JP2005286282A - Simox基板の製造方法及び該方法により得られるsimox基板 - Google Patents

Simox基板の製造方法及び該方法により得られるsimox基板 Download PDF

Info

Publication number
JP2005286282A
JP2005286282A JP2004127527A JP2004127527A JP2005286282A JP 2005286282 A JP2005286282 A JP 2005286282A JP 2004127527 A JP2004127527 A JP 2004127527A JP 2004127527 A JP2004127527 A JP 2004127527A JP 2005286282 A JP2005286282 A JP 2005286282A
Authority
JP
Japan
Prior art keywords
oxygen
wafer
heat treatment
layer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004127527A
Other languages
English (en)
Inventor
Hisashi Adachi
尚志 足立
Yukio Komatsu
幸夫 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2004127527A priority Critical patent/JP2005286282A/ja
Publication of JP2005286282A publication Critical patent/JP2005286282A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Element Separation (AREA)

Abstract

【課題】デバイス工程での重金属汚染を基板内部に効率良く捕獲することができる。
【解決手段】ウェーハ内部に酸素イオン注入する工程と、ウェーハを所定のガス雰囲気中、1300〜1390℃で第1熱処理して埋込み酸化層を形成するとともにウェーハ表面にSOI層を形成する工程とを含み、酸素イオン注入前のウェーハが8×1017〜1.8×1018atoms/cm3(旧ASTM)の酸素濃度を有し、埋込み酸化層がウェーハ全面にわたって形成され、第1熱処理したウェーハを所定のガス雰囲気中、400〜900℃で1〜96時間第2熱処理して、埋込み酸化層の直下に形成される欠陥集合層より下方のバルク層に酸素析出核を形成する工程と、第2熱処理したウェーハを所定のガス雰囲気中、第2熱処理温度より高い900〜1250℃で1〜96時間第3熱処理して、形成された酸素析出核を酸素析出物に成長させる工程とを含むことを特徴とする。
【選択図】図1

