copper powder, and the average particle size (D 50 ) of the copper powder and the average particle size (D SEM ) of the silver fine particles. ) Is a silver-coated copper powder characterized by having a ratio (D 50 / D SEM ) in the range of 3 to 200 (Invention 1).
 また、本発明は、レーザー回折散乱粒度分布による平均粒子径(D50)が0.1~30μmであることを特徴とする本発明1の銀コート銅粉である(本発明2)。 Further, the present invention is the silver-coated copper powder of the present invention 1 (Invention 2), wherein the average particle diameter (D 50 ) by laser diffraction scattering particle size distribution is 0.1 to 30 μm.
 また、本発明は、銅粉100重量部に対して分散剤により粒子表面が被覆された銀微粒子の付着量が1~100重量部であることを特徴とする本発明1又は本発明2の銀コート銅粉である(本発明3)。 Further, the present invention is characterized in that the amount of silver fine particles whose particle surfaces are coated with a dispersing agent is 1 to 100 parts by weight with respect to 100 parts by weight of copper powder. It is a coated copper powder (Invention 3).
 また、本発明は、銀微粒子粉末の表面被覆に用いる分散剤が、数平均分子量1,000以上の高分子系分散剤から選ばれる1種又は2種以上からなることを特徴とする本発明1から本発明3の銀コート銅粉である(本発明4)。 Further, in the present invention, the dispersant used for the surface coating of the silver fine particle powder is composed of one or more selected from polymer dispersants having a number average molecular weight of 1,000 or more. To the silver-coated copper powder of the present invention 3 (present invention 4).
 また、本発明は、銅粉末と銀微粒子粉末とを混合攪拌して銅粉末の粒子表面に銀微粒子粉末を付着させる銀コート銅粉の製造法において、全処理工程を乾式で行うと共に、銀微粒子粉末として粒子表面を分散剤により表面被覆された銀微粒子粉末を用いることを特徴とする本発明1~4の何れかに記載の銀コート銅粉の製造法である(本発明5)。 Further, the present invention provides a silver coated copper powder manufacturing method in which a copper fine particle powder and a silver fine particle powder are mixed and stirred to adhere the silver fine particle powder to the surface of the copper powder. The method for producing a silver-coated copper powder according to any one of the first to fourth aspects of the present invention, wherein a silver fine particle powder whose particle surface is coated with a dispersant is used as the powder (Invention 5).
 また、本発明は、本発明1~4の何れかに記載の銀コート銅粉を含む導電性接着剤である(本発明6)。 Further, the present invention is a conductive adhesive containing the silver-coated copper powder according to any one of the present inventions 1 to 4 (Invention 6).
 また、本発明は、本発明1~4の何れかに記載の銀コート銅粉を含む導電性ペーストである(本発明7)。 Moreover, the present invention is a conductive paste containing the silver-coated copper powder according to any one of the first to fourth aspects of the present invention (Invention 7).
 また、本発明は、本発明7に記載の導電性ペーストを用いて形成された導電性膜である(本発明8)。 Further, the present invention is a conductive film formed using the conductive paste according to the present invention 7 (the present invention 8).
 また、本発明は、本発明7に記載の導電性ペーストを用いて形成された電気回路である(本発明9)。 Further, the present invention is an electric circuit formed using the conductive paste according to the present invention 7 (the present invention 9).
 本発明に係る銀コート銅粉は、導電性、導電性及び耐マイグレーション性に優れているので、導電性ペースト及び導電性接着剤等の原料として好適である。 Since the silver-coated copper powder according to the present invention is excellent in conductivity, conductivity and migration resistance, it is suitable as a raw material for conductive paste, conductive adhesive and the like.
 本発明に係る銀コート銅粉を用いた導電性ペースト並びに導電性接着剤は、耐マイグレーション性及び導電性に優れたプリント配線基板等を提供することができるので、各種電子デバイスに用いられる導電性ペースト及び導電性接着剤として好適である。 Since the conductive paste and the conductive adhesive using the silver-coated copper powder according to the present invention can provide a printed wiring board and the like excellent in migration resistance and conductivity, the conductivity used in various electronic devices. Suitable as paste and conductive adhesive.
 本発明の構成をより詳しく説明すれば、次の通りである。 The configuration of the present invention will be described in more detail as follows.
 まず、本発明に係る銀コート銅粉について述べる。 First, the silver-coated copper powder according to the present invention will be described.
 本発明に係る銀コート銅粉は、銅粉の表面に、分散剤により粒子表面が被覆された銀微粒子粉末が付着していることを特徴とする銀コート銅粉である。 The silver-coated copper powder according to the present invention is a silver-coated copper powder characterized in that a silver fine particle powder whose particle surface is coated with a dispersant is attached to the surface of the copper powder.
 本発明における銅粉としては、その種類、製法等に制限はなく、通常の電解法、還元法、アトマイズ法、機械的粉砕などから得られる銅粉を用いることができる。 The copper powder in the present invention is not limited in its type, production method, and the like, and copper powder obtained from a normal electrolysis method, reduction method, atomization method, mechanical grinding, or the like can be used.
 本発明における銅粉の粒子形状は特に限定されず、球状、樹枝状、鱗片状、フレーク状、針状、板状、粒状等を用いることができる。また、形状の異なる銅粉を組み合わせて用いてもよい。 The particle shape of the copper powder in the present invention is not particularly limited, and a spherical shape, a dendritic shape, a scale shape, a flake shape, a needle shape, a plate shape, a granular shape, and the like can be used. Moreover, you may use combining the copper powder from which a shape differs.
 銅粉のレーザー回折散乱粒度分布による平均粒子径(D50)は0.1~30μmであり、好ましくは0.1~20μm、より好ましくは0.1~10μmである。平均粒子径(D50)の異なる銅粉を組み合わせて用いてもよい。平均粒子径(D50)が0.1μm未満の場合には、粒子の微細化によって表面酸化が起こりやすくなり、導電性が低下するため好ましくない。また、平均粒子径(D50)が30μmを超える場合には、これを用いて得られる銀コート銅粉と該銀コート銅粉より得られた導電性ペーストの印刷性及び充填性が低下するため、高い導電性を有する導電性ペーストを得ることが困難となる。 The average particle diameter (D 50 ) according to laser diffraction / scattering particle size distribution of the copper powder is 0.1 to 30 μm, preferably 0.1 to 20 μm, more preferably 0.1 to 10 μm. It may be used in combination with different copper powder of an average particle diameter (D 50). When the average particle size (D 50 ) is less than 0.1 μm, surface oxidation is likely to occur due to particle miniaturization, and conductivity is lowered, which is not preferable. Further, when the average particle diameter (D 50) is more than 30μm, since the printability and filling properties of the silver-coated copper powder and silver coated copper powder from the obtained conductive paste obtained is reduced with this It becomes difficult to obtain a conductive paste having high conductivity.
 本発明における銅粉のBET比表面積値は、0.1~4.0m/gであることが好ましく、より好ましくは0.2~3.0m/gである。BET比表面積値が4.0m/gを超える場合には、粒子粉末の表面積が大きすぎるため表面酸化が起こりやすくなり、導電性が低下するため好ましくない。 The BET specific surface area value of the copper powder in the present invention is preferably 0.1 to 4.0 m 2 / g, more preferably 0.2 to 3.0 m 2 / g. When the BET specific surface area value exceeds 4.0 m 2 / g, the surface area of the particle powder is too large, so that surface oxidation is liable to occur and conductivity is lowered, which is not preferable.
 本発明における銀微粒子粉末としては、その種類、製法等に制限はなく、通常の機械的粉砕法、アアトマイズ法、湿式還元法、電解法、気相法などの公知の方法で得られた銀微粒子粉末を用いることができる。 The silver fine particle powder in the present invention is not limited in its type, production method, and the like, and silver fine particles obtained by a known method such as a normal mechanical pulverization method, an atomization method, a wet reduction method, an electrolysis method, or a gas phase method. Powder can be used.
 本発明における銀微粒子の粒子形状は特に限定されず、球状、粒状、不定形、樹枝状、フレーク状、鱗片状、板状、針状等を用いることができるが、球状、粒状もしくは不定形であることが好ましい。 The particle shape of the silver fine particles in the present invention is not particularly limited, and may be spherical, granular, amorphous, dendritic, flake, flaky, plate-like, needle-like, etc., but spherical, granular or amorphous Preferably there is.
 銀微粒子粉末の平均粒子径(DSEM)は、0.01~3μmであることが好ましく、より好ましくは0.02~2μm、更により好ましくは0.03~1μmである。平均粒子径(DSEM)が0.01μm未満の場合には、銀微粒子粉末の微細化により活性が高すぎて不安定あるため、常温におけるハンドリングが困難である。 The average particle diameter (D SEM ) of the silver fine particle powder is preferably 0.01 to 3 μm, more preferably 0.02 to 2 μm, and still more preferably 0.03 to 1 μm. When the average particle diameter (D SEM ) is less than 0.01 μm, it is difficult to handle at room temperature because the activity is too high and unstable due to the refinement of the silver fine particle powder.
