JP2002299833A - Multilayered wiring board and its forming method - Google Patents

Multilayered wiring board and its forming method

Info

Publication number
JP2002299833A
JP2002299833A JP2001102072A JP2001102072A JP2002299833A JP 2002299833 A JP2002299833 A JP 2002299833A JP 2001102072 A JP2001102072 A JP 2001102072A JP 2001102072 A JP2001102072 A JP 2001102072A JP 2002299833 A JP2002299833 A JP 2002299833A
Authority
JP
Japan
Prior art keywords
wiring board
metal
silver
fine particles
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001102072A
Other languages
Japanese (ja)
Other versions
JP3900248B2 (en
Inventor
Hideyuki Goto
英之 後藤
Masayuki Ueda
雅行 上田
Yorishige Matsuba
頼重 松葉
Noriaki Hata
憲明 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Chemical Inc
Original Assignee
Harima Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Chemical Inc filed Critical Harima Chemical Inc
Priority to JP2001102072A priority Critical patent/JP3900248B2/en
Publication of JP2002299833A publication Critical patent/JP2002299833A/en
Application granted granted Critical
Publication of JP3900248B2 publication Critical patent/JP3900248B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To further make finer the circuit pattern of a multilayered wiring board, the vertical continuity hole sections (via holes) of a substrate, etc. SOLUTION: The circuit pattern is formed by sintering nano-silver paste prepared by stably dispersing fine metallic particles which have a mean particle diameter of 1-100 nm, are composed of gold, silver, copper, etc., and are coated with a dispersant 2 (amine, alcohol, thiol, etc.), capable of coordinating with the metal element contained in the fine metallic particles in an organic solvent at a temperature of <=250 deg.C. In addition, conductive sections are formed on the inner peripheral surfaces of the via holes by filling up the via holes with the nano-silver paste and sintering the paste at a temperature of <=250 deg.C. Before printing (a), nano-sized silver particles 1 are stably dispersed (not aggregated) in the organic solvent by the coating action of the dispersant 2. At heating time (b), a trapping material 4 (an acid anhydride, etc.), entraps the dispersant 2. In the state (c), in addition, low-temperature sintered nano-sized silver particles are brought into contact with each other and connected to each other by the shrinking force of a resin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばアミン, ア
ルコール, チオールなどの存在下、有機溶媒中に安定に
分散した金属微粒子からなる導電性ペーストを用いて、
ビルドアップ配線板,プラスチック配線板,プリント配
線板,セラミック配線板などの多層配線板に微細な回路
パターンや、配線板表裏面間を結ぶ方向の微細な導通用
孔部を形成することを対象にしている。
BACKGROUND OF THE INVENTION The present invention relates to a method for producing a conductive paste comprising fine metal particles stably dispersed in an organic solvent in the presence of, for example, an amine, an alcohol, or a thiol.
For forming fine circuit patterns and fine conduction holes in the direction connecting the front and back surfaces of wiring boards on multilayer wiring boards such as build-up wiring boards, plastic wiring boards, printed wiring boards, and ceramic wiring boards. ing.

【0002】すなわち、例えば液体のように扱えるスク
リーン方式の微小印刷や微小構造面への利用、さらには
3次元実装領域などへ応用できる。
[0002] That is, for example, it can be applied to a screen type micro printing or micro structure surface that can be handled like a liquid, and further to a three-dimensional mounting area.

【0003】ここで回路パターンには配線パターンも含
まれる。なお、以下の説明では、配線板表裏面間を結ぶ
方向の任意の導通用孔部を示す意で「ビアホール」の用
語を必要に応じて用いる。
Here, the circuit pattern includes a wiring pattern. In the following description, the term “via hole” is used as needed to indicate an arbitrary conduction hole in the direction connecting the front and back surfaces of the wiring board.

【0004】近年、携帯電話やパソコンなどの各種電子
機器の小型化,軽量化,高性能化,高速化,多機能化が
進み、多層配線板の回路パターン,導通用孔部のより一
層の微細化が要求されており、本発明はこのような要請
に応えるものである。
In recent years, various electronic devices such as mobile phones and personal computers have been reduced in size, weight, performance, speed, and multifunction, and the circuit pattern of the multilayer wiring board and the fineness of the conductive holes have been further reduced. Therefore, the present invention meets such a demand.

【0005】[0005]

【従来の技術】従来、配線板に回路パターンを形成する
方法としては、 ・銅張積層板に所望の導体パターンのみを残してその他
の部分をエッチング処理により取り除くサブトラクティ
ブ法 ・銅なし積層板にネガパターンのメッキレジストを生成
し、無電解メッキで導体パターンを形成していくアディ
ティブ法などが用いられている。
2. Description of the Related Art Conventionally, a method of forming a circuit pattern on a wiring board includes: a subtractive method in which only a desired conductor pattern is left on a copper-clad laminate and other portions are removed by etching; An additive method of forming a negative pattern plating resist and forming a conductor pattern by electroless plating has been used.

【0006】これらの回路パターン形成手法は、いずれ
も操作が煩雑な上、大量の処理廃液が生じることから先
ずコスト面や環境面からの改良が求められていた。
All of these circuit pattern forming techniques require complicated operations and generate a large amount of processing waste liquid, so that improvement in cost and environment is first required.

【0007】これを解決すべく、導電性銀ペーストを用
いて銅なし積層板に導体パターンを燒結形成することな
どが行なわれている。
[0007] In order to solve this problem, a conductive pattern is formed on a copper-free laminate by using a conductive silver paste.

【0008】この導体パターンの燒結形成処理におけ
る、 ・ペーストの平均粒子径は0.1 〜20μm ・導体パターンの配線幅は50μm以上 ・ペーストを焼き付ける温度は500℃以上である。
In the sintering process of the conductor pattern, the average particle diameter of the paste is 0.1 to 20 μm, the wiring width of the conductor pattern is 50 μm or more, and the temperature for baking the paste is 500 ° C. or more.

【0009】[0009]

【発明が解決しようとする課題】燒結形成する導体パタ
ーンをどこまで微細化できるかは導電ペーストに配合し
た金属粒子の大きさに依存している。そのため、従来の
粒子径程度の金属粒子を用いた導体パターンの燒結形成
法では、ライン/スペースが50μm/50μmが限界
であった。
The extent to which a conductive pattern to be formed by sintering can be miniaturized depends on the size of the metal particles mixed in the conductive paste. Therefore, in the conventional method of sintering a conductor pattern using metal particles having a particle size of about the same, the limit of line / space is 50 μm / 50 μm.

【0010】また、金属微粒子(ナノ粒子:例えば10
0nm以下の平均粒子径)自体は、その表面活性が高い
ために室温で粒子同士が溶け合い、数十個〜数百個単位
の凝集体を形成する性状を持つ。そのため、導電ペース
トに配合する金属を微粒子化するだけでは導体パターン
の微細な印刷には適さない。
Further, metal fine particles (nanoparticles: for example, 10
(Average particle diameter of 0 nm or less) itself has the property that the particles are dissolved at room temperature due to its high surface activity to form tens to hundreds of aggregates. For this reason, it is not suitable for fine printing of a conductor pattern simply by atomizing the metal mixed in the conductive paste.

【0011】また、この凝集性状のため、微細なビアホ
ール内部には導電ペーストで燒結導電部を形成すること
ができなかった。従来、燒結導電部を形成できるビアホ
ールの最小直径は約100μmである。
[0011] In addition, due to this cohesive property, it was not possible to form a sintered conductive portion inside a fine via hole with a conductive paste. Conventionally, the minimum diameter of a via hole in which a sintered conductive part can be formed is about 100 μm.

【0012】そこで、本発明では、金属微粒子表面をそ
れに含まれる金属元素と配位可能な有機化合物で被覆し
て液体中に安定に分散したペースト組成物を用いること
により、多層配線板の回路パターンや、配線板表裏面間
を結ぶ方向の導通用孔部の一層の微細化を図ることを目
的とする。
Therefore, in the present invention, the circuit pattern of a multilayer wiring board is obtained by using a paste composition which is obtained by coating the surface of a metal fine particle with an organic compound capable of coordinating with a metal element contained therein and stably dispersing it in a liquid. It is another object of the present invention to further reduce the size of the conductive hole in the direction connecting the front and back surfaces of the wiring board.

【0013】[0013]

【課題を解決するための手段】本発明はこの課題を次の
ようにして解決する。 (1)平均粒径が1〜100nmである金属微粒子が、
その表面を、当該金属微粒子に含まれる金属元素と配位
可能な有機化合物で被覆されて、液体中に安定に分散し
たペースト組成物を、250℃以下の温度で燒結するこ
とにより得られる回路パターンを、配線板表面部分に形
成する。 (2)平均粒径が1〜100nmである金属微粒子が、
その表面を、当該金属微粒子に含まれる金属元素と配位
可能な有機化合物で被覆されて、液体中に安定に分散し
たペースト組成物を、250℃以下の温度で燒結するこ
とにより得られる導電部を、配線板表裏面間を結ぶ方向
の導通用孔部に形成する。 (3)平均粒径が1〜100nmである金属微粒子が、
その表面を、当該金属微粒子に含まれる金属元素と配位
可能な有機化合物で被覆されて、液体中に安定に分散し
たペースト組成物で、配線板表面部分に回路パターンを
描画し、配線板を250℃以下の温度で加熱することに
より前記被覆層を除去して、この描画回路パターンの前
記金属微粒子同士を燒結させる。 (4)平均粒径が1〜100nmである金属微粒子が、
その表面を、当該金属微粒子に含まれる金属元素と配位
可能な有機化合物で被覆されて、液体中に安定に分散し
たペースト組成物を、配線板表裏面間を結ぶ方向の導通
用孔部に充填し、250℃以下の温度で加熱して前記被
覆層を除去して、この導通用孔部の前記金属微粒子同士
を燒結させる。 (6)上記(1)乃至(4)の金属微粒子として、金,
銀,銅,白金,パラジウム,ロジウム,オスミウム,ル
テニウム,イリジウム,鉄,錫,亜鉛,コバルト,ニッ
ケル,クロム,チタン,タンタル,タングステン,イン
ジウム,ケイ素の中の少なくとも1種類の金属の微粒
子、または2種類以上の金属からなる合金の微粒子を用
いる。
The present invention solves this problem as follows. (1) Metal fine particles having an average particle size of 1 to 100 nm
A circuit pattern obtained by sintering a paste composition whose surface is coated with an organic compound capable of coordinating with a metal element contained in the metal fine particles and stably dispersed in a liquid at a temperature of 250 ° C. or less. Is formed on the surface of the wiring board. (2) Metal fine particles having an average particle size of 1 to 100 nm
A conductive part obtained by sintering a paste composition whose surface is coated with an organic compound capable of coordinating with a metal element contained in the metal fine particles and stably dispersed in a liquid at a temperature of 250 ° C. or lower. Is formed in the conduction hole in the direction connecting the front and back surfaces of the wiring board. (3) Metal fine particles having an average particle size of 1 to 100 nm
The surface is coated with an organic compound capable of coordinating with the metal element contained in the metal fine particles, and a paste composition stably dispersed in a liquid is used to draw a circuit pattern on the surface of the wiring board. The coating layer is removed by heating at a temperature of 250 ° C. or less, and the metal fine particles of the drawing circuit pattern are sintered. (4) Metal fine particles having an average particle size of 1 to 100 nm
The surface of the paste is coated with an organic compound capable of coordinating with the metal element contained in the metal fine particles, and dispersed stably in a liquid. It is filled and heated at a temperature of 250 ° C. or less to remove the coating layer, and the metal fine particles in the hole for conduction are sintered. (6) As the metal fine particles of the above (1) to (4), gold,
Fine particles of at least one metal of silver, copper, platinum, palladium, rhodium, osmium, ruthenium, iridium, iron, tin, zinc, cobalt, nickel, chromium, titanium, tantalum, tungsten, indium, silicon, or Fine particles of an alloy composed of more than two kinds of metals are used.