Description

本発明は、シリコン単結晶本体に埋込み酸化層(Buried Oxide)を介して単結晶シリコン層(以下、SOI層という。)が形成されたSOI(Silicon-On-Insulator)基板のうち、SIMOX(Separation by Implanted Oxygen)技術によるSIMOX基板の製造方法及び該方法により得られるSIMOX基板に関するものである。更に詳しくは、デバイス工程での重金属汚染を基板内部に効率良く捕獲し得るSIMOX基板の製造方法及び該方法により得られるSIMOX基板に関するものである。
SOI基板は、(1)素子と基板間の寄生容量を低減できるのでデバイス動作の高速化が可能であり、(2)放射線耐圧に優れており、(3)誘電体分離が容易のため高集積化が可能である、更に(4)耐ラッチアップの特性を向上できる等の非常に優れた特徴を有する。現在SOI基板の製造方法には、大きく2つに分類できる。一つの方法は、薄膜化される活性ウェーハと、支持ウェーハを貼合せて形成する貼合せ法であり、他の方法はウェーハ表面より酸素イオンを注入してウェーハ表面から所定の深さの領域に埋込み酸化層を形成するSIMOX法である。特にSIMOX法は製造工程数が少ないため将来的に有効な手法として期待されている。
SIMOX基板の製造方法としては、シリコン単結晶基板の一方の主面を鏡面加工した後に、この鏡面加工面から酸素イオンをインプランテーションにより基板中の所定深さに注入する酸素イオン注入工程と、酸素イオンを注入した基板に酸化雰囲気下、高温熱処理を施すことにより基板内部に埋込み酸化層を形成する高温熱処理工程から構成される。具体的には、シリコン単結晶基板を500℃〜650℃の温度に保持し、基板表面から1017〜1018個/cm2程度の酸素原子イオン或いは酸素分子イオンを所定の深さに注入する。引続き酸素イオンを注入したシリコン基板を500℃〜700℃の温度に保持した熱処理炉内に投入し、スリップを発生させないように徐々に昇温を開始して1300℃〜1390℃程度の温度で10時間程度の熱処理を施す。この高温熱処理により基板内部に注入された酸素イオンがシリコンと反応して基板内部に埋込み酸化層が形成される。
一方、デバイス製造プロセスにおいて、デバイス特性に直接的悪影響を及ぼす金属を基板表面から除去するゲッタリング技術としては、基板裏面にサンドブラストで歪みをつける方法、基板裏面に多結晶シリコン膜を堆積する方法、基板裏面に高濃度のリンを注入する方法などの外部ゲッタリング法(External Gettering)があるが、シリコン基板内部に析出した酸素析出物に起因する結晶欠陥の歪場を利用する内部ゲッタリング法(Intrinsic Gettering)が量産性に優れ、かつクリーンなゲッタリング方法として一部では量産に用いられている。
しかしながら一般的にSIMOX基板は基板内部に埋込み酸化層を形成するために、酸素イオン注入後1300℃前後の高温熱処理が必要とされているため、この高温熱処理によってバルク層中に内部ゲッタリングシンクである酸素析出物を形成することは困難であるといわれていた。
この上述した問題点を解決する方策として、シリコン単結晶基板に酸素イオンを注入したのち、基板を水素雰囲気又は酸素を少量含む窒素雰囲気中で、1200〜1300℃の温度で6〜12時間熱処理を施して埋込み酸化層を形成した後、低温から高温で段階的又は連続的に温度を上昇させて熱処理を施す半導体基板の製造方法が提案されている(例えば、特許文献1参照。)。この特許文献1に示される具体的な熱処理の条件として、段階的な熱処理方法を500℃から出発し、50〜100℃の段階で順次上昇させ、最終温度を850℃までとする方法、連続的な熱処理方法を500℃から出発し、0.2〜1.0℃/分の勾配で、最終温度を850℃とする方法が記載されている。しかし、SIMOX基板の埋込み酸化層を形成するために1300℃程度の高温熱処理を施すことで結晶引上げ時に起因する酸素析出核の縮小及び消滅が起こっているため、上記特許文献1に示される熱処理条件では酸素析出物の成長が抑制されるため最終到達温度が850℃では十分なゲッタリング効果が得られていなかった。
また、部分的に埋込み酸化層が形成されない領域を有し、かつシリコン単結晶基板バルクもしくはシリコン単結晶基板裏面に、結晶欠陥もしくは結晶歪みによるゲッタリング手段が付与された構造を有するSIMOX基板及びその製造方法が提案されている(例えば、特許文献2参照。)。この特許文献2では、埋込み酸化層が断片的に表層近傍に形成されており、ゲッタリングするための熱処理条件が500〜900℃の範囲で酸素析出核を形成、密度は105個/cm3〜109個/cm3の範囲であり、第2の熱処理として1000〜1150℃の範囲で上記析出核を成長させ析出物にしてもよいと記載されている。
しかし、実施例のなかに従来技術によるSIMOX、すなわちウェーハ全面に埋込み酸化膜が成長したSIMOXを参照サンプルとして重金属の定量汚染による基板表面の結晶欠陥発生量を評価しているが、部分埋込み酸化膜の実施例では表面欠陥がほとんど観察されていないのに対して、従来SIMOXでは105〜106個/cm2のピット及び積層欠陥が観察されている。すなわち特許文献1でも完全なゲッタリング技術が確立していないことを意味している。
特開平7−193072号公報(請求項1〜3) 特開平5−82525号公報(請求項1、2、4及び5、段落[0019]〜段落[0023]) J.Electrochem.Soc.,142,2059,(1995)
一方、SIMOX基板を製造する際の特徴として埋込み酸化層の直下には厚さ200nm程度の欠陥集合層が必然的に形成され、この欠陥集合層にはゲッタリング効果があることが開示されている(例えば、非特許文献1参照。)。即ち、非特許文献1に開示された内容を踏まえると、SIMOX基板の製造工程において突発的に重金属汚染が発生したとき、上記特許文献1や上記特許文献2に示されるSIMOX基板の酸素析出物では十分なゲッタリング効果を得ることができない場合、埋込み酸化層直下の欠陥集合層にも重金属が捕獲されてしまうことが考えられる。
また、近年SIMOX基板のSOI層における薄膜化が要望されていることから、埋込み酸化層直下の欠陥集合層に捕獲された重金属汚染領域がデバイス特性に影響を与える可能性があり、少なくともデバイス特性に影響を与えず、かつプロセス中での突発的な重金属汚染を効率良く捕獲できるゲッタリング源を有するSIMOX基板の設計が必要となっていた。
本発明の目的は、欠陥集合層の重金属捕獲濃度を低減させ、かつバルク層内部に重金属を効率良く捕獲し得る、SIMOX基板の製造方法及び該方法により得られるSIMOX基板を提供することにある。
請求項1に係る発明は、図1(a)〜図1(e)に示すように、シリコンウェーハ11の内部に酸素イオンを注入する工程と、ウェーハ11を酸素と不活性ガスとの混合ガス雰囲気中、1300〜1390℃で第1熱処理することにより、ウェーハ11表面から所定の深さの領域に埋込み酸化層12を形成するとともに埋込み酸化層12上のウェーハ表面にSOI層13を形成する工程とを含むSIMOX基板の製造方法の改良である。
その特徴ある構成は、酸素イオン注入する前のシリコンウェーハ11が8×1017〜1.8×1018atoms/cm3(旧ASTM)の酸素濃度を有し、埋込み酸化層12がウェーハ全面にわたって形成され、第1熱処理したウェーハを酸素、窒素、アルゴン、水素或いはこれらの混合ガス雰囲気中、400〜900℃で1〜96時間第2熱処理することにより、埋込み酸化層12の直下に形成される欠陥集合層14aより下方のバルク層14に酸素析出核14bを形成する工程と、第2熱処理したウェーハを酸素、窒素、アルゴン、水素或いはこれらの混合ガス雰囲気中、第2熱処理温度より高い900〜1250℃で1〜96時間第3熱処理することにより、バルク層14に形成された酸素析出核14bを酸素析出物14cに成長させる工程とを含むところにある。
請求項1に係る発明では、欠陥集合層14aより下方のバルク層14に酸素析出物14cからなるゲッタリング源を有し、酸素析出物14cの密度が1×108〜1×1012個/cm3であり、酸素析出物14cのサイズが50nm以上であるSIMOX基板を得ることができる。
請求項2に係る発明は、請求項1に係る発明であって、第2熱処理が400℃から900℃の一部範囲又は全ての範囲において0.1〜5.0℃/分の速度で昇温することにより1〜96時間の範囲内で行われ、第3熱処理が900℃から1250℃の一部範囲又は全ての範囲において0.1〜20℃/分の速度で昇温することにより1〜96時間の範囲内で行われる製造方法である。