 本発明に係る銀コート銅粉は、銅粉の平均粒子径(D50)と銀微粒子粉末の平均粒子径(DSEM)との比(D50/DSEM)が3~200の範囲であり、好ましくは4~150、より好ましくは5~100である。銅粉の平均粒子径(D50)と銀微粒子粉末の平均粒子径(DSEM)との比(D50/DSEM)が3未満の場合には、銅粉の平均粒子径(D50)に対して銀微粒子粉末の平均粒子径(DSEM)が大きすぎるため、銅粉の粒子表面へ銀微粒子粉末をコートすることが困難となる。銅粉の平均粒子径(D50)と銀微粒子粉末の平均粒子径(DSEM)との比(D50/DSEM)が200を超える場合には、工業的に容易に製造することが困難である。 The silver-coated copper powder according to the present invention has a ratio (D 50 / D SEM ) of the average particle diameter (D 50 ) of the copper powder and the average particle diameter (D SEM ) of the silver fine particle powder in the range of 3 to 200. , Preferably 4 to 150, more preferably 5 to 100. The ratio of the average particle size of the copper powder and the (D 50) and the average particle diameter of the silver fine powder (D SEM) in the case of less than (D 50 / D SEM) is 3, the average particle diameter (D 50) of copper powder On the other hand, since the average particle diameter (D SEM ) of the silver fine particle powder is too large, it becomes difficult to coat the silver fine particle powder on the particle surface of the copper powder. When the ratio (D 50 / D SEM ) of the average particle diameter (D 50 ) of the copper powder and the average particle diameter (D SEM ) of the silver fine particle powder exceeds 200, it is difficult to easily produce industrially. It is.
 銀微粒子粉末の粒子表面を被覆する分散剤としては、数平均分子量が1,000以上の高分子系分散剤を用いることができる。 As the dispersant for covering the particle surface of the silver fine particle powder, a polymer dispersant having a number average molecular weight of 1,000 or more can be used.
 前記高分子系分散剤の具体例としては、ANTI-TERRA-U、ANTI-TERRA-205、DISPERBYK-101、DISPERBYK-102、DISPERBYK-106、DISPERBYK-108、DISPERBYK-109、DISPERBYK-110、DISPERBYK-111、DISPERBYK-112、DISPERBYK-116、DISPERBYK-130、DISPERBYK-140、DISPERBYK-142、DISPERBYK-145、DISPERBYK-161、DISPERBYK-162、DISPERBYK-163、DISPERBYK-164、DISPERBYK-166、DISPERBYK-167、DISPERBYK-168、DISPERBYK-170、DISPERBYK-171、DISPERBYK-174、DISPERBYK-180、DISPERBYK-182、DISPERBYK-183、DISPERBYK-184、DISPERBYK-185、DISPERBYK-2000、DISPERBYK-2001、DISPERBYK-2008、DISPERBYK-2009、DISPERBYK-20220、DISPERBYK-2025、DISPERBYK-2050、DISPERBYK-2070、DISPERBYK-2150、DISPERBYK-2155、DISPERBYK-2163、DISPERBYK-2164、BYK-P104、BYK-P104S、BYK-P105、BYK-9076、BYK-9077、BYK-220S、(ビックケミー・ジャパン株式会社製);EFKA 4008、EFKA 4009、EFKA 4046、EFKA 4047、EFKA 4010、EFKA 4015、EFKA 4020、EFKA 4050、EFKA 4055、EFKA 4060、EFKA 4080、EFKA 4300、EFKA 4330、EFKA 4400、EFKA 4401、EFKA 4402、EFKA 4403、EFKA 4406、EFKA 4800、EFKA 5010、EFKA 5044、EFKA 5244、EFKA 5054、EFKA 5055、EFKA 5063、EFKA 5064、EFKA 5065、EFKA 5066、EFKA 5070(BASFジャパン株式会社製);SOLSPERSE 3000、SOLSPERSE 13240、SOLSPERSE 13940、SOLSPERSE 16000、SOLSPERSE 17000、SOLSPERSE 18000、SOLSPERSE 20000、SOLSPERSE 21000、SOLSPERSE 24000SC、SOLSPERSE 24000GR、SOLSPERSE 26000、SOLSPERSE 27000、SOLSPERSE 28000、SOLSPERSE 31845、SOLSPERSE 32000、SOLSPERSE 32500、SOLSPERSE 32550、SOLSPERSE 34750、SOLSPERSE 35100、SOLSPERSE 35200、SOLSPERSE 36000、SOLSPERSE 36600、SOLSPERSE 37500、SOLSPERSE 38500、SOLSPERSE 39000、SOLSPERSE 41000(日本ルーブリゾール株式会社製);アジスパーPB821、アジスパーPB822、アジスパーPB881、アジスパーPN-411、アジスパーPA-111、(味の素ファインテクノ株式会社製);DISPARLON KS-860、DISPARLON KS-873N、DISPARLON 7004、DISPARLON 1831、DISPARLON 1850、DISPARLON 1860、DISPARLON DA-7301、DISPARLON DA-325、DISPARLON DA-375、DISPARLON DA-234(楠本化成株式会社製);フローレン DOPA-15B、フローレン DOPA-17HF、フローレン DOPA-22、フローレン DOPA-33、フローレン G-700、フローレン G-820、フローレン G-900(共栄社化学株式会社製)等が挙げられる。これらの顔料分散剤は、1種類又は2種類以上を組み合わせて使用してもよい。 Specific examples of the polymeric dispersant include ANTI-TERRA-U, ANTI-TERRA-205, DISPERBYK-101, DISPERBYK-102, DISPERBYK-106, DISPERBYK-108, DISPERBYK-109, DISPERBYK-110, DISPERBYK- 111, DISPERBYK-112, DISPERBYK-116, DISPERBYK-130, DISPERBYK-140, DISPERBYK-142, DISPERBYK-145, DISPERBYK-161, DISPERBYK-162, DISPERBYK-163, DISPERBYK-164, DISPERBY67-166 DISPERBYK-168, DISPER YK-170, DISPERBYK-171, DISPERBYK-174, DISPERBYK-180, DISPERBYK-182, DISPERBYK-183, DISPERBYK-184, DISPERBYK-185, DISPERBYK-2000, DISPERBYK-2001, DISPERBYK-2008, DISPERBYK-2008 20220, DISPERBYK-2025, DISPERBYK-2050, DISPERBYK-2070, DISPERBYK-2150, DISPERBYK-2155, DISPERBYK-2163, DISPERBYK-2164, BYK-P104, BYK-P104S, BYK-P10577, BYK-P10577 YK-220S (manufactured by BYK Japan); EFKA 4008, EFKA 4009, EFKA 4046, EFKA 4047, EFKA 4010, EFKA 4015, EFKA 4020, EFKA 4050, EFKA 4055, EFKA 4060, EFKA 4060A 4330, EFKA 4400, EFKA 4401, EFKA 4402, EFKA 4403, EFKA 4406, EFKA 4800, EFKA 5010, EFKA 5044, EFKA 5244, EFKA 5054, EFKA 5055, EFKA 5055, EFKA 5055, EFKA 5055, EFKA 5055, EFKA 5055 BASF Japan Ltd.); S OLSPERSE 3000, SOLSPERSE 13240, SOLSPERSE 13940, SOLSPERSE 16000, SOLSPERSE 17000, SOLSPERSE 18000, SOLSPERSE 20000, SOLSPERSE 21000, SOLSPERSE 24000SC, SOLSPERSE 24000GR, SOLSPERSE 26000, SOLSPERSE 27000, SOLSPERSE 28000, SOLSPERSE 31845, SOLSPERSE 32000, SOLSPERSE 32500, SOLSPERSE 32550 , SOLSPERSE 34750, SOLSPERSE 35100, SOLSPERSE 35200, SOLSPERSE 3 000, SOLSPERSE 36600, SOLSPERSE 37500, SOLSPERSE 38500, SOLSPERSE 39000, SOLSPERSE 41000 (manufactured by Nippon Lubrizol Co., Ltd.); ); DISPARLON KS-860, DISPARLON KS-873N, DISPARLON 7004, DISPARLON 1831, DISPARLON 1850, DISPARLON 1860, DISPARLON DA-7301, DISPARLON DA-325, DISPARLON DA-375, DISPARLON DA-375 A-234 (manufactured by Enomoto Kasei Co., Ltd.); Floren DOPA-15B, Floren DOPA-17HF, Floren DOPA-22, Floren DOPA-33, Floren G-700, Floren G-820, Floren G-900 (Kyoeisha Chemical Co., Ltd.) Manufactured) and the like. These pigment dispersants may be used alone or in combination of two or more.
 分散剤の数平均分子量は1,000以上であることが好ましく、より好ましくは1,000~150,000、更により好ましくは5,000~100,000である。数平均分子量が1,000未満の分散剤で表面処理した銀微粒子粉末は、分散剤で処理した効果が不十分であり、銀微粒子が凝集する傾向があるため、銅粉への付着処理が困難である。一方、数平均分子量が150,000を超える場合には分散剤の粘度が上がり、銀微粒子粉末への表面被覆処理が困難となるため好ましくない。 The number average molecular weight of the dispersant is preferably 1,000 or more, more preferably 1,000 to 150,000, and still more preferably 5,000 to 100,000. The silver fine particle powder surface-treated with a dispersant having a number average molecular weight of less than 1,000 is insufficient in the effect of the treatment with the dispersant, and the silver fine particles tend to aggregate, making it difficult to adhere to the copper powder. It is. On the other hand, when the number average molecular weight exceeds 150,000, the viscosity of the dispersant is increased, which makes it difficult to coat the surface of the silver fine particle powder.
 また、上記分散剤として、酸価とアミン価の両方を有する分散剤もしくは、酸価を有する分散剤とアミン価を有する分散剤とを併用することが好ましく、該特性を有する分散剤で銀微粒子粉末を表面処理することにより、銀微粒子を銅粉の粒子表面へより効果的に処理することが可能となる。 In addition, as the dispersant, it is preferable to use a dispersant having both an acid value and an amine value, or a dispersant having an acid value and a dispersant having an amine value in combination. By surface-treating the powder, the silver fine particles can be more effectively treated on the surface of the copper powder particles.
 酸価を有する分散剤としては、代表的なものとして、DISPERBYK-102、DISPERBYK-110、DISPERBYK-111、DISPERBYK-170、DISPERBYK-171、DISPERBYK-174、BYK-P104、BYK-P104S、BYK-P105、BYK-220S、EFKA 5010、EFKA 5065、EFKA 5066、EFKA 5070、SOLSPERSE 3000、SOLSPERSE 16000、SOLSPERSE 17000、SOLSPERSE 18000、SOLSPERSE 21000、SOLSPERSE 27000、SOLSPERSE 28000、SOLSPERSE 36000、SOLSPERSE 36600、SOLSPERSE 38500、SOLSPERSE 39000、SOLSPERSE 41000、アジスパーPN-411、アジスパーPA-111等である。 Typical examples of the dispersant having an acid value include DISPERBYK-102, DISPERBYK-110, DISPERBYK-111, DISPERBYK-170, DISPERBYK-171, DISPERBYK-174, BYK-P104, BYK-P104S, BYK-P105. , BYK-220S, EFKA 5010, EFKA 5065, EFKA 5066, EFKA 5066, EFKA 5070, SOLPERSE 3000, SOLPERSE 16000, SOLPERSE 17000, SOLPERSE 18000, SOLPERSE 2SE, SOLPERSE SER 36 ERSE 38500, SOLSPERSE 39000, SOLSPERSE 41000, Ajisper PN-411, a Ajisper PA-111 and the like.
