JP2005317394A - Conductive material containing metal nanorods and its intended use - Google Patents

Conductive material containing metal nanorods and its intended use Download PDF

Info

Publication number
JP2005317394A
JP2005317394A JP2004134724A JP2004134724A JP2005317394A JP 2005317394 A JP2005317394 A JP 2005317394A JP 2004134724 A JP2004134724 A JP 2004134724A JP 2004134724 A JP2004134724 A JP 2004134724A JP 2005317394 A JP2005317394 A JP 2005317394A
Authority
JP
Japan
Prior art keywords
conductive material
metal
conductive
nanorods
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004134724A
Other languages
Japanese (ja)
Other versions
JP4491776B2 (en
Inventor
Yoshiaki Takada
佳明 高田
Hiroki Hirata
寛樹 平田
Sumiyoshi Sato
純悦 佐藤
Hirotsuyo Mizoguchi
大剛 溝口
Masahito Murouchi
聖人 室内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Mitsubishi Materials Corp
Original Assignee
Dai Nippon Toryo KK
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK, Mitsubishi Materials Corp filed Critical Dai Nippon Toryo KK
Priority to JP2004134724A priority Critical patent/JP4491776B2/en
Publication of JP2005317394A publication Critical patent/JP2005317394A/en
Application granted granted Critical
Publication of JP4491776B2 publication Critical patent/JP4491776B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive material with excellent conductivity using fine rod-shaped metallic fine particles (metal nanorods) having a nano grain size. <P>SOLUTION: This conductive material contains rod-shaped metal nanorods having an aspect ratio (major axis/minor axis ratio) larger than 1. Preferably, the metal nanorods have major axes less than 400 nm and the aspect ratio of 100 or less and are manufactured in a aqueous solution containing a surface active agent. This aqueous dispersion of the metal nanorods is extracted to a nonaqueous solvent by mixing with the nonaqueous solvent under existence of a supernatant dissolving the surface active agent and a nonaqueous disperser. The conductive material also contains the disperser containing a dispersion medium and nitrogen atoms and/or sulfur atoms. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属ナノロッドを含有した導電性材料、およびこの導電性材料によって形成した導電性ペーストや導電性塗膜などの用途に関する。   The present invention relates to a conductive material containing metal nanorods, and uses such as a conductive paste and a conductive coating film formed from the conductive material.

近年、情報端末機器の急速な小型化に伴い、実装配線幅の狭ピッチ化が進んでいる。このため導電性に優れたペーストが求められており、粒径がサブミクロンサイズの金属粒子を配合した導電性ペーストが用いられている。しかし、このようなサブミクロン金属粒子を用いた従来のペーストは導電性のばらつきが顕著であり、これを克服するためにナノサイズの粒径を有する金属微粒子を使用した導電性ペーストの開発が進んでいる。   In recent years, with the rapid miniaturization of information terminal equipment, the mounting wiring width has been narrowed. For this reason, a paste excellent in conductivity is demanded, and a conductive paste containing metal particles having a particle size of submicron is used. However, the conventional paste using such sub-micron metal particles has a remarkable variation in conductivity, and in order to overcome this, development of a conductive paste using metal fine particles having a nano-sized particle size has progressed. It is out.

例えば、インクジェット方式を利用して導電性ペーストを印刷し、配線基板の回路パターンを形成する方法において、有機溶剤を含む熱硬化性樹脂組成物中に、球状の平均粒子径1〜100nmの金属微粒子であって表面に窒素、酸素、硫黄原子を含む化合物によって被覆したものを均一に分散させてなる導電性ペーストを用い、樹脂が熱硬化する際に、金属微粒子表面の被覆を形成している化合物を、樹脂に含まれている有機酸無水物等と反応させて除去することによって、金属微粒子相互の低温での融着行わせて微細な線幅の回路パターンを形成することが知られている(特許文献1)。しかし、従来の導電性ペーストは、金属微粒子の分散安定性を高めるために分散剤の使用量が多くなる傾向があり、導電性にばらつきが生じるとともに低温焼成域においては高い導電性を得難いと云う問題がある。   For example, in a method of printing a conductive paste using an ink jet method to form a circuit pattern of a wiring board, a spherical fine metal particle having an average particle diameter of 1 to 100 nm in a thermosetting resin composition containing an organic solvent A compound that forms a coating on the surface of metal fine particles when a resin is thermally cured using a conductive paste in which a surface coated with a compound containing nitrogen, oxygen, and sulfur atoms is uniformly dispersed. Is removed by reacting with an organic acid anhydride contained in the resin to form a circuit pattern having a fine line width by fusing metal fine particles at a low temperature. (Patent Document 1). However, the conventional conductive paste tends to increase the amount of the dispersant used to increase the dispersion stability of the metal fine particles, resulting in variations in conductivity and difficulty in obtaining high conductivity in the low-temperature firing region. There's a problem.