請求項3に係る発明は、シリコンウェーハ11の内部に酸素イオンを注入する工程と、ウェーハ11を酸素と不活性ガスとの混合ガス雰囲気中、1300〜1390℃で第1熱処理することにより、ウェーハ11表面から所定の深さの領域に埋込み酸化層12を形成するとともに埋込み酸化層12上のウェーハ表面にSOI層13を形成する工程とを含むSIMOX基板の製造方法の改良である。
その特徴ある構成は、酸素イオン注入する前のシリコンウェーハ11が8×1017〜1.8×1018atoms/cm3(旧ASTM)の酸素濃度を有し、埋込み酸化層12がウェーハ全面にわたって又は部分的に形成され、第1熱処理したウェーハを1050〜1350℃で1〜900秒間保持させた後、その後降温速度10℃/秒以上で降温する急速熱処理を施すことにより、埋込み酸化層12より下方のバルク層14に空孔を注入する工程と、急速熱処理したウェーハを酸素、窒素、アルゴン、水素或いはこれらの混合ガス雰囲気中、500〜1000℃で1〜96時間第2熱処理することにより、埋込み酸化層12の直下に形成される欠陥集合層14aより下方のバルク層14に酸素析出核14bを形成する工程とを含むところにある。
請求項3に係る発明では、第2熱処理までを行ったSIMOX基板を半導体デバイスメーカーのデバイス製造工程で熱処理すると、上記酸素析出核が酸素析出物に成長し、ウェーハ全面にわたってIG効果を有するようになる。
請求項4に係る発明は、請求項3に係る発明であって、第2熱処理したウェーハを酸素、窒素、アルゴン、水素或いはこれらの混合ガス雰囲気中、第2熱処理温度より高い900〜1250℃で1〜96時間第3熱処理することにより、バルク層14に形成された酸素析出核14bを酸素析出物14cに成長させる工程を更に含む製造方法である。
請求項5に係る発明は、請求項3に係る発明であって、第2熱処理が500℃から1000℃の一部範囲又は全ての範囲において0.1〜5.0℃/分の速度で昇温することにより1〜96時間の範囲内で行われる製造方法である。
請求項6に係る発明は、請求項4に係る発明であって、第3熱処理が900℃から1250℃の一部範囲又は全ての範囲において0.1〜20℃/分の速度で昇温することにより1〜96時間の範囲内で行われる製造方法である。
請求項7に係る発明は、図1(e)又は図2(f)に示すように、請求項1ないし6いずれか1項に記載の方法から製造されたSIMOX基板であって、ウェーハ表面から所定の深さの領域に形成された埋込み酸化層12と、埋込み酸化層上のウェーハ表面に形成されたSOI層13と、埋込み酸化層12の直下に形成された欠陥集合層14aと、埋込み酸化層12の下方のバルク層14とを備え、欠陥集合層14aより下方のバルク層14に酸素析出物14cからなるゲッタリング源を有し、酸素析出物14cの密度が1×108〜1×1012個/cm3であり、酸素析出物14cのサイズが50nm以上であることを特徴とするSIMOX基板である。
請求項7に係る発明では、欠陥集合層14aより下方のバルク層14に酸素析出物14cからなるゲッタリング源を有し、酸素析出物14cの密度が1×108〜1×1012個/cm3であり、酸素析出物14cのサイズが50nm以上であるので欠陥集合層14aよりも強いゲッタリング源となるため、従来欠陥集合層14aに捕獲されていた重金属汚染物のほとんどを欠陥集合層に捕獲させることなくバルク層14の酸素析出物14cにゲッタリングすることができる。
本発明のSIMOX基板では、欠陥集合層より下方のバルク層に酸素析出物からなるゲッタリング源を有し、酸素析出物の密度が1×108〜1×1012個/cm3であり、酸素析出物のサイズが50nm以上であるので欠陥集合層よりも強いゲッタリング源となるため、欠陥集合層の重金属捕獲濃度を低減させることができ、かつバルク層内部に重金属を効率良く捕獲することができる。
次に本発明を実施するための第1の最良の形態を図面に基づいて説明する。
本発明はシリコンウェーハ内部に酸素イオンを注入した後、熱処理することによりウェーハ表面から所定の深さの領域に埋込み酸化層が形成され、そのウェーハ表面にSOI層が形成されたSIMOX基板に関するものである。そして、図1に示すように、本発明におけるSIMOX基板の製造方法は、酸素イオンを注入した後のウェーハ11を3段階に熱処理し、その後ウェーハ11表面に形成された酸化膜11b,11cを除去するものである。これらの各工程を以下に示す。
(1−1)酸素イオン注入工程
先ず図1(a)に示すように、シリコンウェーハ11を準備してこのウェーハ11に酸素イオンを注入する。準備した酸素イオン注入する前のシリコンウェーハ11は8×1017〜1.8×1018atoms/cm3(旧ASTM)の酸素濃度を有するものが準備される。この準備するシリコンウェーハはエピタキシャルウェーハもしくはアニールウェーハでも良い。
そして準備されたこのようなシリコンウェーハ11の内部に酸素イオンを注入する。この酸素イオンの注入は従来から行われている手段と同一の手段により行われる。そして、最終的に得られたSIMOX基板におけるSOI層13の厚さが10〜200nm、好ましくは20〜100nmになるように、ウェーハ11表面から所定の深さの領域11aに酸素イオンが注入される。SOI層13の厚さが10nm未満であるとSOI層13の厚さを制御することが困難であり、SOI層13の厚さが200nmを越えると酸素イオン注入機の加速電圧上困難である。
(1−2)第1熱処理工程
次に図1(b)に示すように、酸素イオンが注入されたウェーハ11を酸素と不活性ガスとの混合ガス雰囲気中、1300〜1390℃の温度で第1熱処理する。不活性ガスとしてはアルゴンガスや窒素ガスが挙げられる。従って、この第1熱処理のガス雰囲気は、酸素とアルゴンの混合ガス、又は酸素と窒素の混合ガスであることが好ましい。そして、この第1熱処理の熱処理時間は1〜20時間、好ましくは10〜20時間であることが好ましい。
この第1熱処理により、ウェーハ11表面及び裏面には酸化膜11b,11cが形成され、ウェーハ11表面から所定の深さの領域11aには埋込み酸化層12がウェーハ全面にわたって形成される。更に、表側の酸化膜11bと埋込み酸化層12との間にはSOI層13が形成される。また埋込み酸化層12直下には欠陥集合層14aが必然的に形成される。
(1−3)第2熱処理工程
次に、図1(c)に示すように、第1熱処理したウェーハ11を酸化膜11b,11cを残した状態で又は酸化膜11b,11cを除去した状態で酸素、窒素、アルゴン、水素或いはこれらの混合ガス雰囲気中で第2熱処理する。酸化膜11b,11cを残した状態で第2熱処理を行うと、特に非酸化性ガス雰囲気だとSOI層13の厚さが減少したり、ばらつきを生じることがないため好ましい。この理由は、第1に酸化性ガス雰囲気中で第2熱処理を行うと、酸化膜11b,11cが更に成長することにより、ウェーハ表面のシリコンが消費され、第2に水素やアルゴンガス雰囲気中で第2熱処理を行うと、SOI層13がエッチングされてしまうからである。一方、SOI層13の厚さが比較的厚い場合には、SOI層13の厚さが減少しても所定の厚さのSOI層13が得られるので、酸化膜11b,11cを除去した状態で第2熱処理を行っても良い。この第2熱処理のガス雰囲気は窒素ガス、アルゴンガスもしくは微量酸素を加えた窒素あるいはアルゴンガスが好ましい。
また、第2熱処理条件は、400〜900℃の温度で1〜96時間行われる。第2熱処理温度を400〜900℃の範囲内に規定したのは、下限値未満では核形成温度が低すぎで長時間の熱処理が必要となり、上限値を越えると酸素析出核形成が生じないためである。また第2熱処理時間を1〜96時間の範囲内に規定したのは、下限値未満では酸素析出核を形成するのに時間が短すぎであり、上限値を越えると生産性の劣化の不具合を生じるためである。この第2熱処理は500〜800℃の温度で4〜35時間行われることが更に好ましい。また第2熱処理は400℃から900℃の一部範囲又は全ての範囲において0.1〜5.0℃/分の速度、好ましくは0.1〜1.0℃/分で昇温することにより1〜96時間、好ましくは4〜35時間の範囲内で行なっても良い。この第2熱処理を行うことにより、埋込み酸化層12の直下に形成される欠陥集合層14aより下方のバルク層14に酸素析出核14bが形成される。