 アミン価を有する分散剤としては、代表的なものとして、DISPERBYK-108、DISPERBYK-109、DISPERBYK-112、DISPERBYK-116、DISPERBYK-161、DISPERBYK-162、DISPERBYK-163、DISPERBYK-164、DISPERBYK-166、DISPERBYK-167、DISPERBYK-168、DISPERBYK-182、DISPERBYK-183、DISPERBYK-184、DISPERBYK-185、DISPERBYK-2000、DISPERBYK-2008、DISPERBYK-2009、DISPERBYK-2050、DISPERBYK-2150、DISPERBYK-2155、DISPERBYK-2163、DISPERBYK-2164、BYK-9077、EFKA 4046、EFKA 4047、EFKA 4015、EFKA 4020、EFKA 4050、EFKA 4055、EFKA 4060、EFKA 4080、EFKA 4300、EFKA 4330、EFKA 4400、EFKA 4401、EFKA 4402、EFKA 4403、EFKA 4800、SOLSPERSE 20000等である。 Representative examples of the dispersant having an amine value include DISPERBYK-108, DISPERBYK-109, DISPERBYK-112, DISPERBYK-116, DISPERBYK-161, DISPERBYK-162, DISPERBYK-163, DISPERBYK-164, DISPERBYK-166. DISPERBYK-167, DISPERBYK-168, DISPERBYK-182, DISPERBYK-183, DISPERBYK-184, DISPERBYK-185, DISPERBYK-2000, DISPERBYK-2008, DISPERBYK-2009, DISPERBYK-20ER, SPERBYK-2050-2 YK-2163, DISPERBYK-2164, BYK-9077, EFKA 4046, EFKA 4047, EFKA 4015, EFKA 4020, EFKA 4050, EFKA 4055, EFKA 4060, EFKA 4080, EFKA 4300E43A , EFKA 4403, EFKA 4800, SOLSPERSE 20000, and the like.
 酸価とアミン価の両方を有する分散剤としては、代表的なものとして、ANTI-TERRA-U、ANTI-TERRA-205、DISPERBYK-101、DISPERBYK-106、DISPERBYK-130、DISPERBYK-140、DISPERBYK-142、DISPERBYK-145、DISPERBYK-180、DISPERBYK-2001、DISPERBYK-2020、DISPERBYK-2025、DISPERBYK-2070、BYK-9076、EFKA 4008、EFKA 4009、EFKA 4010、EFKA 4406、EFKA 5044、EFKA 5244、EFKA 5054、EFKA 5055、EFKA 5063、EFKA 5064、SOLSPERSE 13240、SOLSPERSE 13940、SOLSPERSE 24000SC、SOLSPERSE 24000GR、SOLSPERSE 26000、SOLSPERSE 31845、SOLSPERSE 32000、SOLSPERSE 32500、SOLSPERSE 32550、SOLSPERSE 34750、SOLSPERSE 35100、SOLSPERSE 35200、SOLSPERSE 37500、アジスパーPB821、アジスパーPB822、アジスパーPB881等である。 Representative examples of the dispersant having both acid value and amine value include: ANTI-TERRA-U, ANTI-TERRA-205, DISPERBYK-101, DISPERBYK-106, DISPERBYK-130, DISPERBYK-140, DISPERBYK- 142, DISPERBYK-145, DISPERBYK-180, DISPERBYK-2001, DISPERBYK-2020, DISPERBYK-2025, DISPERBYK-2070, BYK-9076, EFKA 4008, EFKA 4009, EFKA40K4 406 , EFKA 5055, EFKA 5063, EFKA 5064, SOLSP RSE 13240, SOLSPERSE 13940, SOLSPERSE 24000SC, SOLSPERSE 24000GR, SOLSPERSE 26000, SOLSPERSE 31845, SOLSPERSE 32000, SOLSPERSE 32500, SOLSPERSE 32550, SOLSPER 3537, SOLSPERSE 34750, SOLSPERSE 34SE .
 分散剤の被覆量は、銀微粒子のBET表面積値にもよるが、銀微粒子粉末に対して0.1~5.0重量%が好ましく、より好ましくは0.2~4.0重量%である。0.1重量%未満の場合には、分散剤の処理量が不十分であり、銀微粒子粉末が凝集しやすいため、銅粉への付着処理が困難である。5.0重量%を超える場合には、銀微粒子粉末の凝集を抑制することはできるが、導電性に関与しない有機物成分が増えるため好ましくない。 The coating amount of the dispersant is preferably 0.1 to 5.0% by weight, more preferably 0.2 to 4.0% by weight based on the silver fine particle powder, although it depends on the BET surface area value of the silver fine particles. . When the amount is less than 0.1% by weight, the treatment amount of the dispersant is insufficient, and the silver fine particle powder tends to aggregate, so that the adhesion treatment to the copper powder is difficult. When the amount exceeds 5.0% by weight, aggregation of the silver fine particle powder can be suppressed, but an organic component not involved in conductivity increases, which is not preferable.
 本発明に係る銀コート銅粉のレーザー回折散乱粒度分布による平均粒子径(D50)は0.1~30μmであり、好ましくは0.1~20μm、より好ましくは0.1~10μmである。平均粒子径(D50)の異なる銀コート銅粉を組み合わせて用いてもよい。平均粒子径(D50)が0.1μm未満の場合には、粒子の微細化によって表面酸化が起こりやすくなり、導電性が低下するため好ましくない。また、平均粒子径(D50)が30μmを超える場合には、これを用いて得られた導電性ペーストの印刷性及び充填性が低下するため、高い導電性を有する導電性ペーストを得ることが困難となる。 The average particle diameter (D 50 ) according to the laser diffraction / scattering particle size distribution of the silver-coated copper powder according to the present invention is 0.1 to 30 μm, preferably 0.1 to 20 μm, more preferably 0.1 to 10 μm. Silver-coated copper powders having different average particle diameters (D 50 ) may be used in combination. When the average particle size (D 50 ) is less than 0.1 μm, surface oxidation is likely to occur due to particle miniaturization, and conductivity is lowered, which is not preferable. Further, when the average particle diameter (D 50) is more than 30μm, since the printing property and filling property of the resulting conductive paste decreases by using this, is possible to obtain a conductive paste having high conductivity It becomes difficult.
 本発明に係る銀コート銅粉の粒子形状は特に限定されず、球状、樹枝状、フレーク状、鱗片状、針状、板状、粒状等を用いることができる。また、形状の異なる銀コート銅粉を組み合わせて用いてもよい。 The particle shape of the silver-coated copper powder according to the present invention is not particularly limited, and a spherical shape, a dendritic shape, a flake shape, a scale shape, a needle shape, a plate shape, a granular shape, and the like can be used. Moreover, you may use combining silver coating copper powder from which a shape differs.
 本発明に係る銀コート銅粉のBET比表面積値は、0.1~7.0m/gであることが好ましく、より好ましくは0.2~6.0m/gである。BET比表面積値が7.0m/gを超える場合には、粒子粉末の表面積が大きすぎるため表面酸化が起こりやすくなり、導電性が低下するため好ましくない。 The BET specific surface area value of the silver-coated copper powder according to the present invention is preferably 0.1 to 7.0 m 2 / g, more preferably 0.2 to 6.0 m 2 / g. When the BET specific surface area value exceeds 7.0 m 2 / g, the surface area of the particle powder is too large, so that surface oxidation is liable to occur and conductivity is lowered, which is not preferable.
 本発明に係る銀コート銅粉に付着している銀微粒子の割合は、銅粉のBET比表面積値にもよるが、銅粉100重量部に対して分散剤により粒子表面が被覆された銀微粒子が1~100重量部であることが好ましく、より好ましくは2~80重量部、更により好ましくは3~60重量部である。分散剤により粒子表面が被覆された銀微粒子による被覆量が1重量部未満の場合には、銀微粒子の付着量が少なすぎるため、銀微粒子を被覆したことによる十分な導電性向上効果が得られない。また、芯材である銅粉の露出面が多くなり、銅粉が酸化されて十分な導電性を確保することが困難となる。一方、銀微粒子は高価であるため、耐酸化性及び導電性の改善効果と、得られる銀コート銅粉のコストとのバランスを考慮すると、その上限は100重量部である。また、粒子表面の銀微粒子の存在量が増えるため、銀のマイグレーション現象が起こりやすくなるため好ましくない。 Although the ratio of the silver fine particles adhering to the silver coat copper powder which concerns on this invention is based also on the BET specific surface area value of copper powder, the silver fine particle by which the particle | grain surface was coat | covered with the dispersing agent with respect to 100 weight part of copper powder. Is preferably 1 to 100 parts by weight, more preferably 2 to 80 parts by weight, and even more preferably 3 to 60 parts by weight. When the coating amount of the silver fine particles whose particle surface is coated with the dispersant is less than 1 part by weight, the adhesion amount of the silver fine particles is too small, so that a sufficient conductivity improving effect by coating the silver fine particles can be obtained. Absent. Moreover, the exposed surface of the copper powder which is a core material increases, and copper powder is oxidized and it becomes difficult to ensure sufficient electroconductivity. On the other hand, since silver fine particles are expensive, the upper limit is 100 parts by weight in consideration of the balance between the effect of improving oxidation resistance and conductivity and the cost of the resulting silver-coated copper powder. Further, since the abundance of silver fine particles on the particle surface is increased, a silver migration phenomenon tends to occur, which is not preferable.
 本発明に係る銀コート銅粉のT-C量(全炭素量)は、0.1~4%の範囲にあることが好ましく、より好ましくは0.1~3%、更により好ましくは0.1~2%である。T-C量が4%を超える場合には、導電性に関与しない有機物成分が増えるため好ましくない。 The TC amount (total carbon amount) of the silver-coated copper powder according to the present invention is preferably in the range of 0.1 to 4%, more preferably 0.1 to 3%, still more preferably 0.00. 1 to 2%. When the amount of TC exceeds 4%, it is not preferable because organic components not involved in conductivity increase.