【0014】本発明は、このように、金,銀,銅などの
上記金属またはこれらの合金の微粒子(ナノ粒子)が有
機溶媒中に安定に分散したペースト組成物、すなわち従
来の微粒子のような上記凝集体が生じることのないペー
スト組成物を燒結させたかたちの、微細な回路パターン
や、微細な上記導通用孔部内の導電部分を形成してい
る。なお、当該微粒子は常温で安定している。
Thus, the present invention provides a paste composition in which fine particles (nanoparticles) of the above-mentioned metals such as gold, silver, and copper or alloys thereof are stably dispersed in an organic solvent, that is, such as conventional fine particles. A fine circuit pattern and a fine conductive portion in the conductive hole are formed in the form of sintering the paste composition in which the agglomerate does not occur. The fine particles are stable at normal temperature.

【0015】この金属微粒子からなるペーストを配線板
上に描画し、また上記導通用孔部に充填するするには、
インクジェットやスクリーン印刷,ディスペンサー,含
浸,スピンコートなどの各種手法を用いればよい。
In order to draw the paste composed of the metal fine particles on a wiring board and to fill the conductive hole,
Various methods such as ink jet, screen printing, dispenser, impregnation, and spin coating may be used.

【0016】この金属微粒子が上述のように有機溶媒中
などで安定な形で分散して存在するのは、その表面を当
該金属元素と配位結合が可能な化合物(例えばアミン,
アルコール, フェノール, チオールなどの分散剤)で被
覆しているからである。
As described above, the metal fine particles are dispersed and exist in a stable form in an organic solvent or the like because a compound capable of coordinating with the metal element (for example, an amine,
(Alcohol, phenol, thiol, etc.).

【0017】この配位結合可能な化合物はその後の加熱
時の化学反応で除去される。これにより、加熱前の金属
微粒子の上記安定性と、加熱されて溶融した後の金属微
粒子の密な燒結状態を確保している。
The compound capable of coordination bond is removed by a chemical reaction at the time of subsequent heating. This ensures the above-mentioned stability of the metal fine particles before heating and the dense sintering state of the metal fine particles after being heated and melted.

【0018】この金属微粒子からなるペーストは、平均
粒子径が例えば0.1 〜10nm程度であり、従来の銀ペ
ーストに比べて平面や厚み方向の粒子が多い。そのた
め、これで微細パターンや超薄膜(例えば平均粒子径が
7nmで厚さ4μmの膜)を形成した場合も、その十分
な導電性能を達成できる。なお、安定導通のためには粒
子径の4倍以上の膜厚が必要である。ちなみに従来の薄
膜は例えば平均粒子径が3μmで厚さ20μmの膜であ
る。
The paste composed of the metal fine particles has an average particle diameter of, for example, about 0.1 to 10 nm, and has more particles in the plane or thickness direction than the conventional silver paste. Therefore, even when a fine pattern or an ultrathin film (for example, a film having an average particle diameter of 7 nm and a thickness of 4 μm) is formed, sufficient conductive performance can be achieved. For stable conduction, a film thickness of at least four times the particle diameter is required. Incidentally, the conventional thin film is, for example, a film having an average particle diameter of 3 μm and a thickness of 20 μm.

【0019】また、当該ペーストは粘度が低いので液体
のように流動し、加熱処理によって初めて燒結が進行す
る。この低粘性のため、当該ペーストは微細な上記導通
用孔部(ビアホール)にも充填可能である。
Since the paste has a low viscosity, it flows like a liquid, and sintering proceeds only by heat treatment. Due to this low viscosity, the paste can be filled in the fine conductive holes (via holes).

【0020】この微細回路パターンのライン/スペース
は例えば25μm/25μmであり、また導電部分が形
成可能な上記導通用孔部の直径は約50μm〜1mmで
ある。ペーストの焼結温度も従来のものに比べて低く例
えば250℃以下である。
The line / space of this fine circuit pattern is, for example, 25 μm / 25 μm, and the diameter of the conductive hole in which a conductive portion can be formed is about 50 μm to 1 mm. The sintering temperature of the paste is also lower than the conventional one, for example, 250 ° C. or less.

【0021】さらには、この安定状態の微粒子を従来の
μmオーダの平均粒子径の導電性ペーストと併用しても
効果的である。
Further, it is effective to use the fine particles in a stable state together with a conventional conductive paste having an average particle diameter of the order of μm.

【0022】例えば、従来の銀ペーストに本発明の銀微
粒子を混ぜると、燒結後の大きな銀粒子の間に銀微粒子
が入り込んで全体の接合状態が安定する。
For example, when the silver fine particles of the present invention are mixed with a conventional silver paste, the fine silver particles enter between the large silver particles after sintering, and the overall bonding state is stabilized.

【0023】また、銅ペーストを併用すると、銅の薄い
酸化被膜による接触抵抗を改質して全体の接触抵抗を下
げることができる。
When a copper paste is used in combination, the contact resistance of the thin oxide film of copper can be modified to lower the overall contact resistance.

【0024】[0024]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。もっぱら説明の便宜上、必要に応じ「平均粒子径
が7nmの銀ナノ粒子」を金属微粒子の一例として用
い、それのペーストを「銀ナノペースト」と記すが、本
発明は勿論この銀ナノ粒子に限定されるものではない。
Embodiments of the present invention will be described below. For convenience of explanation, “silver nanoparticles having an average particle diameter of 7 nm” are used as an example of metal fine particles as needed, and the paste is referred to as “silver nanopaste”. However, the present invention is of course limited to these silver nanoparticles. It is not something to be done.

【0025】図1は、銀ナノ粒子を、トルエン, キシレ
ン, テルピネオール, ミネラルスピリットなどの、室温
付近では容易に蒸散することのない、比較的高沸点な非
極性溶剤や低極性溶剤の中に安定に分散させたペースト
が燒結する際の変化の様子を概念的に示す説明図であ
り、(a)は印刷前のペースト状態,(b)は加熱時に
分散剤が除去される状態,(c)は樹脂収縮および低温
燒結の状態をそれぞれ示している。
FIG. 1 shows that silver nanoparticles are stable in a relatively high boiling non-polar solvent or a low-polar solvent such as toluene, xylene, terpineol and mineral spirit, which do not easily evaporate at around room temperature. FIGS. 7A and 7B are explanatory views conceptually showing a state of change when the paste dispersed in the sintering is sintered, (a) is a paste state before printing, (b) is a state in which the dispersant is removed during heating, and (c). Indicates the state of resin shrinkage and low-temperature sintering, respectively.

【0026】(a)の状態では、銀ナノ粒子1の表面
が、銀元素と配位可能な有機物、例えば金属イオンに対
して還元作用を持つ2−メチルアミノエタノール,ジエ
タノールアミン,ジエチルメチルアミン,2−ジメチル
アミノエタノール,メチルジエタノールアミンなどのア
ミン化合物や、アルキルアミン類,エチレンジアミン,
アルキルアルコール類,エチレングリコール,プロピレ
ングリコール,アルキルチオール類,エタンジチオール
などの分散剤2で被覆されている。
In the state (a), the surface of the silver nanoparticle 1 has a reducing action on an organic substance capable of coordinating with a silver element, for example, a metal ion, such as 2-methylaminoethanol, diethanolamine, diethylmethylamine, 2 Amine compounds such as dimethylaminoethanol and methyldiethanolamine, alkylamines, ethylenediamine,
It is coated with a dispersant 2 such as alkyl alcohols, ethylene glycol, propylene glycol, alkyl thiols, and ethanedithiol.

【0027】この被覆作用により、銀ナノ粒子1のそれ
ぞれは有機溶媒中に安定したかたちで分散する。
By this coating action, each of the silver nanoparticles 1 is stably dispersed in the organic solvent.

【0028】なお、3は有機バインダー(例えば熱硬化
性フェノール樹脂)、4は分散剤2を取り込むための捕
捉物質(例えば酸無水物, 酸無水物誘導体)をそれぞれ
示している。
Reference numeral 3 denotes an organic binder (for example, a thermosetting phenol resin), and 4 denotes a trapping substance (for example, an acid anhydride or an acid anhydride derivative) for incorporating the dispersant 2.

【0029】(b)の状態では、捕捉物質4が銀ナノ粒
子1の表面部分の分散剤2を取り込んでいる。なお、分
散剤2は銀ナノ粒子1の表面部分から剥離する。
In the state (b), the trapping substance 4 has taken in the dispersant 2 on the surface of the silver nanoparticles 1. Note that the dispersant 2 is separated from the surface of the silver nanoparticles 1.

【0030】(c)の状態では、低温燒結した銀ナノ粒
子同士が熱硬化性樹脂の収縮力で接触し、導通してい
る。
In the state (c), the low-temperature-sintered silver nanoparticles are in contact with each other due to the contraction force of the thermosetting resin and are conductive.

【0031】図2は、銀ナノペーストを用いたビルドア
ップ配線板の製造プロセス(積み上げ式)を示す断面図
であり、その内容は次のようになっている。 (s11) コア基板11(エポキシ,ポリイミド,熱硬化性
樹脂,アラミド不織布,ガラス布,ガラス不織布などか
らなる各種基板)を準備する。 (s12) エッチング処理により直径約50μm〜1mmの
第1のビアホール12を形成する。 (s13) 銀ナノペースト13でコア基板11の表面に回路
パターンを描画するとともに、銀ナノペースト13をビ
アホール12に充填した上で、加熱処理する。このと
き、ビアホール12の銀ナノペーストは加熱硬化してそ
の溶剤成分は飛散し、その金属成分がビアホール内周面
に付着して、ビアホール12の全体がいわば「ちくわ
状」になる。 (s14) 描画後のコア基板表面にフォトレジスト14を塗
布してからエッチングすることにより、直径約50μm
〜1mmの第2のビアホール15を形成する。 (s15) 銀ナノペースト16を用いて、ステップ(s13) と
同様の描画・充填・加熱処理を実行し、この銀ナノペー
スト16のパターン(ランド)と銀ナノペースト13の
回路パターンとを接続する。 (s16) フォトレジスト17を用いて、ステップ(s14) と
同様の塗布・エッチング処理を実行し、直径約50μm
〜1mmの第3のビアホール18を形成する。 (s17) 銀ナノペースト19を用いて、ステップ(s13) と
同様の描画・充填・加熱処理を実行し、この銀ナノペー
スト19のパターン(ランド)と銀ナノペースト16の
それとを接続する。
FIG. 2 is a cross-sectional view showing a manufacturing process (stacking type) of a build-up wiring board using silver nanopaste, and the contents are as follows. (s11) A core substrate 11 (various substrates made of epoxy, polyimide, thermosetting resin, aramid nonwoven fabric, glass cloth, glass nonwoven fabric, etc.) is prepared. (s12) The first via hole 12 having a diameter of about 50 μm to 1 mm is formed by etching. (s13) A circuit pattern is drawn on the surface of the core substrate 11 with the silver nanopaste 13, and the silver nanopaste 13 is filled in the via hole 12 and then subjected to heat treatment. At this time, the silver nanopaste in the via hole 12 is cured by heating, and the solvent component is scattered, and the metal component adheres to the inner peripheral surface of the via hole, so that the whole of the via hole 12 has a so-called "chuckle shape". (s14) The photoresist 14 is applied to the surface of the core substrate after the drawing and then etched to obtain a diameter of about 50 μm.
A second via hole 15 of about 1 mm is formed. (s15) Using the silver nanopaste 16, the same drawing, filling, and heating processes as in step (s13) are performed to connect the pattern (land) of the silver nanopaste 16 and the circuit pattern of the silver nanopaste 13. . (s16) The same coating / etching process as in step (s14) is performed using the photoresist 17 to obtain a diameter of about 50 μm.
A third via hole 18 of about 1 mm is formed. (s17) Using the silver nanopaste 19, the same drawing, filling, and heating processes as in step (s13) are performed to connect the pattern (land) of the silver nanopaste 19 to that of the silver nanopaste 16.