(1−4)第3熱処理工程
次に図1(d)に示すように、第2熱処理したウェーハ11を第3熱処理する。この第3熱処理は、酸素、窒素、アルゴン、水素或いはこれらの混合ガス雰囲気中で、第2熱処理温度より高い900〜1250℃で1〜96時間行われる。この第3熱処理のガス雰囲気は窒素ガス、アルゴンガスもしくは微量酸素を加えた窒素あるいはアルゴンガスが好ましい。第3熱処理温度を900〜1250℃の範囲内に規定したのは、下限値未満では酸素析出核の成長が十分に起こりにくく、上限値を越えると酸素析出物の溶解という不具合を生じるためである。また第3熱処理時間を1〜96時間の範囲内に規定したのは、下限値未満では酸素析出物の成長が十分でなく、上限値を越えると生産性の劣化の不具合を生じるためである。また、第3熱処理は1000〜1200℃で8〜24時間で行われることが好ましい。更に、第3熱処理は900℃から1250℃の一部範囲又は全ての範囲において0.1〜20℃/分の速度、好ましくは1〜5℃/分で昇温することにより1〜96時間、好ましくは8〜24時間の範囲内で行なっても良い。この第3熱処理を行うことにより、バルク層14に形成された酸素析出核14bを酸素析出物14cに成長させることができる。
(1−5)酸化膜11b,11c除去工程
最後の図1(e)に示すように、第3熱処理したウェーハ11表面及び裏面の酸化膜11b,11cをフッ酸等により除去する。これにより、ウェーハ表面から所定の深さの領域に形成された埋込み酸化層12と、埋込み酸化層上のウェーハ表面に形成されたSOI層13と、埋込み酸化層12の直下に形成された欠陥集合層14aと、埋込み酸化層12の下方のバルク層14とを備え、欠陥集合層14aより下方のバルク層14に酸素析出物14cからなるゲッタリング源を有し、酸素析出物14cの密度が1×108〜1×1012個/cm3であり、酸素析出物14cのサイズが50nm以上であることを特徴とするSIMOX基板が得られる。
このSIMOX基板では、欠陥集合層14aより下方のバルク層14に密度が1×108〜1×1012個/cm3、サイズが50nm以上の酸素析出物14cを有しているため、デバイスプロセス中での突発的な重金属汚染をこの酸化析出物14cにより効率良く捕獲できる。また、この酸化析出物14cは欠陥集合層14aよりも強いゲッタリング源となるため、従来欠陥集合層14aに捕獲されていた重金属汚染物をバルク層14の酸素析出物14cにゲッタリングすることができる。この結果、例えば、重金属濃度が1×1011〜1×1012個/cm2で基板になるように重金属で強制汚染したとき、欠陥集合層14aの捕獲される重金属濃度を5×109個/cm2以下の水準にまで低減することができる。言うまでもないが、埋込み酸化層が部分的に形成されたSIMOX基板においても適用できる。
次に本発明を実施するための第2の最良の形態を図面に基づいて説明する。
本発明はシリコンウェーハ内部に酸素イオンを注入した後、熱処理することによりウェーハ表面から所定の深さの領域に埋込み酸化層が形成され、そのウェーハ表面にSOI層が形成されたSIMOX基板に関するものである。そして、図2に示すように、本発明におけるSIMOX基板の製造方法は、酸素イオンを注入した後のウェーハ11を3段階若しくは4段階に熱処理し、その後ウェーハ11表面に形成された酸化膜11b,11cを除去するものである。これらの各工程を以下に示す。
(2−1)酸素イオン注入工程
先ず図2(a)に示すように、シリコンウェーハ11を準備してこのウェーハ11に酸素イオンを注入する。準備した酸素イオン注入する前のシリコンウェーハ11は8×1017〜1.8×1018atoms/cm3(旧ASTM)の酸素濃度を有するものが準備される。この準備するシリコンウェーハはエピタキシャルウェーハもしくはアニールウェーハでも良い。
そして準備されたこのようなシリコンウェーハ11の内部に酸素イオンを注入する。この酸素イオンの注入は従来から行われている手段と同一の手段により行われる。そして、最終的に得られたSIMOX基板におけるSOI層13の厚さが10〜200nm、好ましくは20〜100nmになるように、ウェーハ11表面から所定の深さの領域11aに酸素イオンが注入される。SOI層13の厚さが10nm未満であるとSOI層13の厚さを制御することが困難であり、SOI層13の厚さが200nmを越えると酸素イオン注入機の加速電圧上困難である。
なお、シリコンウェーハ11表面の所望の位置に部分的にマスク等を形成してからシリコンウェーハ11の内部に酸素イオンを注入することで、マスクを形成しない箇所の下方にはウェーハ内部に酸素イオンが注入され、マスクを形成した箇所の下方にはウェーハ内部に酸素イオンが注入されないので、後に続く第1熱処理を施すことにより、マスクを形成しない箇所の下方のみに埋込み酸化層12が部分的に形成される。
(2−2)第1熱処理工程
次に図2(b)に示すように、酸素イオンが注入されたウェーハ11を酸素と不活性ガスとの混合ガス雰囲気中、1300〜1390℃の温度で第1熱処理する。不活性ガスとしてはアルゴンガスや窒素ガスが挙げられる。従って、この第1熱処理のガス雰囲気は、酸素とアルゴンの混合ガス、又は酸素と窒素の混合ガスであることが好ましい。そして、この第1熱処理の熱処理時間は1〜20時間、好ましくは10〜20時間であることが好ましい。
この第1熱処理により、ウェーハ11表面及び裏面には酸化膜11b,11cが形成され、ウェーハ11表面から所定の深さの領域11aには埋込み酸化層12がウェーハ全面にわたって形成される。また、マスク等によりウェーハ11表面から所定の深さの領域に酸素イオンを部分的に注入した場合、部分的に埋込み酸化層12が形成される。更に、表側の酸化膜11bと埋込み酸化層12との間にはSOI層13が形成される。また埋込み酸化層12直下には欠陥集合層14aが必然的に形成される。
(2−3)急速熱処理工程
次に図2(c)に示すように、第1熱処理したウェーハを1050℃〜1350℃で1秒〜900秒間保持させた後、その後降温速度10℃/秒以上で降温する急速熱処理を施す。この急速熱処理のガス雰囲気はアルゴンガス又はアンモニア含有ガス雰囲気が好ましい。
また、急速熱処理条件は、1050℃〜1350℃で1秒〜900秒間保持させる。急速熱処理温度を1050℃〜1350℃の範囲内に規定したのは、下限値未満では酸素析出核の形成を促進させるのに十分な空孔量をウェーハ内に注入することができず、上限値を越えると、熱処理時にウェーハにスリップ転位が発生し、デバイス作製時に支障をきたすことになり好ましくないためである。好ましい熱処理温度は1100〜1300℃である。また保持時間を1秒〜900秒間としたのは、下限値未満ではウェーハの面内及び深さ方向において、所望とする熱処理到達温度までに要する時間が異なり、品質のバラツキを生み出す原因となることが懸念されるためである。また上限値を規定したのは、スリップ低減及び生産性を考慮したためである。好ましい保持時間は10〜60秒間である。上記急速熱処理温度で所定時間保持することにより、ウェーハ内部に空孔が注入されるが、注入された空孔をウェーハ内部に留めておくには、ウェーハを降温する際の冷却速度が重要な役割を果たすこととなる。注入された空孔はウェーハ表面に達すると消失し、最表面近くでは濃度が低下して、それによって生じる濃度差により内部から表面へ向けて空孔の外方拡散が起こると考えられる。このため、冷却速度が遅いと降温に滞在する時間が長くなり、その分、外方拡散が進行してしまい、いったん、高温のRTA熱処理によって注入された空孔が減少し、酸素析出核形成に十分なだけの量を確保することができなくなると考えられる。
そのため、所定の保持を行った後、降温速度10℃/秒以上で降温する。降温速度を10℃/秒以上に規定したのは、下限値未満であると空孔消失の抑制効果が得られないためである。上限値を設定しなかった理由は、10℃/秒を越えれば、その効果はほとんど変わらないためである。しかし、降温速度を高く設定しすぎると冷却中にウェーハ面内温度均一性が悪くなりスリップが発生するため、降温速度は生産性を考慮して10〜100℃/秒に制御することが望ましい。より好ましい降温速度は15〜50℃/秒である。この急速熱処理を施すことにより、埋込み酸化層12より下方のバルク層14に空孔15が注入される。この急速熱処理により、ウェーハ面内の酸素析出物密度分布の面内均一性が確保され、低酸素濃度のシリコンウェーハであっても酸素析出物成長の確実性が向上する。なお、この急速熱処理を施さない場合、後に続く工程を施したとしてもウェーハ面内の酸素析出物密度分布が均一にできないおそれがある。
