JP4517230B2 - Composition containing fine metal particles and use thereof - Google Patents

Composition containing fine metal particles and use thereof Download PDF

Info

Publication number
JP4517230B2
JP4517230B2 JP2004252555A JP2004252555A JP4517230B2 JP 4517230 B2 JP4517230 B2 JP 4517230B2 JP 2004252555 A JP2004252555 A JP 2004252555A JP 2004252555 A JP2004252555 A JP 2004252555A JP 4517230 B2 JP4517230 B2 JP 4517230B2
Authority
JP
Japan
Prior art keywords
metal
metal fine
nanorods
fine particle
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004252555A
Other languages
Japanese (ja)
Other versions
JP2006070300A (en
Inventor
寛樹 平田
佳明 高田
純悦 佐藤
大剛 溝口
聖人 室内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Mitsubishi Materials Corp
Original Assignee
Dai Nippon Toryo KK
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK, Mitsubishi Materials Corp filed Critical Dai Nippon Toryo KK
Priority to JP2004252555A priority Critical patent/JP4517230B2/en
Publication of JP2006070300A publication Critical patent/JP2006070300A/en
Application granted granted Critical
Publication of JP4517230B2 publication Critical patent/JP4517230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ナノサイズのロッド状金属微粒子(金属ナノロッド)と球状の金属微粒子(金属ナノ粒子)を含有する組成物、およびその用途に関する。 The present invention relates to a composition containing nano-sized rod-shaped metal fine particles (metal nanorods) and spherical metal fine particles (metal nanoparticles), and uses thereof.

近年、情報端末の急速な小型化に伴い、実装配線幅の狭ピッチ化が進んでいる。従来のサブミクロンサイズの金属粒子を含む導電性ペーストを用いてピッチ幅の狭い配線を形成すると、導電性のばらつきが顕著になるため、ナノサイズの金属微粒子(金属ナノ粒子と云う)を使用した導電性ペーストの開発が進んでいる。また、配線の形成方法も従来の印刷法に代えて直接描画法であるインクジェット法の利用が検討されており、この方法に適する金属微粒子が求められている。 In recent years, with the rapid miniaturization of information terminals, the mounting wiring width has been narrowed. When wiring with a narrow pitch width is formed using a conventional conductive paste containing metal particles of submicron size, variation in conductivity becomes significant, so nano-sized metal fine particles (called metal nanoparticles) were used. Development of conductive paste is in progress. Also, the use of an ink jet method, which is a direct drawing method, instead of the conventional printing method has been studied as a method for forming the wiring, and metal fine particles suitable for this method are required.

例えば、特開2004−39379号公報には銀粉及び銀で表面被覆された金属粒子からなる群より選ばれる少なくとも1種の銀粒子(A)、銀原子と有機部分がヘテロ原子を介して結合した構造を有する含銀有機化合物(B)、及び有機絶縁樹脂からなるバインダー(C)を含有する導電性ペーストが示されている。また、特開2002−266002号公報には金属微粒子(金、銀、銅、白金など)がその表面部分を高分子化合物で被覆した様態により分散している金属微粒子含有組成物が示されている。
特開2004−39379号公報 特開2002−266002号公報
For example, in Japanese Patent Application Laid-Open No. 2004-39379, at least one kind of silver particles (A) selected from the group consisting of silver powder and metal particles surface-coated with silver, a silver atom and an organic part are bonded via a hetero atom. A conductive paste containing a silver-containing organic compound (B) having a structure and a binder (C) made of an organic insulating resin is shown. Japanese Patent Laid-Open No. 2002-266002 discloses a composition containing metal fine particles in which metal fine particles (gold, silver, copper, platinum, etc.) are dispersed in a state where the surface portion is coated with a polymer compound. .
JP 2004-39379 A JP 2002-266002 A

球状金属ナノ粒子を配線材料として使用する場合、ペーストや溶液中での分散安定性を向上させるため、分散剤の使用量が多くなる傾向があり、導電性にばらつきが生じるとともに、低温焼成域においては高い導電性を得にくいと云う問題がある。また、導電性確保のため、導電性ペースト中の金属含有量をできるだけ高くする必要があるが、高濃度領域においては、経時安定性に課題がある。 When spherical metal nanoparticles are used as wiring materials, the amount of dispersant used tends to increase in order to improve dispersion stability in pastes and solutions. Has a problem that it is difficult to obtain high conductivity. In order to ensure conductivity, it is necessary to increase the metal content in the conductive paste as much as possible, but there is a problem in stability over time in a high concentration region.

本発明は、上記課題を解決したものであり、金属ナノロッドと球状の金属ナノ粒子とを混合して使用することによって、これら金属微粒子を含有する組成物が低温焼成処理によっても安定して高い導電性を有するようにしたものである。 The present invention solves the above problems, and by using a mixture of metal nanorods and spherical metal nanoparticles, the composition containing these metal fine particles can be stably and highly conductive even by low-temperature firing treatment. It is made to have sex.

本発明によれば以下の構成からなる金属微粒子含有組成物とその用途が提供される。
〔1〕アスペクト比が5〜10であって長軸が100nm以下のロッド状の金属微粒子(金属ナノロッド)と、平均一次粒子径が1nm以上〜10nm以下の球状の金属微粒子(金属ナノ粒子)を含有し、電解法、化学的還元法、または光還元法によって製造された金属ナノロッドと、化学的還元法によって製造された金属ナノ粒子とを混合したものであって、上記金属ナノロッドと上記金属ナノ粒子とを、窒素原子および/または硫黄原子を含有する分散剤と共に、水または有機溶媒に分散させてなり、導電性材料ないし光吸収材料として用いられることを特徴とする金属微粒子含有組成物。
〔2〕金属ナノロッドおよび金属ナノ粒子を、分散剤と共に水または有機溶媒に分散させたものに、さらにバインダー(樹脂)を加えてなる上記[1]に記載する金属微粒子含有組成物。
〔3〕金属ナノロッドと金属ナノ粒子の重量比率(金属ナノロッド/金属ナノ粒子)が95/5〜10/90である上記[1]または上記[2]の何れかに記載する金属微粒子含有組成物。
〔4〕金属ナノロッドと金属ナノ粒子の含有量が1重量%〜95重量%である上記[1]〜上記[3]の何れかに記載する金属微粒子含有組成物。
〔5〕上記[1]〜上記[4]の何れかに記載する金属微粒子含有組成物を含有し、金属微粒子による導電性に基づく配線材料、電極材料、または導電性塗料ないし該導電性塗料によって形成された導電性塗膜、または電磁波シールド材。
〔6〕上記[1]〜上記[4]の何れかに記載する金属微粒子含有組成物を含有し、金属微粒子による光吸収性に基づく可視光線・近赤外光吸収フィルター、または該光吸収性を偽造判定に用いる偽造防止インク材料、または該光吸収性を表面増強赤外分光法や表面増強蛍光分光法に基づくセンサーに用いる材料。
〔7〕上記[1]〜上記[4]の何れかに記載する金属微粒子含有組成物を含有し、生体の特定部位に付着され、金属微粒子による光吸収性に基づく染色によって生体を観察するために用いる材料。