【0032】図3は、銀ナノペーストを用いたビルドア
ップ配線板の製造プロセス(両面印刷式)を示す説明図
であり、その内容は次のようになっている。 (s21) コア基板21,21′(エポキシ,ポリイミド,
熱硬化性樹脂,アラミド不織布,ガラス布,ガラス不織
布などからなる各種基板)を準備する。 (s22) エッチング処理により直径約50μm〜1mmの
ビアホール22を形成する。 (s23) 銀ナノペースト23,23′でコア基板21の両
面に回路パターンを描画するとともに、銀ナノペースト
23,23′をビアホール12に充填した上で、加熱処
理する。このとき、ビアホール22の全体は上述のよう
に「ちくわ状」になる。 (s31) プリプレグなどの接合体31を準備する。 (s32) エッチング処理により直径約50μm〜1mmの
ビアホール32を形成して、当該ビアホールに従来の銀
ペースト33を充填した上で、加熱処理する。このと
き、ビアホール32の全体は上述のように「ちくわ状」
になる。なお、従来の銀ペーストに代えて銀ナノペース
トを用いてもよい。 (s41) ステップ(s21) 〜(s23) の処理後の基板21およ
び21′の間に、ステップ(s31) ,(s32) の処理後の接
合体31を挟んだ形の、この三つの部材を導電性接着剤
で接合する。これにより、基板21の回路パターンと基
板21′のそれとが接続される。
FIG. 3 is an explanatory view showing a manufacturing process (double-sided printing type) of a build-up wiring board using silver nanopaste, the contents of which are as follows. (s21) Core substrates 21, 21 '(epoxy, polyimide,
Various substrates made of thermosetting resin, aramid nonwoven fabric, glass cloth, glass nonwoven fabric, etc.) are prepared. (s22) Via holes 22 having a diameter of about 50 μm to 1 mm are formed by etching. (s23) A circuit pattern is drawn on both surfaces of the core substrate 21 with the silver nanopastes 23 and 23 ', and the silver nanopastes 23 and 23' are filled in the via holes 12 and then heat-treated. At this time, the whole of the via hole 22 has a "chuckle shape" as described above. (s31) A joined body 31 such as a prepreg is prepared. (s32) A via hole 32 having a diameter of about 50 μm to 1 mm is formed by etching, and the via hole is filled with a conventional silver paste 33 and then heated. At this time, the whole of the via hole 32 has a “chuckle-like” shape as described above.
become. Note that a silver nanopaste may be used instead of the conventional silver paste. (s41) The three members having a shape in which the joined body 31 after the processing in steps (s31) and (s32) is sandwiched between the substrates 21 and 21 'after the processing in steps (s21) to (s23) Join with a conductive adhesive. As a result, the circuit pattern of the substrate 21 is connected to that of the substrate 21 '.

【0033】図4は、銀ナノペーストを用いたビルドア
ップ配線板の製造プロセス(ドリル穴あけ式)を示す説
明図であり、その内容は次のようになっている。 (s51) コア基板41(エポキシ,ポリイミド,熱硬化性
樹脂,アラミド不織布,ガラス布,ガラス不織布などか
らなる各種基板)を準備する。 (s52) コア基板41の両面に銀ナノペースト42を用い
たスクリーン印刷,インクジェットなどにより回路パタ
ーンを描画する。 (s53) 描画後のコア基板41の両面に表面にフォトレジ
スト43を塗布してからエッチングすることにより、直
径約50μm〜1mmの第1のビアホール44を形成す
る。 (s54) ドリルで、この3層状態のコア基板41の両面間
にまたがる直径約50μm〜1mmの第2のビアホール
45を形成する。 (s55) このビアホール形成後のコア基板41の両面に銀
ナノペースト46回路パターンを描画するとともに、銀
ナノペースト46を各ビアホール44,45に充填した
上で、加熱処理する。このとき、ビアホール44,45
の全体はそれぞれ上述のように「ちくわ状」になる。こ
の充填・加熱処理により、銀ナノペースト42の回路パ
ターンと銀ナノペースト46のそれとが接続される。
FIG. 4 is an explanatory view showing a manufacturing process (drilling method) of a build-up wiring board using silver nanopaste, and the contents are as follows. (s51) A core substrate 41 (various substrates made of epoxy, polyimide, thermosetting resin, aramid nonwoven fabric, glass cloth, glass nonwoven fabric, etc.) is prepared. (s52) A circuit pattern is drawn on both surfaces of the core substrate 41 by screen printing using a silver nanopaste 42, inkjet, or the like. (s53) A first via hole 44 having a diameter of about 50 μm to 1 mm is formed by applying a photoresist 43 to both surfaces of the drawn core substrate 41 and then etching the same. (s54) Using a drill, a second via hole 45 having a diameter of about 50 μm to 1 mm is formed across both surfaces of the core substrate 41 in the three-layer state. (s55) A silver nanopaste 46 circuit pattern is drawn on both surfaces of the core substrate 41 after the formation of the via holes, and the via holes 44 and 45 are filled with the silver nanopaste 46 and then subjected to heat treatment. At this time, the via holes 44, 45
Are in a "chuckle-like" shape as described above. By this filling / heating treatment, the circuit pattern of the silver nanopaste 42 and the silver nanopaste 46 are connected.

【0034】なお、上述の各ビアホールの径を大きくし
て、銀ナノペーストの代わりに従来の導電ペーストを充
填してもよい。
The diameter of each of the above-mentioned via holes may be increased, and a conventional conductive paste may be filled instead of the silver nanopaste.

【0035】配線板に、平均粒子径7nmの銀ナノペー
ストをインクジェット印刷機により線幅25μmの回路
パターンを描画し、これを180℃×30分の環境で加
熱硬化させて所定の配線を形成したところ、その比抵抗
は4×10-5Ω・cmであった。
A silver nanopaste having an average particle diameter of 7 nm was drawn on a wiring board to form a circuit pattern having a line width of 25 μm by an ink jet printer, and this was heated and cured at 180 ° C. for 30 minutes to form predetermined wiring. However, the specific resistance was 4 × 10 −5 Ω · cm.

【0036】以下、本発明で用いる金属ナノペーストに
ついて例示する。
Hereinafter, the metal nanopaste used in the present invention will be exemplified.

【0037】(例1)市販されている銀の超微粒子分散
液(商品名独立分散超微粒子パーフェクトシルバー 真
空冶金(株))、具体的には、銀微粒子100質量部、
アルキルアミンとして、ドデシルアミン15質量部、有
機溶剤として、ターピネオール75質量部を含む、平均
粒子径8nmの銀微粒子の分散液を利用した。
(Example 1) Commercially available ultrafine particle dispersion of silver (trade name: Independently dispersed ultrafine particle Perfect Silver Vacuum Metallurgy Co., Ltd.), specifically, 100 parts by mass of silver fine particles,
A dispersion liquid of silver fine particles having an average particle diameter of 8 nm and containing 15 parts by mass of dodecylamine as an alkylamine and 75 parts by mass of terpineol as an organic solvent was used.

【0038】導電性金属ペーストは、銀微粒子の分散液
について、銀微粒子100質量部当たり、酸無水物とし
て、Me−HHPA(メチルヘキサヒドロ無水フタル
酸)を6.8質量部、熱硬化性樹脂として、レゾール型
フェノール樹脂(群栄化学(株)製、PL−2211)
を5質量部添加した。
As the conductive metal paste, 6.8 parts by mass of Me-HHPA (methylhexahydrophthalic anhydride) was used as an acid anhydride per 100 parts by mass of silver particles in a dispersion of silver particles, and a thermosetting resin was used. As a resol type phenol resin (PL-2211 manufactured by Gunei Chemical Co., Ltd.)
Was added in an amount of 5 parts by mass.

【0039】これらを混合した後、攪拌して調製された
導電性金属ペーストに関して、それぞれメタルマスクで
100μmのスルーホールを持つエポキシ基板上に膜厚
50μm、縦横10×20mmの大きさで両面に塗布し、
その表面状態(凝集状態)を確認した後、150℃×3
0分+210℃×60分で硬化した。
After mixing these, the conductive metal paste prepared by stirring was applied on both sides with a metal mask on an epoxy substrate having a through hole of 100 μm in a thickness of 50 μm and a size of 10 × 20 mm in length and width. And
After confirming the surface state (agglomerated state), 150 ° C. × 3
Cured at 0 minutes + 210 ° C for 60 minutes.

【0040】別途、導電性金属ペーストに、チキソ剤も
しくは希釈溶剤(トルエン)を加えて、その粘度をおよ
そ80Pa・sに調整し、ステンレス#500メッシュ
のスクリーン版でライン/スペース=25/25μmを
印刷し、上記の硬化条件で硬化せしめ、その印刷性を評
価した。
Separately, a thixotropic agent or a diluting solvent (toluene) is added to the conductive metal paste to adjust the viscosity to about 80 Pa · s, and the line / space is 25/25 μm with a stainless # 500 mesh screen plate. It was printed and cured under the above-mentioned curing conditions, and its printability was evaluated.

【0041】図5に、導電性金属ペーストの組成と、塗
布後の表面状態(凝集状態)、得られる熱硬化物の比抵
抗、ならびに、粘度をおよそ80Pa・sに調整した際
の印刷性に関する評価結果を併せて示す。なお、上記の
導電性金属ペースト中に含有されるアミン化合物;ドデ
シルアミンと、酸無水物;Me−HHPA(メチルヘキ
サヒドロ無水フタル酸)の比率は、アミノ基1当たり、
酸無水物1/2分子の割合である。
FIG. 5 shows the composition of the conductive metal paste, the surface state (agglomerated state) after application, the specific resistance of the obtained thermosetting product, and the printability when the viscosity was adjusted to about 80 Pa · s. The evaluation results are also shown. The ratio of the amine compound contained in the conductive metal paste; dodecylamine and acid anhydride; Me-HHPA (methylhexahydrophthalic anhydride) is as follows:
It is a ratio of 1/2 molecule of acid anhydride.

【0042】(例2)市販されている銀の超微粒子分散
液(商品名独立分散超微粒子パーフェクトシルバー 真
空冶金(株))を利用し、含まれる銀微粒子100質量
部当たり、アルキルアミンとして、ドデシルアミン1質
量部、有機溶剤として、ターピネオール75質量部を含
む、平均粒子径8nmの銀微粒子の分散液を調製した。
(Example 2) A commercially available silver ultrafine particle dispersion (trade name: Independently dispersed ultrafine particles Perfect Silver Vacuum Metallurgy Co., Ltd.) was used, and per 100 parts by mass of the silver fine particles contained, dodecyl was used as alkylamine. A dispersion liquid of silver fine particles having an average particle diameter of 8 nm was prepared containing 1 part by mass of an amine and 75 parts by mass of terpineol as an organic solvent.

【0043】導電性金属ペーストは、前記組成の銀微粒
子の分散液について、銀微粒子100質量部当たり、酸
無水物として、Me−HHPA(メチルヘキサヒドロ無
水フタル酸)を0.45質量部、熱硬化性樹脂として、
レゾール型フェノール樹脂(群栄化学(株)製、PL−
2211)を5質量部添加した。
The conductive metal paste was prepared by dispersing 0.45 parts by mass of Me-HHPA (methylhexahydrophthalic anhydride) as an acid anhydride per 100 parts by mass of silver particles in a dispersion of silver particles having the above composition. As a curable resin,
Resol type phenolic resin (manufactured by Gunei Chemical Co., Ltd., PL-
2211) was added in an amount of 5 parts by mass.