(2−4)第2熱処理工程
次に、図2(d)に示すように、急速熱処理したウェーハ11を酸化膜11b,11cを残した状態で又は酸化膜11b,11cを除去した状態で酸素、窒素、アルゴン、水素或いはこれらの混合ガス雰囲気中で第2熱処理する。酸化膜11b,11cを残した状態で第2熱処理を行うと、特に非酸化性ガス雰囲気ではSOI層13の厚さが減少したり、ばらつきを生じることがないため好ましい。この理由は、第1に酸化性ガス雰囲気中で第2熱処理を行うと、酸化膜11b,11cが更に成長することにより、ウェーハ表面のシリコンが消費され、第2に水素やアルゴンガス雰囲気中で第2熱処理を行うと、SOI層13がエッチングされてしまうからである。一方、SOI層13の厚さが比較的厚い場合には、SOI層13の厚さが減少しても所定の厚さのSOI層13が得られるので、酸化膜11b,11cを除去した状態で第2熱処理を行っても良い。この第2熱処理のガス雰囲気は窒素ガス、アルゴンガスもしくは微量酸素を加えた窒素あるいはアルゴンガスが好ましい。
また、第2熱処理条件は、500〜1000℃の温度で1〜96時間行われる。第2熱処理温度を500〜1000℃の範囲内に規定したのは、下限値未満では核形成温度が低すぎで長時間の熱処理が必要となり、上限値を越えると酸素析出核形成が生じないためである。また第2熱処理時間を1〜96時間の範囲内に規定したのは、下限値未満では酸素析出核を形成するのに時間が短すぎであり、上限値を越えると生産性の劣化の不具合を生じるためである。この第2熱処理は500〜800℃の温度で4〜35時間行われることが更に好ましい。また第2熱処理は500℃から1000℃の一部範囲又は全ての範囲において0.1〜5.0℃/分の速度、好ましくは0.1〜1.0℃/分で昇温することにより1〜96時間、好ましくは4〜35時間の範囲内で行なっても良い。この第2熱処理を行うことにより、埋込み酸化層12の直下に形成される欠陥集合層14aより下方のバルク層14に酸素析出核14bが形成される。この第2熱処理まで終了したSIMOX基板は半導体デバイスメーカーのデバイス製造工程で熱処理すると、上記酸素析出核が酸素析出物に成長し、ウェーハ全面にわたってIG効果を有するようになる。
(2−5)第3熱処理工程
次に図2(e)に示すように、第2熱処理したウェーハ11を第3熱処理する。この第3熱処理は、酸素、窒素、アルゴン、水素或いはこれらの混合ガス雰囲気中で、第2熱処理温度より高い900〜1250℃で1〜96時間行われる。この第3熱処理のガス雰囲気は窒素ガス、アルゴンガスもしくは微量酸素を加えた窒素あるいはアルゴンガスが好ましい。第3熱処理温度を900〜1250℃の範囲内に規定したのは、下限値未満では酸素析出核の成長が十分に起こりにくく、上限値を越えると酸素析出物の溶解という不具合を生じるためである。また第3熱処理時間を1〜96時間の範囲内に規定したのは、下限値未満では酸素析出物の成長が十分でなく、上限値を越えると生産性の劣化の不具合を生じるためである。また、第3熱処理は1000〜1200℃で8〜24時間で行われることが好ましい。更に、第3熱処理は900℃から1250℃の一部範囲又は全ての範囲において0.1〜20℃/分の速度、好ましくは1〜5℃/分で昇温することにより1〜96時間、好ましくは8〜24時間の範囲内で行なっても良い。この第3熱処理を行うことにより、バルク層14に形成された酸素析出核14bを酸素析出物14cに成長させることができる。
(2−6)酸化膜11b,11c除去工程
最後の図2(f)に示すように、第3熱処理したウェーハ11表面及び裏面の酸化膜11b,11cをフッ酸等により除去する。これにより、ウェーハ表面から所定の深さの領域に形成された埋込み酸化層12と、埋込み酸化層上のウェーハ表面に形成されたSOI層13と、埋込み酸化層12の直下に形成された欠陥集合層14aと、埋込み酸化層12の下方のバルク層14とを備え、欠陥集合層14aより下方のバルク層14に酸素析出物14cからなるゲッタリング源を有し、酸素析出物14cの密度が1×108〜1×1012個/cm3であり、酸素析出物14cのサイズが50nm以上であることを特徴とするSIMOX基板が得られる。
このSIMOX基板では、欠陥集合層14aより下方のバルク層14に密度が1×108〜1×1012個/cm3、サイズが50nm以上の酸素析出物14cを有しているため、デバイスプロセス中での突発的な重金属汚染をこの酸化析出物14cにより効率良く捕獲できる。また、この酸化析出物14cは欠陥集合層14aよりも強いゲッタリング源となるため、従来欠陥集合層14aに捕獲されていた重金属汚染物をバルク層14の酸素析出物14cにゲッタリングすることができる。この結果、例えば、重金属濃度が1×1011〜1×1012個/cm2で基板になるように重金属で強制汚染したとき、欠陥集合層14aの捕獲される重金属濃度を5×109個/cm2以下の水準にまで低減することができる。
次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
先ず、図1(a)に示すように、CZ法により育成した酸素濃度1.3×1018atoms/cm3(旧ASTM)及び比抵抗20Ω・cmのシリコンインゴットから所定の厚さに切り出したCZシリコンウェーハを用意した。次いで、このウェーハを550℃の温度に加熱し、この状態でシリコンウェーハの所定の領域(例えば、基板表面から約0.4μmの領域)に次の条件で酸素イオンを注入した。
加速電圧: 180keV
ビーム電流: 50mA
ドーズ量: 4×1017個/cm2
イオン注入後に、ウェーハ表面にSC−1及びSC−2洗浄を行った。続いて図1(b)に示すように、ウェーハ11を熱処理炉内に入れて酸素分圧0.5%のArガス雰囲気中、1350℃の一定温度で4時間保持した後、引続き炉内雰囲気の酸素分圧を70%まで増加させ更に4時間保持する第1熱処理を行った。この第1熱処理したウェーハを図1(c)に示すように、表面の酸化膜11b,11cを残した状態で1%酸素雰囲気中、500℃から850℃まで1.0℃/分で連続昇温した後に、850℃で1時間保持する第2熱処理を行った。この第2熱処理したウェーハ11を、図1(d)に示すように、1%酸素雰囲気中、850℃から5.0℃/分の昇温速度で1100℃まで昇温した後に、1100℃で8時間保持する第3熱処理を行った。その後この第3熱処理したウェーハを、3.0℃/分の降温速度で700℃まで降温させた。熱処理を終えたウェーハ表面及び裏面の酸化膜11b,11cをHF溶液で除去してSIMOX基板を得た。このSIMOX基板を実施例1とした。
<実施例2>
先ず、図1(a)に示すように、CZ法により育成した酸素濃度1.4×1018atoms/cm3(旧ASTM)、窒素濃度4.0×1014atoms/cm3(旧ASTM)及び比抵抗10Ω・cmのシリコンインゴットから所定の厚さに切り出したCZシリコンウェーハを用意した。次いで、このウェーハを550℃の温度に加熱し、この状態でシリコンウェーハの所定の領域(例えば、基板表面から約0.4μmの領域)に次の条件で酸素イオンを注入した。
加速電圧: 180keV
ビーム電流: 50mA
ドーズ量: 4×1017個/cm2
イオン注入後に、ウェーハ表面にSC−1及びSC−2洗浄を行った。続いて図1(b)に示すように、ウェーハ11を熱処理炉内に入れて酸素分圧0.5%のArガス雰囲気中、1350℃の一定温度で4時間保持した後、引続き炉内雰囲気の酸素分圧を70%まで増加させ更に4時間保持する第1熱処理を行った。この第1熱処理したウェーハを図1(c)に示すように、表面の酸化膜11b,11cを残した状態で1%酸素(アルゴンベース)雰囲気中、600℃から700℃まで0.5℃/分で連続昇温した後に、700℃で1時間保持する第2熱処理を行った。この第2熱処理したウェーハ11を、図1(d)に示すように、1%酸素雰囲気中、700℃から5.0℃/分の昇温速度で1000℃まで昇温した後に、1000℃で16時間保持する第3熱処理を行った。その後この第3熱処理したウェーハを、3.0℃/分の降温速度で700℃まで降温させた。熱処理を終えたウェーハ表面及び裏面の酸化膜11b,11cをHF溶液で除去してSIMOX基板を得た。このSIMOX基板を実施例2とした。
<実施例3>
