JP2005299016A - カーボンナノファイバーの製造方法、およびカーボンナノファイバーの後処理方法 - Google Patents

カーボンナノファイバーの製造方法、およびカーボンナノファイバーの後処理方法 Download PDF

Info

Publication number
JP2005299016A
JP2005299016A JP2004117080A JP2004117080A JP2005299016A JP 2005299016 A JP2005299016 A JP 2005299016A JP 2004117080 A JP2004117080 A JP 2004117080A JP 2004117080 A JP2004117080 A JP 2004117080A JP 2005299016 A JP2005299016 A JP 2005299016A
Authority
JP
Japan
Prior art keywords
carbon
gas
reaction tube
raw material
carbon nanofibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004117080A
Other languages
English (en)
Other versions
JP4392283B2 (ja
Inventor
Masanori Niiyama
正徳 新山
Minoru Harada
稔 原田
Akio Kawamura
堯夫 川村
Takashi Osaki
孝 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP2004117080A priority Critical patent/JP4392283B2/ja
Publication of JP2005299016A publication Critical patent/JP2005299016A/ja
Application granted granted Critical
Publication of JP4392283B2 publication Critical patent/JP4392283B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Fibers (AREA)

Abstract

【課題】生産量を向上させるとともに、導電性に優れたカーボンナノファイバーの製造方法、およびカーボンナノファイバーの後処理方法を提供すること。
【解決手段】 有機遷移金属化合物、炭素源化合物、およびキャリアガスを含有する混合ガスを反応させるカーボンナノファイバーの製造方法であって、前記反応における温度範囲が、1200〜1400℃であり、前記混合ガスは、前記有機遷移金属化合物が0.004〜0.3モル%、前記炭素源化合物が0.02〜5モル%、有機硫黄化合物または硫化水素が前記有機遷移金属化合物の1/5〜5倍、残りが水素であることを特徴とするカーボンナノファイバーの製造方法である。
【選択図】 なし