一方、ポリエンポリカルポン酸等を添加することによって金属コロイド粒子の分散性を高めた金属コロイド液が知られており、この金属コロイド液を用いた導電性インクと該導電性インクによって形成した導電性被膜が提案されている(特許文献2)。しかし、従来の導電性ペーストは、導電性を確保するため、導電性ペースト中の金属含有量をできるだけ高くする必要があるが、高濃度領域においては経時安定性に問題がある。
特開2002−324966号公報 特開2002−294307号公報
On the other hand, a metal colloid liquid in which the dispersibility of metal colloidal particles is enhanced by adding polyene polycarponic acid or the like is known. Has been proposed (Patent Document 2). However, the conventional conductive paste needs to have as high a metal content as possible in order to ensure conductivity, but there is a problem in stability over time in a high concentration region.
JP 2002-324966 A JP 2002-294307 A

従来のナノサイズの粒径を有する金属微粒子を使用した導電性ペーストは、何れも球状の金属微粒子を用いており、このため高い導電性を得るために分散剤含有量および金属含有量を多くしなければならず、これに起因して上記問題を招いている。本発明は、従来の導電性ペーストにおける上記問題を解決したものであり、従来の球状金属微粒子に代えて、ナノサイズの粒径を有する微細なロッド状金属微粒子(金属ナノロッド)を用いることによって、高い導電性を有する導電材料を得ることができるようにしたものであり、この導電材料による導電性ペースト等を提供する。   Conventional conductive pastes using fine metal particles with nano-sized particle diameters use spherical fine metal particles. Therefore, in order to obtain high conductivity, the dispersant content and metal content are increased. This has led to the above problems. The present invention solves the above-mentioned problem in the conventional conductive paste, by using fine rod-shaped metal fine particles (metal nanorods) having a nano-sized particle size instead of the conventional spherical metal fine particles, A conductive material having high conductivity can be obtained, and a conductive paste or the like using this conductive material is provided.

本発明によれば以下の導電性材料が提供される。
(1)アスペクト比(長軸/短軸比)が1より大きいロッド状金属微粒子である金属ナノロッドを含有することを特徴とする導電性材料。
(2)長軸が400nm未満であって、アスペクト比が100以下である金属ナノロッドを含有する上記(1)の導電性材料。
(3)金属ナノロッドが、下記化学式(1)(2)で示される界面活性剤の1種または2種以上を添加した水溶液を電解液として用いる電気化学的還元法によって製造されたものである上記(1)または(2)の何れかに記載する導電性材料。
CH3(CH2)n +(CH3)3Br- (nは1〜15の整数) …(1)
〔CH3(CH2)n4+Br- (nは1〜15の整数) …(2)
(4)金属ナノロッドが、該金ナノロッドおよび水に対して親和性を有する界面活性剤を含む水溶液中で製造されたものであって、該金属ナノロッド水分散液を、上記界面活性剤を溶解する脱離液および非水系分散剤の存在下で、非水溶媒と混合することによって非水溶媒に抽出したものである上記(1)〜(3)の何れかに記載する導電性材料。
(5)金属ナノロッドと共に分散剤および分散媒を含む上記(1)〜(4)の何れかに記載する導電性材料。
(6)分散剤が窒素原子および/または硫黄原子を含有する上記(4)または(5)に記載する導電性材料。
(7)上記(1)〜(6)の何れかに記載する導電性材料をバインダーに配合してなる導電性塗料組成物、または該導電性塗料組成物によって形成された導電性塗膜。
(8)上記(1)〜(6)の何れかに記載する導電性材料によって形成された導電性ペースト、配線材料、電極材料、または導電性フィルム。
(9)アスペクト比(長軸/短軸比)が1より大きい金属ナノロッドを、窒素原子および/または硫黄原子を含有する分散剤と共に含有することを特徴とする導電性ペースト、配線材料、電極材料、導電性塗料、導電性塗膜、導電性フィルム。
According to the present invention, the following conductive materials are provided.
(1) A conductive material comprising metal nanorods which are rod-shaped metal fine particles having an aspect ratio (major axis / minor axis ratio) larger than 1.
(2) The conductive material according to (1) above, comprising metal nanorods having a major axis of less than 400 nm and an aspect ratio of 100 or less.
(3) The above-mentioned metal nanorods are produced by an electrochemical reduction method using an aqueous solution to which one or more surfactants represented by the following chemical formulas (1) and (2) are added as an electrolytic solution The conductive material described in either (1) or (2).
CH 3 (CH 2 ) n N + (CH 3 ) 3 Br (n is an integer of 1 to 15) (1)
[CH 3 (CH 2 ) n ] 4 N + Br (n is an integer of 1 to 15) (2)
(4) The metal nanorod is manufactured in an aqueous solution containing a surfactant having affinity for the gold nanorod and water, and the surfactant is dissolved in the metal nanorod aqueous dispersion. The conductive material according to any one of the above (1) to (3), which is extracted into a non-aqueous solvent by mixing with a non-aqueous solvent in the presence of a releasing liquid and a non-aqueous dispersant.
(5) The conductive material according to any one of (1) to (4), which contains a dispersant and a dispersion medium together with metal nanorods.
(6) The conductive material according to (4) or (5) above, wherein the dispersant contains a nitrogen atom and / or a sulfur atom.
(7) A conductive coating composition obtained by blending the conductive material described in any one of (1) to (6) above with a binder, or a conductive coating film formed from the conductive coating composition.
(8) A conductive paste, a wiring material, an electrode material, or a conductive film formed of the conductive material described in any one of (1) to (6) above.
(9) A conductive paste, wiring material, and electrode material containing metal nanorods having an aspect ratio (major axis / minor axis ratio) of greater than 1 together with a dispersant containing nitrogen atoms and / or sulfur atoms , Conductive paint, conductive coating film, conductive film.