【0044】これらを混合した後、攪拌して調製された
導電性金属ペーストに関して、それぞれメタルマスクで
100μmのスルーホールを持つエポキシ基板上に膜厚
50μm、縦横10×20mmの大きさで両面に塗布し、
その表面状態(凝集状態)を確認した後、150℃×3
0分+210℃×60分で硬化した。
After mixing these, the conductive metal paste prepared by stirring was applied on both sides with a metal mask on an epoxy substrate having a through hole of 100 μm in a thickness of 50 μm and a size of 10 × 20 mm in length and width. And
After confirming the surface state (agglomerated state), 150 ° C. × 3
Cured at 0 minutes + 210 ° C for 60 minutes.

【0045】別途、導電性金属ペーストに、チキソ剤も
しくは希釈溶剤(トルエン)を加えて、その粘度をおよ
そ80Pa・sに調整し、ステンレス#500メッシュ
のスクリーン版でライン/スペース=25/25μmを
印刷し、上記の硬化条件で硬化せしめ、その印刷性を評
価した。
Separately, a thixotropic agent or a diluting solvent (toluene) is added to the conductive metal paste to adjust the viscosity to about 80 Pa · s, and the line / space = 25/25 μm is screened with a stainless # 500 mesh screen plate. It was printed and cured under the above-mentioned curing conditions, and its printability was evaluated.

【0046】図5に、導電性金属ペーストの組成と、塗
布後の表面状態(凝集状態)、得られる熱硬化物の比抵
抗、ならびに、粘度をおよそ80Pa・sに調整した際
の印刷性に関する評価結果を併せて示す。なお、上記の
導電性金属ペースト中に含有されるアミン化合物;ドデ
シルアミンと、酸無水物;Me−HHPA(メチルヘキ
サヒドロ無水フタル酸)の比率は、アミノ基1当たり、
酸無水物1/2分子の割合である。
FIG. 5 shows the composition of the conductive metal paste, the surface state (agglomerated state) after application, the specific resistance of the obtained thermosetting product, and the printability when the viscosity was adjusted to about 80 Pa · s. The evaluation results are also shown. The ratio of the amine compound contained in the conductive metal paste; dodecylamine and acid anhydride; Me-HHPA (methylhexahydrophthalic anhydride) is as follows:
It is a ratio of 1/2 molecule of acid anhydride.

【0047】(例3)市販されている銀の超微粒子分散
液(商品名独立分散超微粒子パーフェクトシルバー 真
空冶金(株))を利用し、含まれる銀微粒子100質量
部当たり、アルキルアミンとして、ドデシルアミン0.
1質量部、有機溶剤として、ターピネオール75質量部
を含む、平均粒子径8nmの銀微粒子の分散液を調製し
た。
Example 3 Utilizing a commercially available ultrafine particle dispersion of silver (trade name: Independently dispersed ultrafine particle Perfect Silver Vacuum Metallurgy Co., Ltd.), dodecyl was used as alkylamine per 100 parts by mass of the contained silver fine particles. Amine 0.
A dispersion liquid of silver fine particles having an average particle diameter of 8 nm and containing 1 part by mass and 75 parts by mass of terpineol as an organic solvent was prepared.

【0048】導電性金属ペーストは、前記組成の銀微粒
子の分散液について、銀微粒子100質量部当たり、酸
無水物として、Me−HHPA(メチルヘキサヒドロ無
水フタル酸)を0.045質量部、熱硬化性樹脂とし
て、レゾール型フェノール樹脂(群栄化学(株)製、P
L−2211)を5質量部添加した。
The conductive metal paste was prepared by dispersing 0.045 parts by weight of Me-HHPA (methylhexahydrophthalic anhydride) as an acid anhydride per 100 parts by weight of silver particles in a dispersion of silver particles having the above composition. As a curable resin, a resol type phenol resin (manufactured by Gunei Chemical Co., Ltd., P
L-2211) in an amount of 5 parts by mass.

【0049】これらを混合した後、攪拌して調製された
導電性金属ペーストに関して、それぞれメタルマスクで
100μmのスルーホールを持つエポキシ基板上に膜厚
50μm、縦横10×20mmの大きさで両面に塗布し、
その表面状態(凝集状態)を確認した後、150℃×3
0分+210℃×60分で硬化した。
After mixing these, the conductive metal paste prepared by stirring was coated on both sides with a metal mask on an epoxy substrate having a through hole of 100 μm in a thickness of 50 μm and a size of 10 × 20 mm in length and width. And
After confirming the surface state (agglomerated state), 150 ° C. × 3
Cured at 0 minutes + 210 ° C for 60 minutes.

【0050】別途、導電性金属ペーストに、チキソ剤も
しくは希釈溶剤(トルエン)を加えて、その粘度をおよ
そ80Pa・sに調整し、ステンレス#500メッシュ
のスクリーン版でライン/スペース=25/25μmを
印刷し、上記の硬化条件で硬化せしめ、その印刷性を評
価した。
Separately, a thixotropic agent or a diluting solvent (toluene) is added to the conductive metal paste to adjust its viscosity to about 80 Pa · s, and the line / space is 25/25 μm with a stainless # 500 mesh screen plate. It was printed and cured under the above-mentioned curing conditions, and its printability was evaluated.

【0051】図5に、導電性金属ペーストの組成と、塗
布後の表面状態(凝集状態)、得られる熱硬化物の比抵
抗、ならびに、粘度をおよそ80Pa・sに調整した際
の印刷性に関する評価結果を併せて示す。なお、上記の
導電性金属ペースト中に含有されるアミン化合物;ドデ
シルアミンと、酸無水物;Me−HHPA(メチルヘキ
サヒドロ無水フタル酸)の比率は、アミノ基1当たり、
酸無水物1/2分子の割合である。
FIG. 5 shows the composition of the conductive metal paste, the surface state (agglomerated state) after application, the specific resistance of the obtained thermosetting product, and the printability when the viscosity was adjusted to about 80 Pa · s. The evaluation results are also shown. The ratio of the amine compound contained in the conductive metal paste; dodecylamine and acid anhydride; Me-HHPA (methylhexahydrophthalic anhydride) is as follows:
It is a ratio of 1/2 molecule of acid anhydride.

【0052】(比較例1)市販されている銀の超微粒子
分散液(商品名独立分散超微粒子パーフェクトシルバー
真空冶金(株))を利用し、含まれる銀微粒子100
質量部当たり、アルキルアミンとしてドデシルアミン
0.05質量部、有機溶剤としてターピネオール75質
量部を含む、平均粒子径8nmの銀微粒子の分散液を調
製した。
(Comparative Example 1) A commercially available ultrafine particle dispersion of silver (trade name: Independently dispersed ultrafine particle Perfect Silver Vacuum Metallurgical Co., Ltd.) was used, and the contained silver fine particle 100 was used.
A dispersion liquid of silver fine particles having an average particle diameter of 8 nm was prepared, containing 0.05 parts by mass of dodecylamine as an alkylamine and 75 parts by mass of terpineol as an organic solvent per part by mass.

【0053】導電性金属ペーストは、前記組成の銀微粒
子の分散液について、銀微粒子100質量部当たり、酸
無水物として、Me−HHPA(メチルヘキサヒドロ無
水フタル酸)を0.0225質量部、熱硬化性樹脂とし
て、レゾール型フェノール樹脂(群栄化学(株)製、P
L−2211)を5質量部添加した。
The conductive metal paste was prepared by dispersing 0.0225 parts by weight of Me-HHPA (methylhexahydrophthalic anhydride) as an acid anhydride per 100 parts by weight of silver particles in a dispersion of silver particles having the above composition. As a curable resin, a resol type phenol resin (manufactured by Gunei Chemical Co., Ltd., P
L-2211) in an amount of 5 parts by mass.

【0054】これらを混合した後、攪拌して調製された
導電性金属ペーストに関して、それぞれメタルマスクで
100μmのスルーホールを持つエポキシ基板上に膜厚
50μm、縦横10×20mmの大きさで両面に塗布し、
その表面状態(凝集状態)を確認した後、150℃×3
0分+210℃×60分で硬化した。
After mixing these, the conductive metal paste prepared by stirring was applied on both sides with a metal mask on an epoxy substrate having a through hole of 100 μm in a thickness of 50 μm and a size of 10 × 20 mm in length and width. And
After confirming the surface state (agglomerated state), 150 ° C. × 3
Cured at 0 minutes + 210 ° C for 60 minutes.

【0055】別途、導電性金属ペーストに、チキソ剤も
しくは希釈溶剤(トルエン)を加えて、その粘度をおよ
そ80Pa・sに調整し、ステンレス#500メッシュ
のスクリーン版でライン/スペース=25/25μmを
印刷し、上記の硬化条件で硬化せしめ、その印刷性を評
価した。
Separately, a thixotropic agent or a diluting solvent (toluene) is added to the conductive metal paste to adjust its viscosity to about 80 Pa · s, and the line / space is 25/25 μm with a stainless # 500 mesh screen plate. It was printed and cured under the above-mentioned curing conditions, and its printability was evaluated.

【0056】図5に、導電性金属ペーストの組成と、塗
布後の表面状態(凝集状態)、得られる熱硬化物の比抵
抗、ならびに、粘度をおよそ80Pa・sに調整した際
の印刷性に関する評価結果を併せて示す。なお、上記の
導電性金属ペースト中に含有されるアミン化合物;ドデ
シルアミンと、酸無水物;Me−HHPA(メチルヘキ
サヒドロ無水フタル酸)の比率は、アミノ基1当たり、
酸無水物1/2分子の割合であるが、アミン化合物;ド
デシルアミンは、銀微粒子の表面に一分子層のドデシル
アミンが被覆するに要する量の1/2にしかならない量
である。
FIG. 5 shows the composition of the conductive metal paste, the surface state (agglomerated state) after application, the specific resistance of the obtained thermosetting material, and the printability when the viscosity was adjusted to about 80 Pa · s. The evaluation results are also shown. The ratio of the amine compound contained in the conductive metal paste; dodecylamine and acid anhydride; Me-HHPA (methylhexahydrophthalic anhydride) is as follows:
Although the ratio of the acid anhydride is 1/2 molecule, the amount of the amine compound; dodecylamine is only 1/2 of the amount required for coating the surface of the silver fine particles with one molecular layer of dodecylamine.

【0057】(比較例2)市販されている銀の超微粒子
分散液(商品名独立分散超微粒子パーフェクトシルバー
真空冶金(株))を利用し、含まれる銀微粒子を被覆
しているアルキルアミン;ドデシルアミンを一旦除去
し、再び有機溶剤として、ターピネオール75質量部を
含み、ドデシルアミンの被覆層のない平均粒子径8nm
の銀微粒子の分散液に調製した。
(Comparative Example 2) Alkylamine coated with fine silver particles contained therein using a commercially available ultrafine particle dispersion of silver (trade name: Independently dispersed ultrafine particles Perfect Silver Vacuum Metallurgy Co., Ltd.); dodecyl The amine was once removed, and again containing 75 parts by mass of terpineol as an organic solvent, and having an average particle size of 8 nm without a dodecylamine coating layer.
Was prepared as a dispersion of fine silver particles.

【0058】導電性金属ペーストは、前記組成の銀微粒
子の分散液について、銀微粒子100質量部当たり、酸
無水物のMe−HHPA(メチルヘキサヒドロ無水フタ
ル酸)を加えず、ただ、熱硬化性樹脂として、レゾール
型フェノール樹脂(群栄化学(株)製、PL−221
1)を5質量部添加した。
The conductive metal paste was prepared by adding the acid anhydride Me-HHPA (methylhexahydrophthalic anhydride) per 100 parts by mass of the silver fine particles of the dispersion of the silver fine particles having the above-mentioned composition. As the resin, a resol type phenol resin (PL-221 manufactured by Gunei Chemical Co., Ltd.)
1) was added in an amount of 5 parts by mass.