Description

この発明は、カーボンナノファイバーの製造方法、およびカーボンナノファイバーの後処理方法に関する。
有機遷移金属化合物と、炭素源化合物と、水素の混合ガスを所定の温度で反応させて、気相成長炭素繊維を得る、いわゆる流動気相法による気相成長炭素繊維の製造法が開発されて以来、気相成長炭素繊維に関する技術は、数多く開示されている。
例えば、特に直径の細い気相成長炭素繊維、いわゆるカーボンナノチューブやカーボンナノファイバー(本明細書では、両方を含めて、カーボンナノファイバーと呼称することがある。)の製造に流動気相法を採用する技術が提案されている(特許文献1、2参照)。
特開2001−80913号公報(請求項1) 特開2001−72231号公報(請求項1)
上記特許文献1、2記載の発明に係るカーボンナノファイバーの製造条件として、その温度範囲が700〜1500℃、あるいは900〜1200℃程度が開示されている。これら特許文献1、2の実施例においては、1200℃以上の例示がなく、1200〜1500℃の温度範囲についての情報はあまりない。特に、特許文献1記載の発明においては、遷移金属原子の濃度と炭化水素の濃度が、特定の濃度になるような条件下、900〜1300℃の温度範囲でカーボンナノファイバーを製造している。しかし、特許文献1における実施例は、1100℃および1150℃のみで、1200℃以上については例示されていない。
また、これらの特許文献1、2に記載の発明と類似の製造方法において、カーボンナノファイバーを製造したという報告もある(非特許文献1参照)。
Lijie Ci et al,「Carbon」,(2001),39,p.329
しかしながら、上記非特許文献1記載の発明においても、製造条件の温度範囲は、1050〜1180℃である。
以上、特許文献1、2および非特許文献1記載の発明において、カーボンナノファイバーの製造条件の温度範囲として、1200℃以上の例示がない理由については、製造した結果にメリットがないかデメリットを生じること、または、製造装置を構成する材料による限界等で実施不可能であることなどが推測される。
ところで、上記の流動気相法の製造原理は、有機遷移金属化合物が分解して生成した遷移金属原子が触媒粒子を形成し、この触媒粒子を核として炭化水素が一方向に分解・成長して気相成長炭素繊維ができるというものである。ここで、反応温度を高めると、触媒粒子が関与しない炭化水素の熱分解により、煤が発生したり、繊維上での炭化水素の熱分解による太さ成長によって、太くて結晶性に劣るカーボンナノファイバーが生成したりすることが懸念される。
上記した、繊維が生成して長さ成長する反応と、繊維の太さ方向に成長する太さ成長反応とは競争反応であるとされている。カーボンナノファイバーにおいては、できる限り太さ成長反応を抑制し、細い繊維を製造することが要求されていることから、低温の温度範囲において、反応を進めることが一般的に行われている。
以上述べたように、製造装置を構成する材料による限界等で実施不可能であることや、細い繊維を製造するため、低温の温度範囲で行う技術の積み重ねにより、1200℃以上でのカーボンナノファイバーの製造の試みが成されなかったと推測される。
一方、カーボンナノファイバーの製造後に、カーボンナノファイバーからタール分等の不純物を除去し、その後、カーボンナノファイバーに対して黒鉛化処理を施すことは一般的に行われている。
しかしながら、カーボンナノファイバーの製造直後に、実用的な黒鉛化度に達していれば、その後の黒鉛化処理のための工程を省略することもできるが、現在のところ、カーボンナノファイバーの製造直後に、実用的な黒鉛化度に達している技術は、報告されていない。
また、カーボンナノファイバーの生産効率を向上させることは、長年の課題であるが、より一層の向上が要求されてきている。
この発明は、このような従来の問題点を解消し、生産量を向上させるとともに、導電性に優れたカーボンナノファイバーの製造方法、およびカーボンナノファイバーの後処理方法を提供することを課題とする。
前記課題を解決するための手段は、有機遷移金属化合物、炭素源化合物、およびキャリアガスを含有する混合ガスを反応させるカーボンナノファイバーの製造方法であって、前記反応における温度範囲が、1200〜1400℃であり、前記混合ガスは、前記有機遷移金属化合物が0.004〜0.3モル%、前記炭素源化合物が0.02〜5モル%、有機硫黄化合物または硫化水素が前記有機遷移金属化合物の1/5〜5倍、残りが水素であることを特徴とするカーボンナノファイバーの製造方法である。
この発明に係るカーボンナノファイバーの製造方法の好適な態様においては、前記混合ガスは、水平断面視環状に供給される。
この発明に係るカーボンナノファイバーの製造方法の好適な態様においては、前記混合ガスの滞留時間は、0.5〜20秒である。
前記課題を解決するための別の手段は、前記カーボンナノファイバーの製造方法により得られたカーボンナノファイバーに対して、600〜1300℃の熱処理を行うことを特徴とするカーボンナノファイバーの後処理方法である。
この発明に係るカーボンナノファイバーの後処理方法の好適な態様においては、前記カーボンナノファイバーの後処理方法により得られたカーボンナノファイバーに対して、真空または不活性ガス雰囲気下で、1600〜2300℃の熱処理を行う。
本発明によれば、有機遷移金属化合物、炭素源化合物、およびキャリアガスを含有する混合ガスを反応させるカーボンナノファイバーの製造方法であって、前記反応における温度範囲が、1200〜1400℃であり、前記混合ガスは、前記有機遷移金属化合物が0.004〜0.3モル%、前記炭素源化合物が0.02〜5モル%、有機硫黄または硫化水素が前記有機遷移金属化合物の1/5〜5倍、残りが水素であることにより、導電性に優れたカーボンナノファイバーの生産量を向上させることができる。
以下、この発明の実施の形態を図面に基づいて説明する。図1に、この発明の一例である内部加熱体装備反応管装置を組み込んでなる、一例としてのカーボンナノファイバー製造装置1が示される。
[カーボンナノファイバー製造装置]
図1に示されるように、カーボンナノファイバー製造装置1は、内部加熱体装備反応管装置2と、原料ガス供給ノズル装置3と、原料ガス供給装置4と、キャリアガス供給装置5と、排出装置6を備える。
[内部加熱体装備反応管装置]
内部加熱体装備反応管装置2は、反応管7、内部加熱体8、及び外部加熱手段9を備える。
[反応管]
この反応管7は、縦方向に立設されたところの、例えば円筒形に形成された管であり、耐熱性の素材例えばセラミック特に炭化ケイ素(SiC)で形成されて成る。この反応管7の内部には、この反応管7の中心軸と同軸となるように配置された内部加熱体8が、配置される。
[内部加熱体]
ここで、内部加熱体8は、反応管7の内部に設けられるとともに、この反応管7の中心軸と同方向の中心軸を有するものであればよく、反応管7の中心軸と同軸となる配置に限られない。例えば、反応管7の中心軸と内部加熱体8の中心軸とが偏心するように、反応管7内に内部加熱体8が配置されていてもよい。
内部加熱体8の配置が前記のようであると、外部加熱手段9により加熱された反応管7から反応管7の内部に向けて放射される輻射熱により反応管7の内壁から反応管7の内部に向かって生じる温度勾配が内部加熱体8の外表面から放射される輻射熱により温度勾配が生じないように是正される。
なお、「反応管7の中心軸と同方向の」という表現における「同方向」とは、厳密な意味での、全くずれのない同軸または偏心軸を意味するものではなく、原料ガスを内部加熱体装備反応管装置2内の所定の内部空間に供給するのに差し支えない程度の角度のずれを許容する、実質的に同方向であることを意味する。
この内部加熱体8は、反応管7内における内部空間を加熱する機能を有していればよく、例えば円筒形に形成された内部管体8Aと、内部加熱手段10とで形成されることができる。
この内部管体8Aは、耐熱性、耐食性の素材例えばアルミナ、ムライト、炭化ケイ素、チッ化ケイ素などのセラミック、モリブデン、タンタル、タングステンなどの耐熱金属、炭素(黒鉛)などで形成されるが、特に炭化ケイ素(SiC)または炭素(黒鉛)がよい。なお、内部管体8Aは、円筒形の管に限られず、三角形、四角形、五角形等の多角形状の管でもよく、また、棒状としてもよい。
内部管体8Aは、反応管7の上端部から反応管7の内部に装入される。装入された内部管体8Aの先端部の位置は、原料ガス供給ノズル装置3における後述の原料ガス供給ノズル12から吹き出された原料ガスが後に反応管7の内壁と内部管体8Aの外面と原料ガス供給ノズル12の先端部との間に形成される空間を0.1〜8秒間、好ましくは0.2〜6秒間、特に好ましくは0.3〜4秒間で通過するのに相当する長さとなるように、設計されるのが良い。