〔具体的な説明〕
本発明は、アスペクト比(長軸/短軸比)が1より大きいロッド状金属微粒子である金属ナノロッドを含有することを特徴とする導電性材料であり、例えば、長軸が400nm未満、好ましくは30〜300nmであって、アスペクト比が100以下、好ましくは2〜10である金属ナノロッドを含有する導電性材料である。長軸が400nmよりも大きく、またアスペクト比が100より大きいと金属ナノロッドが相互に絡まって凝集体を生じやすくなる。
[Specific description]
The present invention is a conductive material comprising metal nanorods that are rod-shaped metal fine particles having an aspect ratio (major axis / minor axis ratio) of greater than 1, for example, the major axis is less than 400 nm, preferably A conductive material containing metal nanorods having an aspect ratio of 30 or less and an aspect ratio of 100 or less, preferably 2 to 10. When the major axis is larger than 400 nm and the aspect ratio is larger than 100, the metal nanorods tend to be entangled with each other to form an aggregate.

本発明は、上記金属ナノロッドを含む導電性材料であって、特に窒素原子および/または硫黄原子を含有する分散剤と共に含有する導電性材料である。窒素原子や硫黄原子は金属ナノロッドに対して高い吸着性を示すので、これらの原子を含む分散剤は金属ナノロッドを溶媒や樹脂に対して均一に分散させることができ、金属ナノロッドの分散性がよい組成物を得ることができる。この金属ナノロッド含有組成物は金属ナノロッドが互いに絡み合って存在するので金属ナノロッドどうしの接触点が多く、また接触面積が大きいので優れた導電性を有し、導電材料として好適である。   The present invention is a conductive material including the metal nanorods, particularly a conductive material that is contained together with a dispersant containing nitrogen atoms and / or sulfur atoms. Since nitrogen atoms and sulfur atoms exhibit high adsorptivity to metal nanorods, a dispersant containing these atoms can uniformly disperse metal nanorods in a solvent or resin, and the dispersibility of metal nanorods is good. A composition can be obtained. This metal nanorod-containing composition has metal nanorods entangled with each other, so there are many contact points between the metal nanorods, and since the contact area is large, it has excellent conductivity and is suitable as a conductive material.

本発明の金属ナノロッドを含有する導電材料を用いた導電性ペーストや導電性インクは通常の導電性ペースト、導電性インクなどと同様の材料によって形成すれば良い。例えばバインダーとしては、通常の塗料用や成型用に利用されている各種樹脂が特に制限無く使用できる。具体的には、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、ウレタン樹脂、シリコーン樹脂、フッ素樹脂、エポキシ樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、ポリピニルアルコール等の各種有機樹脂や、ラジカル重合性のオリゴマーやモノマー(場合により硬化剤やラジカル重合剤開始剤と併用する)が代表的なものとして挙げられる。また溶媒としては、バインダーが溶解もしくは安定に分散するような溶媒を適宜選択すればよく、具体的には、水;メタノール、エタノール、プロパノール、ヘキサノール、エチレングリコール等のアルコール;キシレン、トルエン等の芳香族炭化水素;シクロヘキサン等の脂環式炭化水素:アセトン、メチルエチルケトン等のケトン;酢酸ブチル等のエステル、セルソルブアセテート等のエーテル等あるいはこれらの混合物が代表的なものとして挙げられるが、これらに限定されるものではない。   The conductive paste or conductive ink using the conductive material containing the metal nanorods of the present invention may be formed of the same material as that of a normal conductive paste or conductive ink. For example, as the binder, various resins used for ordinary paints and moldings can be used without particular limitation. Specifically, various organic resins such as acrylic resin, polyester resin, alkyd resin, urethane resin, silicone resin, fluorine resin, epoxy resin, polycarbonate resin, polyvinyl chloride resin, and polypinyl alcohol, and radical polymerizable oligomers And monomers (sometimes used in combination with a curing agent or a radical polymerization initiator). Further, as the solvent, a solvent in which the binder is dissolved or stably dispersed may be appropriately selected. Specifically, water; alcohol such as methanol, ethanol, propanol, hexanol, and ethylene glycol; aroma such as xylene and toluene. Typical examples include aliphatic hydrocarbons; alicyclic hydrocarbons such as cyclohexane; ketones such as acetone and methyl ethyl ketone; esters such as butyl acetate; ethers such as cellosolve acetate; and mixtures thereof. Is not to be done.

上記金属ナノロッドの配合量は目的の導電性が得られる量であれば良い。例えば、バインダー100重量部に対して0.01〜1900重量部、好ましくは5〜1900重量部であれば良い。金属ナノロッドの量がこれより少ないと、例えば塗膜にしたときの表面抵抗値が高くなる。   The compounding amount of the metal nanorods may be an amount that provides the desired conductivity. For example, it may be 0.01 to 1900 parts by weight, preferably 5 to 1900 parts by weight with respect to 100 parts by weight of the binder. When the amount of metal nanorods is less than this, for example, the surface resistance value when a coating film is formed becomes high.

本発明の導電性材料に用いる金属ナノロッドは、界面活性剤を含む水溶液中で金属イオンを還元する方法によって得ることができる。具体的な還元方法としては、化学還元、電気化学的還元、光還元、または化学還元と光照射を組み合わせた方法などを利用することができる。   The metal nanorod used for the conductive material of the present invention can be obtained by a method of reducing metal ions in an aqueous solution containing a surfactant. As a specific reduction method, chemical reduction, electrochemical reduction, photoreduction, a method in which chemical reduction and light irradiation are combined, or the like can be used.