According to this invention, the metal microparticle containing composition which consists of the following structures and its use are provided.
[1] A rod-shaped metal fine particle (metal nanorod) having an aspect ratio of 5 to 10 and a major axis of 100 nm or less and a spherical metal fine particle (metal nanoparticle) having an average primary particle diameter of 1 nm to 10 nm. A mixture of metal nanorods produced by an electrolytic method, a chemical reduction method or a photoreduction method and metal nanoparticles produced by a chemical reduction method, wherein the metal nanorods and the metal nanorods are mixed. A composition containing fine metal particles, wherein the particles are dispersed in water or an organic solvent together with a dispersant containing nitrogen atoms and / or sulfur atoms, and used as a conductive material or a light absorbing material.
[2] The metal fine particle-containing composition according to the above [1], wherein a metal nanorod and metal nanoparticles are dispersed in water or an organic solvent together with a dispersant and a binder (resin) is further added.
[3] The composition containing metal fine particles according to [1] or [2] above, wherein the weight ratio of metal nanorods to metal nanoparticles (metal nanorods / metal nanoparticles) is 95/5 to 10/90 .
[4] The metal fine particle-containing composition according to any one of [1] to [3] above, wherein the content of metal nanorods and metal nanoparticles is 1% by weight to 95% by weight.
[5] A wiring material, an electrode material, or a conductive paint or a conductive paint containing the composition containing metal fine particles according to any one of [1] to [4] above, based on conductivity by the metal fine particles, or the conductive paint The formed conductive coating film or electromagnetic shielding material.
[6] A visible / near-infrared light absorbing filter based on light absorption by metal fine particles, comprising the metal fine particle-containing composition according to any one of [1] to [4], or the light absorption Anti-counterfeit ink material used for forgery determination, or a material used for a sensor based on the light-absorbing property based on surface enhanced infrared spectroscopy or surface enhanced fluorescence spectroscopy.
[7] To contain a composition containing metal fine particles as described in any one of [1] to [4] above, adhere to a specific part of a living body, and observe the living body by staining based on light absorption by the metal fine particles Material used for.


本発明の金属微粒子含有組成物は、アスペクト比が5〜10であって長軸が100nm以下のロッド状の金属微粒子(金属ナノロッド)と、平均一次粒子径が1nm以上〜10nm以下の球状の金属微粒子(金属ナノ粒子)を含有し、電解法、化学的還元法、または光還元法によって製造された金属ナノロッドと、化学的還元法によって製造された金属ナノ粒子とを混合したものであって、上記金属ナノロッドと上記金属ナノ粒子とを、窒素原子および/または硫黄原子を含有する分散剤と共に、水または有機溶媒に分散させてなることを特徴とする金属微粒子含有組成物である。なお、ナノサイズのロッド状の金属微粒子を金属ナノロッドと云い、ナノサイズの球状の金属微粒子を金属ナノ粒子と云う。また、金属ナノロッドと金属ナノ粒子を併せて金属微粒子と云う。ナノサイズの金属微粒子とは、例えば、短軸が数十nm以下、長軸が数百nm以下の金属微粒子である。


The metal fine particle-containing composition of the present invention comprises rod-shaped metal fine particles (metal nanorods) having an aspect ratio of 5 to 10 and a major axis of 100 nm or less, and a spherical metal having an average primary particle diameter of 1 nm to 10 nm. A mixture of metal nanorods containing fine particles (metal nanoparticles) produced by an electrolytic method, a chemical reduction method, or a photoreduction method, and metal nanoparticles produced by a chemical reduction method, A metal fine particle-containing composition, wherein the metal nanorod and the metal nanoparticle are dispersed in water or an organic solvent together with a dispersant containing a nitrogen atom and / or a sulfur atom. The nano-sized rod-shaped metal fine particles are referred to as metal nano rods, and the nano-sized spherical metal fine particles are referred to as metal nanoparticles. The metal nanorods and metal nanoparticles are collectively referred to as metal fine particles. The nano-sized metal fine particles are, for example, metal fine particles having a short axis of several tens of nm or less and a long axis of several hundred nm or less.


本発明の金属微粒子含有組成物は、好ましくは、アスペクト比(長軸長さ/短軸長さ)が1より大きく、長軸が400nm未満の金属ナノロッドと、平均一次粒子径が1nm以上であって10nm以下の金属ナノ粒子を含有するものである。金属ナノロッドの長軸が400nm以上になると、これを溶媒に分散させたときに溶媒中で沈降し易くなり、分散性が低下する傾向がある。また、金属ナノ粒子の平均一次粒子径が10nmよりも大きいと、この粒子径に起因する光吸収(プラズモン吸収)が顕著になるので、金属微粒子含有物を光学フィルター等の光学材料に利用するうえで好ましくない場合がある。   The metal fine particle-containing composition of the present invention preferably has a metal nanorod having an aspect ratio (major axis length / minor axis length) of more than 1 and a major axis of less than 400 nm, and an average primary particle diameter of 1 nm or more. And containing metal nanoparticles of 10 nm or less. When the major axis of the metal nanorods is 400 nm or more, when it is dispersed in a solvent, it tends to settle in the solvent, and the dispersibility tends to decrease. In addition, when the average primary particle diameter of the metal nanoparticles is larger than 10 nm, light absorption (plasmon absorption) due to the particle diameter becomes remarkable, so that the metal fine particle-containing material is used for an optical material such as an optical filter. May not be preferable.