前記長さは、換言すると、原料ガス供給ノズル12の先端部から内部管体8Aの先端部の長さでもある。この内部管体8Aの軸線方向における前記長さとしては、通常3〜150cm、好ましくは5〜120cm、特に好ましくは10〜100cmである。この長さが短いと内部からの加熱効果およびガス流の整流効果が発揮されず、長すぎると内部加熱体や反応管へのカーボンナノファイバー付着といったトラブルを生ずる。
前記内部加熱手段10としては、内部管体8Aを加熱することができる限りその構成について特に制限はなく、電気ヒータ等が採用されている。内部加熱手段10を用いず、内部加熱体8を反応管7の内壁からの輻射熱によって加熱することもでき、簡便な良い方法である。内部加熱体8の表面温度は反応管7の内壁温度に対し、±50℃(好ましくは±30℃、特に好ましくは±20℃)以内であるのが良い。
前述したように、前記反応管7の内部に前記内部加熱体8が同心に配置されることにより、反応管7の内壁と内部加熱体8の外表面とで水平断面が環状である筒状の内部空間が形成される。この内部空間の規模として、反応管7の内径は通常4〜100cm、好ましくは6〜80cm、特に好ましくは8〜60cmであり、内部加熱体8の外径は反応管7内径の1/20〜1/2、好ましくは1/15〜1/2.5、特に好ましくは1/10〜1/3が良い。
なお、内部加熱手段10は、内部管体8Aの先端付近に、かつ、後述する原料ガス供給ノズル11の環状吹き出し口15からはみ出した位置に設けられている。このように内部加熱手段10が設けられていることにより、所定の温度で均一に原料ガスを加熱するので、得られるカーボンナノファイバーの収率を向上させることができる。
[外部加熱手段]
反応管7の外周には外部加熱手段9が装着される。この外部加熱手段9としては、反応管7の内部を加熱することができる限りその構成について特に制限がないのであるが、この実施例においては、反応管7を通常、1200〜1400℃、好ましくは、1210〜1350℃、特に好ましくは、1220〜1300℃に加熱することができるように、外部加熱手段9として電気ヒータ等が採用されている。この実施形態においては、外部加熱手段9の軸線方向長さが、反応管7の軸線方向加熱長と実質的に同じに成っている。
なお、本実施形態においては、内部管体8Aの内部に内部加熱手段10が装着されているが、前述の如くこれに限られず、内部加熱手段10のない構成で、内部管体8Aが反応管7の内部を加熱するようにしてもよい。例えば、原料ガスを流す前から、外部加熱手段9を作動させて、反応管7を加熱することで、加熱した反応管7からの輻射熱が内部管体8Aへ伝わり、この輻射熱が内部管体8Aに蓄熱される。その後、原料ガスを流した際に、蓄熱された内部管体8Aの輻射熱が原料ガスを加熱するようになる。ガスが内部管体Aから奪う熱は僅かなので、この状態で長時間運転が可能である。
また、内部管体8Aの内部に、例えば、水素ガス等のキャリアガスを流し、この水素ガス等を予め加熱しておけば、この水素ガス等のキャリアガスが原料ガスを加熱するようになる。
一方、反応管7の内壁と内部加熱体8の外壁とで形成される内部空間は、外部加熱手段9により加熱された反応管7の輻射熱と、内部加熱体8の輻射熱とにより加熱されることによって、原料ガスが分解して遷移金属粒子が生成し、この遷移金属粒子を核にしてカーボンナノファイバーが生成する反応領域と成る。
この反応管7及び内部加熱体8により二重管が形成される。この二重管の上部には、原料ガス供給ノズル装置3が装着される。より具体的に述べると、反応管7の上端部と内部加熱体8の上端部とで形成される環状の円筒状空間に原料ガス供給ノズル装置3が、装着される。
[原料ガス供給ノズル装置]
原料ガス供給ノズル装置3は、図1に示されるように、原料ガス供給ノズル11と、キャリアガス供給手段12とを備える。図1及び図2に示されるように、この原料ガス供給ノズル11は、反応管7の上端部における内壁と内部加熱体8の上端部における外壁との間に挿入配置された外管13と内管14とで形成されるところの、水平断面が環状をなす管体であり、環状に形成されたスリットが環状吹き出し口15として、内部空間に向かって開口する。
この環状吹き出し口15は、その開口幅即ち外径と内径との差は、通常、0.5〜20mmであり、好ましくは0.8〜15mm、更に好ましくは、1〜10mmであり、または、反応管7の内径の0.1〜10%、好ましくは0.2〜5%、更に好ましくは、0.3〜3%である。
環状吹き出し口15の開口幅が前記範囲内にあると、この原料ガス供給ノズル11の環状吹き出し口15から吹き出される原料ガスの気流が、外側ハニカム構造体12Aおよび内側ハニカム構造体12Bから吹き出されるキャリアガスに挟まれて、キャリアガス中を拡散しながら、反応管7の内壁と内部加熱体8の外壁から加熱される事で、均一に近い状態で反応を起こしつつ、反応管7の内壁と内部加熱体8の外壁とに挟まれた内部空間内を下降していくことができる。
前記開口幅が前記下限値よりも小さいと、所定の流量で原料ガスを環状吹き出し口15から吹き出させようとするとその環状吹き出し口15から吹き出される原料ガスの線速度が大きくなり過ぎ、その結果として、キャリアガス供給手段12から吹き出されるキャリアガスの線速度と原料ガスの線速度とが大きく相違することになり、キャリアガスの流れと原料ガスの流れとの間で渦流・乱流等が発生し、流れ全体が脈流化するなど不安定な状態になり、管壁にカーボンナノファイバーが付着するという好ましくない現象が顕在化し、最終的には有効にカーボンナノファイバーを製造することができないことがある。
前記開口幅が前記上限値よりも大きいと、環状吹き出し口15から吹き出される原料ガスの厚さが厚くなり過ぎ、その結果として、キャリアガス供給手段12から吹き出されるキャリアガス中への原料ガスの拡散が不充分で原料ガス層の中心部の濃度が高いままで反応が進行し、その結果カーボンナノファイバー以外の煤や太い繊維という不純物が大量に発生することになる。
前記環状に開口するスリットである環状吹き出し口15の位置としては、図2に示されるように、反応管7の内壁と内部加熱体8の外壁との水平断面における中間位置かそれよりも内部加熱体8に近い方が良い。
この発明に係る内部加熱体装備反応管装置2は、キャリアガス供給手段12を備える。このキャリアガス供給手段12は、先ず第1に、反応管7と内部加熱体8とで形成される内部空間内にキャリアガス供給装置5からのキャリアガスを供給することにより、この内部空間内に供給された原料ガスを希釈して均一な反応を助長し、更にこの原料ガスが分解して生成するカーボンナノファイバー等が反応管7の内壁及び加熱体8の外表面に付着することを防止する。
この発明に係る内部加熱体装備反応管装置2においては、反応管7からの輻射熱と内部加熱体8からの輻射熱とによって内部空間内に形成される反応領域において原料ガスの均一な加熱状態を実現して高純度のカーボンナノファイバーを大量生産するのであるが、さらに高純度のカーボンナノファイバーを効率的に製造するには、均一な加熱状態の実現とともに原料ガスの希釈による反応の均一化、更にはガス流の乱れを防止することが重要になる。
つまり、ガス流の乱れが反応領域で発生すると、原料ガスの分解物及び生成したカーボンナノファイバー等が反応管7の内壁及び内部加熱体8の表面等に付着することとなり、前記器壁に前記分解物やカーボンナノファイバーがいったん付着してしまうと、付着したカーボンナノファイバーが原料ガスの流れをますます乱すことになる。
その結果、器壁への不純物及びカーボンナノファイバーの付着量は指数関数的に増加してしまって、カーボンナノファイバーを大量に、高純度で製造することができなくなる恐れを生じる。そこで、詳しくは、図2に示されるように、キャリアガス供給手段12は、外側ハニカム構造体12Aと内側ハニカム構造体12Bとを備える。
外側ハニカム構造体12Aは、前記外管13の外面と反応管7の内壁との間に配設される。この外側ハニカム構造体12Aは、反応管7の内壁に沿ってキャリアガス例えば水素ガスを流通させることができるように、しかもそのキャリアガスが層流と成って流通するように、水平断面がハニカム構造と成っていて、気流調整手段でもある。この外側ハニカム構造体12Aは、反応管7から放射される輻射熱を断熱して原料ガス供給ノズル11の内部が過熱されないようにする機能も有する。更にキャリアガスの予熱を行うと共に、ハニカム構造体から吹き出したガスが対流を起こすのを防いでもいる。
また、内側ハニカム構造体12Bは、前記内管14の内壁と内部加熱体8の外壁との間に、配設される。この内側ハニカム構造体12Bは前記外側ハニカム構造体12Aと同様の構造を有し、キャリアガスが内部加熱体8の外壁に沿って層流となって流通することができるように、水平断面がハニカム構造と成っていて、気流調整手段でもある。この内側ハニカム構造体12Bは、内部加熱体8から放射される輻射熱を断熱して原料ガス供給ノズル11の内部が過熱されないようにする機能も有する。更にキャリアガスの予熱を行うと共に、ハニカム構造体から吹き出したガスが対流を起こすのを防いでもいる。