 本発明に係る銀コート銅粉は、銅粉の粒子表面が銀微粒子によって均一に被覆されている必要はなく、銅粉の一部が露出していても差し支えない。銅粉の粒子表面が均一に被覆されている場合、耐マイグレーション性が低下するため好ましくない。 In the silver-coated copper powder according to the present invention, the surface of the copper powder particles need not be uniformly coated with silver fine particles, and a part of the copper powder may be exposed. When the particle surface of the copper powder is uniformly coated, the migration resistance is lowered, which is not preferable.
 次に、本発明に係る銀コート銅粉の製造方法について述べる。 Next, a method for producing silver-coated copper powder according to the present invention will be described.
 本発明に係る銀コート銅粉は、銅粉末と粒子表面を分散剤により表面被覆された銀微粒子粉末とを混合攪拌して銅粉末の粒子表面に銀微粒子粉末を付着させることによって得ることができる。 The silver-coated copper powder according to the present invention can be obtained by mixing and stirring the copper powder and the silver fine particle powder whose particle surface is coated with a dispersing agent and attaching the silver fine particle powder to the particle surface of the copper powder. .
 分散剤による銀微粒子の被覆処理は、分散剤と銀微粒子とを適当な溶媒中で混合攪拌した後、濾別・乾燥することによって行う。溶媒としては、分散剤が溶解するものであれば何を用いてもよい。乾燥は、銀微粒子の焼結が生じないよう、低温で行うことが好ましい。 The coating treatment of the silver fine particles with the dispersant is performed by mixing and stirring the dispersant and the silver fine particles in an appropriate solvent, followed by filtration and drying. Any solvent may be used as long as it dissolves the dispersant. Drying is preferably performed at a low temperature so that silver fine particles are not sintered.
 銅粉と分散剤により表面被覆された銀微粒子粉末との混合攪拌は、粉体層に機械的エネルギーを加えることのできる装置が好ましく、例えば、ボール型混練機、ホイール型混練機を用いることができ、ボール型混練機がより効果的に使用できる。 For the mixing and stirring of the copper powder and the silver fine particle powder whose surface is coated with a dispersing agent, an apparatus capable of applying mechanical energy to the powder layer is preferable. For example, a ball-type kneader or a wheel-type kneader is used. And a ball-type kneader can be used more effectively.
 前記ボール型混練機としては、振動ミル、回転ミル、サンドグラインダ等があり、好ましくは振動ミルである。前記ホイール型混練機としては、エッジランナー(「ミックスマラー」、「シンプソンミル」、「サンドミル」と同義語である)、マルチマル、ストッツミル、ウエットパンミル、コナーミル、リングマラー等がある。 The ball-type kneader includes a vibration mill, a rotary mill, a sand grinder, and preferably a vibration mill. Examples of the wheel-type kneader include edge runners (synonymous with “mix muller”, “Simpson mill”, “sand mill”), multi-mal, stotz mill, wet pan mill, conner mill, ring muller, and the like.
 本発明においては、銅粉と分散剤により表面被覆された銀微粒子粉末との混合攪拌は、全工程を乾式で行うと共に、銅粉の酸化による導電性の低下を防止するためにN雰囲気下で行うことが好ましい。 In the present invention, the mixing and stirring of the copper powder and the silver fine particle powder whose surface is coated with a dispersing agent is performed in a dry manner, and the N 2 atmosphere is used in order to prevent a decrease in conductivity due to oxidation of the copper powder. It is preferable to carry out with.
 次に、本発明に係る銀微粒子を含む導電性ペーストについて述べる。 Next, the conductive paste containing silver fine particles according to the present invention will be described.
 本発明に係る導電性ペーストは、本発明に係る銀コート銅粉及び溶剤からなり、必要に応じて、バインダー樹脂、硬化剤、分散剤、レオロジー調整剤等の他の成分を配合してもよい。また、本発明の趣旨を損なわない範囲で、本発明に係る銀コート銅粉の他に白金、金、銀、銅、パラジウム等の金属粉末やカーボンなど任意の導電性フィラーを組み合わせることができる。 The conductive paste according to the present invention is composed of the silver-coated copper powder according to the present invention and a solvent, and may contain other components such as a binder resin, a curing agent, a dispersant, and a rheology modifier as necessary. . Moreover, in the range which does not impair the meaning of this invention, arbitrary conductive fillers, such as metal powder, such as platinum, gold | metal | money, silver, copper, palladium, and carbon other than the silver coat copper powder concerning this invention can be combined.
 バインダー樹脂としては、当該分野において公知のものを使用することができ、例えば、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ニトロセルロース、エチルセルロース誘導体等のセルロース系樹脂、ポリエステル樹脂、ウレタン変性ポリエステル樹脂、エポキシ変性ポリエステル樹脂、アクリル変性ポリエステル等の各種変性ポリエステル樹脂、ポリウレタン樹脂、塩化ビニル・酢酸ビニル共重合体、アクリル系樹脂、エポキシ系樹脂、フェノール系樹脂、メラミン樹脂、アルキド樹脂、ブチラール樹脂、ポリビニルアルコール、ポリイミド樹脂、ポリアミドイミド樹脂、アミノ樹脂、スチレン系樹脂、レゾール樹脂及びガラスフリット等の無機バインダー等が挙げられる。これらバインダー樹脂は、単独でも、又は2種類以上を併用することもできる。 As the binder resin, those known in the art can be used, for example, cellulose resins such as methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, nitrocellulose, ethyl cellulose derivatives, polyester resins, urethane-modified polyester resins, epoxy-modified polyester resins. , Various modified polyester resins such as acrylic modified polyester, polyurethane resin, vinyl chloride / vinyl acetate copolymer, acrylic resin, epoxy resin, phenolic resin, melamine resin, alkyd resin, butyral resin, polyvinyl alcohol, polyimide resin, Examples thereof include inorganic binders such as polyamideimide resin, amino resin, styrene resin, resol resin, and glass frit. These binder resins can be used alone or in combination of two or more.
 溶剤としては、当該分野において公知のものを使用することができ、例えば、テトラデカン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、イソプロピルベンゼン、アミルベンゼン、p-シメン、テトラリン及び石油系芳香族炭化水素混合物等の炭化水素系溶剤;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-ブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコ-ルモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル等のエーテル又はグリコールエーテル系溶剤;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のグリコールエステル系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;メチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶剤;テルピネオール、リナロール、ゲラニオール、シトロネロール等のテルペンアルコール;メタノール、エタノール、プロパノール、n-ブタノール、s-ブタノール、t-ブタノール等のアルコール系溶剤;エチレングリコール、ジエチレングリコール等のグリコール系溶剤;γ-ブチロラクトン、ジオキサン、ジメチルアセトアミド、ジメチルホルムアミド、N-メチルピロリドン及び水等が挙げられる。溶剤は、単独でも、又は2種類以上を併用することもできる。 As the solvent, those known in the art can be used, and examples thereof include tetradecane, toluene, xylene, ethylbenzene, diethylbenzene, isopropylbenzene, amylbenzene, p-cymene, tetralin, and petroleum aromatic hydrocarbon mixtures. Hydrocarbon solvents: ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-butyl ether, propylene glycol mono-t-butyl ether, diethylene glycol monoethyl ether, diethylene glycol Monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tri Ether or glycol ether solvents such as propylene glycol monomethyl ether; glycol ester solvents such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate Ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as methyl isobutyl ketone, methyl ethyl ketone, and cyclohexanone; terpene alcohols such as terpineol, linalool, geraniol, and citronellol; methanol, ethanol, propanol, n-butanol, and s-butanol Alcohol solvents such as t-butanol; ethylene Recall, glycol solvent such as diethylene glycol; .gamma.-butyrolactone, dioxane, dimethylacetamide, dimethylformamide, N- methylpyrrolidone and water, and the like. Solvents can be used alone or in combination of two or more.
 導電性ペースト中の銀コート銅粉の含有量は用途に応じて様々であるが、例えば配線形成用途の場合などは可能な限り100重量%に近いことが好ましい。 The content of the silver-coated copper powder in the conductive paste varies depending on the application, but it is preferably as close to 100% by weight as possible, for example, in the case of wiring formation.
 本発明に係る導電性ペーストは、各成分を、ライカイ機、ポットミル、三本ロールミル、回転式混合機、二軸ミキサー等の各種混練機、分散機を用いて、混合・分散させることにより得ることができる。 The conductive paste according to the present invention is obtained by mixing and dispersing each component using various kneaders and dispersers such as a laika machine, a pot mill, a three roll mill, a rotary mixer, a twin screw mixer, and the like. Can do.
 本発明に係る導電性ペーストは、スクリーン印刷、凹版印刷、平板印刷、インクジェット法、グラビア印刷、転写印刷、ロールコート、フローコート、スプレー塗装、スピンコート、ディッピング、ブレードコート、めっき等各種塗布方法に適用可能である。 The conductive paste according to the present invention is applied to various coating methods such as screen printing, intaglio printing, flat plate printing, inkjet method, gravure printing, transfer printing, roll coating, flow coating, spray coating, spin coating, dipping, blade coating, plating, etc. Applicable.