金属ナノロッドと金属ナノ粒子の具体的な組合せとしては、例えば実施例に示すように、アスペクト比が5〜10であって長軸が100nm以下の金属ナノロッドと、平均一次粒子径1〜10nmの金属ナノ粒子を含有するものである。 As specific combinations of metal nanorods and metal nanoparticles, for example, as shown in the Examples, metal nanorods having an aspect ratio of 5 to 10 and a major axis of 100 nm or less, and metals having an average primary particle diameter of 1 to 10 nm It contains nanoparticles.

本発明の金属微粒子含有組成物は、金属ナノロッドと金属ナノ粒子の重量比率(金属ナノロッド/金属ナノ粒子)の割合は95/5〜10/90の範囲が適当である。例えば、配線材料の場合には、金属ナノロッドと金属ナノ粒子の重量比率は95/5〜80/20が好ましい。両者がこの割合で混在すれば、金属ナノロッドの隙間に金属ナノ粒子が適度に分散して接触した状態となり、優れた導電性を得ることができる。金属ナノロッドの重量比率がこれより小さいと、両粒子どうしの接触が少なくなるので比抵抗値が高くなる。また、金属ナノロッドの重量比率がこれより大きいと、金属ナノロッド相互の隙間に金属ナノ粒子が適度に分散し難いために導電性が向上しない傾向がある。 In the metal fine particle-containing composition of the present invention, the ratio of the weight ratio of metal nanorods to metal nanoparticles (metal nanorods / metal nanoparticles) is suitably in the range of 95/5 to 10/90. For example, in the case of a wiring material, the weight ratio of metal nanorods to metal nanoparticles is preferably 95/5 to 80/20. If both are mixed at this ratio, the metal nanoparticles are appropriately dispersed and brought into contact with the gap between the metal nanorods, and excellent conductivity can be obtained. When the weight ratio of the metal nanorods is smaller than this, the contact between the two particles is reduced, and the specific resistance value is increased. On the other hand, if the weight ratio of the metal nanorods is larger than this, the metal nanoparticles are not easily dispersed in the gaps between the metal nanorods, and the conductivity tends not to be improved.

本発明の金属微粒子含有組成物は、金属ナノロッドと金属ナノ粒子の合計含有量が1重量%〜95重量%であるものが好ましい。この含有量が1重量%よりも少ないと光学フィルター等としての効果が十分に得られ難い。なお、導電材料として用いる場合には上記含有量は5重量%以上が好ましい。一方、この含有量が95重量%を超えてもこれらの効果は大差ない。 The metal fine particle-containing composition of the present invention preferably has a total content of metal nanorods and metal nanoparticles of 1% by weight to 95% by weight. When the content is less than 1% by weight, it is difficult to obtain a sufficient effect as an optical filter. When used as a conductive material, the content is preferably 5% by weight or more. On the other hand, even if the content exceeds 95% by weight, these effects are not significantly different.

上記金属微粒子の金属種は、金、銀、銅、白金、パラジウム、ロジウム、オスミウム、ルテニウム、イリジウム、鉄、錫、亜鉛、コバルト、ニッケル、クロム、チタン、タンタル、タングステン、インジウムの1種類または2種類以上から選ばれる金属、またはその合金などである The metal species of the metal fine particles are one or two of gold, silver, copper, platinum, palladium, rhodium, osmium, ruthenium, iridium, iron, tin, zinc, cobalt, nickel, chromium, titanium, tantalum, tungsten, and indium. It is a metal selected from more than one kind, or an alloy thereof.

上記金属ナノロッドは、電解法、化学還元法、光還元法などによって製造することができる。電解法は、界面活性剤を含む水溶液中で定電流電解し、陽極の金属板から金属イオンを溶脱させて金属ナノロッドを生成する。上記界面活性剤としては次式[1]で示す4級アンモニウム塩が知られており、さらにテトラドデシルアンモニウムブロミド(TDAB)などが添加されている。この界面活性剤の種類や添加量、電解条件などを調整することによって、金属微粒子の長さを制御することができる。
CH3(CH2)nN+(CH3)3Br-(n=1〜17)・・・…[1]
The metal nanorods can be produced by an electrolytic method, a chemical reduction method, a photoreduction method, or the like. In the electrolysis method, constant current electrolysis is performed in an aqueous solution containing a surfactant, and metal ions are leached from the metal plate of the anode to generate metal nanorods. As the surfactant, a quaternary ammonium salt represented by the following formula [1] is known, and tetradodecyl ammonium bromide (TDAB) or the like is further added. The length of the metal fine particles can be controlled by adjusting the type and amount of the surfactant and the electrolysis conditions.
CH 3 (CH 2 ) nN + (CH 3 ) 3 Br (n = 1 to 17)... [1]

化学還元法は、例えば、塩化金酸溶液中に還元剤を加えて金イオンを化学的に還元して金微粒子を生成させる方法であり、塩化金酸の量やその他の反応条件を調整することによって、金属ナノロッドの長さを制御することがでる。化学還元法によれば電解法よりも長軸が長い金ナノロッドを作成することができる。光還元法は還元剤に代えて紫外線照射によって金属イオンを還元する方法であり、紫外線の照射時間等を調整することによって金属ナノロッドの軸長を制御することができる。本発明に用いる金属ナノロッドは上記何れの方法によって製造したものであっても良い。 The chemical reduction method is, for example, a method in which a reducing agent is added to a chloroauric acid solution to chemically reduce gold ions to produce gold fine particles, and the amount of chloroauric acid and other reaction conditions are adjusted. Thus, the length of the metal nanorod can be controlled. According to the chemical reduction method, a gold nanorod having a longer major axis than that of the electrolytic method can be produced. The photoreduction method is a method of reducing metal ions by irradiating ultraviolet rays instead of a reducing agent, and the axial length of the metal nanorods can be controlled by adjusting the irradiation time of ultraviolet rays. The metal nanorod used in the present invention may be produced by any of the above methods.