【0059】これを混合した後、攪拌して調製された導
電性金属ペーストに関して、それぞれメタルマスクで1
00μmのスルーホールを持つエポキシ基板上に膜厚5
0μm、縦横10×20mmの大きさで両面に塗布し、そ
の表面状態(凝集状態)を確認した後、150℃×30
分+210℃×60分で硬化した。
After mixing this, the conductive metal paste prepared by stirring was mixed with a metal mask for each.
Film thickness of 5 on epoxy substrate with through hole of 00 μm
0 μm, 10 × 20 mm in length and width, applied on both sides, and after confirming the surface state (agglomerated state), 150 ° C. × 30
Minutes + 210 ° C x 60 minutes.

【0060】別途、導電性金属ペーストに、チキソ剤も
しくは希釈溶剤(トルエン)を加えて、その粘度をおよ
そ80Pa・sに調整し、ステンレス#500メッシュ
のスクリーン版でライン/スペース=25/25μmを
印刷し、上記の硬化条件で硬化せしめ、その印刷性を評
価した。
Separately, a thixotropic agent or a diluting solvent (toluene) is added to the conductive metal paste to adjust the viscosity to about 80 Pa · s, and the line / space is 25/25 μm with a stainless # 500 mesh screen plate. It was printed and cured under the above-mentioned curing conditions, and its printability was evaluated.

【0061】図5に、導電性金属ペーストの組成と、塗
布後の表面状態(凝集状態)、得られる熱硬化物の比抵
抗、ならびに、粘度をおよそ80Pa・sに調整した際
の印刷性に関する評価結果を併せて示す。
FIG. 5 shows the composition of the conductive metal paste, the surface state (agglomerated state) after application, the specific resistance of the obtained thermosetting product, and the printability when the viscosity was adjusted to about 80 Pa · s. The evaluation results are also shown.

【0062】図5に示される結果を対比させると、例1
〜3と比較例1,2の結果から、銀微粒子100質量部
当たり、トデシルアミンの含有量が減少するにつれ、導
電性金属ペーストを加熱・硬化した硬化物における比抵
抗は、次第に上昇している。また、銀微粒子100質量
部当たり、トデシルアミンの含有量が0.1質量部を下
回り、銀微粒子表面を被覆するトデシルアミンの一分子
層に満たない範囲に到ると、急速に比抵抗の上昇が見出
される。それと併せて、塗布されるペーストにおいて、
室温においても、銀微粒子の凝集の発生が観測される。
また、印刷性も、かかる凝集の発生に由来して、明らか
に低下している。
When the results shown in FIG. 5 are compared, Example 1
From the results of Comparative Examples 1 to 3 and Comparative Examples 1 and 2, as the content of todecylamine per 100 parts by mass of the silver fine particles decreases, the specific resistance of the cured product obtained by heating and curing the conductive metal paste gradually increases. Further, when the content of todecylamine per 100 parts by mass of the silver fine particles is less than 0.1 part by mass and reaches a range of less than one molecular layer of todecylamine covering the surface of the silver fine particles, the resistivity is rapidly increased. It is. At the same time, in the paste to be applied,
Even at room temperature, aggregation of silver fine particles is observed.
In addition, the printability is clearly reduced due to the occurrence of such aggregation.

【0063】前記の対比では、アミン化合物の被覆層を
設けない参照とした比較例2は別として、残る例1〜3
と比較例1は、いずれも、銀微粒子表面を被覆するトデ
シルアミンの層を有するもの、銀微粒子100質量部当
たり、トデシルアミンの含有量が減少し、均一な被覆層
に欠損が生じやすくなるにつれ、室温においても、含ま
れる銀微粒子の凝集が生じ、印刷性もその影響を受け、
低下していくと判断される。
In the above comparison, the remaining Examples 1 to 3 were set apart from Comparative Example 2 which was a reference in which no coating layer of an amine compound was provided.
And Comparative Example 1 each had a layer of todecylamine covering the surface of the silver fine particles. As the content of todecylamine was reduced per 100 parts by mass of the silver fine particles, and the uniform coating layer was more likely to be deficient, room temperature Also, the aggregation of the contained silver fine particles occurs, and the printability is also affected,
It is determined that it will decrease.

【0064】[0064]

【発明の効果】本発明は、このように、金,銀,銅など
の金属またはこれらの合金の微粒子が液体中に安定に分
散したペースト組成物、すなわち従来の微粒子のような
凝集体が生じることのないペースト組成物を燒結させて
いるので、多層配線板の回路パターンや、配線板表裏面
間を結ぶ方向の導通用孔部の一層の微細化を図ることが
できる。
As described above, according to the present invention, a paste composition in which fine particles of a metal such as gold, silver or copper or an alloy thereof are stably dispersed in a liquid, that is, an aggregate such as conventional fine particles is produced. Since the paste composition without sintering is sintered, the circuit pattern of the multilayer wiring board and the conductive hole in the direction connecting the front and back surfaces of the wiring board can be further miniaturized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の、銀ナノ粒子を、トルエン, キシレ
ン, テルピネオール, ミネラルスピリットなどに安定に
分散させたペーストが燒結する際の変化の様子を概念的
に示す説明図であり、(a)は印刷前のペースト状態,
(b)は加熱時に分散剤が除去される状態,(c)は樹
脂収縮および低温燒結の状態を示している。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view conceptually showing a change state when a paste in which silver nanoparticles are stably dispersed in toluene, xylene, terpineol, mineral spirit, or the like is sintered, according to the present invention. Is the paste state before printing,
(B) shows the state where the dispersant is removed during heating, and (c) shows the state of resin shrinkage and low-temperature sintering.

【図2】本発明の、銀ナノペーストを用いたビルドアッ
プ配線板の製造プロセス(積み上げ式)を示す断面図で
ある。
FIG. 2 is a cross-sectional view illustrating a manufacturing process (stacking type) of a build-up wiring board using silver nanopaste according to the present invention.

【図3】本発明の、銀ナノペーストを用いたビルドアッ
プ配線板の製造プロセス(両面印刷式)を示す断面図で
ある。
FIG. 3 is a cross-sectional view illustrating a manufacturing process (double-sided printing type) of a build-up wiring board using silver nanopaste according to the present invention.

【図4】本発明の、銀ナノペーストを用いたビルドアッ
プ配線板の製造プロセス(ドリル穴あけ式)を示す断面
図である。
FIG. 4 is a cross-sectional view showing a manufacturing process (drilling type) of a build-up wiring board using silver nanopaste according to the present invention.

【図5】本発明の、銀ナノペーストの特性を示す説明図
である。
FIG. 5 is an explanatory diagram showing characteristics of a silver nanopaste of the present invention.

【符号の説明】[Explanation of symbols]

1:銀ナノ粒子 2:分散剤 3:有機バインダー 4:捕捉物質 11:コア基板 12:第1のビアホール 13:銀ナノペースト 14:フォトレジスト 15:第2のビアホール 16:銀ナノペースト 17:フォトレジスト 18:第3のビアホール 19:銀ナノペースト 21,21′:コア基板 22:ビアホール22 23,23′:銀ナノペースト 31:プリプレグなどの接合体 32:ビアホール 33:従来の銀ペースト 41:コア基板 42:銀ナノペースト 43:フォトレジスト 44:第1のビアホール 45:第2のビアホール 46:銀ナノペースト 1: Silver nanoparticles 2: Dispersant 3: Organic binder 4: Capture material 11: Core substrate 12: First via hole 13: Silver nano paste 14: Photo resist 15: Second via hole 16: Silver nano paste 17: Photo Resist 18: Third via hole 19: Silver nanopaste 21, 21 ': Core substrate 22: Via hole 22 23, 23': Silver nanopaste 31: Joint such as prepreg 32: Via hole 33: Conventional silver paste 41: Core Substrate 42: Silver nanopaste 43: Photoresist 44: First via hole 45: Second via hole 46: Silver nanopaste

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 5/14 H01B 5/14 Z H05K 1/09 H05K 1/09 B (72)発明者 松葉 頼重 茨城県つくば市東光台五丁目9番の3 ハ リマ化成株式会社筑波研究所内 (72)発明者 畑 憲明 茨城県つくば市東光台五丁目9番の3 ハ リマ化成株式会社筑波研究所内 Fターム(参考) 4E351 AA01 AA03 BB01 BB31 CC11 DD04 DD05 DD06 DD08 DD10 DD11 DD12 DD14 DD17 DD19 DD20 DD21 DD52 EE25 GG20 4K018 BA01 BA03 BA04 BA09 BA13 BB05 BC29 GA04 KA33 5E346 AA02 AA12 AA15 AA32 AA43 CC08 CC31 CC32 CC36 CC37 CC38 CC39 DD03 DD34 EE32 EE35 FF01 FF18 GG02 GG15 GG19 GG22 HH26 5G301 DA03 DA05 DA06 DA07 DA10 DA11 DA12 DA13 DA14 DA15 DA55 DA60 DD01 5G307 FB02 FC10 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01B 5/14 H01B 5/14 Z H05K 1/09 H05K 1/09 B (72) Inventor Norishige Matsuba Ibaraki 3-9 Harima Chemicals Co., Ltd., Tsukuba Research Laboratories, 5-9-1, Tokodai, Tsukuba, Japan (72) Inventor Noriaki Hata 3-9-1 Harima Chemicals Co., Ltd., Tsukuba Research Laboratories, F-term (reference) ) 4E351 AA01 AA03 BB01 BB31 CC11 DD04 DD05 DD06 DD08 DD10 DD11 DD12 DD14 DD17 DD19 DD20 DD21 DD52 EE25 GG20 4K018 BA01 BA03 BA04 BA09 BA13 BB05 BC29 GA04 KA33 5E346 AA02 AA12 AA15 AA32 AA43 CC08 CC31 CC32 CC31 CC38 FF18 GG02 GG15 GG19 GG22 HH26 5G301 DA03 DA05 DA06 DA07 DA10 DA11 DA12 DA13 DA14 DA15 DA55 DA60 DD01 5G307 FB02 FC10