 また、本発明に係る導電性ペーストは、FPD(フラットパネルディスプレイ)、太陽電池、有機EL等の電極形成やLSI基板の配線形成、更には微細なトレンチ、ビアホール、コンタクトホールの埋め込み等の配線形成材料として用いることができる。また、積層セラミックコンデンサや積層インダクタの内部電極形成用等の高温での焼成用途はもちろん、低温焼成が可能であることからフレキシブル基板やICカード、その他の基板上への配線形成材料及び電極形成材料として好適である。また、導電性被膜として電磁波シールド膜や赤外線反射シールド等にも用いることができる。エレクトロニクス実装においては電子部品と絶縁基材を接続する導電性接着剤、鉛代替はんだ材として用いることもできる。 In addition, the conductive paste according to the present invention is used for forming electrodes such as FPD (flat panel display), solar cell, organic EL, wiring for LSI substrates, and wiring for filling fine trenches, via holes, contact holes, etc. It can be used as a material. In addition to firing applications at high temperatures, such as for the formation of internal electrodes for multilayer ceramic capacitors and multilayer inductors, as well as low temperature firing, it is possible to form wiring and materials for wiring on flexible substrates, IC cards, and other substrates. It is suitable as. Moreover, it can also be used for an electromagnetic wave shielding film, an infrared reflection shield, etc. as a conductive film. In electronics mounting, it can also be used as a conductive adhesive or lead substitute solder material for connecting electronic components and insulating substrates.
<作用>
 本発明において重要な点は、銅粉の表面に、分散剤により粒子表面が被覆された銀微粒子粉末が付着していることを特徴とする銀コート銅粉は、導電性及び耐マイグレーション性に優れているという事実である。
<Action>
The important point in the present invention is that the silver-coated copper powder, in which the silver fine particle powder whose particle surface is coated with a dispersant is attached to the surface of the copper powder, is excellent in conductivity and migration resistance. It is the fact that
 本発明に係る銀コート銅粉が導電性及び耐マイグレーション性に優れている理由について、本発明者は次のように考えている。即ち、本発明の製造法は、これまでに知られている銀イオンと金属銅との置換反応により銅粒子の表面に銀を被覆する方法や、銀めっき法のように水溶液中で処理を行わないため、銅粉が水溶液中で酸化することによる導電性の低下を防ぐことができる。また、めっき処理のように粒子表面が銀で一面に覆われた場合、マイグレーション現象が生じやすいが、本発明の銀コート銅粉は銅粒子の粒子表面が均一に被覆されていないため、マイグレーション現象の発生を抑制できたものと考えている。更に、銀微粒子の粒子表面が分散剤で処理されていることにより、付着させた銅粒子表面からの銀微粒子のはがれが起きにくいことも、耐マイグレーション性に優れている一因と考えている。 The present inventor considers the reason why the silver-coated copper powder according to the present invention is excellent in conductivity and migration resistance as follows. That is, the production method of the present invention is a method of coating silver on the surface of copper particles by a known substitution reaction between silver ions and metallic copper, or a treatment in an aqueous solution like a silver plating method. Therefore, the electroconductive fall by copper powder oxidizing in aqueous solution can be prevented. In addition, when the particle surface is covered with silver as in the plating process, a migration phenomenon is likely to occur, but the silver-coated copper powder of the present invention is not uniformly coated with the copper particle surface, so the migration phenomenon We think that we were able to suppress outbreak of. Furthermore, the fact that the surface of the silver fine particles is treated with a dispersant, and thus the silver fine particles are not easily peeled off from the surface of the attached copper particles, is considered to be one of the reasons for excellent migration resistance.
 以下に、本発明における実施例を示し、本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。以下の実施例および比較例で使用した評価方法は以下の通りである。 Hereinafter, examples of the present invention will be shown and the present invention will be specifically described. However, the present invention is not limited to the following examples. The evaluation methods used in the following examples and comparative examples are as follows.
 分散剤によって表面処理された銀微粒子の平均粒子径(DSEM)は、走査型電子顕微鏡写真「S-4800」(HITACHI製)を用いて粒子の写真を撮影し、該写真を用いて粒子100個以上について粒子径を測定し、その平均値を算出し、平均粒子径(DSEM)とした。 The average particle diameter (D SEM ) of the silver fine particles surface-treated with the dispersant was measured by taking a photograph of the particles using a scanning electron micrograph “S-4800” (manufactured by HITACHI), and using the photograph, the particles 100 The particle diameter was measured for at least one particle, the average value was calculated, and the average particle diameter ( DSEM ) was obtained.
 なお、銀コート銅粉の銀微粒子による銅粉の被覆状態は、上記走査型電子顕微鏡写真「S-4800」(HITACHI製)によって粒子を観察することにより行った。 In addition, the covering state of the copper powder with the silver fine particles of the silver-coated copper powder was performed by observing the particles with the scanning electron micrograph “S-4800” (manufactured by HITACHI).
 銅粉及び銀コート銅粉の平均粒子径(D50)は、レーザー回折散乱式粒度分布測定器「LMS-2000e」(株式会社セイシン企業製)を用いて測定し、粒度分布測定において累積値が50%となる粒子径として示した。 The average particle size (D 50 ) of the copper powder and silver-coated copper powder was measured using a laser diffraction / scattering particle size distribution analyzer “LMS-2000e” (manufactured by Seishin Enterprise Co., Ltd.). The particle diameter is shown as 50%.
 銅粉、分散剤によって表面処理された銀微粒子及び銀コート銅粉の比表面積は、「モノソーブMS-11」(カンタクロム株式会社製)を用いて、BET法により測定した値で示した。 The specific surface area of the copper fine particles, the silver fine particles surface-treated with the dispersing agent and the silver-coated copper powder was represented by a value measured by the BET method using “Monosorb MS-11” (manufactured by Kantachrome Co., Ltd.).
 銅粉、銀微粒子の粒子表面に処理されている分散剤及び銀コート銅粉の炭素量(T-C)は、「堀場金属炭素・硫黄分析装置EMIA-2200型」(株式会社堀場製作所製)を用い、炭素量を測定することにより求めた。 The amount of carbon (TC) of the copper powder, the dispersant treated on the surface of the silver fine particles and the silver-coated copper powder (TC) is “Horiba Metal Carbon / Sulfur Analyzer EMIA-2200” (manufactured by Horiba, Ltd.) Was determined by measuring the carbon content.
 銀コート銅粉を構成する銅及び銀の含有量は、試料0.2g、硝酸5ml及びイオン交換水10mlを50mlのフッ素樹脂製ビーカーへ入れ、240℃で15分保持して溶解させ、この溶液を「誘導結合プラズマ発光分光分析装置 iCAP6500Duo」(サーモフィッシャーサイエンティフィック株式会社製)を用いて測定した。 The content of copper and silver constituting the silver-coated copper powder is as follows: 0.2 g of sample, 5 ml of nitric acid and 10 ml of ion-exchanged water are placed in a 50 ml fluororesin beaker and kept at 240 ° C. for 15 minutes for dissolution. Was measured using an “inductively coupled plasma optical emission spectrometer iCAP6500Duo” (manufactured by Thermo Fisher Scientific Co., Ltd.).
 導電性塗膜の比抵抗は、後述する導電性ペーストを厚み50μmのポリイミドフィルム上に塗布し、120℃で10分間予備乾燥した後、210℃で10分間加熱させることにより得られた導電性膜について、4端子電気抵抗測定装置「ロレスタGP/MCP-T610」(株式会社ダイアインスツルメンツ製)を用いて測定し、シート抵抗と膜厚より比抵抗を算出した。 The specific resistance of the conductive coating film was obtained by applying a conductive paste described later on a polyimide film having a thickness of 50 μm, predrying at 120 ° C. for 10 minutes, and heating at 210 ° C. for 10 minutes. The specific resistance was calculated from the sheet resistance and film thickness using a four-terminal electrical resistance measuring device “Loresta GP / MCP-T610” (manufactured by Dia Instruments Co., Ltd.).
 導電性塗膜の耐マイグレーション性は、厚み50μmのポリイミドフィルム上に、後述する導電性ペーストを用いて、中央に0.75mmのギャップのある線幅0.75mm、長さ25.0mmのパターンを乾燥膜厚が10~30μmになるようにスクリーン印刷し、150℃で30分加熱乾燥したものを試料とした。次いで、上記ギャップ間に注射器ニチペットLe(株式会社ニチリョー製)で蒸留水0.02mlをゆるやかに滴下し、直流電源 R6142(株式会社ADVANTEST製)で3V印加し、デジタルマルチメータ R6871E(株式会社ADVANTEST製)で電流値を測定して、電流値が0.1mAになるまでの時間を測定し、5回の測定値の平均値で評価した。時間が長いほど耐マイグレーション性は良好であることを示す。 The migration resistance of the conductive coating film is obtained by forming a pattern with a line width of 0.75 mm and a length of 25.0 mm with a gap of 0.75 mm in the center using a conductive paste described later on a polyimide film having a thickness of 50 μm. A sample was screen-printed so as to have a dry film thickness of 10 to 30 μm, and dried by heating at 150 ° C. for 30 minutes. Next, 0.02 ml of distilled water is gently dropped with a syringe Nichipet Le (manufactured by Nichiyo Co., Ltd.) between the gaps, 3 V is applied with a DC power supply R6142 (manufactured by ADVANTEST Co., Ltd.), and a digital multimeter R6871E (manufactured by ADVANTEST Co., Ltd.) is applied. ), The current value was measured, the time until the current value reached 0.1 mA was measured, and the average value of the five measured values was evaluated. The longer the time, the better the migration resistance.