前記キャリアガス供給手段12が存在するとは言っても、前記原料ガス供給ノズル装置3は、反応管7及び内部加熱体8の上端部において反応管7と内部加熱体8との間に原料ガス供給ノズル11を挿入しているので、反応管7の軸線方向における全体に装着された外部加熱手段9及び内部加熱体8の軸線方向における全体に設置された内部加熱手段10によって前記原料ガス供給ノズル11が加熱されることになるので、前記原料ガス供給ノズル11内が、金属触媒源である例えば有機遷移金属化合物が分解するほどの過度に加熱されることがないように、図示しない冷却手段で原料ガス供給ノズル11のガス流通路内を冷却しておくことが必要である。このようにしておくことにより、原料ガス供給ノズル11から吹き出す原料ガス温度をカーボンナノファイバー生成に適した温度にすることができる。
前記キャリアガス供給手段12および原料ガス供給ノズル装置3は、反応領域より上流にあたる処に位置する為、反応領域温度よりは低温であり、さらに図示しない冷却手段で冷却されるので、ステンレスなどの耐熱金属か炭化ケイ素・炭素(黒鉛)を使用できる。その他のセラミック(アルミナ・窒化ケイ素)などを使用した場合は、加工の難しさや使用時の剥離小片の製品への混入などの問題がある。
図1に示されるように、原料ガス供給ノズル11内には、原料ガス供給装置4により、原料ガスが供給される。
原料ガスとしては、触媒金属源と炭素源化合物との混合物から成るガス(及びこれにキャリアガスを混合したガス)を挙げることができる。触媒金属源は、熱分解により触媒となる金属を発生させる物質乃至化合物であれば特に制限がない。使用可能な触媒金属源としては、特開昭60−54998号公報の第3頁左上欄第9行〜同頁右上欄最下行に記載の有機遷移金属化合物、特開平9−324325号公報の段落番号[0059]に記載された有機遷移金属化合物、特開平9−78360号公報の段落番号[0049]に記載された有機遷移金属化合物等を挙げることができる。
好ましい触媒金属源としては、例えばフェロセン等の有機金属化合物、あるいは鉄カルボニル等の金属カルボニルを挙げることができる。触媒金属源は、一種単独で使用することもできるし、また複数種を併用することもできる。
また、触媒金属源は助触媒と共に使用することもできる。そのような助触媒として、前記触媒金属源から発生する触媒金属と相互作用してカーボンナノファイバーの生成を促進することのできるものであれば良く、特開平9−78360号公報の段落番号[0051]、並びに特開平9−324325号公報の段落番号[0061]に記載された含硫黄複素環式化合物及び硫黄化合物を制限なく使用することができる。好適な助触媒として、硫黄化合物特にチオフェン及び硫化水素等を挙げることができる。
炭素源化合物は、熱分解により炭素を発生させてカーボンナノファイバーを生成させることができる化合物であれば特に制限がない。使用可能な炭素源としては、特公昭60−54998号公報の第2頁左下欄第4行〜同頁右下欄第10行に記載された炭素源化合物、特開平9−324325号公報の段落番号[0060]に記載された有機化合物、特開平9−78360号公報の段落番号[0050]に記載された有機化合物等を挙げることができる。各種の炭素源の中で好適例としてベンゼン、トルエン等の芳香族炭化水素、ヘキサン、プロパン、エタン、メタン等の脂肪族炭化水素、シクロヘキサン等の脂環族炭化水素等を挙げることができる。なお、炭素源はその一種単独を使用することもできるし、また複数種を併用することもできる。
上記原料ガスを供給する原料ガス供給装置4は、図1に示されるように、原料を貯蔵する原料用タンク16と、原料用タンク16の内部に貯蔵された原料を吸引吐出する原料用ポンプ17と、原料用ポンプ17により送り込まれてきた原料をガス化する気化器18とを備え、前記気化器18でガス化されて生じた原料ガスを、第1キャリアガス流量計19から供給されるキャリアガス例えば水素ガスと共に、原料ガス供給ノズル装置3に送り込むように、形成される。
キャリアガス供給装置5は、第2キャリアガス流量計20を備え、この第2キャリアガス流量計20を通してキャリアガス例えば水素ガスをキャリアガス供給手段12に供給するように、形成される。ここで、第2キャリアガス流量計20は、複数の流量計により構成される。
このカーボンナノファイバー製造装置1は、図1に示すように、排出装置6を備える。この排出装置6は、前記内部空間内で生成したカーボンナノファイバーを含有する気流を不活性な気流で包み込むようにして反応系外に取り出すことができる限りその構造に特に制限がないのであるが、この実施例においては、反応管7の内壁と内部加熱体8の外壁とに挟まれた内部空間において、外部加熱手段9と内部加熱手段10とで加熱されることにより原料ガスから形成されたカーボンナノファイバーを前記内部空間から排出することができるように、排出管21と、案内ガス供給手段22とを有する。
前記排出管21が、図1に示されるように、反応管7の内壁と内部加熱体8の外壁とで挟まれて形成された環状の内部空間に、下方から、挿入される。上部開口部21Aの設置位置は、前記反応領域に臨む位置が好ましい。この排出管21の後端部は、図示しない排気装置が結合され、この排気装置によって排出管21の上部開口部21Aから気流を吸い込むようになっており、また、吸い込まれた気流中に存在するカーボンナノファイバーを収集する収集装置(図示せず。)が更にこの排出管21に結合される。
なお、排出管21の上部開口部21A側の形状・構造は、特に制限されるものではないが、図1に示されるように、例えば、上部開口部21Aは、反応管7の中心軸近傍の一箇所に形成されるようになる。なお、図3に排出管21近傍の断面形状を示した。
前記案内ガス供給手段22は、反応管7と排出管21との下端部開口部から、反応管7と排出管21との間隙に、案内ガスを送り込むように構成される。この案内ガス供給手段22は、更に具体的には、反応管7の内壁と排出管21の外壁との間に配置された前記排出管21の外周壁面に沿って、案内ガスを、旋回流を形成することなく、ピストンフローにしてせり上げ、排出管21の上部開口部21Aよりわずか上方にまで前記案内ガスを到達させるように、案内ガスを供給する。
上部開口部21Aよりわずか上方にまで到達した案内ガスが反応領域より下降して来るカーボンナノファイバーや副生成物を含んだガスを囲繞して、排出管21から外部へ排出するので、反応管7及び排出管21にカーボンナノファイバーを付着させずに取り出すことができる。
この案内ガス供給手段22で使用される案内ガスとしては、この発明の目的を達成することができる限り、特に制限がないのであるが、反応領域において不活性なガスが好ましい。不活性な案内ガスとしては、アルゴン等の希ガス及び窒素を挙げることができる。
また、反応領域に侵入しないように条件を選択することができるのであれば、あるいは、反応領域にたとえ侵入したとしても爆発等の事故を起こさない低濃度であれば、キャリアガスと同種のガス例えば水素ガスを使用することもでき、場合によっては、空気又は酸素を使用することもできる。
案内ガスとして水素を採用し、キャリアガスとして水素を採用すると、水素ガスの回収再使用をすることができるので、好ましい。さらに、空気または酸素を使用した時には、未反応の原料を燃焼させる効果をもつが、爆発の危険性を避けるため、酸素濃度を5%以下、好ましくは3%以下にする必要がある。
[カーボンナノファイバーの製造方法]
カーボンナノファイバーの製造方法は、上記した有機遷移金属化合物、炭素源化合物、およびキャリアガスを含有する混合ガスを反応させるカーボンナノファイバーの製造方法であって、前記反応における温度範囲が、1200〜1400℃であり、前記混合ガスは、前記有機遷移金属化合物が0.004〜0.3%、前記炭素源化合物が0.02〜5%、有機硫黄または硫化水素が前記有機遷移金属化合物の1/5〜5倍の濃度、残りが水素である(本明細書中のガス濃度はすべてモル%で表示する。)。
次に、以上に述べたカーボンナノファイバー製造装置1を用いたカーボンナノファイバーの製造方法について述べる。まず、原料用タンク16に、有機遷移金属化合物、炭素源化合物等を貯蔵しておく。また、第1キャリアガス流量計19および第2キャリアガス流量計20からキャリアガスとして、例えば、水素ガスを流す。
有機遷移金属化合物は、混合ガス全体に対して、0.004〜0.3%、好ましくは0.006〜0.2%、特に0.008〜0.1%である。有機遷移金属化合物としては、上記したように、フェロセン、鉄カルボニル、ニッケロセン等が挙げられる。
炭素源化合物は、混合ガス全体に対して、0.02〜5%、好ましくは0.05〜4%、特に0.08〜3%である。炭素源化合物は、上記したように、ベンゼン、トルエン等が挙げられる。
有機硫黄または硫化水素が、前記有機遷移金属化合物の1/5〜5倍の濃度分、好ましくは1/4〜4倍の濃度分加えられる。有機硫黄としては、例えば、チオフェン等が挙げられる。