電気化学的還元法は、下記化学式(1)(2)で示される界面活性剤の1種または2種以上を添加した水溶液を電解液として用いる方法によると良い。この方法によって金属ナノロッドを安定にかつ効率よく得ることができる。また、2種以上の界面活性剤の組合せを変えることによって金属ナノロッドのアスペクト比を調整することができる。   The electrochemical reduction method may be a method in which an aqueous solution to which one or more surfactants represented by the following chemical formulas (1) and (2) are added is used as an electrolytic solution. By this method, metal nanorods can be obtained stably and efficiently. In addition, the aspect ratio of the metal nanorods can be adjusted by changing the combination of two or more surfactants.

CH3(CH2)n +(CH3)3Br- (nは1〜15の整数) …(1)
〔CH3(CH2)n4+Br- (nは1〜15の整数) …(2)
CH 3 (CH 2 ) n N + (CH 3 ) 3 Br (n is an integer of 1 to 15) (1)
[CH 3 (CH 2 ) n ] 4 N + Br (n is an integer of 1 to 15) (2)

上記化学式(1)で示される代表的な界面活性剤はヘキサデシルトリメチルアンモニウムブロミド〔CTAB:CH3(CH2)15N+(CH3)3Br-〕である。上記化学式(2)で示される代表的な界面活性剤はテトラブチルアンモニウムブロミド〔TC4AB〕などである。 A typical surfactant represented by the chemical formula (1) is hexadecyltrimethylammonium bromide [CTAB: CH 3 (CH 2 ) 15 N + (CH 3 ) 3 Br ]. A typical surfactant represented by the chemical formula (2) is tetrabutylammonium bromide [TC4AB].

金属ナノロッドが、該金属ナノロッドと水に対して親和性を有する界面活性剤を含む水溶液中で製造されたものであるとき、該金属ナノロッド水分散液を、上記界面活性剤を溶解する脱離液および非水系分散剤の存在下で非水溶媒と混合することによって、金属ナノロッドを非水溶媒に安定に抽出することができる。また、上記分散剤として窒素原子や硫黄原子を含有するものを用いれば、この抽出方法によって得た金属ナノロッド非水系分散液を導電性材料の原料として好適に用いることができる。   When the metal nanorod is manufactured in an aqueous solution containing a surfactant having an affinity for water with the metal nanorod, the metal nanorod aqueous dispersion is used as a desorbing solution for dissolving the surfactant. And by mixing with a non-aqueous solvent in the presence of a non-aqueous dispersant, metal nanorods can be stably extracted into the non-aqueous solvent. Moreover, if the thing containing a nitrogen atom or a sulfur atom is used as said dispersing agent, the metal nanorod non-aqueous dispersion liquid obtained by this extraction method can be used suitably as a raw material of an electroconductive material.

具体的には、CTAB等を含む水溶液中で製造された金属ナノロッドは、その表面にCTAB等が吸着することによって安定に水中に分散している。これを導電性材料などに利用するには、水分散液からベンゼンやエーテルなどの有機溶媒(非水溶媒ないし非水系の分散媒)に抽出すれば適用範囲が広がるので好ましい。この抽出法として、界面活性剤を溶解する脱離液および非水系分散剤の存在下で、金属ナノロッド水分散液を非水溶媒に混合する方法を利用することができる。   Specifically, metal nanorods produced in an aqueous solution containing CTAB and the like are stably dispersed in water by adsorbing CTAB and the like on the surface thereof. In order to use this as a conductive material or the like, it is preferable to extract from an aqueous dispersion into an organic solvent such as benzene or ether (a non-aqueous solvent or a non-aqueous dispersion medium) because the applicable range is expanded. As this extraction method, a method of mixing a metal nanorod aqueous dispersion with a nonaqueous solvent in the presence of a desorbing solution that dissolves a surfactant and a nonaqueous dispersant can be used.

界面活性剤を溶解する脱離液としては、例えばメタノール、エタノールなどのアルコール類、アセトン、エチルメチルケトンなどのケトン類を用いることができる。   As the desorbing solution for dissolving the surfactant, for example, alcohols such as methanol and ethanol, and ketones such as acetone and ethyl methyl ketone can be used.

非水系分散剤としては、金属ナノロッドに対して吸着性の高い元素である窒素原子、硫黄原子の何れかを吸着部位として有し、かつ非水溶媒に溶解する化合物が好ましい。例えば、(イ)窒素原子を主鎖中に有し、かつ非水溶媒に対して親和性のある側鎖を有する化合物、(ロ)チオール基を有し、かつ非水溶媒に対して親和性の側鎖を有する化合物、(ハ)アミノ基を有し、かつ非水溶媒に対して親和性のある側鎖を有する化合物等が挙げられる。   As the non-aqueous dispersant, a compound having either a nitrogen atom or a sulfur atom, which is an element having a high adsorptivity to metal nanorods, as an adsorption site and being soluble in a non-aqueous solvent is preferable. For example, (a) a compound having a nitrogen atom in the main chain and a side chain having affinity for a nonaqueous solvent, (b) having a thiol group and affinity for a nonaqueous solvent And (c) a compound having an amino group and having a side chain having an affinity for a non-aqueous solvent.