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が1〜100nmである金属微
粒子が、その表面を、当該金属微粒子に含まれる金属元
素と配位可能な有機化合物で被覆されて、液体中に安定
に分散したペースト組成物を、250℃以下の温度で燒
結することにより得られる回路パターンを、配線板表面
部分に形成した、ことを特徴とする多層配線板。
1. A paste in which fine metal particles having an average particle diameter of 1 to 100 nm are coated with an organic compound capable of coordinating with a metal element contained in the fine metal particles, and are stably dispersed in a liquid. A multilayer wiring board, wherein a circuit pattern obtained by sintering the composition at a temperature of 250 ° C. or less is formed on the surface of the wiring board.
【請求項2】 平均粒径が1〜100nmである金属微
粒子が、その表面を、当該金属微粒子に含まれる金属元
素と配位可能な有機化合物で被覆されて、液体中に安定
に分散したペースト組成物を、250℃以下の温度で燒
結することにより得られる導電部を、配線板表裏面間を
結ぶ方向の導通用孔部に形成した、ことを特徴とする多
層配線板。
2. A paste in which metal fine particles having an average particle size of 1 to 100 nm are coated with an organic compound capable of coordinating with a metal element contained in the metal fine particles, and are stably dispersed in a liquid. A multilayer wiring board, wherein a conductive part obtained by sintering the composition at a temperature of 250 ° C. or less is formed in a conduction hole in a direction connecting the front and back surfaces of the wiring board.
【請求項3】 前記金属微粒子が、金,銀,銅,白金,
パラジウム,ロジウム,オスミウム,ルテニウム,イリ
ジウム,鉄,錫,亜鉛,コバルト,ニッケル,クロム,
チタン,タンタル,タングステン,インジウム,ケイ素
の中の少なくとも1種類の金属の微粒子、または2種類
以上の金属からなる合金の微粒子である、ことを特徴と
する請求項1または2記載の多層配線板。
3. The method according to claim 2, wherein the metal fine particles are gold, silver, copper, platinum,
Palladium, rhodium, osmium, ruthenium, iridium, iron, tin, zinc, cobalt, nickel, chromium,
3. The multilayer wiring board according to claim 1, wherein the multilayer wiring board is fine particles of at least one kind of metal among titanium, tantalum, tungsten, indium, and silicon, or fine particles of an alloy composed of two or more kinds of metals.
【請求項4】 平均粒径が1〜100nmである金属微
粒子が、その表面を、当該金属微粒子に含まれる金属元
素と配位可能な有機化合物で被覆されて、液体中に安定
に分散したペースト組成物で、配線板表面部分に回路パ
ターンを描画し、 配線板を250℃以下の温度で加熱することにより前記
被覆層を除去して、この描画回路パターンの前記金属微
粒子同士を燒結させる、ことを特徴とする多層配線板の
形成方法。
4. A paste in which fine metal particles having an average particle diameter of 1 to 100 nm are coated on the surface with an organic compound capable of coordinating with a metal element contained in the fine metal particles, and are stably dispersed in a liquid. Drawing a circuit pattern on the surface of the wiring board with the composition, removing the coating layer by heating the wiring board at a temperature of 250 ° C. or less, and sintering the metal fine particles of the drawn circuit pattern. A method for forming a multilayer wiring board, comprising:
【請求項5】 平均粒径が1〜100nmである金属微
粒子が、その表面を、当該金属微粒子に含まれる金属元
素と配位可能な有機化合物で被覆されて、液体中に安定
に分散したペースト組成物を、配線板表裏面間を結ぶ方
向の導通用孔部に充填し、 配線板を250℃以下の温度で加熱することにより前記
被覆層を除去して、この導通用孔部の前記金属微粒子同
士を燒結させる、ことを特徴とする多層配線板の形成方
法。
5. A paste in which metal fine particles having an average particle diameter of 1 to 100 nm are coated on their surface with an organic compound capable of coordinating with a metal element contained in the metal fine particles, and are stably dispersed in a liquid. The composition is filled in a conductive hole in a direction connecting the front and back surfaces of the wiring board, and the wiring layer is heated at a temperature of 250 ° C. or less to remove the coating layer, and the metal of the conductive hole is removed. A method for forming a multilayer wiring board, comprising sintering fine particles.
【請求項6】 前記金属微粒子が、金,銀,銅,白金,
パラジウム,ロジウム,オスミウム,ルテニウム,イリ
ジウム,鉄,錫,亜鉛,コバルト,ニッケル,クロム,
チタン,タンタル,タングステン,インジウム,ケイ素
の中の少なくとも1種類の金属の微粒子、または2種類
以上の金属からなる合金の微粒子である、ことを特徴と
する請求項4または5記載の多層配線板の形成方法。
6. The method according to claim 1, wherein the metal fine particles are gold, silver, copper, platinum,
Palladium, rhodium, osmium, ruthenium, iridium, iron, tin, zinc, cobalt, nickel, chromium,
6. The multi-layer wiring board according to claim 4, wherein the multi-layer wiring board is a fine particle of at least one kind of metal among titanium, tantalum, tungsten, indium and silicon, or a fine particle of an alloy composed of two or more kinds of metals. Forming method.
JP2001102072A 2001-03-30 2001-03-30 Multilayer wiring board and method for forming the same Expired - Lifetime JP3900248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001102072A JP3900248B2 (en) 2001-03-30 2001-03-30 Multilayer wiring board and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001102072A JP3900248B2 (en) 2001-03-30 2001-03-30 Multilayer wiring board and method for forming the same

Publications (2)

Publication Number Publication Date
JP2002299833A true JP2002299833A (en) 2002-10-11
JP3900248B2 JP3900248B2 (en) 2007-04-04

Family

ID=18955313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001102072A Expired - Lifetime JP3900248B2 (en) 2001-03-30 2001-03-30 Multilayer wiring board and method for forming the same

Country Status (1)

Country Link
JP (1) JP3900248B2 (en)

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311265A (en) * 2003-04-09 2004-11-04 Sumitomo Electric Ind Ltd Conductive ink and its manufacturing method
JP2005109467A (en) * 2003-09-12 2005-04-21 National Institute Of Advanced Industrial & Technology Substrate and method of manufacturing the same
WO2005037465A1 (en) * 2003-10-20 2005-04-28 Harima Chemicals, Inc. Fine metal particles and fine metal oxide particles in dry powder form, and use thereof
JP2005135982A (en) * 2003-10-28 2005-05-26 Matsushita Electric Works Ltd Circuit board and manufacturing method therefor
JP2005135920A (en) * 2003-10-29 2005-05-26 Samsung Sdi Co Ltd Electroluminescent element using metallic nanoparticles
JP2005149913A (en) * 2003-11-14 2005-06-09 Mitsui Mining & Smelting Co Ltd Silver paste and its manufacturing method
JP2005174828A (en) * 2003-12-12 2005-06-30 Hitachi Ltd Wiring conductor forming composite and manufacturing method for wiring substrate using the same, wiring substrate
WO2005061598A1 (en) * 2003-12-18 2005-07-07 3M Innovative Properties Company Low temperature sintering nanoparticle compositions
EP1586604A1 (en) * 2004-03-03 2005-10-19 Sumitomo Electric Industries, Ltd. Conductive silver paste and conductive film formed using the same
JP2005317395A (en) * 2004-04-28 2005-11-10 Mitsubishi Materials Corp Conductive material containing metal nanowires and its intended use
JP2006000773A (en) * 2004-06-18 2006-01-05 Seiko Epson Corp Layer-forming method, wiring substrate, electronic device, electro-optical apparatus and layer-forming apparatus
JP2006026602A (en) * 2004-07-21 2006-02-02 Harima Chem Inc Method for forming thin film conductor layer of metallic particulate sintered compact type, and methods for forming metallic wiring and metallic thin film by applying the method
US7033667B2 (en) 2003-12-18 2006-04-25 3M Innovative Properties Company Printed circuits on shrink film
JP2006128161A (en) * 2004-10-26 2006-05-18 Matsushita Electric Ind Co Ltd Light emitting element mounting structure and method of manufacturing the same
JP2006157509A (en) * 2004-11-30 2006-06-15 Kyocera Kinseki Corp Piezoelectric vibrator
JP2006186748A (en) * 2004-12-28 2006-07-13 Daishinku Corp Piezoelectric vibration device
JP2006211089A (en) * 2005-01-26 2006-08-10 Daishinku Corp Piezoelectric vibration device
JP2006208324A (en) * 2005-01-31 2006-08-10 National Institute Of Advanced Industrial & Technology Probe card and its manufacturing method
US7108733B2 (en) 2003-06-20 2006-09-19 Massachusetts Institute Of Technology Metal slurry for electrode formation and production method of the same
JP2006279038A (en) * 2005-03-23 2006-10-12 Samsung Electro-Mechanics Co Ltd Conductive wiring material, manufacturing method of wiring substrate and wiring substrate thereof
JP2006278511A (en) * 2005-03-28 2006-10-12 Matsushita Electric Works Ltd Light emitting device and its manufacturing method
WO2006112129A1 (en) * 2005-04-06 2006-10-26 Murata Manufacturing Co., Ltd. Conductor powder and process for producing the same, and electrically conductive resin composition
KR100660928B1 (en) 2004-09-25 2006-12-26 주식회사 잉크테크 Organic silver ink for direct wiring
JP2007026911A (en) * 2005-07-19 2007-02-01 Dowa Holdings Co Ltd Compound metal powder, its dispersion solution or paste, and manufacturing method thereof
JP2007053212A (en) * 2005-08-17 2007-03-01 Denso Corp Circuit board manufacturing method
JP2007109727A (en) * 2005-10-11 2007-04-26 Sumitomo Electric Ind Ltd Multilayer printed wiring board and method of manufacturing same
JP2007145947A (en) * 2005-11-25 2007-06-14 Mitsuboshi Belting Ltd Electroconductive ink composition and its manufacturing method
US7242573B2 (en) 2004-10-19 2007-07-10 E. I. Du Pont De Nemours And Company Electroconductive paste composition
CN100339914C (en) * 2003-07-23 2007-09-26 夏普株式会社 Silver alloy material, circuit substrate, electronic device, and method for manufacturing circuit substrate
US7276185B2 (en) 2003-10-22 2007-10-02 Denso Corporation Conductor composition, a mounting substrate and a mounting structure utilizing the composition
EP1840244A1 (en) * 2004-12-20 2007-10-03 Ulvac, Inc. Method for forming metal thin film, and metal thin film
JP2007274104A (en) * 2006-03-30 2007-10-18 Daishinku Corp Piezoelectric resonator device and method of manufacturing same
WO2007122925A1 (en) 2006-04-24 2007-11-01 Murata Manufacturing Co., Ltd. Electronic component, electronic component device using same, and method for manufacturing same
JP2007335430A (en) * 2006-06-12 2007-12-27 Alps Electric Co Ltd Circuit board and its production process
JP2008016360A (en) * 2006-07-07 2008-01-24 Nippon Shokubai Co Ltd Manufacturing method of conductive metal coating
JP2008078657A (en) * 2006-09-20 2008-04-03 Samsung Electro Mech Co Ltd Manufacturing method of multilayer print circuit board, multilayer print circuit board and vacuum printer
KR100824717B1 (en) * 2006-04-07 2008-04-24 박종길 Cooling and radiating substrate and method of manufacturing the same
EP1950324A2 (en) 2007-01-26 2008-07-30 Konica Minolta Holdings, Inc. Method of forming metal pattern, and metal salt mixture
JP2008243484A (en) * 2007-03-26 2008-10-09 Toshiba Corp Conductive metal paste, and method of forming metal film
CN100426937C (en) * 2005-04-05 2008-10-15 深圳市王博纳米热能技术有限公司 Titanium nano electrothermal materials
JP2009006337A (en) * 2007-06-26 2009-01-15 Harima Chem Inc Ultrafine solder composition
EP2045028A1 (en) 2007-09-26 2009-04-08 Fujifilm Corporation Metal nanoparticles, method for producing the same, aqueous dispersion, method for manufacturing printed wiring or electrode, and printed wiring board or device
WO2009066396A1 (en) * 2007-11-22 2009-05-28 Asahi Glass Company, Limited Ink for conductive film formation and process for producing printed wiring board
JP2009122229A (en) * 2007-11-13 2009-06-04 Hitachi Cable Ltd Metal coating optical fiber and manufacturing method of the same
EP1995999A3 (en) * 2007-05-23 2009-10-14 Endicott Interconnect Technologies, Inc. Circuitized substrate with conductive paste, electrical assembly including said circuitized substrate and method of making said substrate
JP2009259806A (en) * 2008-03-28 2009-11-05 Furukawa Electric Co Ltd:The Method of manufacturing porous copper sintered film, and porous copper sintered film
US7651782B2 (en) 2006-07-11 2010-01-26 Fujifilm Corporation Method for producing metallic nanoparticles, metallic nanoparticles, and dispersion of the same
WO2010013588A1 (en) * 2008-08-01 2010-02-04 株式会社新川 Metal nano-ink, process for producing the metal nano-ink, and die bonding method and die bonding apparatus using the metal nano-ink
US7658860B2 (en) 2004-01-15 2010-02-09 Panasonic Corporation Metal pattern and process for producing the same
US7704783B2 (en) 2004-10-15 2010-04-27 Panasonic Corporation Method of manufacturing conductive pattern and electronic device, and electronic device
US7718273B2 (en) 2003-01-14 2010-05-18 Sharp Kabushiki Kaisha Wiring material, wiring substrate and manufacturing method thereof, display panel, fine particle thin film material, substrate including thin film layer and manufacturing method thereof
JP2010118168A (en) * 2008-11-11 2010-05-27 Dic Corp Manufacturing method of conductive mold product, conductive mold product, and silver paste used for the same
WO2010067696A1 (en) * 2008-12-08 2010-06-17 コニカミノルタIj株式会社 Ink for metal pattern formation and metal pattern
US7759735B2 (en) 2004-08-20 2010-07-20 Semiconductor Energy Laboratory Co., Ltd. Display device provided with semiconductor element and manufacturing method thereof, and electronic device installed with display device provided with semiconductor element
EP2227075A1 (en) 2009-03-03 2010-09-08 Konica Minolta IJ Technologies, Inc. Forming method of metallic pattern and metallic pattern
US7817402B2 (en) * 2005-03-31 2010-10-19 Tdk Corporation Multilayer ceramic electronic device and method of production of the same
US7879535B2 (en) 2004-03-26 2011-02-01 Fujifilm Corporation Pattern forming method, graft pattern material, conductive pattern forming method and conductive pattern material
JP2011119340A (en) * 2009-12-01 2011-06-16 Harima Chemicals Inc Conductive aluminum paste
US20110193557A1 (en) * 2010-02-11 2011-08-11 Infineon Technologies Ag Current sensor including a sintered metal layer
US8012379B2 (en) 2005-03-23 2011-09-06 Panasonic Corporation Electroconductive bonding material and electric/electronic device using the same
JP2011187764A (en) * 2010-03-10 2011-09-22 Sumitomo Electric Ind Ltd Substrate for printed wiring board, printed wiring board, and method for manufacturing the printed wiring board
JP2011222304A (en) * 2010-04-09 2011-11-04 Hitachi Cable Ltd Metal particulate for conductive metal paste, conductive metal paste and metal film
KR101088103B1 (en) * 2003-10-28 2011-11-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device, and television receiver
US8348134B2 (en) * 2008-01-17 2013-01-08 Applied Nanoparticle Laboratory Corporation Composite silver nanoparticle, composite silver nanopaste, bonding method and patterning method
JP5182296B2 (en) * 2008-02-07 2013-04-17 株式会社村田製作所 Manufacturing method of electronic component device
JP2013153073A (en) * 2012-01-25 2013-08-08 Toshiba Corp Electronic device and wiring forming method
TWI412313B (en) * 2005-10-11 2013-10-11 Sumitomo Electric Industries Multilayer printing wire board and method for producting the same
JP2014505582A (en) * 2010-12-13 2014-03-06 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク Inkjet apparatus comprising means for jetting gas with ink and associated inkjet method
JP2014055232A (en) * 2012-09-12 2014-03-27 Sumitomo Seika Chem Co Ltd Metal paste composition
JP2014067612A (en) * 2012-09-26 2014-04-17 Toppan Printing Co Ltd Conductive film and method of producing the same, and laminate, electronic device, and touch panel
CN104053308A (en) * 2014-06-06 2014-09-17 深圳市宇顺电子股份有限公司 Manufacturing method of touch screen lead wire conducting circuit
US9011762B2 (en) 2006-07-21 2015-04-21 Valtion Teknillinen Tutkimuskeskus Method for manufacturing conductors and semiconductors
JPWO2014006787A1 (en) * 2012-07-04 2016-06-02 パナソニックIpマネジメント株式会社 Electronic component mounting structure, IC card, COF package
CN106128966A (en) * 2016-07-15 2016-11-16 常州银河世纪微电子有限公司 Environmental protection welded encapsulation technique
US10076028B2 (en) 2015-01-22 2018-09-11 Sumitomo Electric Industries, Ltd. Substrate for printed circuit board, printed circuit board, and method for producing printed circuit board
US10076032B2 (en) 2014-03-20 2018-09-11 Sumitomo Electric Industries, Ltd. Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
US10237976B2 (en) 2014-03-27 2019-03-19 Sumitomo Electric Industries, Ltd. Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
JP2022014286A (en) * 2020-07-06 2022-01-19 トヨタ自動車株式会社 Method for manufacturing wiring board, and wiring board
US11903141B2 (en) 2020-08-21 2024-02-13 Toyota Jidosha Kabushiki Kaisha Method for manufacturing wiring board