第2熱処理として700℃で4時間保持した以外は実施例2と同様にしてSIMOX基板を得た。このSIMOX基板を実施例3とした。
<実施例4>
第2熱処理として700℃で8時間保持した以外は実施例2と同様にしてSIMOX基板を得た。このSIMOX基板を実施例4とした。
<実施例5>
先ず、図1(a)に示すように、CZ法により育成した酸素濃度1.4×1018atoms/cm3(旧ASTM)、炭素濃度2.02×1016atoms/cm3(旧ASTM)及び比抵抗10Ω・cmのシリコンインゴットから所定の厚さに切り出したCZシリコンウェーハを用意した。このCZシリコンウェーハ表面にシリコンエピタキシャル膜を3μm堆積させた。次いで、このウェーハを550℃の温度に加熱し、この状態でシリコンウェーハの所定の領域(例えば、基板表面から約0.4μmの領域)に次の条件で酸素イオンを注入した。
加速電圧: 180keV
ビーム電流: 50mA
ドーズ量: 4×1017個/cm2
イオン注入後に、ウェーハ表面にSC−1及びSC−2洗浄を行った。続いて図1(b)に示すように、ウェーハ11を熱処理炉内に入れて酸素分圧0.5%のArガス雰囲気中、1350℃の一定温度で4時間保持した後、引続き炉内雰囲気の酸素分圧を70%まで増加させ更に4時間保持する第1熱処理を行った。この第1熱処理したウェーハを図1(c)に示すように、表面の酸化膜11b,11cを残した状態で窒素雰囲気中、700℃で8時間保持する第2熱処理を行った。この第2熱処理したウェーハ11を、図1(d)に示すように、窒素雰囲気中、700℃から5.0℃/分の昇温速度で1000℃まで昇温した後に、1000℃で16時間保持する第3熱処理を行った。その後この第3熱処理したウェーハを、3.0℃/分の降温速度で700℃まで降温させた。熱処理を終えたウェーハ表面及び裏面の酸化膜11b,11cをHF溶液で除去してSIMOX基板を得た。このSIMOX基板を実施例5とした。
<比較例1>
第2熱処理及び第3熱処理を施さない以外は実施例1と同様にしてSIMOX基板を得た。このSIMOX基板を比較例1とした。
<比較例2>
第2熱処理及び第3熱処理の代わりに500℃から出発し、最終到達温度が850℃になるまで1.0℃/分で連続昇温する熱処理を施した以外は実施例1と同様にしてSIMOX基板を得た。このSIMOX基板を比較例2とした。
<比較試験1>
実施例1〜5及び比較例1,2の各SIMOX基板10の表面酸化膜11b,11cを除去した後、各SIMOX基板のSOI層13、埋込み酸化層12及び埋込み酸化層直下の欠陥集合層14aをフッ酸硝酸水溶液でそれぞれ溶解回収し、これら回収した溶解液にICP−MS測定(Inductively Coupled Plasma-Mass Spectrometry;誘導結合プラズマ質量分析)を行い、溶解液中に含まれる鉄、ニッケル、亜鉛及び銅についての重金属濃度を測定した。また、実施例1〜5及び比較例1,2のバルク層14をそれぞれ全溶解し、全溶解した溶解液中の重金属濃度を測定した。
ニッケル以外の重金属即ち、鉄、亜鉛及び銅については実施例1〜5及び比較例1,2のSIMOX基板ともにSOI層、埋込み酸化層、欠陥集合層及びバルク層には観察されなかった。実施例1〜5及び比較例1,2のSIMOX基板の各層にそれぞれ含まれるニッケル濃度結果を表1にそれぞれ示す。
Figure 2005286282
表1より明らかなように、比較例1,2のSIMOX基板では、SOI層、埋込み酸化層及び欠陥集合層にそれぞれ表面濃度換算で5.0×1010atoms/cm2程度のニッケルが観察された。一方、バルク層中のニッケル濃度は、検出限界値以下であった。これに対して実施例1〜5のSIMOX基板では、SOI層、埋込み酸化層及び欠陥集合層ではニッケル濃度は検出限界値以下であった。またバルク層中のニッケル濃度は2.6×1011〜4.8×1011atoms/cm3を示し、バルク層に形成された酸素析出物によって確実に重金属不純物がゲッタリングされていることが判った。
<比較試験2>
実施例1〜5及び比較例1,2におけるSIMOX基板をそれぞれ2分割に劈開した。この劈開した双方の基板をライト(Wright)エッチング液で選択エッチングを行った。先ず、一方の基板を光学顕微鏡による観察により、基板劈開面表面から深さ2μmにおける酸素析出物を測定しその密度を求めた。比較例1,2のSIMOX基板における酸素析出物密度は、5×107個/cm2以下であった。一方、実施例1〜5のSIMOX基板における酸素析出物密度は、1×108〜1×1012個/cm3の範囲内であった。また埋込み酸化層直下から10μmまでの領域には、酸素析出物が存在しないDZ層(Denuded Zone)が存在していた。
次に、他方の基板を電子顕微鏡により観察して、酸素析出物のサイズを求めた。比較例1,2のSIMOX基板は、酸素析出物のサイズは50nm以下であったが、実施例1〜5のSIMOX基板は、酸素析出物のサイズのほとんどが50nm以上であることが判った。
<比較試験3>
実施例5で得られたサンプルの一部をFT−IR(Fourier transform infrared absorption spectroscopy)装置により測定して熱処理後の残存酸素濃度を測定した結果、残存酸素濃度は5×1017atoms/cm3であったが、酸素析出物成長熱処理前後での反り量の変化はなかった。
<実施例6>
先ず、図2(a)に示すように、CZ法により育成した酸素濃度1.0×1018atoms/cm3(旧ASTM)及び比抵抗20Ω・cmのシリコンインゴットから所定の厚さに切り出したCZシリコンウェーハを用意した。次いで、このウェーハを550℃の温度に加熱し、この状態でシリコンウェーハの所定の領域に(例えば、基板表面から約0.4μmの領域)に次の条件で酸素イオンを注入した。
加速電圧: 180keV
ビーム電流: 50mA
ドーズ量: 4×1017個/cm2
イオン注入後に、ウェーハ表面にSC−1及びSC−2洗浄を行った。続いて図2(b)に示すように、ウェーハ11を縦型熱処理炉内に入れて酸素分圧0.5%のArガス雰囲気中、1350℃の一定温度で4時間保持した後、引続き炉内雰囲気の酸素分圧を70%まで増加させ更に4時間保持する第1熱処理を行った。この第1熱処理したウェーハを図2(c)に示すように、アンモニア含有ガス雰囲気下にて昇温速度50℃/秒で1150℃まで昇温した後、120秒間保持させ、その後降温速度50℃/秒で400℃まで降温させる急速熱処理を行った。この急速熱処理したウェーハ11を、図2(d)に示すように、表面の酸化膜11b,11cを残した状態で横型バッチ式炉内に入れてアルゴン雰囲気中、800℃の一定温度で48時間保持する第2熱処理を行った。熱処理を終えたウェーハ表面及び裏面の酸化膜をHF溶液で除去してSIMOX基板を得た。このSIMOX基板を実施例6とした。
<比較試験4>
実施例1及び6におけるSIMOX基板を2分割に劈開した。この劈開した基板をライト(Wright)エッチング液で選択エッチングを行った。基板を光学顕微鏡による観察により、基板劈開面表面から深さ3μmにおける酸素析出物を測定しその密度を求めた。実施例1のSIMOX基板における酸素析出物密度は、1×104個/cm2以下であった。一方、実施例6のSIMOX基板における酸素析出物密度は、8×104個/cm3の範囲内であった。
<比較試験5>
実施例6及び比較例1の各SIMOX基板10の表面酸化膜11b,11cを除去した後、各SIMOX基板のSOI層13、埋込み酸化層12及び埋込み酸化層直下の欠陥集合層14aをフッ酸硝酸水溶液でそれぞれ溶解回収し、これら回収した溶解液にICP−MS測定を行い、溶解液中に含まれるニッケル濃度を測定した。また、実施例6及び比較例1のバルク層14を、裏面から1μmを除くバルク層と裏面から1μmの領域とにそれぞれ分別して全溶解し、全溶解した各溶解液中のニッケル濃度を測定した。
実施例6のSIMOX基板には、裏面から1μmを除くバルク領域にはニッケルが検出されたが、その他の領域にはニッケルは検出されなかった。一方、比較例1のSIMOX基板では埋込み酸化層直下の欠陥集合層14aにニッケルが検出された。
本発明のSIMOX基板の第1の製造方法を示す工程図。 本発明のSIMOX基板の第2の製造方法を示す工程図。
符号の説明
10 SIMOX基板
11 シリコンウェーハ
12 埋込み酸化層
13 SOI層
14 バルク層
14a 欠陥集合層
14b 酸素析出核
14c 酸素析出物
15 空孔