上記(イ)の化合物は市販品を使用することができる。上記(ロ)の化合物としては、ブタンチオール、ヘキサンチオール、オクタンチオール、デカンチオール、ドデカンチオールなどが挙げられる。また、上記(ハ)の化合物としては、グリシン、アラニン、リシン、グルタミン酸、アスパラギン酸、フェニルアラニン、バリン、ロイシンなどが挙げられる。   A commercially available product can be used as the compound (a). Examples of the compound (b) include butanethiol, hexanethiol, octanethiol, decanethiol, and dodecanethiol. Examples of the compound (c) include glycine, alanine, lysine, glutamic acid, aspartic acid, phenylalanine, valine, and leucine.

上記脱離液および上記分散剤の存在下で、金属ナノロッド水分散液を有機溶媒に混合すると、水分散液中の金属ナノロッド表面に吸着している界面活性剤が脱離液によって除去され、この界面活性剤に代わって上記分散剤が置換するので、金属ナノロッドが水相から有機相に移行し、金属ナノロッドを有機溶媒に抽出することができる。この金属ナノロッド有機分散液は、窒素原子や硫黄原子を含む分散剤が金属ナノロッド表面に強く吸着しているので、金属ナノロッドの分散性が良く、導電性材料の原料として好適である。   When the metal nanorod aqueous dispersion is mixed with an organic solvent in the presence of the desorbing liquid and the dispersing agent, the surfactant adsorbed on the surface of the metal nanorods in the aqueous dispersion is removed by the desorbing liquid. Since the above-described dispersant is substituted for the surfactant, the metal nanorods are transferred from the aqueous phase to the organic phase, and the metal nanorods can be extracted into the organic solvent. In this metal nanorod organic dispersion, since the dispersant containing nitrogen atoms and sulfur atoms is strongly adsorbed on the surface of the metal nanorods, the metal nanorods have good dispersibility and are suitable as a raw material for the conductive material.

本発明に係る金属ナノロッドを含有する導電性材料は、金属ナノロッドが互いに絡み合って存在するので、金属含有量を同じにした場合、球状金属微粒子を用いた場合よりも導電性に優れている。従って、金属ナノロッドの含有量を球状金属微粒子のときより少なくしても、高い導電性を得ることができ、球状金属微粒子を多量に配合したときに見られる経時的な不安定性がない。さらに、球状金属微粒子を用いた場合に比べて分散剤の量を低減することができ、分散剤に起因する導電性のバラツキを生じることがない。従って、本発明の金属ナノロッド含有導電性材料によれば、安定性、導電性に優れた導電性ペースト、配線材料、電極材料、導電性塗料、導電性塗膜、導電性フィルムなどを得ることができる。   Since the conductive material containing the metal nanorod according to the present invention exists in such a manner that the metal nanorods are entangled with each other, when the metal content is the same, the conductivity is better than when the spherical metal fine particles are used. Therefore, even if the content of the metal nanorods is less than that in the case of spherical metal fine particles, high conductivity can be obtained, and there is no instability over time that is seen when a large amount of spherical metal fine particles are blended. Furthermore, the amount of the dispersant can be reduced as compared with the case where spherical metal fine particles are used, and there is no variation in conductivity due to the dispersant. Therefore, according to the metal nanorod-containing conductive material of the present invention, it is possible to obtain a conductive paste, wiring material, electrode material, conductive paint, conductive coating film, conductive film, etc. excellent in stability and conductivity. it can.

以下に本発明の実施例を示す。なお、各例において窒素含有分散剤として市販品(商品名ソルスパース24000SC)を用いた。また塗膜を形成した基板の表面抵抗値を測定した。測定器は三菱化学製機器(ロレスタ・GP)を用い、4端針法によって測定した。さらに、上記金ナノロッド塗料の分散安定性を評価した(1ケ月放置後の粒子沈降の有無)。この結果を表1に示した。   Examples of the present invention are shown below. In each example, a commercially available product (trade name Solsperse 24000SC) was used as the nitrogen-containing dispersant. Further, the surface resistance value of the substrate on which the coating film was formed was measured. The measuring instrument was Mitsubishi Chemical equipment (Loresta GP) and measured by the four-end needle method. Furthermore, the dispersion stability of the gold nanorod paint was evaluated (presence or absence of particle sedimentation after standing for 1 month). The results are shown in Table 1.

アスペクト比5.0の金ナノロッド(長軸:約50nm)6g、窒素含有分散剤0.6g、トルエン10g、アクリル樹脂0.4gからなる金ナノロッド含有塗料を作製した。この塗料をガラス基板に塗布(膜厚:1μm)し、乾燥(200℃、1時間)して金ナノロッド塗布基板を得た。   A gold nanorod-containing paint comprising 6 g of gold nanorods having an aspect ratio of 5.0 (major axis: about 50 nm), 0.6 g of a nitrogen-containing dispersant, 10 g of toluene, and 0.4 g of acrylic resin was prepared. This paint was applied to a glass substrate (film thickness: 1 μm) and dried (200 ° C., 1 hour) to obtain a gold nanorod-coated substrate.