 次に、実施例及び比較例を示す。 Next, examples and comparative examples are shown.
 銀微粒子1:
 銀微粒子100gにメタノール155gを加えて攪拌した後、20gのメタノールにDISPERBYK-106 1.4g(銀微粒子に対して分散剤が1.4wt%に相当)を添加・攪拌して調整したDISPERBYK-106のメタノール溶液を上記銀微粒子のメタノール溶液に加え、温度40℃において100分間攪拌・混合を行った。
Silver fine particles 1:
After adding 155 g of methanol to 100 g of silver fine particles and stirring, DISPERBYK-106 prepared by adding 1.4 g of DISPERBYK-106 (corresponding to 1.4 wt% of the silver fine particles) to 20 g of methanol and stirring. Was added to the methanol solution of the silver fine particles and stirred and mixed at a temperature of 40 ° C. for 100 minutes.
 得られた混合溶液を40℃において減圧乾燥を行い、分散剤により粒子表面が被覆された銀微粒子1を得た。 The obtained mixed solution was dried under reduced pressure at 40 ° C. to obtain silver fine particles 1 whose particle surfaces were coated with a dispersant.
 得られた銀微粒子1は、平均粒子径DSEMが78nm、BET比表面積値が3.4m/g、T-Cが0.91%の不定形粒子であった。 The obtained silver fine particles 1 were amorphous particles having an average particle diameter DSEM of 78 nm, a BET specific surface area value of 3.4 m 2 / g, and TC of 0.91%.
 銀微粒子2~7:
 銀微粒子の種類、分散剤の種類及び添加量を変化させた以外は、前記銀微粒子1と同様にして分散剤によって粒子表面が被覆された銀微粒子粉末を得た。得られた銀微粒子粉末の特性を表1に示す。
Silver fine particles 2-7:
A silver fine particle powder having the particle surface coated with a dispersant was obtained in the same manner as the silver fine particle 1 except that the type of silver fine particles, the type of dispersant, and the amount added were changed. The characteristics of the obtained silver fine particle powder are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 銅粉1~4:
 銅粉として表2に示す特性を有する銅粉を用意した。
Copper powder 1-4:
Copper powder having the characteristics shown in Table 2 was prepared as copper powder.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<実施例1-1:銀コート銅粉の製造>
 銅粉1(形状:樹枝状、平均粒子径D50:4.0μm、BET比表面積値:0.35m/g、T-C:0.02%)2kgを振動ミル「MB1」(メディア:φ11m/mの樹脂コート球 3.9kg)(製品名、中央化工機株式会社製)に投入し、次いで、銀微粒子1(形状:不定形、平均粒子径DSEM:78nm、BET比表面積値:3.4m/g)200gを添加し、回転数1200rpm、振幅6mmで180分間混合攪拌を行い、実施例1-1の銀コート銅粉を得た。
<Example 1-1: Production of silver-coated copper powder>
Copper powder 1 (shape: dendritic, average particle diameter D 50 : 4.0 μm, BET specific surface area value: 0.35 m 2 / g, TC: 0.02%) 2 kg of vibration mill “MB1” (media: Fai11m / resin coated spheres 3.9kg of m) (product name, was placed in the center Kakoki Co., Ltd.), then the silver particles 1 (shape: amorphous, average particle diameter D SEM: 78 nm, BET specific surface area: (3.4 m 2 / g) 200 g was added, and the mixture was stirred for 180 minutes at a rotational speed of 1200 rpm and an amplitude of 6 mm to obtain a silver-coated copper powder of Example 1-1.
 得られた銀コート銅粉の粒子形状は樹脂状、平均粒子径(D50)は3.7nm、BET比表面積値は0.40m/gであり、T-Cは0.15%、Ag含有量は8.92%、Cu含有量は90.93%であった。銅粉の平均粒子径(D50)と銀微粒子粉末の平均粒子径(DSEM)との比(D50/DSEM)は51であった。SEM観察の結果、銅粉の表面に銀が存在していることを確認した。 The resulting silver-coated copper powder has a resinous particle shape, an average particle diameter (D 50 ) of 3.7 nm, a BET specific surface area value of 0.40 m 2 / g, TC of 0.15%, Ag The content was 8.92% and the Cu content was 90.93%. The ratio (D 50 / D SEM ) between the average particle size (D 50 ) of the copper powder and the average particle size (D SEM ) of the silver fine particle powder was 51. As a result of SEM observation, it was confirmed that silver was present on the surface of the copper powder.
<実施例2-1:導電性ペーストの製造>
 実施例1-1の銀コート銅粉100重量部に対してポリエステル樹脂のジエチレングリコールモノブチルエーテルアセテート溶液(固形分35%)及び硬化剤1.4重量部と、導電性ペーストにおける銀コート銅粉の含有量が70wt%となるようにジエチレングリコールモノブチルエーテルアセテートとジエチレングリコールモノエチルエーテルアセテートの混合溶液を加え、プレミックスを行った後、3本ロールを用いて均一に混練・分散処理を行い、導電性ペーストを得た。
<Example 2-1: Production of conductive paste>
Polyethylene resin diethylene glycol monobutyl ether acetate solution (solid content 35%) and curing agent 1.4 parts by weight with respect to 100 parts by weight of silver-coated copper powder of Example 1-1, and inclusion of silver-coated copper powder in the conductive paste Add a mixed solution of diethylene glycol monobutyl ether acetate and diethylene glycol monoethyl ether acetate so that the amount becomes 70 wt%, and after premixing, uniformly knead and disperse using three rolls to obtain the conductive paste. Obtained.
 得られた導電性ペーストを、厚み50μmのポリイミドフィルム上に塗布し、比抵抗値測定用は210℃で10分間加熱乾燥し、耐マイグレーション測定用は150℃で10分間加熱乾燥して導電性塗膜を得た。 The obtained conductive paste was applied onto a polyimide film having a thickness of 50 μm, and was dried by heating at 210 ° C. for 10 minutes for specific resistance measurement, and heated and dried at 150 ° C. for 10 minutes for measurement of migration resistance. A membrane was obtained.
 得られた導電性塗膜の比抵抗値は1.6×10-2Ω・cmであり、耐マイグレーション性は592secであった。 The resulting conductive coating film had a specific resistance value of 1.6 × 10 −2 Ω · cm and migration resistance of 592 sec.
 前記実施例1-1及び実施例2-1に従って銀コート銅粉及び導電性ペーストを作製した。各製造条件及び得られた銀コート銅粉及び導電性ペーストの諸特性を示す。 A silver-coated copper powder and a conductive paste were prepared according to Example 1-1 and Example 2-1. Various characteristics of each production condition and the obtained silver-coated copper powder and conductive paste are shown.
 実施例1-2~1-5及び比較例1-1~1-4:
 銅粉の種類、銀微粒子の種類及び添加量を変化させた以外は、前記実施例1-1と同様にして銀コート銅粉を得た。
Examples 1-2 to 1-5 and Comparative Examples 1-1 to 1-4:
A silver-coated copper powder was obtained in the same manner as in Example 1-1 except that the type of copper powder, the type of silver fine particles, and the amount added were changed.
 このときの製造条件を表3に、得られた銀コート銅粉の諸特性を表4に示す。 The production conditions at this time are shown in Table 3, and the characteristics of the obtained silver-coated copper powder are shown in Table 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例2-2~2-5及び比較例2-1~2-7:
 銀コート銅粉の種類を種々変化させた以外は、前記実施例2-1の導電性ペーストの作製方法に従って導電性ペースト及び導電性塗膜を製造した。なお、比較例2-7の導電性粒子は市販の銀メッキ銅粉(粒子形状:樹脂状、平均粒子径(D50):12.27nm、BET比表面積値:0.55m/g、T-C:0.09%、Ag含有量:10.08%、Cu含有量:89.92%)である。
Examples 2-2 to 2-5 and comparative examples 2-1 to 2-7:
A conductive paste and a conductive coating film were produced according to the method for producing a conductive paste of Example 2-1 except that the type of silver-coated copper powder was variously changed. The conductive particles of Comparative Example 2-7 were commercially available silver-plated copper powder (particle shape: resinous, average particle diameter (D 50 ): 12.27 nm, BET specific surface area value: 0.55 m 2 / g, T -C: 0.09%, Ag content: 10.08%, Cu content: 89.92%).
 このときの製造条件及び得られた導電性塗膜の諸特性を表5に示す。 Table 5 shows the manufacturing conditions and various characteristics of the obtained conductive coating film.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明に係る銀コート銅粉は、導電性、導電性及び耐マイグレーション性に優れているので、導電性ペースト及び導電性接着剤等の原料として好適である。 Since the silver-coated copper powder according to the present invention is excellent in conductivity, conductivity and migration resistance, it is suitable as a raw material for conductive paste, conductive adhesive and the like.
 本発明に係る銀コート銅粉を用いた導電性ペースト並びに導電性接着剤は、耐マイグレーション性及び導電性に優れたプリント配線基板等を提供することができるので、各種電子デバイスに用いられる導電性ペースト及び導電性接着剤として好適である。 Since the conductive paste and the conductive adhesive using the silver-coated copper powder according to the present invention can provide a printed wiring board and the like excellent in migration resistance and conductivity, the conductivity used in various electronic devices. Suitable as paste and conductive adhesive.