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7075785B2 (en) * 2018-03-08 2022-05-26 スタンレー電気株式会社 Circuit boards, electronic circuit devices, and methods for manufacturing circuit boards

Cited By (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8088495B2 (en) 2003-01-14 2012-01-03 Sharp Kabushiki Kaisha Wiring material, wiring substrate and manufacturing method thereof, display panel, fine particle thin film material, substrate including thin film layer and manufacturing method thereof
US7718273B2 (en) 2003-01-14 2010-05-18 Sharp Kabushiki Kaisha Wiring material, wiring substrate and manufacturing method thereof, display panel, fine particle thin film material, substrate including thin film layer and manufacturing method thereof
JP2004311265A (en) * 2003-04-09 2004-11-04 Sumitomo Electric Ind Ltd Conductive ink and its manufacturing method
US7108733B2 (en) 2003-06-20 2006-09-19 Massachusetts Institute Of Technology Metal slurry for electrode formation and production method of the same
CN100339914C (en) * 2003-07-23 2007-09-26 夏普株式会社 Silver alloy material, circuit substrate, electronic device, and method for manufacturing circuit substrate
JP4677600B2 (en) * 2003-09-12 2011-04-27 独立行政法人産業技術総合研究所 Substrate and manufacturing method thereof
CN102970829A (en) * 2003-09-12 2013-03-13 独立行政法人产业技术综合研究所 Substrate and method for manufacturing same
CN102970829B (en) * 2003-09-12 2016-01-20 独立行政法人产业技术综合研究所 The preparation method of substrate
JP2005109467A (en) * 2003-09-12 2005-04-21 National Institute Of Advanced Industrial & Technology Substrate and method of manufacturing the same
EP1672971B1 (en) * 2003-09-12 2017-11-01 National Institute of Advanced Industrial Science and Technology Method for manufacturing a substrate
EP1672971A1 (en) * 2003-09-12 2006-06-21 National Institute of Advanced Industrial Science and Technology Substrate and method for manufacturing same
WO2005037465A1 (en) * 2003-10-20 2005-04-28 Harima Chemicals, Inc. Fine metal particles and fine metal oxide particles in dry powder form, and use thereof
US9233420B2 (en) 2003-10-20 2016-01-12 Harima Chemicals, Inc. Fine metal particles and fine metal oxide particles in dry powder form, and use thereof
KR100771393B1 (en) * 2003-10-20 2007-10-30 하리마 카세이 가부시키가이샤 Fine metal particles and fine metal oxide particles in dry powder form, and use thereof
US8758475B2 (en) 2003-10-20 2014-06-24 Harima Chemicals, Inc. Fine metal particles and fine metal oxide particles in dry powder form, and use thereof
US7807073B2 (en) 2003-10-22 2010-10-05 Denso Corporation Conductor composition, a mounting substrate and a mounting structure utilizing the composition
US7276185B2 (en) 2003-10-22 2007-10-02 Denso Corporation Conductor composition, a mounting substrate and a mounting structure utilizing the composition
KR101088103B1 (en) * 2003-10-28 2011-11-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device, and television receiver
KR101123097B1 (en) 2003-10-28 2012-03-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing the display device
JP2005135982A (en) * 2003-10-28 2005-05-26 Matsushita Electric Works Ltd Circuit board and manufacturing method therefor
JP4657679B2 (en) * 2003-10-29 2011-03-23 三星モバイルディスプレイ株式會社 Electroluminescent device using nano metal particles
JP2005135920A (en) * 2003-10-29 2005-05-26 Samsung Sdi Co Ltd Electroluminescent element using metallic nanoparticles
JP4606012B2 (en) * 2003-11-14 2011-01-05 三井金属鉱業株式会社 Silver paste
JP2005149913A (en) * 2003-11-14 2005-06-09 Mitsui Mining & Smelting Co Ltd Silver paste and its manufacturing method
US7459201B2 (en) 2003-12-12 2008-12-02 Hitachi Cable, Ltd. Compound for forming wiring conductor, fabrication method of circuit board using the same and circuit board
JP2005174828A (en) * 2003-12-12 2005-06-30 Hitachi Ltd Wiring conductor forming composite and manufacturing method for wiring substrate using the same, wiring substrate
US7033667B2 (en) 2003-12-18 2006-04-25 3M Innovative Properties Company Printed circuits on shrink film
WO2005061598A1 (en) * 2003-12-18 2005-07-07 3M Innovative Properties Company Low temperature sintering nanoparticle compositions
US7658860B2 (en) 2004-01-15 2010-02-09 Panasonic Corporation Metal pattern and process for producing the same
EP1586604A1 (en) * 2004-03-03 2005-10-19 Sumitomo Electric Industries, Ltd. Conductive silver paste and conductive film formed using the same
US7198736B2 (en) 2004-03-03 2007-04-03 Sumitomo Electric Industries, Ltd. Conductive silver paste and conductive film formed using the same
US7879535B2 (en) 2004-03-26 2011-02-01 Fujifilm Corporation Pattern forming method, graft pattern material, conductive pattern forming method and conductive pattern material
JP4524745B2 (en) * 2004-04-28 2010-08-18 三菱マテリアル株式会社 Metal nanowire-containing conductive material and use thereof
JP2005317395A (en) * 2004-04-28 2005-11-10 Mitsubishi Materials Corp Conductive material containing metal nanowires and its intended use
JP2006000773A (en) * 2004-06-18 2006-01-05 Seiko Epson Corp Layer-forming method, wiring substrate, electronic device, electro-optical apparatus and layer-forming apparatus
JP2006026602A (en) * 2004-07-21 2006-02-02 Harima Chem Inc Method for forming thin film conductor layer of metallic particulate sintered compact type, and methods for forming metallic wiring and metallic thin film by applying the method
JP4535797B2 (en) * 2004-07-21 2010-09-01 ハリマ化成株式会社 Method for forming metal fine-particle sintered body type thin film conductor layer, metal wiring using the method, and method for forming metal thin film
US7759735B2 (en) 2004-08-20 2010-07-20 Semiconductor Energy Laboratory Co., Ltd. Display device provided with semiconductor element and manufacturing method thereof, and electronic device installed with display device provided with semiconductor element
US8003420B2 (en) 2004-08-20 2011-08-23 Semiconductor Energy Laboratory Co., Ltd. Display device provided with semiconductor element and manufacturing method thereof, and electronic device installed with display device provided with semiconductor element
KR100660928B1 (en) 2004-09-25 2006-12-26 주식회사 잉크테크 Organic silver ink for direct wiring
US7704783B2 (en) 2004-10-15 2010-04-27 Panasonic Corporation Method of manufacturing conductive pattern and electronic device, and electronic device
US7242573B2 (en) 2004-10-19 2007-07-10 E. I. Du Pont De Nemours And Company Electroconductive paste composition
JP4539284B2 (en) * 2004-10-26 2010-09-08 パナソニック株式会社 Light emitting element mounting structure and method for manufacturing light emitting element mounting structure
JP2006128161A (en) * 2004-10-26 2006-05-18 Matsushita Electric Ind Co Ltd Light emitting element mounting structure and method of manufacturing the same
JP2006157509A (en) * 2004-11-30 2006-06-15 Kyocera Kinseki Corp Piezoelectric vibrator
EP1840244A4 (en) * 2004-12-20 2010-03-31 Ulvac Inc Method for forming metal thin film, and metal thin film
EP1840244A1 (en) * 2004-12-20 2007-10-03 Ulvac, Inc. Method for forming metal thin film, and metal thin film
JP2006186748A (en) * 2004-12-28 2006-07-13 Daishinku Corp Piezoelectric vibration device
JP2006211089A (en) * 2005-01-26 2006-08-10 Daishinku Corp Piezoelectric vibration device
JP2006208324A (en) * 2005-01-31 2006-08-10 National Institute Of Advanced Industrial & Technology Probe card and its manufacturing method
US8012379B2 (en) 2005-03-23 2011-09-06 Panasonic Corporation Electroconductive bonding material and electric/electronic device using the same
JP2006279038A (en) * 2005-03-23 2006-10-12 Samsung Electro-Mechanics Co Ltd Conductive wiring material, manufacturing method of wiring substrate and wiring substrate thereof
JP2006278511A (en) * 2005-03-28 2006-10-12 Matsushita Electric Works Ltd Light emitting device and its manufacturing method
US7817402B2 (en) * 2005-03-31 2010-10-19 Tdk Corporation Multilayer ceramic electronic device and method of production of the same
CN100426937C (en) * 2005-04-05 2008-10-15 深圳市王博纳米热能技术有限公司 Titanium nano electrothermal materials
JPWO2006112129A1 (en) * 2005-04-06 2008-12-04 株式会社村田製作所 Conductor powder and method for producing the same, conductive resin composition, cured conductive resin, electronic component and electronic component module
WO2006112129A1 (en) * 2005-04-06 2006-10-26 Murata Manufacturing Co., Ltd. Conductor powder and process for producing the same, and electrically conductive resin composition
JP4748158B2 (en) * 2005-04-06 2011-08-17 株式会社村田製作所 Conductive resin cured product and electronic component module
JP2007026911A (en) * 2005-07-19 2007-02-01 Dowa Holdings Co Ltd Compound metal powder, its dispersion solution or paste, and manufacturing method thereof
JP2007053212A (en) * 2005-08-17 2007-03-01 Denso Corp Circuit board manufacturing method
DE102006037070B4 (en) * 2005-08-17 2014-03-27 Denso Corporation Method for producing a circuit board
US7458150B2 (en) 2005-08-17 2008-12-02 Denso Corporation Method of producing circuit board
JP2007109727A (en) * 2005-10-11 2007-04-26 Sumitomo Electric Ind Ltd Multilayer printed wiring board and method of manufacturing same
TWI412313B (en) * 2005-10-11 2013-10-11 Sumitomo Electric Industries Multilayer printing wire board and method for producting the same
JP2007145947A (en) * 2005-11-25 2007-06-14 Mitsuboshi Belting Ltd Electroconductive ink composition and its manufacturing method
JP2007274104A (en) * 2006-03-30 2007-10-18 Daishinku Corp Piezoelectric resonator device and method of manufacturing same