金属ナノ粒子は化学的還元法によって製造することができる。例えば、銀ナノ粒子は硝酸銀溶液中に還元剤を加えて銀イオンを化学的に還元して製造することができる。還元剤の還元力の強さやその他の反応条件を調整することによって、金属ナノ粒子の粒子径を制御することができる。 Metal nanoparticles can be produced by a chemical reduction method. For example, silver nanoparticles can be produced by adding a reducing agent to a silver nitrate solution and chemically reducing silver ions. The particle diameter of the metal nanoparticles can be controlled by adjusting the strength of the reducing agent and other reaction conditions.

本発明の金属微粒子含有組成物は、上記金属ナノロッドおよび金属ナノ粒子と共に分散剤および分散媒を含むもの、あるいは、分散剤および分散媒と共にバインダー(樹脂)を含有するものなど上記金属微粒子以外の成分を含有することができる。例えば、上記金属ナノロッドおよび金属ナノ粒子を分散剤と共に水や有機溶媒に分散させた金属微粒子分散液、さらに、この金属微粒子分散液にバインダー(樹脂)を加えた分散液または分散ペーストなどの形態で利用することができる。 The metal fine particle-containing composition of the present invention includes components other than the metal fine particles such as those containing a dispersant and a dispersion medium together with the metal nanorods and metal nanoparticles, or those containing a binder (resin) together with the dispersant and the dispersion medium. Can be contained. For example, in the form of a metal fine particle dispersion in which the metal nanorods and metal nanoparticles are dispersed in water or an organic solvent together with a dispersant, and a dispersion or dispersion paste in which a binder (resin) is added to the metal fine particle dispersion. Can be used.

上記金属ナノロッドおよび金属ナノ粒子と共に用いる分散剤は、これらの金属微粒子に対して高い吸着性を窒素原子および/または硫黄原子を含有するものが好ましい。上記窒素原子を有する分散剤としては、市販されているものを使用することができ、例えば、ソルスパース13940、ソルスパース24000SC、ソルスパース28000、ソルスパース32000(以上、アビシア社製品)、フローレンDOPA-15B、フローレンDOPA-17(以上、共栄社化学社製品)、アジスパーPB814、アジスパーPB711(以上、味の素ファインテクノ社製品)などが挙げられる。例えば、ソルスパース24000SCは金属ナノロッドに対して吸着性の高い元素である窒素を吸着部位として主鎖中に多数有し、側鎖は芳香族類、ケトン類、エステル類などの非水溶媒に対して高い溶解性を有するいわゆる櫛型構造の分散剤であり、金属ナノロッド表面に窒素部位で吸着した状態で非水溶媒中に安定分散することが可能である。また、上記イオウ原子を有する分散剤としては、例えば、ブタンチオール、ヘキサンチオール、オクタンチオール、デカンチオール、ドデカンチオールなどが挙げられる。 The dispersant used together with the metal nanorods and metal nanoparticles preferably has a high adsorptivity to these metal fine particles and contains nitrogen atoms and / or sulfur atoms. As the dispersant having a nitrogen atom, commercially available ones can be used. For example, Solsperse 134000, Solsperse 24000SC, Solsperse 28000, Solsperse 32000 (above, Avicia product), Florene DOPA-15B, Florene DOPA -17 (above, Kyoeisha Chemical Co., Ltd. product), Ajisper PB814, Ajisper PB711 (above, Ajinomoto Fine Techno Co., Ltd.) and the like. For example, Solsperse 24000SC has a large amount of nitrogen, which is an element highly adsorbing to metal nanorods, in the main chain as an adsorption site, and the side chain is against non-aqueous solvents such as aromatics, ketones and esters. It is a so-called comb-shaped dispersant having high solubility, and can be stably dispersed in a non-aqueous solvent while adsorbed on the surface of the metal nanorods at the nitrogen site. Examples of the dispersant having a sulfur atom include butanethiol, hexanethiol, octanethiol, decanethiol, and dodecanethiol.

バインダーとして用いられる樹脂は塗料用や成形用に通常利用されている可視光線から近赤外光領域の光に対して透過性を有する各種樹脂を特に制限無く使用できる。例えばアクリル樹脂、ポリエステル樹脂、アルキド樹脂、ウレタン樹脂、シリコーン樹脂、フッ素樹脂、エポキシ樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、ポリビニルアルコール、等の各種有機樹脂や、ラジカル重合性のオリゴマーやモノマー(場合により硬化剤やラジカル重合開始剤と併用する)が代表的なものとして挙げられる。 As the resin used as the binder, various resins that are normally used for paints and moldings and have transparency to visible light to near infrared light can be used without particular limitation. For example, various organic resins such as acrylic resin, polyester resin, alkyd resin, urethane resin, silicone resin, fluorine resin, epoxy resin, polycarbonate resin, polyvinyl chloride resin, polyvinyl alcohol, radical polymerizable oligomers and monomers (depending on the case A typical example is a combination of a curing agent and a radical polymerization initiator.

上記金属微粒子含有組成物において用いる溶媒としては、例えば、バインダー(樹脂)が溶解もしくは安定に分散するような溶媒を適宜選択すればよく、具体的には、水の他に、メタノール、エタノール、プロパノール、ヘキサノール、エチレングリコール等のアルコール類、キシレンやトルエン等の芳香族炭化水素、シクロヘキサン等の脂環式炭化水素、アセトンやメチルエチルケトン等のケトン類、酢酸エチルや酢酸ブチル等のエステル類、エチレングリコールモノブチルエーテル等のエーテル等、あるいはこれらの混合物が代表的なものとして挙げられるが、これらに限定されるものではない。 As the solvent used in the metal fine particle-containing composition, for example, a solvent in which a binder (resin) is dissolved or stably dispersed may be appropriately selected. Specifically, in addition to water, methanol, ethanol, propanol , Alcohols such as hexanol and ethylene glycol, aromatic hydrocarbons such as xylene and toluene, alicyclic hydrocarbons such as cyclohexane, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate and butyl acetate, ethylene glycol mono Representative examples include ethers such as butyl ether, and mixtures thereof, but are not limited thereto.