Claims (9)

  1.  銅粉の表面に、分散剤により粒子表面が被覆された銀微粒子粉末が付着しており、銅粉の平均粒子径(D50)と銀微粒子の平均粒子径(DSEM)との比(D50/DSEM)が3~200の範囲であることを特徴とする銀コート銅粉。 A silver fine particle powder whose particle surface is coated with a dispersant is attached to the surface of the copper powder, and the ratio of the average particle size (D 50 ) of the copper powder to the average particle size (D SEM ) of the silver fine particles (D 50 / D SEM ) is in the range of 3 to 200, silver-coated copper powder.
  2.  レーザー回折散乱粒度分布による平均粒子径(D50)が0.1~30μmであることを特徴とする請求項1記載の銀コート銅粉。 The silver-coated copper powder according to claim 1, wherein an average particle diameter (D 50 ) by laser diffraction scattering particle size distribution is 0.1 to 30 µm.
  3.  銅粉100重量部に対して分散剤により粒子表面が被覆された銀微粒子の付着量が1~100重量部である請求項1又は請求項2記載の銀コート銅粉。 The silver-coated copper powder according to claim 1 or 2, wherein the adhesion amount of silver fine particles whose particle surface is coated with a dispersant is 1 to 100 parts by weight with respect to 100 parts by weight of the copper powder.
  4.  銀微粒子粉末の表面被覆に用いる分散剤が、数平均分子量1,000以上の高分子系分散剤から選ばれる1種又は2種以上からなることを特徴とする請求項1から請求項3のいずれかに記載の銀コート銅粉。 4. The dispersant according to claim 1, wherein the dispersant used for the surface coating of the silver fine particle powder is one or more selected from polymer dispersants having a number average molecular weight of 1,000 or more. The silver coat copper powder of crab.
  5.  銅粉末と銀微粒子粉末とを混合攪拌して銅粉末の粒子表面に銀微粒子粉末を付着させる銀コート銅粉の製造法において、全処理工程を乾式で行うと共に、銀微粒子粉末として粒子表面を分散剤により表面被覆された銀微粒子粉末を用いることを特徴とする請求項1~4のいずれかに記載の銀コート銅粉の製造法。 In the silver-coated copper powder manufacturing method, in which the copper powder and silver fine particle powder are mixed and stirred to adhere the silver fine particle powder to the surface of the copper powder, all processing steps are performed in a dry process and the particle surface is dispersed as a silver fine particle powder. The method for producing a silver-coated copper powder according to any one of claims 1 to 4, wherein a silver fine particle powder whose surface is coated with an agent is used.
  6.  請求項1~4のいずれかに記載の銀コート銅粉を含む導電性接着剤。 A conductive adhesive comprising the silver-coated copper powder according to any one of claims 1 to 4.
  7.  請求項1~4のいずれかに記載の銀コート銅粉を含む導電性ペースト。 A conductive paste comprising the silver-coated copper powder according to any one of claims 1 to 4.
  8.  請求項7記載の導電性ペーストを用いて形成された導電性膜。 A conductive film formed using the conductive paste according to claim 7.
  9.  請求項7記載の導電性ペーストを用いて形成された電気回路。 An electric circuit formed using the conductive paste according to claim 7.
PCT/JP2012/058327 2011-03-31 2012-03-29 Silver-coated copper powder and method for producing same, silver-coated copper powder-containing conductive paste, conductive adhesive agent, conductive film, and electric circuit WO2012133627A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2012800070520A CN103379973A (en) 2011-03-31 2012-03-29 Silver-coated copper powder and method for producing same, silver-coated copper powder-containing conductive paste, conductive adhesive agent, conductive film, and electric circuit
KR1020137020075A KR20140002725A (en) 2011-03-31 2012-03-29 Silver-coated copper powder and method for producing same, silver-coated copper powder-containing conductive paste, conductive adhesive agent, conductive film, and electric circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-078259 2011-03-31
JP2011078259 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012133627A1 true WO2012133627A1 (en) 2012-10-04