KR100824717B1 (en) * 2006-04-07 2008-04-24 박종길 Cooling and radiating substrate and method of manufacturing the same
US7960834B2 (en) 2006-04-24 2011-06-14 Murata Manufacturing Co., Ltd. Electronic element that includes multilayered bonding interface between first electrode having aluminum-containing surface and second electrode composed of metal nanoparticle sintered body
WO2007122925A1 (en) 2006-04-24 2007-11-01 Murata Manufacturing Co., Ltd. Electronic component, electronic component device using same, and method for manufacturing same
JP2007335430A (en) * 2006-06-12 2007-12-27 Alps Electric Co Ltd Circuit board and its production process
JP2008016360A (en) * 2006-07-07 2008-01-24 Nippon Shokubai Co Ltd Manufacturing method of conductive metal coating
US7651782B2 (en) 2006-07-11 2010-01-26 Fujifilm Corporation Method for producing metallic nanoparticles, metallic nanoparticles, and dispersion of the same
US9011762B2 (en) 2006-07-21 2015-04-21 Valtion Teknillinen Tutkimuskeskus Method for manufacturing conductors and semiconductors
JP2008078657A (en) * 2006-09-20 2008-04-03 Samsung Electro Mech Co Ltd Manufacturing method of multilayer print circuit board, multilayer print circuit board and vacuum printer
JP4555323B2 (en) * 2006-09-20 2010-09-29 三星電機株式会社 Multilayer printed circuit board manufacturing method, multilayer printed circuit board, and vacuum printing apparatus
EP1950324A2 (en) 2007-01-26 2008-07-30 Konica Minolta Holdings, Inc. Method of forming metal pattern, and metal salt mixture
JP2008243484A (en) * 2007-03-26 2008-10-09 Toshiba Corp Conductive metal paste, and method of forming metal film
EP1995999A3 (en) * 2007-05-23 2009-10-14 Endicott Interconnect Technologies, Inc. Circuitized substrate with conductive paste, electrical assembly including said circuitized substrate and method of making said substrate
JP2009006337A (en) * 2007-06-26 2009-01-15 Harima Chem Inc Ultrafine solder composition
EP2045028A1 (en) 2007-09-26 2009-04-08 Fujifilm Corporation Metal nanoparticles, method for producing the same, aqueous dispersion, method for manufacturing printed wiring or electrode, and printed wiring board or device
JP2009122229A (en) * 2007-11-13 2009-06-04 Hitachi Cable Ltd Metal coating optical fiber and manufacturing method of the same
WO2009066396A1 (en) * 2007-11-22 2009-05-28 Asahi Glass Company, Limited Ink for conductive film formation and process for producing printed wiring board
US8459529B2 (en) 2008-01-17 2013-06-11 Applied Nanoparticle Laboratory Corporation Production method of composite silver nanoparticle
US8348134B2 (en) * 2008-01-17 2013-01-08 Applied Nanoparticle Laboratory Corporation Composite silver nanoparticle, composite silver nanopaste, bonding method and patterning method
US8906317B2 (en) 2008-01-17 2014-12-09 Applied Nanoparticle Laboratory Corporation Production apparatus of composite silver nanoparticle
JP5182296B2 (en) * 2008-02-07 2013-04-17 株式会社村田製作所 Manufacturing method of electronic component device
JP2009259806A (en) * 2008-03-28 2009-11-05 Furukawa Electric Co Ltd:The Method of manufacturing porous copper sintered film, and porous copper sintered film
KR101039655B1 (en) 2008-08-01 2011-06-08 가부시키가이샤 신가와 Metal nano ink, manufacturing method thereof and die bonding method and die bonding apparatus using the metal nano ink
US8328928B2 (en) 2008-08-01 2012-12-11 Shinkawa Ltd. Metal nanoink and process for producing the metal nanoink, and die bonding method and die bonding apparatus using the metal nanoink
WO2010013588A1 (en) * 2008-08-01 2010-02-04 株式会社新川 Metal nano-ink, process for producing the metal nano-ink, and die bonding method and die bonding apparatus using the metal nano-ink
JP2010118168A (en) * 2008-11-11 2010-05-27 Dic Corp Manufacturing method of conductive mold product, conductive mold product, and silver paste used for the same
WO2010067696A1 (en) * 2008-12-08 2010-06-17 コニカミノルタIj株式会社 Ink for metal pattern formation and metal pattern
US8440263B2 (en) 2009-03-03 2013-05-14 Konica Minolta Ij Technologies, Inc. Forming method of metallic pattern and metallic pattern
EP2227075A1 (en) 2009-03-03 2010-09-08 Konica Minolta IJ Technologies, Inc. Forming method of metallic pattern and metallic pattern
JP2011119340A (en) * 2009-12-01 2011-06-16 Harima Chemicals Inc Conductive aluminum paste
US8704514B2 (en) * 2010-02-11 2014-04-22 Infineon Technologies Ag Current sensor including a sintered metal layer
US20110193557A1 (en) * 2010-02-11 2011-08-11 Infineon Technologies Ag Current sensor including a sintered metal layer
JP2011187764A (en) * 2010-03-10 2011-09-22 Sumitomo Electric Ind Ltd Substrate for printed wiring board, printed wiring board, and method for manufacturing the printed wiring board
US8852463B2 (en) 2010-04-09 2014-10-07 Hitachi Metals, Ltd. Metal fine particle for conductive metal paste, conductive metal paste and metal film
JP2011222304A (en) * 2010-04-09 2011-11-04 Hitachi Cable Ltd Metal particulate for conductive metal paste, conductive metal paste and metal film
JP2014505582A (en) * 2010-12-13 2014-03-06 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク Inkjet apparatus comprising means for jetting gas with ink and associated inkjet method
JP2013153073A (en) * 2012-01-25 2013-08-08 Toshiba Corp Electronic device and wiring forming method
JPWO2014006787A1 (en) * 2012-07-04 2016-06-02 パナソニックIpマネジメント株式会社 Electronic component mounting structure, IC card, COF package
JP2014055232A (en) * 2012-09-12 2014-03-27 Sumitomo Seika Chem Co Ltd Metal paste composition
JP2014067612A (en) * 2012-09-26 2014-04-17 Toppan Printing Co Ltd Conductive film and method of producing the same, and laminate, electronic device, and touch panel
US10076032B2 (en) 2014-03-20 2018-09-11 Sumitomo Electric Industries, Ltd. Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
US10237976B2 (en) 2014-03-27 2019-03-19 Sumitomo Electric Industries, Ltd. Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
CN104053308A (en) * 2014-06-06 2014-09-17 深圳市宇顺电子股份有限公司 Manufacturing method of touch screen lead wire conducting circuit
US10076028B2 (en) 2015-01-22 2018-09-11 Sumitomo Electric Industries, Ltd. Substrate for printed circuit board, printed circuit board, and method for producing printed circuit board
CN106128966A (en) * 2016-07-15 2016-11-16 常州银河世纪微电子有限公司 Environmental protection welded encapsulation technique
JP2022014286A (en) * 2020-07-06 2022-01-19 トヨタ自動車株式会社 Method for manufacturing wiring board, and wiring board
US11700686B2 (en) 2020-07-06 2023-07-11 Toyota Jidosha Kabushiki Kaisha Method for manufacturing wiring board
JP7354944B2 (en) 2020-07-06 2023-10-03 トヨタ自動車株式会社 Manufacturing method of wiring board
US11903141B2 (en) 2020-08-21 2024-02-13 Toyota Jidosha Kabushiki Kaisha Method for manufacturing wiring board

Also Published As

Publication number Publication date
JP3900248B2 (en) 2007-04-04

Similar Documents

Publication Publication Date Title
JP2002299833A (en) Multilayered wiring board and its forming method
US8063315B2 (en) Circuitized substrate with conductive paste, electrical assembly including said circuitized substrate and method of making said substrate
US7442879B2 (en) Circuitized substrate with solder-coated microparticle paste connections, multilayered substrate assembly, electrical assembly and information handling system utilizing same and method of making said substrate
US6379745B1 (en) Low temperature method and compositions for producing electrical conductors
US7115218B2 (en) Low temperature method and composition for producing electrical conductors
JP3585244B2 (en) Low temperature method and composition for conductor production
JP5141249B2 (en) Conductive paste and multilayer printed wiring board using the same
KR20090047328A (en) Conductive paste and printed circuit board using the same
US20150382445A1 (en) Double-sided flexible printed circuit board including plating layer and method of manufacturing the same
JP4078990B2 (en) Conductive paste, circuit forming substrate using the conductive paste, and manufacturing method thereof
WO2004066316A1 (en) Conductive paste, method for producing same, circuit board using such conductive paste and method for producing same
KR101489206B1 (en) Double side flexible printed circuit board having plating layer and method for manufacturing the same
JP4151541B2 (en) Wiring board and manufacturing method thereof
KR100635394B1 (en) Etching resist precursor compound, fabrication method of circuit board using the same and circuit board
WO2003003381A1 (en) Low temperature method and compositions for producing electrical conductors
JP2011228481A (en) Conductive paste, flexible printed-wiring board and electronic equipment
JP5076696B2 (en) Liquid composition, resistor, resistor element and wiring board
JP2007165708A (en) Print resistor, print ink, and wiring board
JP2008300846A (en) Circuit board which has internal register, and electric assembly using this circuit board
JP2004264031A (en) Method for measuring conductive particle
JP4844113B2 (en) Liquid composition, resistor film and method for forming the same, resistor element and wiring board
JP2002245873A (en) Formation method of low resistance conductor
JP4763813B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP4078991B2 (en) Method for producing conductive paste
Das et al. Nanoparticles in Microvias

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3900248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term