アスペクト比5.0の金ナノロッド(長軸:約50nm)10g、窒素含有分散剤1.0g、トルエン5g、アクリル樹脂0.3gからなる金ナノロッド含有塗料を作製した。この塗料を実施例1と同様の条件下でガラス基板に塗布し、乾燥することによって金ナノロッド塗布基板を得た。 A gold nanorod-containing coating composed of 10 g of gold nanorods having an aspect ratio of 5.0 (major axis: about 50 nm), 1.0 g of a nitrogen-containing dispersant, 5 g of toluene, and 0.3 g of an acrylic resin was prepared. This paint was applied to a glass substrate under the same conditions as in Example 1, and dried to obtain a gold nanorod-coated substrate.

アスペクト比10.0の金ナノロッド(長軸:約80nm)を使用すること以外は実施例1と同様にして金ナノロッド含有塗料を作製した。この塗料を実施例1と同様の条件下でガラス基板に塗布し、乾燥することによって金ナノロッド塗布基板を得た。   A gold nanorod-containing coating was prepared in the same manner as in Example 1 except that gold nanorods having an aspect ratio of 10.0 (major axis: about 80 nm) were used. This paint was applied to a glass substrate under the same conditions as in Example 1, and dried to obtain a gold nanorod-coated substrate.

アスペクト比5.0の金ナノロッド(長軸:約200nm)6g、窒素含有分散剤0.6g、トルエン5g、アクリル樹脂0.3gからなる金ナノロッド含有塗料を作製した。この塗料を実施例1と同様の条件下でガラス基板に塗布し、乾燥することによって金ナノロッド塗布基板を得た。 A gold nanorod-containing coating comprising 6 g of gold nanorods having an aspect ratio of 5.0 (major axis: about 200 nm), 0.6 g of a nitrogen-containing dispersant, 5 g of toluene, and 0.3 g of acrylic resin was prepared. This paint was applied to a glass substrate under the same conditions as in Example 1, and dried to obtain a gold nanorod-coated substrate.

比較例Comparative example

球状金ナノ粒子(平均一次粒子径:10nm)6g、窒素含有分散剤0.6g、トルエン10g、アクリル樹脂0.4gからなる金ナノ粒子含有塗料を作製した。この塗料を実施例1と同様の条件下でガラス基板に塗布し、乾燥することによって金ナノロッド塗布基板を得た。   A gold nanoparticle-containing coating comprising 6 g of spherical gold nanoparticles (average primary particle size: 10 nm), 0.6 g of a nitrogen-containing dispersant, 10 g of toluene, and 0.4 g of an acrylic resin was prepared. This paint was applied to a glass substrate under the same conditions as in Example 1, and dried to obtain a gold nanorod-coated substrate.

Figure 2005317394
Figure 2005317394

表1に示すように、本発明の導電性塗料は何れも表面抵抗が低く、塗料の分散安定性も良好である。一方、比較例は表面抵抗が高く、分散安定性も不良である。   As shown in Table 1, each of the conductive paints of the present invention has a low surface resistance and good dispersion stability of the paint. On the other hand, the comparative example has high surface resistance and poor dispersion stability.

蒸留水にヘキサデシルトリメチルアンモニウムブロミド(CTAB)を濃度が0.08mol/Lになるように溶解させ、更に、これにテトラオクチルアンモニウムブロミド(TC8AB)を濃度が0.016mol/Lになるように加えた水溶液100gを調製した。この水溶液にアセトン1.1g、シクロヘキサノン0.9gを添加したものを電解液として用い、陽極に金板および陰極に白金板を用い、さらに電解槽に銀板を挿入して、電解還元を行い、金ナノロッド(長軸46nm、短軸13nm:アスペクト比3.5)が分散した水分散液を得た。この水分散液を、窒素含有分散剤を溶解したトルエン中に混合しながらアセトンを添加し、1時間攪拌後、静置した。水系分散剤のCTABはアセトンによって溶解し、金ナノロッドは窒素含有分散剤によって表面処理された。静置した混合液は無色透明の水相と鮮やかな赤色のトルエン相に分離した。その後、有機溶媒相のみを抽出し、さらにエバポレーターを用いて余剰のトルエンを除去して、トルエンの金ナノロッド濃縮液(固形分50質量%)を得た。この濃縮液2gをアクリル樹脂のトルエン溶液(固形分40質量%)0.625gと混合して塗料化した。この塗料は室温下に3ヶ月以上放置しても変色や沈殿を生成せず安定であった。また、この塗料を用いたコーティング膜(膜厚1μm、乾燥200℃、1時間)の表面抵抗値は1.0Ω/□以下であった。   Hexadecyltrimethylammonium bromide (CTAB) is dissolved in distilled water to a concentration of 0.08 mol / L, and tetraoctylammonium bromide (TC8AB) is added to the solution to a concentration of 0.016 mol / L. 100 g of an aqueous solution was prepared. A solution obtained by adding 1.1 g of acetone and 0.9 g of cyclohexanone to this aqueous solution is used as an electrolytic solution, a gold plate is used as an anode and a platinum plate is used as a cathode, and a silver plate is further inserted into an electrolytic bath, and electrolytic reduction is performed. An aqueous dispersion in which gold nanorods (major axis 46 nm, minor axis 13 nm: aspect ratio 3.5) was obtained was obtained. Acetone was added while mixing the aqueous dispersion in toluene in which the nitrogen-containing dispersant was dissolved, and the mixture was stirred for 1 hour and allowed to stand. The aqueous dispersant CTAB was dissolved with acetone, and the gold nanorods were surface-treated with a nitrogen-containing dispersant. The liquid mixture left still was separated into a colorless and transparent aqueous phase and a bright red toluene phase. Thereafter, only the organic solvent phase was extracted, and excess toluene was removed using an evaporator to obtain a gold nanorod concentrate (solid content: 50% by mass) of toluene. 2 g of this concentrated solution was mixed with 0.625 g of a toluene solution of acrylic resin (solid content: 40% by mass) to form a paint. This paint was stable with no discoloration or precipitation even after standing at room temperature for 3 months or more. Further, the surface resistance value of the coating film (thickness 1 μm, dry 200 ° C., 1 hour) using this paint was 1.0Ω / □ or less.