Family

ID=46931329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058327 WO2012133627A1 (en) 2011-03-31 2012-03-29 Silver-coated copper powder and method for producing same, silver-coated copper powder-containing conductive paste, conductive adhesive agent, conductive film, and electric circuit

Country Status (5)

Country Link
JP (1) JP2012214898A (en)
KR (1) KR20140002725A (en)
CN (1) CN103379973A (en)
TW (1) TW201308353A (en)
WO (1) WO2012133627A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103785828A (en) * 2014-02-25 2014-05-14 朱晓云 Method for preparing silver-coated copper powder through light induction
CN104575686A (en) * 2015-01-21 2015-04-29 华南理工大学 Low cost copper-doped conductive silver paste and preparation method thereof
JP2016129101A (en) * 2015-01-09 2016-07-14 日立化成株式会社 Composite particle and manufacturing method thereof, electric conductive paste, sintered compact and semiconductor device

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013196997A (en) * 2012-03-22 2013-09-30 Toray Ind Inc Conductive composition
JP6644461B2 (en) * 2014-08-27 2020-02-12 国立大学法人京都工芸繊維大学 Prevention of Copper Oxidation and Improvement of Conductivity by Polymer Self-Assembled Film
US10220442B2 (en) * 2014-08-28 2019-03-05 Smith International, Inc. Flux-coated binder for making metal-matrix composites, a drill body and drill bit including the same, and methods of manufacture
CN104325137B (en) * 2014-10-11 2015-10-28 中北大学 A kind of preparation method of silvered aluminum powder
CN104505144B (en) * 2014-12-16 2017-08-29 安徽凤阳德诚科技有限公司 A kind of low-temperature conductive silver paste of heat generating component
CN104505141B (en) * 2014-12-16 2017-07-28 安徽凤阳德诚科技有限公司 A kind of solar cell conductive silver paste
JP2017082263A (en) * 2015-10-26 2017-05-18 Dowaエレクトロニクス株式会社 Metal composite powder and manufacturing method thereof
JP6715588B2 (en) * 2015-10-26 2020-07-01 Dowaエレクトロニクス株式会社 Method for producing metal composite powder
JP6636306B2 (en) * 2015-11-27 2020-01-29 日東電工株式会社 Adhesive sheet, dicing tape-integrated adhesive sheet, and method of manufacturing semiconductor device
CN107025950A (en) * 2016-02-02 2017-08-08 李文熙 The preparation method of high conductivity Nano Silver copper-clad inventive thick film paste can be sintered in atmosphere
KR101701317B1 (en) * 2016-04-01 2017-02-03 (주) 퓨리켐 Electro-conductive adhesive using graphene and preparation of electrode using the same
EP4148748A1 (en) * 2018-07-06 2023-03-15 Senju Metal Industry Co., Ltd. Electrically conductive paste and sintered body
JP7332129B2 (en) * 2019-02-27 2023-08-23 ナミックス株式会社 Conductive composition and conductive adhesive
KR102202459B1 (en) * 2019-11-14 2021-01-13 삼성전기주식회사 Conductive metal powder for forming electrode, manufacturing method tereof and conductive paste for electronic component termination electrode
KR102394475B1 (en) * 2021-09-14 2022-05-04 마이크로컴퍼지트 주식회사 low melting point, high reliability solder particle and resin composite including the same
WO2023058798A1 (en) * 2021-10-08 2023-04-13 주식회사 씨앤씨머티리얼즈 Multilayer copper particles having excellent corrosion resistance
WO2024009723A1 (en) * 2022-07-05 2024-01-11 パナソニックIpマネジメント株式会社 Bonding material and bonded structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59146103A (en) * 1983-02-09 1984-08-21 昭和電工株式会社 Conductive paste
JPS6167702A (en) * 1984-09-07 1986-04-07 Mitsui Mining & Smelting Co Ltd Electrically conductive powder and electrically conductive composition using said powder
JP2005044798A (en) * 2003-07-08 2005-02-17 Hitachi Chem Co Ltd Conductive powder and its production method
WO2005031760A1 (en) * 2003-09-26 2005-04-07 Hitachi Chemical Co., Ltd. Mixed conductive powder and use thereof
WO2007040195A1 (en) * 2005-10-03 2007-04-12 Mitsui Mining & Smelting Co., Ltd. Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017392B2 (en) * 1980-05-01 1985-05-02 福田金属箔粉工業株式会社 Conductive paint using silver-copper composite powder
JPH04218602A (en) * 1990-12-18 1992-08-10 Fukuda Metal Foil & Powder Co Ltd Production of metal coated composite powder
JP3598631B2 (en) * 1995-02-13 2004-12-08 日立化成工業株式会社 Conductive paste, method for producing the same, electric circuit device using conductive paste, and method for producing the same
KR100678533B1 (en) * 2003-07-08 2007-02-05 히다치 가세고교 가부시끼가이샤 Conductive powder and method for preparing the same
JP2010065265A (en) * 2008-09-10 2010-03-25 Hitachi Ltd Metal nanoparticle and method for producing the composite powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59146103A (en) * 1983-02-09 1984-08-21 昭和電工株式会社 Conductive paste
JPS6167702A (en) * 1984-09-07 1986-04-07 Mitsui Mining & Smelting Co Ltd Electrically conductive powder and electrically conductive composition using said powder
JP2005044798A (en) * 2003-07-08 2005-02-17 Hitachi Chem Co Ltd Conductive powder and its production method
WO2005031760A1 (en) * 2003-09-26 2005-04-07 Hitachi Chemical Co., Ltd. Mixed conductive powder and use thereof
WO2007040195A1 (en) * 2005-10-03 2007-04-12 Mitsui Mining & Smelting Co., Ltd. Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103785828A (en) * 2014-02-25 2014-05-14 朱晓云 Method for preparing silver-coated copper powder through light induction
CN103785828B (en) * 2014-02-25 2015-09-30 昆明贵信凯科技有限公司 The method of silver-coated copper powder is prepared in photoinduction
JP2016129101A (en) * 2015-01-09 2016-07-14 日立化成株式会社 Composite particle and manufacturing method thereof, electric conductive paste, sintered compact and semiconductor device
CN104575686A (en) * 2015-01-21 2015-04-29 华南理工大学 Low cost copper-doped conductive silver paste and preparation method thereof

Also Published As

Publication number Publication date
KR20140002725A (en) 2014-01-08
TW201308353A (en) 2013-02-16
JP2012214898A (en) 2012-11-08
CN103379973A (en) 2013-10-30

Similar Documents

Publication Publication Date Title
WO2012133627A1 (en) Silver-coated copper powder and method for producing same, silver-coated copper powder-containing conductive paste, conductive adhesive agent, conductive film, and electric circuit
TWI490063B (en) Silver fine particles and a method for producing the same, and an electric paste containing the silver fine particles, a conductive film, and an electronic device
WO2014054618A1 (en) Silver hybrid copper powder, method for producing same, conductive paste containing silver hybrid copper powder, conductive adhesive, conductive film and electrical circuit
JP6173581B2 (en) Ceramic paste composition using carbon nanotube or carbon nanotube-metal composite and conductive film containing the same
JP5067426B2 (en) Copper wiring pattern forming method and copper oxide particle dispersion used therefor
WO2015122251A1 (en) Copper powder
JP2010504612A (en) Silver paste for conductive film formation
JP2014205619A (en) Coatings including functionalized graphene sheets, and articles coated with those coatings
JP2005531679A (en) Low temperature sintered conductive nano ink and method for producing the same
WO2013161966A1 (en) Electroconductive composition
WO2013099818A1 (en) Silver fine particles, production process therefor, and conductive paste, conductive membrane and electronic device, containing said silver fine particles
JP2009515023A (en) Metal ink, and electrode forming method and substrate using the same
JP5446097B2 (en) Conductive substrate and method for manufacturing the same
JP2013093131A (en) Conductive fine powder and conductive fine powder fluid dispersion
CN103702786B (en) Silver microparticle and the conductive paste containing this silver-colored microparticle, conductive film and electronic device
JP2007188845A (en) Conductive powder, conductive paste and electrical circuit
JP5773147B2 (en) Silver fine particles, and conductive paste, conductive film and electronic device containing the silver fine particles
WO2021192523A1 (en) Copper ink and method for forming electroconductive film
KR101118733B1 (en) Manufacturing method of silver paste containing multi-walled carbon nanotubes for electrode printing of display device
Park et al. Oxidation Stability of Conductive Copper Paste Prepared through Electron Beam Irradiation
JP6681437B2 (en) Conductive paste
Zhu et al. Fabrication of flexible conductive composites based on copper nanowires
CN113889293A (en) Conductive paste for electronic element
JPWO2019004331A1 (en) Conductive paste

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764315

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137020075

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764315

Country of ref document: EP

Kind code of ref document: A1