Claims (7)

  1. シリコンウェーハ(11)の内部に酸素イオンを注入する工程と、
    前記ウェーハ(11)を酸素と不活性ガスとの混合ガス雰囲気中、1300〜1390℃で第1熱処理することにより、前記ウェーハ(11)表面から所定の深さの領域に埋込み酸化層(12)を形成するとともに前記埋込み酸化層(12)上のウェーハ表面にSOI層(13)を形成する工程と
    を含むSIMOX基板の製造方法において、
    前記酸素イオン注入する前のシリコンウェーハ(11)が8×1017〜1.8×1018atoms/cm3(旧ASTM)の酸素濃度を有し、前記埋込み酸化層(12)がウェーハ全面にわたって形成され、
    前記第1熱処理したウェーハを酸素、窒素、アルゴン、水素或いはこれらの混合ガス雰囲気中、400〜900℃で1〜96時間第2熱処理することにより、前記埋込み酸化層(12)の直下に形成される欠陥集合層(14a)より下方のバルク層(14)に酸素析出核(14b)を形成する工程と、
    前記第2熱処理したウェーハを酸素、窒素、アルゴン、水素或いはこれらの混合ガス雰囲気中、前記第2熱処理温度より高い900〜1250℃で1〜96時間第3熱処理することにより、前記バルク層(14)に形成された酸素析出核(14b)を酸素析出物(14c)に成長させる工程と
    を含むことを特徴とするSIMOX基板の製造方法。
  2. 第2熱処理が400℃から900℃の一部範囲又は全ての範囲において0.1〜5.0℃/分の速度で昇温することにより1〜96時間の範囲内で行われ、第3熱処理が900℃から1250℃の一部範囲又は全ての範囲において0.1〜20℃/分の速度で昇温することにより1〜96時間の範囲内で行われる請求項1記載の製造方法。
  3. シリコンウェーハ(11)の内部に酸素イオンを注入する工程と、
    前記ウェーハ(11)を酸素と不活性ガスとの混合ガス雰囲気中、1300〜1390℃で第1熱処理することにより、前記ウェーハ(11)表面から所定の深さの領域に埋込み酸化層(12)を形成するとともに前記埋込み酸化層(12)上のウェーハ表面にSOI層(13)を形成する工程と
    を含むSIMOX基板の製造方法において、
    前記酸素イオン注入する前のシリコンウェーハ(11)が8×1017〜1.8×1018atoms/cm3(旧ASTM)の酸素濃度を有し、前記埋込み酸化層(12)がウェーハ全面にわたって又は部分的に形成され、
    前記第1熱処理したウェーハを1050〜1350℃で1〜900秒間保持させた後、その後降温速度10℃/秒以上で降温する急速熱処理を施すことにより、前記埋込み酸化層(12)より下方のバルク層(14)に空孔を注入する工程と、
    前記急速熱処理したウェーハを酸素、窒素、アルゴン、水素或いはこれらの混合ガス雰囲気中、500〜1000℃で1〜96時間第2熱処理することにより、前記埋込み酸化層(12)の直下に形成される欠陥集合層(14a)より下方のバルク層(14)に酸素析出核(14b)を形成する工程と
    を含むことを特徴とするSIMOX基板の製造方法。
  4. 第2熱処理したウェーハを酸素、窒素、アルゴン、水素或いはこれらの混合ガス雰囲気中、前記第2熱処理温度より高い900〜1250℃で1〜96時間第3熱処理することにより、バルク層(14)に形成された酸素析出核(14b)を酸素析出物(14c)に成長させる工程を更に含む請求項3記載の製造方法。
  5. 第2熱処理が500℃から1000℃の一部範囲又は全ての範囲において0.1〜5.0℃/分の速度で昇温することにより1〜96時間の範囲内で行われる請求項3記載の製造方法。
  6. 第3熱処理が900℃から1250℃の一部範囲又は全ての範囲において0.1〜20℃/分の速度で昇温することにより1〜96時間の範囲内で行われる請求項4記載の製造方法。
  7. 請求項1ないし6いずれか1項に記載の方法から製造されたSIMOX基板であって、ウェーハ表面から所定の深さの領域に形成された埋込み酸化層(12)と、前記埋込み酸化層上のウェーハ表面に形成されたSOI層(13)と、前記埋込み酸化層(12)の直下に形成された欠陥集合層(14a)と、前記埋込み酸化層(12)の下方のバルク層(14)とを備え、
    前記欠陥集合層(14a)より下方の前記バルク層(14)に酸素析出物(14c)からなるゲッタリング源を有し、前記酸素析出物(14c)の密度が1×108〜1×1012個/cm3であり、前記酸素析出物(14c)のサイズが50nm以上であることを特徴とするSIMOX基板。
JP2004127527A 2004-03-01 2004-04-23 Simox基板の製造方法及び該方法により得られるsimox基板 Pending JP2005286282A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004127527A JP2005286282A (ja) 2004-03-01 2004-04-23 Simox基板の製造方法及び該方法により得られるsimox基板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004056094 2004-03-01
JP2004127527A JP2005286282A (ja) 2004-03-01 2004-04-23 Simox基板の製造方法及び該方法により得られるsimox基板