さらに、外部加熱手段9により反応管7を1200〜1400℃に加熱する。必要な場合は、内部加熱手段10により内部加熱体8を1200〜1400℃に加熱する。この加熱が1200℃未満であると、カーボンナノファイバーの生産性が低く、得られるカーボンナノファイバーの導電性も悪い。また、この加熱が1400℃を超えると、カーボンナノファイバーが生成しない。
反応管7外壁温度が1200℃の場合、反応管7内壁はほぼ1200℃であるが、反応管7内のガス流が熱を奪う為、反応管7の中心部は反応管7径が太い程低温になり、反応管7壁より30℃以上も低い温度になる事がある。内部加熱体8があると、内部加熱体8内部に加熱手段が無くても反応管7内壁からの輻射熱で内部加熱体8が反応管7内壁温度より約5〜20℃低い温度に迄昇温される(内部加熱手段10を用いて、内部加熱体8温度を反応管7内壁温度と同じかそれ以上にしても良い)。
従って、反応管7内壁と内部加熱体8の間はより均熱度が高いので、ガス全体の反応が均一化され、この例の場合、実質的に1200℃といえる。反応管7温度が1200℃より低い時、例えば1100℃と1150℃の場合、生産量・収率が激減するだけでなく、カーボンナノファイバーの性質特に導電性に著しい差が生じる。例えば1250℃で得たカーボンナノファイバーは1150℃のものと比較して、as made(約1000℃の熱処理によるタール除去のみ実施)の状態で約100倍以上の導電性を示した。
この2つのカーボンナノファイバーを2200℃で黒鉛化処理した場合も、as made の時と同様に、1250℃で得たカーボンナノファイバーが1150℃で得たカーボンナノファイバーに対して、約100倍の導電性を示した。反応温度1350℃までは炭化珪素製の反応管を使用することができる。1400℃以上の実施は黒鉛製の反応管を用いた装置が好ましく、その装置の基本的構造は図1と同じである。異なるのは、図1の内部加熱体装備反応管装置2全体が密閉シェルで覆われ、反応管7・内部加熱体8・外部加熱体すべてが黒鉛製である事である。密閉シェル内は窒素の様な不活性ガスを流通させて空気の混入による黒鉛の酸化劣化を防ぐ構造となる。その他の反応管内部及び外部の付属装置(原料ガス・キャリアガス供給装置関係、排出装置関係など)については、図1と同様である。
さらに、原料ガス供給ノズル11に装備された冷却手段により、原料ガス供給ノズル11の内部を冷却して、所定の温度に保つ。この原料ガスが原料ガス供給ノズル11より吹き出す直前の原料ガスの温度は、200〜600℃、好ましくは250〜500℃、特に300〜450℃に設定されるのがよい。
この原料ガスの設定温度が、200℃未満であると、原料ガスが吹き出す以前の部分的な凝縮や吹き出し後の温度勾配による反応斑を生ずる場合がある。この原料ガスの設定温度が、600℃を超えると、原料ガスが吹き出す部分での原料ガスの一部分解が生じ、吹き出す部分が詰まったりすることで、生産効率の低下、煤混入による品質の低下を招く場合がある。
外側ハニカム構造体12Aからキャリアガスが、整流されて、反応管7の内壁に沿って、図1における破線矢印に示すように、ピストンフローとなって内部空間に流出する。内側ハニカム構造体12Bからは、キャリアガスが、整流されて、内部加熱体8の外壁に沿って、図1における破線矢印に示すように、ピストンフローとなって内部空間に流出する。すなわち、前記混合ガスの一部であるキャリアガスは直径の異なる2本の筒状、より詳しくは、水平断面視厚肉環状に供給される。
ここで、環状吹き出し口15から水平断面視厚肉環状に供給された原料ガスは、反応管7内壁と、環状吹き出し口15からはみ出した内部加熱体8の部分と、から挟み込むようにして加熱される。この加熱により、所定の反応温度に急速に達するため、反応が促進される。
キャリアガスの流量は、反応管7及び内部加熱体8の大きさ、長さによって適宜決定されるが、通常、3〜100 cm/sec(反応領域温度換算)の流量で供給するのが好ましい。キャリアガスの流量が前記上限値を超えると、原料ガス供給ノズル11から吹き出す原料ガスがこのキャリアガスに導伴されてしまい、カーボンナノファイバーを生成するのに十分な時間をもって反応領域に原料ガスが滞留しなくなることがあり、結局、カーボンナノファイバーが有効に生成し得ないことがある。下限値以下の場合は、環状吹き出し口15近傍の対流が抑えられず、ピストンフローを形成できなくなり、工程不安定となる。
この反応管7と内部加熱体8とで形成される内部空間内においては、キャリアガスが反応管7の内壁及び内部加熱体8の外壁に沿って上から下に流通し、対流が起こりにくい様にしている。
次に、原料用ポンプ17および気化器18をそれぞれ作動させ、原料用ポンプ17により原料を原料用タンク16から気化器18に供給する。気化器18に供給された原料は、ガス化する。そして、ガス化した原料から成るガスと、第1キャリアガス流量計19より供給される水素ガスとを混合した状態で(ここでは、この混合状態のガスを原料ガスという)、原料ガス供給ノズル11に供給する(図1中、実線の矢印参照)。原料ガスは、筒状シート状、より詳しくは、水平断面視薄肉環状に供給される。
原料ガスは、外側ハニカム構造体12A及び内側ハニカム構造体12Bから吹き出すキャリアガスの線速度の1〜10倍の線速度で吹き出し、キャリアガスで拡散・希釈されながら反応領域を通過することになる。原料ガス供給ノズル11吹き出し時におけるキャリアガス以外の各成分の濃度は、反応領域での濃度の5〜25倍、好ましくは6〜20倍、特に好ましくは7〜15倍であるのが良い。
吹き出し時における原料ガスの濃度が、反応領域に達した原料ガスの濃度の5倍未満であると、吹き出し部分における線速度が非常に高くなるため、ガス流の乱れが生じ反応が不安定になる場合がある。吹き出し時における原料ガスの濃度が、反応領域に達した原料ガスの濃度の25倍を超えると、反応斑による煤等が生じたり、原料ガス供給ノズル11への一部分解物付着を生ずる場合がある。
原料ガス供給ノズル11に供給された原料ガスは、環状吹き出し口15から、内部空間に向けて吹き出される。吹き出される原料ガスの流速は、通常、キャリアガス流速の1.1〜10倍、好ましくは1.2〜7倍、特に好ましくは1.3〜5倍が良い。原料ガスの流速が前記上限値を超えると、原料ガスが反応管7の内壁及び/又は内部加熱体8の外壁に接触することがあり、カーボンナノファイバーを有効に生成させることができないことがある。逆に、原料ガスの流量が前記下限値よりも少ないと、カーボンナノファイバーを効率良く生成させることができないことがある。
原料ガス供給ノズル11の環状吹き出し口15から流出する原料ガスは、反応管7の内壁と内部加熱体8の外壁とで挟まれる環状の内部空間内を、外側ハニカム構造体12Aから吹き出されたキャリアガス及び内側ハニカム構造体12Bから吹き出されたキャリアガスに挟まれた状態で、円筒状の気流となってキャリアガス中に拡散混合しながら、下降して行く。
ここで、前記混合ガスの反応管7内における滞留時間は、0.5〜20秒、好ましくは、1〜15秒、特に1.5〜10秒である。この滞留時間が0.5秒未満であると、ガス流が乱れ、反応が不安定となったり、原料ガス、キャリアガスに対する加熱が不十分となるため、生産効率が低下する場合がある。この滞留時間が20秒を超えると、ガス流が乱れ、反応が不安定となり、生産効率が低下する場合がある。
外部加熱手段9により加熱された反応管7から放射される輻射熱及び内部加熱体8から放射される輻射熱により、下降していく原料ガスが加熱される。加熱により遷移金属粒子が形成され、その遷移金属粒子を核にして炭素源化合物が分解し、カーボンナノファイバーが形成されると言われている。
この場合、反応管7の輻射熱と内部加熱体8の輻射熱とで原料ガスが加熱されるので、内部空間における水平断面において温度勾配がきわめて少なくなる。また、狭い幅で流出した原料ガスは、外側・内側のキャリアガス中に拡散しながら流下するので、温度同様、濃度も均一化し易い。したがって、内部空間における特に反応領域で、炭素源ガスが自己分解して煤を発生させることがきわめて少なく、また未反応物が残留することもきわめて少なくなる。つまり、純度の高いカーボンナノファイバーが形成される。
生成したカーボンナノファイバーは下降する気流と共に下降して行き、排出管21の開口部から排出管21の内部に吸い込まれる様に流出する。
案内ガス供給手段22からは案内ガスが、反応管7と内部加熱体8との下端部開口部に、供給される。案内ガスは、排出管21の外周壁に沿ってせり上がり、排出管21の上部開口部21Aに至ると、その上部開口部21Aから排出管21の内部に落ち込んで流出する。このとき、案内ガスは、反応領域で形成されたカーボンナノファイバーを含有する下降気流を周囲から包み込むようにして、排出管21の内部へと導く。