上記金属ナノロッドおよび金属ナノ粒子を分散剤および分散媒と共にバインダー(樹脂)に配合した組成物は、コーティング組成物ないし塗料組成物、塗膜、フィルム、または板材など多様な形態で用いることができる。さらに、この金属ナノロッドおよび金属ナノ粒子を含有する組成物によって光学フィルターを得ることができる。具体的には、例えば、(イ)可視光線および近赤外光を吸収したい透明基材に直接に本発明の組成物を塗布もしくは印刷し、可視光線・近赤外光吸収フィルターとしての硬化塗膜を形成させる。(ロ)本発明の組成物をフィルム状や板状等に形成し、その組成物を可視光線・近赤外光吸収フィルターとして可視光線・近赤外光を吸収したい透明基材に積層もしくは包囲する。(ハ)本発明の組成物によって形成した上記塗膜やフィルムなどの形成物を透明なガラス製もしくはプラスチック製基材に積層させ、その積層体を可視光線・近赤外光吸収フィルターとして可視光線・近赤外光を吸収したい基材に積層もしくは包囲して用いる。 The composition in which the metal nanorods and metal nanoparticles are blended in a binder (resin) together with a dispersant and a dispersion medium can be used in various forms such as a coating composition or a coating composition, a coating film, a film, or a plate material. Furthermore, an optical filter can be obtained by the composition containing the metal nanorods and metal nanoparticles. Specifically, for example, (a) the composition of the present invention is directly applied or printed on a transparent base material that wants to absorb visible light and near infrared light, and a cured coating as a visible light / near infrared light absorbing filter is applied. A film is formed. (B) The composition of the present invention is formed into a film, plate, or the like, and the composition is laminated or surrounded as a visible light / near infrared light absorbing filter on a transparent base material to absorb visible light / near infrared light To do. (C) The above-mentioned coating film or film formed from the composition of the present invention is laminated on a transparent glass or plastic substrate, and the laminate is visible light as a visible light / near infrared light absorption filter.・ Used by laminating or surrounding a base material that wants to absorb near infrared light.

さらに、本発明の金属ナノロッドおよび金属ナノ粒子を含有する組成物は、配線材料、電極材料、触媒、着色剤、化粧品、近赤外線吸収剤、光記録材料、偏光材料、偽造防止用インク、電磁波シールド材などの材料として好適であり、さらに表面増強ラマンセンサー、生体マーカー、バイオセンサー、DNAチップ、ドラッグデリバリーシステム(DDS)用薬物保持体、検査薬、またはナノ導波路の材料として用いることができる。 Furthermore, the composition containing the metal nanorods and metal nanoparticles of the present invention includes a wiring material, an electrode material, a catalyst, a colorant, a cosmetic, a near infrared absorber, an optical recording material, a polarizing material, an anti-counterfeit ink, and an electromagnetic wave shield. It is suitable as a material such as a material, and can be used as a material for a surface-enhanced Raman sensor, a biomarker, a biosensor, a DNA chip, a drug carrier for a drug delivery system (DDS), a test agent, or a nanowaveguide.

例えば、本発明の金属ナノロッドおよび金属ナノ粒子を含有する分散液等を偽造防止インクの材料などに用い、金属ナノロッド等による特定波長の光吸収能効果を偽造判定に利用することができる。あるいは、この光吸収効果を表面増強赤外分光法や表面増強蛍光分光法に基づくセンサーとして利用することができる。また、生体の特定部位に本発明の金属微粒子含有組成物を付着させ、その光吸収作用によって生体を染色することができるので、従来は観察できなかった生体材料を観察することが可能になる。 For example, the metal nanorod and the dispersion containing the metal nanoparticle of the present invention can be used as a material for anti-counterfeit ink, and the light absorption ability effect at a specific wavelength by the metal nanorod can be used for forgery determination. Alternatively, this light absorption effect can be used as a sensor based on surface-enhanced infrared spectroscopy or surface-enhanced fluorescence spectroscopy. In addition, since the composition containing metal fine particles of the present invention can be attached to a specific part of the living body and the living body can be stained by its light absorption action, it is possible to observe biological materials that could not be observed conventionally.

本発明の金属微粒子含有組成物は、金属ナノロッドと金属ナノ粒子の両方を含み、金属ナノロッドの間に金属ナノ粒子が適度に分散し、これらの金属微粒子が相互に接触した状態が多くなるので、優れた導電性を得ることができる。また、本発明の金属微粒子含有組成物は金属ナノロッドの間に金属ナノ粒子が適度に分散した状態であるので、比較的低温で焼結し、安定な導電性塗膜を得ることことができる。 Since the metal fine particle-containing composition of the present invention includes both metal nanorods and metal nanoparticles, the metal nanoparticles are appropriately dispersed between the metal nanorods, and the state in which these metal fine particles are in contact with each other increases. Excellent conductivity can be obtained. Further, since the metal fine particle-containing composition of the present invention is in a state where the metal nanoparticles are appropriately dispersed between the metal nanorods, it can be sintered at a relatively low temperature to obtain a stable conductive coating film.

さらに、本発明の金属微粒子含有組成物は、好ましくは平均一次粒子径が5nm以下の金属ナノ粒子を用いることによって、この粒子径に起因する光吸収(530nm付近の光吸収)を実質的に生じないようにし、主に金属ナノロッドの長軸に起因する光吸収を利用した光学フィルターを得ることができる。本発明の金属微粒子含有組成物は上述の優れた導電性および光吸収特性を利用した各種用途の材料として用いることができる。 Furthermore, the metal fine particle-containing composition of the present invention preferably generates metal light absorption (light absorption near 530 nm) due to the particle diameter by using metal nanoparticles having an average primary particle diameter of 5 nm or less. It is possible to obtain an optical filter utilizing light absorption mainly due to the long axis of the metal nanorod. The metal fine particle-containing composition of the present invention can be used as a material for various applications utilizing the above-described excellent conductivity and light absorption characteristics.

以下、本発明を実施例および比較例によって具体的に示す。各実施例および比較例において、金微粒子塗布基板をそれぞれ3枚作製し、比抵抗値を測定した。結果を表1に示した。 Hereinafter, the present invention will be specifically described by Examples and Comparative Examples. In each of the examples and comparative examples, three gold fine particle coated substrates were prepared and the specific resistance values were measured. The results are shown in Table 1.