Claims (9)

アスペクト比(長軸/短軸比)が1より大きいロッド状金属微粒子である金属ナノロッドを含有することを特徴とする導電性材料。
A conductive material comprising metal nanorods that are rod-shaped metal fine particles having an aspect ratio (major axis / minor axis ratio) of greater than 1.
長軸が400nm未満であって、アスペクト比が100以下である金属ナノロッドを含有する請求項1の導電性材料。
The conductive material according to claim 1, comprising metal nanorods having a major axis of less than 400 nm and an aspect ratio of 100 or less.
金属ナノロッドが、下記化学式(1)(2)で示される界面活性剤の1種または2種以上を添加した水溶液を電解液として用いる電気化学的還元法によって製造されたものである請求項1または2の何れかに記載する導電性材料。
CH3(CH2)n +(CH3)3Br- (nは1〜15の整数) …(1)
〔CH3(CH2)n4+Br- (nは1〜15の整数) …(2)
The metal nanorod is produced by an electrochemical reduction method using an aqueous solution to which one or more of the surfactants represented by the following chemical formulas (1) and (2) are added as an electrolyte. 2. The conductive material described in any one of 2 above.
CH 3 (CH 2 ) n N + (CH 3 ) 3 Br (n is an integer of 1 to 15) (1)
[CH 3 (CH 2 ) n ] 4 N + Br (n is an integer of 1 to 15) (2)
金属ナノロッドが、該金ナノロッドおよび水に対して親和性を有する界面活性剤を含む水溶液中で製造されたものであって、該金属ナノロッド水分散液を、上記界面活性剤を溶解する脱離液および非水系分散剤の存在下で、非水溶媒と混合することによって非水溶媒に抽出したものである請求項1〜3の何れかに記載する導電性材料。
A metal nanorod is produced in an aqueous solution containing a surfactant having affinity for gold nanorods and water, and the metal nanorod aqueous dispersion is dissolved in the surfactant. The conductive material according to claim 1, wherein the conductive material is extracted into a non-aqueous solvent by mixing with a non-aqueous solvent in the presence of the non-aqueous dispersant.
金属ナノロッドと共に分散剤および分散媒を含む請求項1〜4の何れかに記載する導電性材料。
The electroconductive material in any one of Claims 1-4 containing a dispersing agent and a dispersion medium with a metal nanorod.
分散剤が窒素原子および/または硫黄原子を含有する請求項4または5に記載する導電性材料。
The conductive material according to claim 4 or 5, wherein the dispersant contains a nitrogen atom and / or a sulfur atom.
請求項1〜6の何れかに記載する導電性材料をバインダーに配合してなる導電性塗料組成物、または該導電性塗料組成物によって形成された導電性塗膜。
The electroconductive coating composition formed by mix | blending the electroconductive material in any one of Claims 1-6 in a binder, or this electroconductive coating composition.
請求項1〜6の何れかに記載する導電性材料によって形成された導電性ペースト、配線材料、電極材料、または導電性フィルム。
A conductive paste, a wiring material, an electrode material, or a conductive film formed of the conductive material according to claim 1.
アスペクト比(長軸/短軸比)が1より大きい金属ナノロッドを、窒素原子および/または硫黄原子を含有する分散剤と共に含有することを特徴とする導電性ペースト、配線材料、電極材料、導電性塗料、導電性塗膜、導電性フィルム。


A conductive paste, a wiring material, an electrode material, and a conductive material characterized by containing a metal nanorod having an aspect ratio (major axis / minor axis ratio) greater than 1 together with a dispersant containing nitrogen atoms and / or sulfur atoms Paint, conductive coating, conductive film.


JP2004134724A 2004-04-28 2004-04-28 Method for producing conductive paste, etc. Expired - Lifetime JP4491776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004134724A JP4491776B2 (en) 2004-04-28 2004-04-28 Method for producing conductive paste, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004134724A JP4491776B2 (en) 2004-04-28 2004-04-28 Method for producing conductive paste, etc.

Publications (2)

Publication Number Publication Date
JP2005317394A true JP2005317394A (en) 2005-11-10
JP4491776B2 JP4491776B2 (en) 2010-06-30

Family

ID=35444581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004134724A Expired - Lifetime JP4491776B2 (en) 2004-04-28 2004-04-28 Method for producing conductive paste, etc.