Publications (1)

Publication Number Publication Date
JP2005286282A true JP2005286282A (ja) 2005-10-13

Family

ID=35184276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004127527A Pending JP2005286282A (ja) 2004-03-01 2004-04-23 Simox基板の製造方法及び該方法により得られるsimox基板

Country Status (1)

Country Link
JP (1) JP2005286282A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045247A (ja) * 2008-08-14 2010-02-25 Shin Etsu Handotai Co Ltd シリコンウェーハおよびシリコンウェーハの製造方法
JP2010087512A (ja) * 2008-09-29 2010-04-15 Magnachip Semiconductor Ltd シリコンウエハ及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582525A (ja) * 1991-09-19 1993-04-02 Nec Corp Simox基板及びその製造方法
JPH07193072A (ja) * 1993-12-27 1995-07-28 Nec Corp 半導体基板の製造方法
WO2003001583A2 (en) * 2001-06-22 2003-01-03 Memc Electronic Materials, Inc. Process for producing silicon on insulator structure having intrinsic gettering by ion implantation
WO2003009365A1 (fr) * 2001-07-10 2003-01-30 Shin-Etsu Handotai Co.,Ltd. Procede de fabrication d'une plaquette en silicium, d'une plaquette epitaxiale en silicium, et plaquette epitaxiale en silicium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582525A (ja) * 1991-09-19 1993-04-02 Nec Corp Simox基板及びその製造方法
JPH07193072A (ja) * 1993-12-27 1995-07-28 Nec Corp 半導体基板の製造方法
WO2003001583A2 (en) * 2001-06-22 2003-01-03 Memc Electronic Materials, Inc. Process for producing silicon on insulator structure having intrinsic gettering by ion implantation
WO2003009365A1 (fr) * 2001-07-10 2003-01-30 Shin-Etsu Handotai Co.,Ltd. Procede de fabrication d'une plaquette en silicium, d'une plaquette epitaxiale en silicium, et plaquette epitaxiale en silicium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045247A (ja) * 2008-08-14 2010-02-25 Shin Etsu Handotai Co Ltd シリコンウェーハおよびシリコンウェーハの製造方法
JP2010087512A (ja) * 2008-09-29 2010-04-15 Magnachip Semiconductor Ltd シリコンウエハ及びその製造方法

Similar Documents

Publication Publication Date Title
US7763541B2 (en) Process for regenerating layer transferred wafer
US20080044669A1 (en) Method for Manufacturing Simox Substrate and Simox Substrate Obtained by the Method
US7582540B2 (en) Method for manufacturing SOI wafer
JP2014508405A5 (ja)
JP6671436B2 (ja) 熱処理により不活性な酸素析出核を活性化する高析出密度ウエハの製造
US7537657B2 (en) Silicon wafer and process for producing it
KR20090081335A (ko) 접합 웨이퍼의 제조 방법
JP4419147B2 (ja) 貼り合わせウェーハの製造方法
KR100965510B1 (ko) Simox 기판의 제조 방법 및 그 방법에 의해 얻어지는 simox 기판
WO2010131412A1 (ja) シリコンウェーハおよびその製造方法
JP2006040980A (ja) シリコンウェーハおよびその製造方法
TWI549192B (zh) Method of manufacturing wafers
JP2018064057A (ja) シリコン接合ウェーハの製造方法およびシリコン接合ウェーハ
US11761118B2 (en) Carbon-doped silicon single crystal wafer and method for manufacturing the same
JP2005286282A (ja) Simox基板の製造方法及び該方法により得られるsimox基板
JPH11283987A (ja) シリコンエピタキシャルウェーハとその製造方法
JP5211550B2 (ja) シリコン単結晶ウェーハの製造方法
JP2020004989A (ja) シリコン接合ウェーハ
JP2010040638A (ja) Soi基板の製造方法
TWI333257B (en) Method of producing simox substrate
JP5434239B2 (ja) シリコンウェーハの製造方法
KR20070022285A (ko) Simox 기판의 제조방법 및 그 방법에 의해 얻어지는simox 기판
JP2003100759A (ja) エピタキシャルシリコンウェーハの製造方法
JP2010003764A (ja) シリコンウェーハの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019