この案内ガスが排出管21内に周囲から包み込む様に導くことにより、前記下降気流中に存在するカーボンナノファイバーが器壁に付着することなく、図示しない収集装置へとカーボンナノファイバーが導出されて行く。
[カーボンナノファイバー]
上記のようにして得られたカーボンナノファイバーは、黒鉛化処理前のカーボンナノファイバーであって、その直径が、1〜50nmであり、平均アスペクト比が、小さくとも10である。
ここで、カーボンナノファイバーの直径が、1〜50nmであり、1〜40nmが好ましく、1〜30nmがより好ましい。
ここで、直径が、1nm未満であると、樹脂・バインダー・混合物への分散時に繊維の破断や分散不良を生じる。直径が、50nmを超えると、体積固有抵抗値が大きくなり、先端からの電子線放出効果や混合した樹脂の表面抵抗低下の効果が薄れる。なお、カーボンナノチューブの直径の測定は、電子顕微鏡等で行うことができる。
ここで、平均アスペクト比が、小さくとも10であり、100以上が好ましく、100〜10000程度がより好ましい。
ここで、平均アスペクト比が、10未満では、導電性付与などの効果が期待できない。
なお、平均アスペクト比の測定は、電子顕微鏡等でカーボンナノファイバーの直径と長さを測定し、長さを直径で除す事により求める方法等が挙げられる。
上記のように、得られたカーボンナノチューブが、上記の各数値範囲内にあれば、結晶化が進み、黒鉛化度が良好である。
[カーボンナノファイバーの後処理方法]
上記のようにして得られたカーボンナノファイバーは、後処理を行うことが好ましい。
カーボンナノファイバーの後処理方法としては、前記カーボンナノファイバーの製造方法により得られたカーボンナノファイバーに対して、800〜1200℃の熱処理を行う。前述のカーボンナノファイバーの直径は基本的にこの熱処理を加えられたものの値である。
熱処理温度が800℃未満であると、カーボンナノファイバーからタール分等の不純物が十分に除去されない場合がある。1200℃以上であると、結晶性の変化により、物理的性質・化学的性質その他において、希望しない変化を生じることがある。
さらに、カーボンナノファイバーの後処理方法としては、上記した、800〜1200℃の熱処理の後に、得られたカーボンナノファイバーに対して、真空または不活性ガス雰囲気下で、1600〜2300℃の熱処理を行う。
熱処理温度が1600℃未満であると、カーボンナノファイバーを十分に黒鉛化(結晶化)することができない場合がある。また、2300℃を超えると、カーボンナノファイバーの結晶化が進みすぎて、結晶粒界が大きくなり、粒界から繊維が破断する為、繊維の強度低下が起こる。
[黒鉛化処理後のカーボンナノファイバー]
上記のようにして得られた黒鉛化処理後のカーボンナノファイバーは、黒鉛化処理後のカーボンナノファイバーであって、その直径が、1〜50nmであり、平均アスペクト比が、小さくとも10である。
ここで、カーボンナノファイバーの直径が、1〜50nmであり、1〜40nmが好ましく、1〜30nmがより好ましい。
ここで、直径が、1nm未満であると、樹脂・バインダー・混合物への分散時に繊維の破断や分散不良を生じる。直径が、50nmを超えると、体積固有抵抗値が大きくなり、先端からの電子線放出効果や混合した樹脂の表面抵抗低下の効果が薄れる。なお、カーボンナノチューブの直径の測定は、電子顕微鏡等で行うことができる。
ここで、平均アスペクト比が、小さくとも10であり、100以上が好ましく、100〜10000程度がより好ましい。
ここで、平均アスペクト比が、10未満では、導電性付与などの効果が期待できない。なお、平均アスペクト比の測定は、電子顕微鏡等でカーボンナノファイバーの直径と長さを測定し、長さを直径で除す事により求める方法等が挙げられる。
上記のように、得られたカーボンナノチューブが、上記の各数値範囲内にあれば、結晶化が進み、黒鉛化度が良好である。
上述したこの発明の実施形態によると、次のような効果が奏される。
(1)有機遷移金属化合物、炭素源化合物、およびキャリアガスを含有する混合ガスを反応させるカーボンナノファイバーの製造方法において、前記反応における温度範囲が、1200〜1400℃であり、前記混合ガスは、前記有機遷移金属化合物が0.004〜0.3モル%、前記炭素源化合物が0.02〜5モル%、有機硫黄または硫化水素が前記有機遷移金属化合物の1/5〜5倍、残りが水素であることにより、導電性に優れたカーボンナノファイバーの生産量を向上させることができる。
(2)得られたカーボンナノファイバー、黒鉛化処理後のカーボンナノファイバーを使用すると、導電性に優れた複合材料を得ることができる。
以下、実施例および比較例を挙げて、本発明をより具体的に説明する。なお、本発明は実施例の内容に限定されるものではない。
[実施例1]
図1のカーボンナノファイバー製造装置1を用いて、カーボンナノファイバーを製造した。
内径190mm、肉厚7.5mm、長さ2800mmの炭化珪素製反応管7の内部に外径38mm、肉厚5mmの内部加熱体8を内側ハニカム構造体12Bより600mm反応領域に突きだした装置を使用した。原料ガス供給ノズル11は反応管7中心をセンターとし、内側89mm外側97mmでスリット幅4mmのリング状でリング状ノズルであり、その内側と外側にキャリアガス供給手段である内側ハニカム構造体12Bおよび外側ハニカム構造体12Aが配置されている。また内径83mmステンレス製の排出管21が反応管7下部に設置されている。原料ガス供給ノズル11先端から排出管21先端までの距離は約1800mmである。
原料ガス供給ノズル11を窒素ガス冷却で400℃に制御しながら、外部加熱手段9(炭化珪素ヒータ)を用いて昇温して反応管7温度の反応領域温度を1250℃にした後、キャリアガス及び案内ガスの配管に窒素ガスを導入して系内の空気を窒素と置換した。
キャリアガス供給装置5から、内部加熱体8に4L/min、原料ガス供給ノズル11に15L/min、内側ハニカム構造体12Bに26L/min、外側ハニカム構造体12Aに75L/min、外側ハニカム構造体12Aと反応管7内壁の間に30L/minの水素を流し、排出管21の案内ガスに60L/minの窒素を流した。
フェロセン2質量%、チオフェン3質量%、ベンゼン95質量%からなる原料液を8.6g/min原料用ポンプ16で供給し、380℃に加熱された気化器18で気化後、前記記載の原料ガス供給ノズル11への水素15L/minと合流・混合して、原料ガス供給ノズル11から吹き出させた。
原料ガス供給ノズル11内での原料ガスは、濃度:ベンゼン13.4モル%、フェロセン0.1モル%、チオフェン0.4モル%、水素86.0モル%、流速:57cm/sec(400℃として)である。
各キャリアガス(水素)の流速は、内部加熱体8:47cm/sec(1000℃として)、内側ハニカム構造体12B:29cm/sec(600℃として)、外側ハニカム構造体12A:32cm/sec(600℃として)、外側ハニカム構造体12A−反応管7内壁間:49cm/sec(1000℃として)である。反応領域での各成分はベンゼン1.56モル%、フェロセン0.01モル%、チオフェン0.04モル%、水素98.4モル%、全体のガス流速は46cm/min(1250℃として)である。反応領域での滞在時間は3.9秒であった。
この条件での実験結果を表1に示した。また得られたカーボンナノファイバーを1000℃で熱処理および2200℃で熱処理したカーボンナノファイバーが混合された樹脂の表面抵抗値を導電性の指標として表1に示した。
[実施例2〜4]
実施例1と同様の条件で、温度・濃度を変えて実験した結果を表1に示した。
[比較例1〜2]
実施例1の装置で、反応管の反応領域温度を1100℃、1150℃にした実験結果を表1に示した。
Figure 2005299016
以上の実施例、比較例によれば、実施例の方が、比較例よりも生産量が大きいことが分かった。
また、実施例に係る方法で得られたカーボンナノファイバーは、黒鉛化処理する前の状態でも、黒鉛化処理した後でも、混合樹脂の表面抵抗を比較例より下げられることが分かった。
図1は、この発明に係るカーボンナノファイバー製造装置の一例を示す概略図である。 図2は、図1に示される原料ガス供給ノズル先端部分の断面を示す概略図である。 図3は、図1に示される排出管の断面を示す概略図である。
符号の説明
1 カーボンナノファイバー製造装置
2 内部加熱体装備反応管装置
3 原料ガス供給ノズル装置
4 原料ガス供給装置
5 キャリアガス供給装置
6 排出装置
7 反応管
8 内部加熱体
8A 内部管体
9 外部加熱手段
10 内部加熱手段
11 原料ガス供給ノズル
12 キャリアガス供給手段
12A 外側ハニカム構造体
12B 内側ハニカム構造体
13 外管
14 内管
15 環状吹き出し口
16 原料用タンク
17 原料用ポンプ
18 気化器
19 第1キャリアガス流量計
20 第2キャリアガス流量計
21 排出管
21A 上部開口部
22 案内ガス供給手段