Country Status (1)

Country Link
JP (1) JP4491776B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100767703B1 (en) 2006-06-07 2007-10-18 한국과학기술연구원 Preparation method of silver nano-powder using electrolysis
WO2010117075A1 (en) * 2009-04-10 2010-10-14 住友化学株式会社 Metal complex and composition containing same
JP2010261102A (en) * 2009-04-10 2010-11-18 Sumitomo Chemical Co Ltd Metal complex and composition containing the same
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8018563B2 (en) 2007-04-20 2011-09-13 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
US8049333B2 (en) 2005-08-12 2011-11-01 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
US8094247B2 (en) 2006-10-12 2012-01-10 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US9534124B2 (en) 2010-02-05 2017-01-03 Cam Holding Corporation Photosensitive ink compositions and transparent conductors and method of using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003225899A (en) * 2002-01-31 2003-08-12 Sangaku Renkei Kiko Kyushu:Kk Functional element using spectral characteristic of metal nano-rod
JP2003315531A (en) * 2002-02-25 2003-11-06 Mitsubishi Materials Corp Polymer film containing metal nanorod and optical filter
JP2003313506A (en) * 2002-02-25 2003-11-06 Mitsubishi Materials Corp Metal nanorod-containing composition
JP2004346397A (en) * 2003-05-23 2004-12-09 Mitsubishi Materials Corp Method of producing metallic fine particles, and application of the fine particles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003225899A (en) * 2002-01-31 2003-08-12 Sangaku Renkei Kiko Kyushu:Kk Functional element using spectral characteristic of metal nano-rod
JP2003315531A (en) * 2002-02-25 2003-11-06 Mitsubishi Materials Corp Polymer film containing metal nanorod and optical filter
JP2003313506A (en) * 2002-02-25 2003-11-06 Mitsubishi Materials Corp Metal nanorod-containing composition
JP2004346397A (en) * 2003-05-23 2004-12-09 Mitsubishi Materials Corp Method of producing metallic fine particles, and application of the fine particles

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9899123B2 (en) 2005-08-12 2018-02-20 Jonathan S. Alden Nanowires-based transparent conductors
US8049333B2 (en) 2005-08-12 2011-11-01 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
US8865027B2 (en) 2005-08-12 2014-10-21 Cambrios Technologies Corporation Nanowires-based transparent conductors
US8618531B2 (en) 2005-08-12 2013-12-31 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
KR100767703B1 (en) 2006-06-07 2007-10-18 한국과학기술연구원 Preparation method of silver nano-powder using electrolysis
US8760606B2 (en) 2006-10-12 2014-06-24 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US10749048B2 (en) 2006-10-12 2020-08-18 Cambrios Film Solutions Corporation Nanowire-based transparent conductors and applications thereof
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8094247B2 (en) 2006-10-12 2012-01-10 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8174667B2 (en) 2006-10-12 2012-05-08 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8018563B2 (en) 2007-04-20 2011-09-13 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
CN102387880A (en) * 2009-04-10 2012-03-21 住友化学株式会社 Metal complex and composition containing same
US9536633B2 (en) 2009-04-10 2017-01-03 Sumitomo Chemical Company, Limited Metallic composite and composition thereof
JP2010261102A (en) * 2009-04-10 2010-11-18 Sumitomo Chemical Co Ltd Metal complex and composition containing the same
WO2010117075A1 (en) * 2009-04-10 2010-10-14 住友化学株式会社 Metal complex and composition containing same
US9534124B2 (en) 2010-02-05 2017-01-03 Cam Holding Corporation Photosensitive ink compositions and transparent conductors and method of using the same

Also Published As

Publication number Publication date
JP4491776B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
JP4524745B2 (en) Metal nanowire-containing conductive material and use thereof
US10071426B2 (en) Coated metal fine particle and manufacturing method thereof
JP5190412B2 (en) ALLOY NANOPARTICLE, PROCESS FOR PRODUCING THE SAME, AND INK AND PASTE USING THE ALLOY NANOPARTICLE
JP4517230B2 (en) Composition containing fine metal particles and use thereof
WO2011078141A1 (en) Conductive paste for screen printing
JP2009545657A (en) Particles and inks and films using them
WO2012133627A1 (en) Silver-coated copper powder and method for producing same, silver-coated copper powder-containing conductive paste, conductive adhesive agent, conductive film, and electric circuit
JP2006161081A (en) Silvered copper powder, its manufacturing method, and conductive paste
JP5041440B2 (en) Method for producing fine particle dispersion, and fine particle dispersion
JP4491776B2 (en) Method for producing conductive paste, etc.
TWI682007B (en) Fine silver particle dispersing solution
JP2012230866A (en) Conductive paste
JP2006118036A (en) Metal fine particle, method for producing metal fine particle, composition containing same, and application thereof
JP4947509B2 (en) Nickel slurry, method for producing the same, and nickel paste or nickel ink using the nickel slurry
JP2005281781A (en) Method for producing copper nanoparticle
JP2010199196A (en) Composition for forming electrode for solar cell, method of forming electrode, and solar cell using electrode obtained by method
JP2008135416A (en) Composition for forming electrode in solar cell, method of forming electrode, and solar cell using electrode obtained by the same
JP2002015622A (en) Copper powder for electro-conductive paste and its manufacturing method
JP5151230B2 (en) Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method
JP6330322B2 (en) Method for producing coated copper nanoparticles
JP2005270957A (en) Extraction method and use of metal fine particle
JP2012147014A (en) Composition for forming electrode of solar cell and formation method of the electrode, and solar cell using electrode obtained by the formation method
KR100529775B1 (en) Compositon of Conductive Paint for Electro magnetic Interference Shielding
WO2014061750A1 (en) Dispersant, metal particle dispersion for conductive substrate, and production method for conductive substrate
WO2017179524A1 (en) Silver-coated copper powder and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250