アスペクト比6.0の金ナノロッド(長軸約50nm)5.7g、および平均一次粒子径5nmの金ナノ粒子0.3gを、アミノ基含有高分子系分散剤(ソルスパース24000SC)0.6gと共に、トルエン10gに混合し、さらにアクリル樹脂0.4gを加えて金微粒子含有塗料を調製した。この塗料をガラス基板に塗布し、乾燥して金微粒子塗布基板を得た。 An amount of 5.7 g of gold nanorods having an aspect ratio of 6.0 (major axis of about 50 nm) and 0.3 g of gold nanoparticles having an average primary particle diameter of 5 nm were combined with 0.6 g of an amino group-containing polymer dispersant (Solsperse 24000SC). The mixture was mixed with 10 g of toluene, and 0.4 g of acrylic resin was further added to prepare a paint containing gold fine particles. This paint was applied to a glass substrate and dried to obtain a gold fine particle-coated substrate.

アスペクト比5.0の金ナノロッド(長軸約50nm)0.6g、および平均一次粒子径5nmの銀ナノ粒子5.4gを、n−デシルアミン0.8gと共に、トルエン10gに混合し、さらにアクリル樹脂0.4gを加えて金微粒子含有塗料を調製した。この塗料をガラス基板に塗布し、乾燥して金微粒子塗布基板を得た。 0.6 g of gold nanorods having an aspect ratio of 5.0 (major axis of about 50 nm) and 5.4 g of silver nanoparticles having an average primary particle diameter of 5 nm are mixed with 0.8 g of n-decylamine in 10 g of toluene, and further acrylic resin. 0.4 g was added to prepare a paint containing gold fine particles. This paint was applied to a glass substrate and dried to obtain a gold fine particle-coated substrate.

アスペクト比5.0の銀ナノロッド(長軸約50nm)5.7gを使用すること以外は実施例1と同様にして金微粒子含有塗料を調製した。この塗料をガラス基板に塗布し、乾操して金微粒子塗布基板を得た。 A gold fine particle-containing paint was prepared in the same manner as in Example 1 except that 5.7 g of silver nanorods having an aspect ratio of 5.0 (major axis: about 50 nm) was used. This paint was applied to a glass substrate and dried to obtain a gold fine particle-coated substrate.

アスペクト比10.0の金ナノロッド〈長軸約80nm)5.3g、および平均一次粒子径5nmの銀ナノ粒子0.7gを使用すること以外は実施例1と同様にして金微粒子含有塗料を調製した。この塗料をガラス基板に塗布し、乾燥して金微粒子塗布基板を得た。   A gold fine particle-containing paint was prepared in the same manner as in Example 1 except that 5.3 g of gold nanorods having an aspect ratio of 10.0 (major axis of about 80 nm) and 0.7 g of silver nanoparticles having an average primary particle diameter of 5 nm were used. did. This paint was applied to a glass substrate and dried to obtain a gold fine particle-coated substrate.

比較例Comparative example

〔比較例1〕
球状金ナノ粒子(平均一次粒子径10nm)6gをアミノ基含有高分子系分散剤(ソルスパース24000SC)0.6gと共にトルエン10gに混合し、さらにアクリル樹脂0.4gを加えて金ナノ粒子含有塗料を調製した。この塗料をガラス基板に塗布し、乾燥して金ナノ粒子塗布基板を得た。
[Comparative Example 1]
6 g of spherical gold nanoparticles (average primary particle diameter 10 nm) are mixed with 10 g of toluene together with 0.6 g of an amino group-containing polymer dispersant (Solsperse 24000SC), and 0.4 g of acrylic resin is further added to prepare a coating composition containing gold nanoparticles. Prepared. This paint was applied to a glass substrate and dried to obtain a gold nanoparticle-coated substrate.

〔比較例2〕
アスペクト比5.0の金ナノロッド(長軸約50nm)6gを、アミノ基含有高分子系分散剤(ソルスパース24000SC)0.6gと共に、トルエン10gに混合し、さらにアクリル樹脂0.4gを加えて金ナノロッド含有塗料を調製した。この塗料をガラス基板に塗布し、乾燥して金ナノロッド塗布基板を得た。
[Comparative Example 2]
6 g of gold nanorods with an aspect ratio of 5.0 (major axis about 50 nm) are mixed with 10 g of toluene together with 0.6 g of an amino group-containing polymer dispersant (Solsperse 24000SC), and 0.4 g of acrylic resin is further added to add gold. A nanorod-containing paint was prepared. This paint was applied to a glass substrate and dried to obtain a gold nanorod-coated substrate.


Figure 0004517230
Figure 0004517230

表1の結果に示すように、本発明の金属微粒子含有組成物は、200℃×1時間の比較的低温で加熱処理しても、比抵抗値は1.0×10-5と極めて小さく、安定な導電性を得ることができる。一方、同条件で処理した比較例1、2の比抵抗は上記実施例の比抵抗値の約10〜100倍であり、本発明より大幅に高い。

As shown in the results of Table 1, the metal fine particle-containing composition of the present invention has an extremely small specific resistance value of 1.0 × 10 −5 even when heat-treated at a relatively low temperature of 200 ° C. × 1 hour Stable conductivity can be obtained. On the other hand, the specific resistances of Comparative Examples 1 and 2 processed under the same conditions are about 10 to 100 times the specific resistance value of the above-mentioned Examples, which is significantly higher than the present invention.

Claims (7)

アスペクト比が5〜10であって長軸が100nm以下のロッド状の金属微粒子(金属ナノロッド)と、平均一次粒子径が1nm以上〜10nm以下の球状の金属微粒子(金属ナノ粒子)を含有し、電解法、化学的還元法、または光還元法によって製造された金属ナノロッドと、化学的還元法によって製造された金属ナノ粒子とを混合したものであって、上記金属ナノロッドと上記金属ナノ粒子とを、窒素原子および/または硫黄原子を含有する分散剤と共に、水または有機溶媒に分散させてなり、導電性材料ないし光吸収材料として用いられることを特徴とする金属微粒子含有組成物。 Rod-shaped metal fine particles (metal nanorods) having an aspect ratio of 5 to 10 and a major axis of 100 nm or less, and spherical metal fine particles (metal nanoparticles) having an average primary particle diameter of 1 nm to 10 nm, A metal nanorod manufactured by an electrolytic method, a chemical reduction method, or a photoreduction method and a metal nanoparticle manufactured by a chemical reduction method, wherein the metal nanorod and the metal nanoparticle are mixed. A composition containing fine metal particles, which is dispersed in water or an organic solvent together with a dispersant containing a nitrogen atom and / or a sulfur atom, and is used as a conductive material or a light absorbing material. 金属ナノロッドおよび金属ナノ粒子を、分散剤と共に水または有機溶媒に分散させたものに、さらにバインダー(樹脂)を加えてなる請求項1に記載する金属微粒子含有組成物。 The metal fine particle-containing composition according to claim 1, wherein a binder (resin) is further added to the metal nanorods and metal nanoparticles dispersed in water or an organic solvent together with a dispersant. 金属ナノロッドと金属ナノ粒子の重量比率(金属ナノロッド/金属ナノ粒子)が95/5〜10/90である請求項1または請求項2の何れかに記載する金属微粒子含有組成物。 3. The metal fine particle-containing composition according to claim 1, wherein the weight ratio of metal nanorods to metal nanoparticles (metal nanorods / metal nanoparticles) is 95/5 to 10/90. 金属ナノロッドと金属ナノ粒子の含有量が1重量%〜95重量%である請求項1〜請求項3の何れかに記載する金属微粒子含有組成物。 The metal fine particle-containing composition according to any one of claims 1 to 3, wherein the content of the metal nanorods and the metal nanoparticles is 1% by weight to 95% by weight. 請求項1〜請求項4の何れかに記載する金属微粒子含有組成物を含有し、金属微粒子による導電性に基づく配線材料、電極材料、または導電性塗料ないし該導電性塗料によって形成された導電性塗膜、または電磁波シールド材。A conductive material formed by the wiring material, the electrode material, or the conductive paint or the conductive paint containing the metal fine particle-containing composition according to any one of claims 1 to 4 based on conductivity by the metal fine particles. Coating film or electromagnetic shielding material. 請求項1〜請求項4の何れかに記載する金属微粒子含有組成物を含有し、金属微粒子による光吸収性に基づく可視光線・近赤外光吸収フィルター、または該光吸収性を偽造判定に用いる偽造防止インク材料、または該光吸収性を表面増強赤外分光法や表面増強蛍光分光法に基づくセンサーに用いる材料。A visible light / near-infrared light absorbing filter based on light absorption by metal fine particles, or the light absorption is used for counterfeit determination, comprising the metal fine particle-containing composition according to any one of claims 1 to 4. An anti-counterfeit ink material, or a material that uses the light absorption for a sensor based on surface-enhanced infrared spectroscopy or surface-enhanced fluorescence spectroscopy. 請求項1〜請求項4の何れかに記載する金属微粒子含有組成物を含有し、生体の特定部位に付着され、金属微粒子による光吸収性に基づく染色によって生体を観察するために用いる材料。A material that contains the metal fine particle-containing composition according to any one of claims 1 to 4, is attached to a specific part of a living body, and is used for observing the living body by staining based on light absorption by the metal fine particles.
JP2004252555A 2004-08-31 2004-08-31 Composition containing fine metal particles and use thereof Active JP4517230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004252555A JP4517230B2 (en) 2004-08-31 2004-08-31 Composition containing fine metal particles and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004252555A JP4517230B2 (en) 2004-08-31 2004-08-31 Composition containing fine metal particles and use thereof

Publications (2)

Publication Number Publication Date
JP2006070300A JP2006070300A (en) 2006-03-16
JP4517230B2 true JP4517230B2 (en) 2010-08-04

Family

ID=36151233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004252555A Active JP4517230B2 (en) 2004-08-31 2004-08-31 Composition containing fine metal particles and use thereof

Country Status (1)

Country Link
JP (1) JP4517230B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160102425A (en) 2013-12-27 2016-08-30 닛뽄 가야쿠 가부시키가이샤 Conductive paste and conductive film

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4868385B2 (en) * 2005-08-23 2012-02-01 独立行政法人産業技術総合研究所 Heat-resistant polymer composite material in which palladium nanoparticles are dispersed, and method for producing the same
DE102006043107A1 (en) 2006-09-07 2008-03-20 Bundesdruckerei Gmbh Security and / or value document with SERS-active particles
KR100871603B1 (en) 2006-12-29 2008-12-02 주식회사 아원 Conductive paste with copper filler for emi shielding use
WO2008150867A2 (en) * 2007-05-29 2008-12-11 Innova Materials, Llc Surfaces having particles and related methods
JP2009094033A (en) * 2007-10-12 2009-04-30 Konica Minolta Holdings Inc Transparent conductive material and manufacturing method thereof, and transparent conductive element using the material
JP2009129882A (en) * 2007-11-28 2009-06-11 Konica Minolta Holdings Inc Transparent conductive coat, transparent conductive film, and flexible transparent plane electrode
JP5246096B2 (en) * 2009-08-10 2013-07-24 日立電線株式会社 COMPOSITE METAL PARTICLE MATERIAL, METAL FILM, METHOD FOR PRODUCING METAL FILM, PRINTED WIRING BOARD AND ELECTRIC CABLE
TWI420540B (en) 2009-09-14 2013-12-21 Ind Tech Res Inst Conductive material formed using light or thermal energy and method for manufacturing the same, and nano-scale composition
CN102044309A (en) * 2009-10-21 2011-05-04 财团法人工业技术研究院 Conductive material shaped through optical energy or heat energy, method for preparing conductive material and conductive composition
CN101961791B (en) * 2010-08-06 2013-06-19 上海师范大学 Two-dimensional gold membrane self-assembly preparation method with surface enhanced Raman scattering effect
KR101193286B1 (en) * 2010-09-01 2012-10-19 삼성전기주식회사 Electroconductive paste, fabricating method the same and electrode using the same
JP5124691B1 (en) * 2012-03-21 2013-01-23 有限会社 ナプラ Conductive fine powder, conductive paste and electronic parts
JP5569607B2 (en) * 2013-02-01 2014-08-13 コニカミノルタ株式会社 Transparent conductive film, transparent conductive film, and flexible transparent electrode
JP2015078424A (en) * 2013-10-16 2015-04-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. Mixed nickel nano powder and production method thereof
US11274223B2 (en) * 2013-11-22 2022-03-15 C3 Nano, Inc. Transparent conductive coatings based on metal nanowires and polymer binders, solution processing thereof, and patterning approaches
KR101637884B1 (en) * 2014-06-10 2016-07-08 한국과학기술연구원 Electrically conductive ink component using nanowire and manufacturing method of conductive layers therefrom
KR101785350B1 (en) * 2014-07-18 2017-10-17 한국화학연구원 Fabrication Method of Conductive Metal Film with Light Sintering
US9183968B1 (en) 2014-07-31 2015-11-10 C3Nano Inc. Metal nanowire inks for the formation of transparent conductive films with fused networks
KR102225511B1 (en) 2014-08-26 2021-03-08 삼성전자주식회사 Aqueous compositions, methods of producing conductive thin films using the same and conductive thin films produced thereby, and electronic devices including the same
JP6407014B2 (en) * 2014-12-24 2018-10-17 昭和電工株式会社 Conductive composition for thin film printing and method for forming thin film conductive pattern
WO2016122412A1 (en) * 2015-01-30 2016-08-04 Nanyang Technological University Conductive paste, method for forming an interconnection and electrical device
JP6692042B2 (en) * 2016-09-16 2020-05-13 大日本塗料株式会社 Suspension of gold nanoparticles with a reduced amount of quaternary ammonium cations and / or gold and / or silver halides on the surface
JP2020149863A (en) * 2019-03-13 2020-09-17 株式会社東芝 Conductive resin and superconducting coil using the same
CN110415865B (en) * 2019-07-29 2020-07-03 北京华纳高科科技有限公司 Optically consistent transparent conductive film and preparation method thereof
CN112747833B (en) * 2021-01-04 2022-08-02 中国海洋大学 Temperature sensor based on noble metal nanoparticles and preparation method thereof
WO2022163709A1 (en) * 2021-01-29 2022-08-04 キヤノン株式会社 Toner and method for reading image
CN114414548B (en) * 2021-12-23 2024-04-05 安徽中科赛飞尔科技有限公司 SERS substrate and application thereof
US20230348718A1 (en) * 2022-04-28 2023-11-02 Johnson & Johnson Vision Care, Inc. Light-filtering materials for biomaterial integration and methods thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515438A (en) * 1999-12-03 2003-05-07 サーロメッド・インコーポレーテッド Hydroxylamine seeding of metal colloid nanoparticles
JP2004111254A (en) * 2002-09-19 2004-04-08 Asahi Glass Co Ltd Metal contained composition for electrical connection of electronic device
JP2005068448A (en) * 2003-08-25 2005-03-17 Mitsubishi Materials Corp Silver-containing nanometric gold rod and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515438A (en) * 1999-12-03 2003-05-07 サーロメッド・インコーポレーテッド Hydroxylamine seeding of metal colloid nanoparticles
JP2004111254A (en) * 2002-09-19 2004-04-08 Asahi Glass Co Ltd Metal contained composition for electrical connection of electronic device
JP2005068448A (en) * 2003-08-25 2005-03-17 Mitsubishi Materials Corp Silver-containing nanometric gold rod and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160102425A (en) 2013-12-27 2016-08-30 닛뽄 가야쿠 가부시키가이샤 Conductive paste and conductive film

Also Published As

Publication number Publication date
JP2006070300A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
JP4517230B2 (en) Composition containing fine metal particles and use thereof
JP4665499B2 (en) Metal fine particles, production method thereof, composition containing the same, and use thereof
EP1769867B1 (en) Method for producing metal fine particle, metal fine particle produced thereby, composition containing same, light absorbing material, and application thereof
JP5111170B2 (en) Metal nanowire and method for producing the same, aqueous dispersion and transparent conductor
Huang et al. Photochemical formation of silver nanoparticles in poly (N-vinylpyrrolidone)
JP4821951B2 (en) Wire-shaped gold fine particles, production method thereof, containing composition and use
KR102318523B1 (en) Fine silver particle dispersion, fine silver particles, and method for producing same
Han et al. Photochemical synthesis in formamide and room-temperature coulomb staircase behavior of size-controlled gold nanoparticles
EP2052043B1 (en) Process for preparation of silver nanoparticles, and the compositions of silver ink containing the same
Mafuné et al. Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation
JP4529160B2 (en) METAL PARTICLE, PROCESS FOR PRODUCING THE SAME, COMPOSITION CONTAINING THE SAME AND USE THEREOF
JP4524745B2 (en) Metal nanowire-containing conductive material and use thereof
JP5059317B2 (en) Method for producing silver particles
CN104303267B (en) Forming conductive patterns using ink comprising metal nanoparticles and nanowires
JP2008013798A (en) Method for manufacturing nanowire-like metallic substance, nanowire-like metallic substance, and composition containing nanowire-like metallic substance
EP2045028A1 (en) Metal nanoparticles, method for producing the same, aqueous dispersion, method for manufacturing printed wiring or electrode, and printed wiring board or device
JP2007154292A (en) Method for producing silver particle, silver particle-containing composition containing the silver particle and its use
KR20140113910A (en) Silver fine particles, production process therefor, and conductive paste, conductive membrane and electronic device, containing said silver fine particles
JP4332610B2 (en) Composition containing metal nanorod and metal oxide powder and use thereof
JP2006111675A (en) Metal nanorod alignment composition and its application
JP2005097581A (en) Metal nano rod with small minor axis, composition containing the rod, and application thereof
JP2008135416A (en) Composition for forming electrode in solar cell, method of forming electrode, and solar cell using electrode obtained by the same
JP7048193B2 (en) Method for manufacturing cuprous oxide particles
JP2005317394A (en) Conductive material containing metal nanorods and its intended use
Okada et al. Room-Temperature Sintering of Tri-n-Octylphosphine-Oxide-Capped Silver Nanoparticle Paste by Dipping into an Organic Solvent Containing a Sintering Agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4517230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250