Claims (5)

  1. 有機遷移金属化合物、炭素源化合物、およびキャリアガスを含有する混合ガスを反応させるカーボンナノファイバーの製造方法であって、
    前記反応における温度範囲が、1200〜1400℃であり、
    前記混合ガスは、前記有機遷移金属化合物が0.004〜0.3モル%、前記炭素源化合物が0.02〜5モル%、有機硫黄化合物または硫化水素が前記有機遷移金属化合物の1/5〜5倍、残りが水素である
    ことを特徴とするカーボンナノファイバーの製造方法。
  2. 前記混合ガスは、水平断面視環状に供給される
    ことを特徴とする前記請求項1記載のカーボンナノファイバーの製造方法。
  3. 前記混合ガスの滞留時間は、0.5〜20秒である
    ことを特徴とする前記請求項1または請求項2に記載のカーボンナノファイバーの製造方法。
  4. 前記請求項1〜請求項3のいずれか1項に記載のカーボンナノファイバーの製造方法により得られたカーボンナノファイバーに対して、
    600〜1300℃の熱処理を行う
    ことを特徴とするカーボンナノファイバーの後処理方法。
  5. 前記請求項4に記載のカーボンナノファイバーの後処理方法により得られたカーボンナノファイバーに対して、
    真空または不活性ガス雰囲気下で、
    1600〜2300℃の熱処理を行う
    ことを特徴とするカーボンナノファイバーの後処理方法。



JP2004117080A 2004-04-12 2004-04-12 カーボンナノファイバーの製造方法、およびカーボンナノファイバーの後処理方法 Expired - Fee Related JP4392283B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004117080A JP4392283B2 (ja) 2004-04-12 2004-04-12 カーボンナノファイバーの製造方法、およびカーボンナノファイバーの後処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004117080A JP4392283B2 (ja) 2004-04-12 2004-04-12 カーボンナノファイバーの製造方法、およびカーボンナノファイバーの後処理方法

Publications (2)

Publication Number Publication Date
JP2005299016A true JP2005299016A (ja) 2005-10-27
JP4392283B2 JP4392283B2 (ja) 2009-12-24

Family

ID=35330914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004117080A Expired - Fee Related JP4392283B2 (ja) 2004-04-12 2004-04-12 カーボンナノファイバーの製造方法、およびカーボンナノファイバーの後処理方法

Country Status (1)

Country Link
JP (1) JP4392283B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100223A (ja) * 2012-12-27 2013-05-23 Mie Univ 繊維状カーボンナノ構造体の製造方法及びそれにより製造された繊維状カーボンナノ構造体
CN112423912A (zh) * 2018-06-28 2021-02-26 东邦钛株式会社 金属粉末及其制造方法和烧结温度的预测方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100223A (ja) * 2012-12-27 2013-05-23 Mie Univ 繊維状カーボンナノ構造体の製造方法及びそれにより製造された繊維状カーボンナノ構造体
CN112423912A (zh) * 2018-06-28 2021-02-26 东邦钛株式会社 金属粉末及其制造方法和烧结温度的预测方法
CN112423912B (zh) * 2018-06-28 2023-05-23 东邦钛株式会社 金属粉末及其制造方法和烧结温度的预测方法

Also Published As

Publication number Publication date
JP4392283B2 (ja) 2009-12-24

Similar Documents

Publication Publication Date Title
JP4968643B2 (ja) 単層カーボンナノチューブの製造方法
US8557190B2 (en) Carbon nanotube synthesis process apparatus
ES2291212T3 (es) Metodo para producir nanotubos de carbono y catalizadores para ello.
WO2001016414A1 (fr) Matiere fibreuse de carbone, dispositif de production et procede de production de ladite matiere, et dispositif de prevention de depot de ladite matiere
KR100841275B1 (ko) 기상법 탄소섬유, 그 제조방법, 및 탄소섬유를 함유하는복합재
EP1874685A1 (en) Method and apparatus for the continuous production and functionalization of single-waled carbon nanotubes using a high frequency plasma torch
JP4177533B2 (ja) 微細気相成長炭素繊維製造装置、微細気相成長炭素繊維の製造方法、微細気相成長炭素繊維付着防止装置及び微細気相成長炭素繊維
JP6492598B2 (ja) カーボンナノチューブの製造方法
KR20140094016A (ko) 긴 탄소 나노튜브를 제조하는 방법 및 장치
KR100376202B1 (ko) 탄소나노튜브 또는 탄소나노섬유 합성용 기상합성 장치 및이를 사용한 합성방법
JP3810394B2 (ja) 内部加熱体装備反応管装置
JP4392283B2 (ja) カーボンナノファイバーの製造方法、およびカーボンナノファイバーの後処理方法
CN107614426B (zh) 含碳纳米管组合物的制造方法
JP4115637B2 (ja) 炭素繊維質物製造装置、炭素繊維質物の製造方法及び炭素繊維質物付着防止装置
JP6418690B2 (ja) カーボンナノチューブの製造装置
JP6020850B2 (ja) 炭素繊維の製造方法および炭素繊維
JP4394981B2 (ja) 原料ガス供給ノズル、カーボンナノファイバー製造装置、およびカーボンナノファイバーの製造方法
JP3927455B2 (ja) 気相法炭素繊維の製造法および製造装置
Ibrahim et al. Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone
JP4782504B2 (ja) 微細炭素繊維の製造装置及びその製造方法
JP3751906B2 (ja) 気相法炭素繊維の製造法および製造装置
JPH0978360A (ja) 気相成長炭素繊維の製造方法
JP2007126318A (ja) カーボンナノチューブの製造方法
Ibrahim et al. The Control on Morphology and Crystallinity of CNT in Flame Synthesis with One-Dimensional Reaction Zone
JP4391900B2 (ja) カーボンナノファイバー製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151016

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees