JP2005200695A - Gas carburizing method - Google Patents

Gas carburizing method Download PDF

Info

Publication number
JP2005200695A
JP2005200695A JP2004007168A JP2004007168A JP2005200695A JP 2005200695 A JP2005200695 A JP 2005200695A JP 2004007168 A JP2004007168 A JP 2004007168A JP 2004007168 A JP2004007168 A JP 2004007168A JP 2005200695 A JP2005200695 A JP 2005200695A
Authority
JP
Japan
Prior art keywords
gas
carburizing
furnace
supplied
shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004007168A
Other languages
Japanese (ja)
Inventor
Kenji Suzuki
健司 鈴木
Tsunenori Ito
経教 伊藤
Takeshi Yokoyama
剛 横山
Yuichi Watabe
祐一 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onex Corp USA
Original Assignee
Onex Corp USA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onex Corp USA filed Critical Onex Corp USA
Priority to JP2004007168A priority Critical patent/JP2005200695A/en
Publication of JP2005200695A publication Critical patent/JP2005200695A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas carburizing method having an improved carburization efficiency for a workpiece to be treated without introducing or remodeling a large-scale facility, in gas carburizing treatment using a conventional gas conversion furnace, and to provide a gas carburizing system. <P>SOLUTION: In a gas carburizing method for carburizing the workpiece to be treated in a carburization furnace of a predetermined temperature or lower containing a reformed gas and an enriched gas which are supplied, the gas carburizing method includes further supplying a gas different from the reformed gas and the enriched gas into the carburization furnace. The gas carburizing system comprises: a gas-reforming furnace for reforming a carburizing source gas to the reformed gas; and a gas carburizing furnace for carburizing the workpiece to be treated, with the use of the reformed gas supplied from the gas-reforming furnace, the enriched gas which has a higher carbon potential than the reformed gas and is supplied from the portion different from the gas-reforming furnace, and the gas different from the reformed gas and the enriched gas. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、鉄鋼材料等の被処理品に浸炭性ガスを供給するガス浸炭方法に関し、大規模な設備の導入又は改造を行うことなく被処理品に対する浸炭処理効率の向上を図ったガス浸炭方法に関する。   The present invention relates to a gas carburizing method for supplying a carburizing gas to an article to be treated such as a steel material, etc., and a gas carburizing method for improving the carburizing efficiency of the article to be treated without introducing or modifying a large-scale facility. About.

従来、ガス浸炭方法として、ガス変成炉を用いた方法が現在に至るまで広く用いられている。これは、炭化水素系ガスおよび空気を原料として、ガス変成炉で変成ガスを作り、カーボンポテンシャルの低いキャリアガスとして浸炭炉に供給し、さらに高い所要のカーボンポテンシャルに調整するために、炭化水素系ガスをエンリッチガスとして浸炭炉に供給し、800℃以上の温度下で被処理品の浸炭処理を行なう方法である。この方式では、浸炭原料の炭化水素系ガスの種類により、変成ガス中の一酸化炭素、水素及び窒素の比率は一定である。   Conventionally, as a gas carburizing method, a method using a gas shift furnace has been widely used until now. This is because hydrocarbon gas and air are used as raw materials to produce a metamorphic gas in a gas shift furnace, supply it to the carburizing furnace as a carrier gas with a low carbon potential, and adjust it to a higher required carbon potential. In this method, gas is supplied as an enriched gas to a carburizing furnace, and a carburizing process is performed on a workpiece at a temperature of 800 ° C. or higher. In this system, the ratio of carbon monoxide, hydrogen and nitrogen in the shift gas is constant depending on the type of hydrocarbon-based gas used as the carburizing raw material.

しかしながら、このような従来のガス浸炭方法は、複雑な形状を有する被処理品を浸炭処理する際にスーティングや浸炭むらを発生することが多く、また、浸炭処理の時間も長時間を要するという問題があった。   However, such a conventional gas carburizing method often generates sooting and uneven carburizing when a workpiece having a complicated shape is carburized, and the carburizing process takes a long time. There was a problem.

このような問題を解決するために、例えば、変成ガスの原料として炭化水素系ガス、空気及び二酸化炭素ガスを用い、これらのガスの供給量により変成ガス中の一酸化炭素濃度を可変制御し、一酸化炭素を制御した可変ガスを浸炭炉に供給する、ガス組成調整式変成炉によるガス浸炭方法が開発されている(特許文献1)。   In order to solve such a problem, for example, a hydrocarbon gas, air, and carbon dioxide gas are used as the raw material of the shift gas, and the carbon monoxide concentration in the shift gas is variably controlled by the supply amount of these gases. A gas carburizing method using a gas composition-adjusting shift furnace that supplies a variable gas with controlled carbon monoxide to a carburizing furnace has been developed (Patent Document 1).

また、ガス変成炉を必要としないガス浸炭の例として、有機剤を直接浸炭炉に注入する滴注式浸炭方法(特許文献2)、又は炭化水素系ガス、空気又は二酸化炭素ガスを直接浸炭炉に供給し、浸炭炉内で変成させる直接浸炭方法が開発されている(特許文献3)。   Moreover, as an example of gas carburizing that does not require a gas shift furnace, a dripping type carburizing method in which an organic agent is directly injected into the carburizing furnace (Patent Document 2), or a hydrocarbon-based gas, air, or carbon dioxide gas is directly carburizing furnace. A direct carburizing method has been developed in which a carburizing furnace is supplied and transformed in a carburizing furnace (Patent Document 3).

さらには、減圧下の浸炭炉に炭化水素系ガスを供給して浸炭を行なう、いわゆる真空浸炭方法が開発されている(特許文献4)。
特開2002−356763号公報 特開平9−235664号公報 特開平8−199331号公報 特開昭52−47531号公報
Furthermore, a so-called vacuum carburizing method has been developed in which carburizing is performed by supplying a hydrocarbon-based gas to a carburizing furnace under reduced pressure (Patent Document 4).
JP 2002-356663 A JP-A-9-235664 Japanese Unexamined Patent Publication No. 8-199331 JP 52-47531 A

しかしながら、ガス浸炭方法は、その原理上の特徴から、処理時間が長い、炉内にススが発生するスーティングと、それに起因した浸炭むらが発生しやすくなる、複雑形状部品の均一な浸炭が困難である、被処理品表面に粒界酸化が生じ、処理品の疲労強度に悪影響を与える、等の課題を未だ有している。   However, the gas carburizing method has a long processing time, sooting in which soot is generated in the furnace, and uneven carburizing due to the soot is easily generated, and uniform carburizing of complex shaped parts is difficult. However, there are still problems such as the occurrence of grain boundary oxidation on the surface of the article to be treated, which adversely affects the fatigue strength of the article to be treated.

これらの課題を解決するために、従来の変成ガスによるガス浸炭処理に替えて、前記のガス組成調整式変成炉による浸炭方法、滴注式浸炭方法、直接浸炭方法又は真空浸炭方法を採用することがあるが、それらは専用の設備が必要となり、経済的な観点から必ずしも得策とはいえない。   In order to solve these problems, in place of the conventional gas carburizing treatment with the metamorphic gas, the carburizing method using the gas composition-adjusting type shift furnace, the dripping carburizing method, the direct carburizing method or the vacuum carburizing method should be adopted. However, they require special equipment and are not always good from an economic point of view.

本発明は上記事情に鑑みなされたもので、従来型のガス変成炉を利用したガス浸炭処理であって、大規模な設備の導入又は改造を行うことなく、被処理品に対する浸炭処理効率を向上させるガス浸炭方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is a gas carburizing process using a conventional gas shift furnace, and improves the carburizing efficiency of a product to be processed without introducing or modifying a large-scale facility. An object of the present invention is to provide a gas carburizing method.

本発明者らは、上記の課題を解決するにあたり、大規模な設備の導入又は改造を行なうことなく、単に浸炭雰囲気のガス組成を変えることにより、前記課題を解決するとの知見を得た。本発明はその知見に基づきなされたものであり、浸炭用の原料ガスが変成された変成ガスと、該変成ガスよりもカーボンポテンシャルの高いエンリッチガスとをガス浸炭炉に供給し、900℃以上の温度下で該ガス浸炭炉内の被処理品の浸炭処理を行うガス浸炭方法において、前記ガス浸炭炉に、前記変成ガス及び前記エンリッチガスとは異なるガス(以下、「添加ガス」と称する)をさらに供給することを特徴とするガス浸炭方法を提供するものである。   In order to solve the above problems, the present inventors have obtained knowledge that the above problems can be solved by simply changing the gas composition of the carburizing atmosphere without introducing or modifying a large-scale facility. The present invention has been made on the basis of the knowledge, and supplies a gas that has been converted to a carburizing raw material gas and an enriched gas having a carbon potential higher than that of the converted gas to a gas carburizing furnace. In a gas carburizing method for carburizing a workpiece in the gas carburizing furnace at a temperature, a gas different from the metamorphic gas and the enriched gas (hereinafter referred to as “added gas”) is added to the gas carburizing furnace. Furthermore, the present invention provides a gas carburizing method characterized by supplying the gas.

一般に、浸炭の反応速度は浸炭温度と浸炭雰囲気のガス組成により律速される。浸炭温度は高いほど浸炭時間が短くなるという相関関係にあり、この相関関係は本発明においても同様である。すなわち、本発明は900℃以上の浸炭温度において、添加ガスを供給することで浸炭炉内のガス組成を変化させ、大規模な設備の導入又は改造を行うことなく浸炭処理に有利な条件を設定するものである。   In general, the carburization reaction rate is limited by the carburizing temperature and the gas composition of the carburizing atmosphere. There is a correlation that the higher the carburizing temperature is, the shorter the carburizing time is, and this correlation is the same in the present invention. That is, the present invention changes the gas composition in the carburizing furnace by supplying an additive gas at a carburizing temperature of 900 ° C. or higher, and sets conditions that are advantageous for carburizing treatment without introducing or modifying large-scale equipment. To do.

前記添加ガスは、前記浸炭炉内の一酸化炭素濃度を上昇させるガスであることが好ましい。浸炭炉内の一酸化炭素濃度が上昇することで、浸炭の反応速度が向上し、浸炭時間が短縮するとともに、複雑な形状を有する被処理品であっても均一な浸炭処理が可能となる。   The additive gas is preferably a gas that increases the concentration of carbon monoxide in the carburizing furnace. By increasing the carbon monoxide concentration in the carburizing furnace, the carburization reaction rate is improved, the carburizing time is shortened, and even a carburized product having a complicated shape can be uniformly carburized.

前記ガス浸炭炉内の一酸化炭素濃度を上昇させるガスが、一酸化炭素ガスであるか、又は炭化水素系ガス及び二酸化炭素ガスであることが好ましい。一酸化炭素ガスを供給する場合は、浸炭時間を短縮することができる。炭化水素系ガスと二酸化炭素ガスを供給する場合は、浸炭炉内で、炭化水素系ガスと二酸化炭素ガスが反応して、COとH2が生成し、浸炭雰囲気ガス中のCOの濃度を高めることができる。CO濃度の上昇により、浸炭時間を短縮することができる。 The gas for increasing the carbon monoxide concentration in the gas carburizing furnace is preferably a carbon monoxide gas, or a hydrocarbon-based gas and a carbon dioxide gas. When supplying carbon monoxide gas, carburizing time can be shortened. When supplying hydrocarbon gas and carbon dioxide gas, the hydrocarbon gas and carbon dioxide gas react in the carburizing furnace to produce CO and H 2, thereby increasing the concentration of CO in the carburizing atmosphere gas. be able to. The carburizing time can be shortened by increasing the CO concentration.

前記添加ガスは、前記浸炭炉内の水素濃度を上昇させるガスであることが好ましい。その原理は明らかではないが、浸炭炉内に一酸化炭素が存在しない場合でも、原子状のいわゆる活性化した水素が、酸化皮膜や油等で汚染されている被処理品の表面を活性還元し、炭素を被処理品の表面に吸着易くすると考えられる。また、炉内雰囲気中の酸素が減少するため、粒界酸化の発生を抑制することもできる。   The additive gas is preferably a gas that increases the hydrogen concentration in the carburizing furnace. The principle is not clear, but even when carbon monoxide is not present in the carburizing furnace, the atomic so-called activated hydrogen activates and reduces the surface of the product to be treated that is contaminated with oxide film or oil. It is considered that carbon is easily adsorbed on the surface of the article to be treated. In addition, since the oxygen in the furnace atmosphere is reduced, the occurrence of grain boundary oxidation can be suppressed.

前記ガス浸炭炉内の水素濃度を上昇させるガスが、水素ガス又はアンモニアガスであることが好ましい。水素ガスを供給する場合、CO%は減少するが、H2%は増加する。H2は被処理品の表面を活性化させ、COが減少するにもかかわらず浸炭時間を短縮することができる。さらに、COが減少することにより、スーティングを防止することができ、複雑形状の均一な浸炭および粒界酸化の低減を促進することもできる。アンモニアガスを供給する場合は、浸炭炉内で水素ガスと窒素ガスに分解し酸化皮膜や油等で汚染されている被処理品の表面を活性還元し、炭素を被処理品の表面に吸着易くすると考えられ、水素ガスを供給する場合と同様な効果が得られる。 The gas for increasing the hydrogen concentration in the gas carburizing furnace is preferably hydrogen gas or ammonia gas. When supplying hydrogen gas, CO% decreases, but H 2 % increases. H 2 activates the surface of the article to be treated and can shorten the carburizing time despite the reduction of CO. Furthermore, by reducing CO, sooting can be prevented, and uniform carburization of complex shapes and reduction of grain boundary oxidation can be promoted. When ammonia gas is supplied, it decomposes into hydrogen gas and nitrogen gas in the carburizing furnace and actively reduces the surface of the treated product contaminated with oxide film or oil, making it easy to adsorb carbon on the surface of the treated product. Thus, the same effect as when hydrogen gas is supplied can be obtained.

また、本発明は、浸炭用の原料ガスを変成して変成ガスにするガス変成炉と、前記ガス変成炉から供給された変成ガス、及び前記ガス変成炉とは別の箇所から供給され、該変成ガスよりもカーボンポテンシャルの高いエンリッチガス、並びに、前記変成ガス及び前記エンリッチガスとは異なるガスにより、被処理品の浸炭処理を行うガス浸炭炉とを含むガス浸炭システムを提供するものである。本発明のガス浸炭システムによれば、被処理品に対する浸炭処理効率が向上するほか、ガス組成調整式変成炉による浸炭方法、滴注式浸炭方法、直接浸炭方法又は真空浸炭方法を採用する場合に比べて、設備コストも抑えることができる。   Further, the present invention provides a gas conversion furnace that converts a raw material gas for carburization into a conversion gas, a conversion gas supplied from the gas conversion furnace, and a gas conversion furnace that is supplied from a different location, The present invention provides a gas carburizing system including an enriched gas having a carbon potential higher than that of a modified gas, and a gas carburizing furnace that performs a carburizing process on an object to be treated with a gas different from the modified gas and the enriched gas. According to the gas carburizing system of the present invention, in addition to improving the carburizing efficiency of the article to be processed, when adopting a carburizing method by a gas composition-adjustable transformation furnace, a dripping carburizing method, a direct carburizing method or a vacuum carburizing method In comparison, the equipment cost can be reduced.

前記ガス浸炭システムは、前記変成ガス及び前記エンリッチガスとは異なるガスの種類及び供給量に応じて前記ガス浸炭炉内のカーボンポテンシャルを制御することができる。そのため、ガス浸炭炉内のカーボンポテンシャルを常に最適な状態に維持することが可能となる。   The gas carburizing system can control the carbon potential in the gas carburizing furnace according to the type and supply amount of the gas different from the metamorphic gas and the enriched gas. Therefore, the carbon potential in the gas carburizing furnace can always be maintained in an optimum state.

本発明のガス浸炭方法は、従来のガス浸炭方法と比較して、浸炭時間が減少し、粒界酸化及びスーティングの低減を図ることができる。また、複雑な形状の被処理品であっても均一な浸炭を行うことが可能である。   Compared with the conventional gas carburizing method, the gas carburizing method of the present invention can reduce the carburizing time and reduce grain boundary oxidation and sooting. Further, even carburized articles having a complicated shape can be uniformly carburized.

次に、本発明を具体的に説明する。図1は、本発明に係るガス浸炭方法に使用されるガス浸炭システム1の概略図である。図1に示すように、ガス浸炭システム1は、原料ガスを変成・分解することにより得られた変成ガスを供給するガス変成炉10と、エンリッチガスを供給するエンリッチガス供給装置14と、前記変成ガス及び前記エンリッチガスとを導入し、被処理品の浸炭処理を行うガス浸炭炉12と、添加ガスをガス浸炭炉12に供給する添加ガス供給装置16と、からなる。   Next, the present invention will be specifically described. FIG. 1 is a schematic view of a gas carburizing system 1 used in a gas carburizing method according to the present invention. As shown in FIG. 1, the gas carburizing system 1 includes a gas shift furnace 10 that supplies a shift gas obtained by shift and decomposition of a raw material gas, an enrich gas supply device 14 that supplies an enrich gas, and the shift gas. It comprises a gas carburizing furnace 12 for introducing a gas and the enriched gas and carburizing the object to be processed, and an additive gas supply device 16 for supplying the additive gas to the gas carburizing furnace 12.

ガス変成炉10は、炭化水素系ガスと空気との混合ガスを原料ガスとして、その原料ガスを高温で変成・分解する。次いで、これにより得られた変成ガスをガス浸炭炉12に供給する。当該変成ガスはカーボンポテンシャルが低く、本実施形態においては、エンリッチガスを希釈するため又はガス浸炭炉12内に炉外からの空気の侵入を防止し、ある程度の炉内圧を維持するためにガス浸炭炉12に供給される。   The gas shift furnace 10 uses a mixed gas of hydrocarbon-based gas and air as a source gas, and converts and decomposes the source gas at a high temperature. Next, the modified gas thus obtained is supplied to the gas carburizing furnace 12. The metamorphic gas has a low carbon potential, and in the present embodiment, gas carburization is performed to dilute the enriched gas or prevent air from entering the gas carburizing furnace 12 from outside and maintain a certain furnace pressure. It is supplied to the furnace 12.

エンリッチガス供給装置14は、カーボンポテンシャルが高い炭化水素系ガス等のガスをエンリッチガスとしてガス浸炭炉12に供給する。また、エンリッチガス供給装置14は、後述する添加ガスの種類及び供給量に応じて、ガス浸炭炉12内のカーボンポテンシャルが所定の範囲内になるように、酸素センサー(図示せず)等で計測しながら、自動可変調整弁又はON−OFF弁等で調整するための自動演算機能を備えている。   The enrich gas supply device 14 supplies a gas such as a hydrocarbon-based gas having a high carbon potential to the gas carburizing furnace 12 as an enrich gas. In addition, the enrich gas supply device 14 measures with an oxygen sensor (not shown) or the like so that the carbon potential in the gas carburizing furnace 12 falls within a predetermined range according to the type and supply amount of the additive gas described later. However, an automatic calculation function for adjusting with an automatic variable adjustment valve or an ON-OFF valve is provided.

ガス浸炭炉12は、変成ガスとエンリッチガスとを導入し、所定温度・所定時間で被処理品の浸炭処理を行う。エンリッチガスは高いカーボンポテンシャルを示すため、供給量が多過ぎるとスーティングを起こし、浸炭ムラの原因となる。そこで、酸素センサーの測定値に応じてエンリッチガスの供給量を適宜調整しながら浸炭反応が行われる。この調整は、予め種々のガス組成の雰囲気における酸素センサーの測定値とカーボンポテンシャルとの相関関係を、鋼箔テストで把握し、それにより得られたデータに基づき行うことができる。   The gas carburizing furnace 12 introduces a metamorphic gas and an enriched gas, and performs a carburizing process on a product to be processed at a predetermined temperature and a predetermined time. Enrich gas shows a high carbon potential, so when the supply amount is too large, sooting occurs, causing carburization unevenness. Therefore, the carburization reaction is performed while appropriately adjusting the supply amount of the enriched gas according to the measurement value of the oxygen sensor. This adjustment can be performed based on data obtained by grasping the correlation between the measured value of the oxygen sensor and the carbon potential in an atmosphere having various gas compositions in advance by a steel foil test.

添加ガス供給装置16は、添加ガスをガス浸炭炉12に供給する。添加ガスは目的に応じて組成を変えることができるようにするため、添加ガスの種類ごとに異なるタンクとガス流量計を設けることができる。また、添加ガスは、変成ガスと混合した後にガス浸炭炉12に供給しても、変成ガスとは別に、直接ガス浸炭炉12に供給してもよい。   The additive gas supply device 16 supplies the additive gas to the gas carburizing furnace 12. In order to change the composition of the additive gas according to the purpose, a different tank and gas flow meter can be provided for each kind of additive gas. Further, the additive gas may be supplied to the gas carburizing furnace 12 after being mixed with the shift gas, or may be directly supplied to the gas carburization furnace 12 separately from the shift gas.

図2に、ガス浸炭炉12における浸炭処理のヒートパターンの一例を示す。図2に示すように、ガス浸炭炉12内の温度を運転開始から徐々に上昇させ、浸炭温度に達した時点から一定時間保持される。浸炭温度は900℃以上、好ましくは930℃以上とする。保持時間は、被処理品の浸炭深さ規格に応じて適宜設定される。変成ガスは、昇温途中から供給を開始し、浸炭処理終了まで供給が継続される。エンリッチガスは、ガス浸炭炉12内の温度が浸炭温度に達した後、カーボンポテンシャル制御が行なわれる間、供給される。   In FIG. 2, an example of the heat pattern of the carburizing process in the gas carburizing furnace 12 is shown. As shown in FIG. 2, the temperature in the gas carburizing furnace 12 is gradually increased from the start of operation, and is maintained for a certain time from the time when the carburizing temperature is reached. The carburizing temperature is 900 ° C. or higher, preferably 930 ° C. or higher. The holding time is appropriately set according to the carburization depth standard of the product to be processed. The metamorphic gas starts to be supplied from the middle of the temperature rise and continues to be supplied until the carburizing process is completed. The enriched gas is supplied while the carbon potential control is performed after the temperature in the gas carburizing furnace 12 reaches the carburizing temperature.

変成ガスの供給は、ガス変成炉10が行う。ガス変成炉10は、ブタンやプロパン等の炭化水素系ガスと空気との混合ガスを原料として、高温で変成・分解することにより変成ガスを得た後、この変成ガスをガス浸炭炉12に供給する。   The gas shift furnace 10 supplies the shift gas. The gas shift furnace 10 uses a mixed gas of a hydrocarbon gas such as butane or propane and air as a raw material to generate a shift gas by performing a high temperature shift and decomposition, and then supplies the shift gas to the gas carburizing furnace 12. To do.

エンリッチガスの供給は、エンリッチガス供給装置14が行う。エンリッチガス供給装置14は、ブタンやプロパン等の炭化水素系ガスを、ガス浸炭炉12内に設置された酸素センサー(図示せず)の測定値に基づき、ガス浸炭炉12内のカーボンポテンシャルが一定に保持されるように供給する。なお、酸素センサーは雰囲気中のガス組成に応じて設定値を変更し、いずれのガス組成においても一定のカーボンポテンシャルの下で浸炭が行われるように管理することができる。   The enrich gas supply device 14 supplies the enrich gas. The enriched gas supply device 14 uses a hydrocarbon-based gas such as butane or propane based on the measured value of an oxygen sensor (not shown) installed in the gas carburizing furnace 12 so that the carbon potential in the gas carburizing furnace 12 is constant. Supply to be held in. Note that the oxygen sensor can be managed so that carburization is performed under a certain carbon potential in any gas composition by changing the set value in accordance with the gas composition in the atmosphere.

ガス浸炭炉12内の温度が浸炭温度に達した後、所定時間、添加ガス供給装置16から添加ガスが供給される。添加ガスは、ガス浸炭炉12内の一酸化炭素濃度を上昇させることを目的として供給される場合と、ガス浸炭炉12内の水素濃度を上昇させることを目的として供給される場合とがある。   After the temperature in the gas carburizing furnace 12 reaches the carburizing temperature, the additive gas is supplied from the additive gas supply device 16 for a predetermined time. The additive gas may be supplied for the purpose of increasing the carbon monoxide concentration in the gas carburizing furnace 12 or may be supplied for the purpose of increasing the hydrogen concentration in the gas carburizing furnace 12.

添加ガスの供給は、ガス浸炭炉12内の温度が浸炭温度に達した後、所定の時間に亘って若しくは浸炭全時間に亘ってもよいが、好ましくは1時間〜浸炭全時間とする。一酸化炭素濃度を上昇させることを目的としたガス添加の場合は、過大な粒界酸化を抑制するために、10時間以下とすることが好ましい。   The supply of the additive gas may be performed for a predetermined time or the entire carburizing time after the temperature in the gas carburizing furnace 12 reaches the carburizing temperature, but is preferably 1 hour to the entire carburizing time. In the case of gas addition for the purpose of increasing the carbon monoxide concentration, it is preferably 10 hours or less in order to suppress excessive grain boundary oxidation.

ガス浸炭炉12内の一酸化炭素濃度を上昇させることを目的として添加ガスが供給される場合は、添加ガスとして、一酸化炭素ガス又は炭化水素系ガスと二酸化炭素ガスが用いられる。一酸化炭素ガスの添加は、変成ガスに対して好ましくは10〜40%の混合比、更に好ましくは15〜35%の混合比である。炭化水素系ガスと二酸化炭素ガスとが供給される場合の炭化水素系ガスの添加は、変成ガスに対して好ましくは1〜10%の混合比、更に好ましくは1〜5%の混合比とし、二酸化炭素ガスの添加は、変成ガスに対して好ましくは15〜45%の混合比、更に好ましくは20〜35%の混合比とする。   When the additive gas is supplied for the purpose of increasing the carbon monoxide concentration in the gas carburizing furnace 12, carbon monoxide gas or hydrocarbon-based gas and carbon dioxide gas are used as the additive gas. The addition of carbon monoxide gas is preferably a mixing ratio of 10 to 40%, more preferably a mixing ratio of 15 to 35% with respect to the modified gas. The addition of the hydrocarbon-based gas when the hydrocarbon-based gas and the carbon dioxide gas are supplied is preferably a mixing ratio of 1 to 10%, more preferably a mixing ratio of 1 to 5% with respect to the modified gas, The addition of carbon dioxide gas is preferably a mixing ratio of 15 to 45%, more preferably a mixing ratio of 20 to 35% with respect to the modified gas.

ガス浸炭炉12内の水素濃度を上昇させることを目的として添加ガスが供給される場合は、添加ガスとして、水素ガス又はアンモニアガスが用いられる。水素ガスの添加は、変成ガスに対して好ましくは10〜50%の混合比、更に好ましくは20〜40%の混合比とする。アンモニアガスの添加は、変成ガスに対して好ましくは5〜40%の混合比、更に好ましくは10〜30%の混合比とする。   When the additive gas is supplied for the purpose of increasing the hydrogen concentration in the gas carburizing furnace 12, hydrogen gas or ammonia gas is used as the additive gas. Hydrogen gas is preferably added at a mixing ratio of 10 to 50%, more preferably 20 to 40% with respect to the metamorphic gas. The addition of ammonia gas is preferably a mixing ratio of 5 to 40%, more preferably a mixing ratio of 10 to 30% with respect to the modified gas.

図2に示すように、ガス浸炭炉12内の温度が浸炭温度に達した時点から所定経過後にガス浸炭炉12内の温度を例えば約830℃に下げ、そこで約0.5時間保持された後、被処理品はガス浸炭炉12から取り出され、常法により70℃の焼入油等で焼き入れされる。   As shown in FIG. 2, after the temperature in the gas carburizing furnace 12 reaches the carburizing temperature, the temperature in the gas carburizing furnace 12 is lowered to, for example, about 830 ° C. after being kept for about 0.5 hours. The article to be treated is taken out from the gas carburizing furnace 12 and is quenched with quenching oil at 70 ° C. or the like by a conventional method.

変成ガス原料の炭化水素系ガスとしてブタンガスを使用し、空気との混合比を1:10(ブタン:空気)にして、1050℃に設定されたガス変成炉により変成ガスを得た。この変成ガスを、ガス浸炭炉としての内容積0.15m3のピット炉に15L/mimの流量で供給し、更にエンリッチガス供給装置により、エンリッチガスとしてブタンガスをピット炉に供給した。なお、エンリッチガスの供給は、ピット炉に設けられた酸素センサーの測定値に基づき自動供給されるようにした。 Butane gas was used as the hydrocarbon-based gas of the shift gas feed, and the mixing ratio with air was 1:10 (butane: air), and shift gas was obtained by a gas shift furnace set at 1050 ° C. This metamorphic gas was supplied at a flow rate of 15 L / mim to a pit furnace having an internal volume of 0.15 m 3 as a gas carburizing furnace, and butane gas was further supplied to the pit furnace as an enriched gas by an enrich gas supply device. The enrichment gas was automatically supplied based on the measured value of the oxygen sensor provided in the pit furnace.

浸炭処理は、後述するテストピースを設置したピット炉に変成ガスを上記の流量で供給しつつ、浸炭温度930℃で浸炭温度到達時点から6時間保持するとともに、浸炭温度到達時点から、エンリッチガス(ブタンガス)を上記の流量で供給した。更に、浸炭温度到達時点から、添加ガスとしてのCOを、変成ガスに対し27%の混合比、4L/mimの流量で3.5時間に亘り供給した。   The carburizing process is carried out at a carburizing temperature of 930 ° C. for 6 hours from the time when the carburizing temperature is reached while supplying the metamorphic gas to the pit furnace where the test piece described later is installed. Butane gas) was supplied at the above flow rate. Furthermore, from the time when the carburizing temperature was reached, CO as an additive gas was supplied over 3.5 hours at a mixing ratio of 27% with respect to the shift gas at a flow rate of 4 L / mim.

浸炭時間経過後、ピット炉の温度を830℃に設定して0.5時間保持し、次いでテストピースを70℃の焼入油にて焼入れした。   After the carburizing time, the temperature of the pit furnace was set to 830 ° C. and held for 0.5 hour, and then the test piece was quenched with quenching oil at 70 ° C.

浸炭に用いたテストピースを図3及び図4に示す。テストピースは、図3に示すように、直径18mm、長さが32mmの円柱形のもの(テストピースA)と、さらに、図4に示すように、テストピースAの径断面の中心部に直径2mmの貫通孔が形成されたもの(テストピースB)の2種類を用意し、テストピースAを、後述する有効硬化層深さ及び粒界酸化深さの測定用に用い、テストピースBを、後述する内径部の有効硬化層深さの測定用に用いた。テストピースの材質は、いずれもクロームモリブデン鋼(JIS SCM415)を用いた。   The test piece used for carburizing is shown in FIG.3 and FIG.4. The test piece has a cylindrical shape (test piece A) having a diameter of 18 mm and a length of 32 mm as shown in FIG. 3, and a diameter at the center of the radial cross section of the test piece A as shown in FIG. Prepare two types of 2 mm through-holes (test piece B), use test piece A for measuring the effective hardened layer depth and grain boundary oxidation depth described later, It used for the measurement of the effective hardened layer depth of the internal diameter part mentioned later. The material of the test piece was chrome molybdenum steel (JIS SCM415) in all cases.

浸炭中のカーボンポテンシャルはピット炉に設置された酸素センサーにて制御し、添加ガス(CO)供給中は1.2%に保持し、添加ガス(CO)供給終了後は0.8%に保持した。   The carbon potential during carburization is controlled by an oxygen sensor installed in the pit furnace, maintained at 1.2% during the supply of additive gas (CO), and maintained at 0.8% after the supply of additive gas (CO) is completed. did.

添加ガスを、C410(変成ガスに対する混合比2%、流量0.3L/mim)及びCO2(変成ガスに対する混合比27%、流量4L/min)とした以外は、実施例1と同様の要領でガス浸炭処理を行った。 Example 1 except that the additive gases were C 4 H 10 (mixing ratio 2% with respect to the shift gas, flow rate 0.3 L / mim) and CO 2 (mixing ratio 27% with the shift gas, flow rate 4 L / min). Gas carburizing treatment was performed in the same manner.

添加ガスを、H2(変成ガスに対する混合比27%、流量4L/min)とした以外は、実施例1と同様の要領でガス浸炭処理を行った。 The gas carburizing process was performed in the same manner as in Example 1 except that the additive gas was H 2 (mixing ratio to the modified gas 27%, flow rate 4 L / min).

添加ガスをNH3(変成ガスに対する混合比20%、流量3L/min)とした以外は、実施例1と同様の要領でガス浸炭処理を行った。
[比較例1]
Gas carburizing treatment was performed in the same manner as in Example 1 except that the additive gas was NH 3 (mixing ratio to the metamorphic gas 20%, flow rate 3 L / min).
[Comparative Example 1]

比較例として、添加ガスを用いなかった以外は、実施例1と同様の要領でガス浸炭処理を行った。   As a comparative example, a gas carburizing process was performed in the same manner as in Example 1 except that no additive gas was used.

Figure 2005200695
[試験例1]有効硬化層深さの測定
Figure 2005200695
[Test Example 1] Measurement of effective hardened layer depth

実施例1〜4の条件で処理したテストピースA(図3参照)について、有効硬化層深さを測定した。有効硬化層深さは、JIS 0557(鋼の浸炭硬化層深さ測定)に準じて行った。即ち、テストピースAを切断し、研磨仕上げをして被検面とした。次いで、ビッカース硬さ試験機を用い、試験荷重を2.9Nとし、表面から内部方向の硬さを測定し、ビッカース硬さ550の位置までの距離を有効硬化層深さとした。   About the test piece A (refer FIG. 3) processed on the conditions of Examples 1-4, the effective hardened layer depth was measured. The effective hardened layer depth was measured according to JIS 0557 (measurement of carburized hardened layer depth of steel). That is, the test piece A was cut and polished to obtain a test surface. Next, using a Vickers hardness tester, the test load was set to 2.9 N, the hardness in the internal direction from the surface was measured, and the distance to the position of Vickers hardness 550 was defined as the effective hardened layer depth.

結果を表2に示す。有効硬化層深さは、従来法である比較例1の結果と比較して、実施例1は104%、実施例2は108%、実施例3は104%、実施例4は112%と、いずれも増加した値を示すことが判明した。   The results are shown in Table 2. The effective hardened layer depth is 104% in Example 1, 108% in Example 2, 104% in Example 3, and 112% in Example 4 compared with the result of Comparative Example 1 which is a conventional method. Both were found to show increased values.

ガス浸炭における硬化深さは、浸炭時間の√に比例する。従って、比較例1で得られた有効効果深さに達するまでの浸炭時間は、従来の浸炭時間(比較例1)を基準とした場合に、実施例1は8%、実施例2は17%、実施例3は8%、実施例4は25%もの時間短縮が可能であることが確認された。
[試験例2]粒界酸化深さの測定
The hardening depth in gas carburizing is proportional to the carburizing time √. Therefore, the carburizing time to reach the effective effect depth obtained in Comparative Example 1 is 8% for Example 1 and 17% for Example 2 when the conventional carburizing time (Comparative Example 1) is used as a reference. It was confirmed that the time can be shortened by 8% in Example 3 and 25% in Example 4.
[Test Example 2] Measurement of grain boundary oxidation depth

実施例1〜4の条件で処理したテストピースA(図3参照)について、粒界酸化深さを測定した。即ち、テストピースAを切断し、切断面を研磨仕上げして被検面とした。その被検面を金属顕微鏡にて観察し、表面層に発生した粒界酸化層の深さを測定した。結果を表2に示す。   The grain boundary oxidation depth was measured for the test piece A (see FIG. 3) processed under the conditions of Examples 1 to 4. That is, the test piece A was cut, and the cut surface was polished to obtain a test surface. The test surface was observed with a metal microscope, and the depth of the grain boundary oxide layer generated on the surface layer was measured. The results are shown in Table 2.

粒界酸化深さの測定結果に基づき、粒界酸化深さの減少率を求めた。比較例1の結果を基準にした場合、実施例1及び実施例2は変わらなかったが、実施例3は40%、実施例4は50%の低減率であり、粒界酸化深さが低減されたことが判明した。   Based on the measurement result of the grain boundary oxidation depth, the reduction rate of the grain boundary oxidation depth was determined. When the results of Comparative Example 1 were used as a reference, Example 1 and Example 2 did not change, but Example 3 had a reduction rate of 40% and Example 4 had a reduction rate of 50%, and the grain boundary oxidation depth was reduced. Turned out to be.

Figure 2005200695
[試験例3]長手方向中央部における内径部の有効硬化層深さの測定
Figure 2005200695
[Test Example 3] Measurement of effective hardened layer depth of inner diameter part in longitudinal center part

実施例1〜4の条件で処理したテストピースB(図4参照)について、テストピースBの長手方向中央部における内径部の有効硬化層深さを測定した。測定方法は、試験例1と同様、JIS 0557(鋼の浸炭硬化層深さ測定)に準じて行った。結果を表3に示す。   About the test piece B (refer FIG. 4) processed on the conditions of Examples 1-4, the effective hardened layer depth of the internal diameter part in the longitudinal direction center part of the test piece B was measured. The measurement method was performed in accordance with JIS 0557 (measurement of carburized hardened layer depth of steel) as in Test Example 1. The results are shown in Table 3.

確認した結果、テストピースBの長手方向中央部における内径部の有効硬化層深さは、外径部の有効硬化層深さに対し、比較例1が35%、実施例1が65%、実施例2が50%、実施例3が60%、実施例4が65%と、いずれの実施例も、比較例1と比較して複雑形状部位の浸炭性が向上していることが確認された。   As a result of the confirmation, the effective hardened layer depth of the inner diameter portion in the central portion in the longitudinal direction of the test piece B was 35% in Comparative Example 1 and 65% in Example 1 with respect to the effective hardened layer depth of the outer diameter portion. Example 2 was 50%, Example 3 was 60%, and Example 4 was 65%, and it was confirmed that the carburizability of the complex-shaped part was improved as compared with Comparative Example 1 in all Examples. .

Figure 2005200695
[試験例4]スーティング発生状況
Figure 2005200695
[Test Example 4] Status of sooting

実施例1〜4の条件で処理したテストピースA及びB(図3及び図4参照)、ピット炉内の冶具及び内壁について、目視にてスーティング(すす)の発生状況を観察し、比較例1の条件で処理した場合と比較した。その結果、実施例1及び実施例2でのすすの発生量は同等であること、実施例3及び4はすすの発生量が減少しており、特に実施例4は顕著に減少していることが確認された。
[参考試験例]
The test pieces A and B processed under the conditions of Examples 1 to 4 (see FIGS. 3 and 4), jigs and inner walls in the pit furnace were visually observed for the occurrence of soot, and a comparative example. It compared with the case where it processed on the conditions of 1. As a result, the soot generation amount in Example 1 and Example 2 is the same, the soot generation amount in Examples 3 and 4 is reduced, and in particular, Example 4 is significantly reduced. Was confirmed.
[Reference test example]

実施例4は添加ガスとしてアンモニアガスを用いている点において、従来のガス浸炭窒化と類似しているが、被処理品への窒素の侵入量が明らかに相違があることを次の試験で確認した。   Example 4 is similar to conventional gas carbonitriding in that ammonia gas is used as the additive gas, but the following test confirms that there is a clear difference in the amount of nitrogen permeating into the workpiece. did.

実施例4の条件において、低炭素の鋼箔を用いてガス浸炭処理を行い、ガス浸炭処理後、その鋼箔の窒素濃度を分析した。その結果、鋼箔の窒素濃度が0.01〜0.03%であることが確認された。従来のガス浸炭窒化処理において、同様な試験を行なった結果、鋼箔の窒素濃度は0.30〜0.50%であることが確認された。この結果により、実施例4の条件により浸炭処理されたテストピースAの有効硬化層深さの増加の効果は、窒素侵入による材料の焼入性向上によるものとは異なることが明らかになった。   Under the conditions of Example 4, gas carburizing treatment was performed using a low carbon steel foil, and after the gas carburizing treatment, the nitrogen concentration of the steel foil was analyzed. As a result, it was confirmed that the nitrogen concentration of the steel foil was 0.01 to 0.03%. As a result of performing the same test in the conventional gas carbonitriding treatment, it was confirmed that the nitrogen concentration of the steel foil was 0.30 to 0.50%. From this result, it became clear that the effect of increasing the effective hardened layer depth of the test piece A carburized under the conditions of Example 4 is different from the effect of improving the hardenability of the material due to nitrogen penetration.

これをさらに裏付ける事実として、浸炭層の残留オーステナイト量がある。従来のガス浸炭窒化処理品の残留オーステナイトは、窒素が侵入するため約30〜40%程度と高いが、実施例4の条件により浸炭処理されたテストピースAの残留オーステナイト量は、従来のガス浸炭処理品と同レベルの約15%程度であった。   A further supporting fact is the amount of retained austenite in the carburized layer. The residual austenite of the conventional gas carbonitrided product is as high as about 30 to 40% because nitrogen penetrates, but the amount of retained austenite of the test piece A carburized under the conditions of Example 4 is the same as that of conventional gas carburization. It was about 15% of the same level as the processed product.

本発明に係るガス浸炭方法に使用されるガス浸炭システム1の概略図である。It is the schematic of the gas carburizing system 1 used for the gas carburizing method which concerns on this invention. ガス浸炭炉12における浸炭処理のヒートパターンの一例を示す図である。It is a figure which shows an example of the heat pattern of the carburizing process in the gas carburizing furnace. 浸炭に用いたテストピースAの正面図を示す図である。It is a figure which shows the front view of the test piece A used for carburizing. 浸炭に用いたテストピースBの正面図を示す図である。It is a figure which shows the front view of the test piece B used for carburizing.

符号の説明Explanation of symbols

1:ガス浸炭システム
10:ガス変成炉
12:ガス浸炭炉
14:エンリッチガス供給装置
16:添加ガス供給装置

1: Gas carburizing system 10: Gas shift furnace 12: Gas carburizing furnace 14: Enrich gas supply device 16: Addition gas supply device

Claims (7)

浸炭用の原料ガスが変成された変成ガスと、該変成ガスよりもカーボンポテンシャルの高いエンリッチガスとをガス浸炭炉に供給し、900℃以上の温度下で該ガス浸炭炉内の被処理品の浸炭処理を行うガス浸炭方法において、
前記ガス浸炭炉に、前記変成ガス及び前記エンリッチガスとは異なるガスをさらに供給することを特徴とするガス浸炭方法。
A modified gas obtained by modifying a raw material gas for carburizing and an enriched gas having a carbon potential higher than that of the modified gas are supplied to a gas carburizing furnace, and the processed material in the gas carburizing furnace is heated at a temperature of 900 ° C. or higher. In the gas carburizing method for carburizing,
A gas carburizing method, wherein a gas different from the metamorphic gas and the enriched gas is further supplied to the gas carburizing furnace.
前記変成ガス及び前記エンリッチガスとは異なるガスが、前記ガス浸炭炉内の一酸化炭素濃度を上昇させるガスである請求項1記載のガス浸炭方法。   The gas carburizing method according to claim 1, wherein the gas different from the metamorphic gas and the enriched gas is a gas that increases a carbon monoxide concentration in the gas carburizing furnace. 前記ガス浸炭炉内の一酸化炭素濃度を上昇させるガスが、一酸化炭素ガスであるか、又は炭化水素系ガス及び二酸化炭素ガスである請求項2記載のガス浸炭方法。   The gas carburizing method according to claim 2, wherein the gas for increasing the carbon monoxide concentration in the gas carburizing furnace is a carbon monoxide gas, or a hydrocarbon-based gas and a carbon dioxide gas. 前記変成ガス及び前記エンリッチガスとは異なるガスが、前記ガス浸炭炉内の水素濃度を上昇させるガスである請求項1記載のガス浸炭方法。   The gas carburizing method according to claim 1, wherein the gas different from the metamorphic gas and the enriched gas is a gas that increases a hydrogen concentration in the gas carburizing furnace. 前記ガス浸炭炉内の水素濃度を上昇させるガスが、水素ガス又はアンモニアガスである請求項4記載のガス浸炭方法。   The gas carburizing method according to claim 4, wherein the gas for increasing the hydrogen concentration in the gas carburizing furnace is hydrogen gas or ammonia gas. 浸炭用の原料ガスを変成して変成ガスにするガス変成炉と、
前記ガス変成炉から供給された変成ガス、及び前記ガス変成炉とは別の箇所から供給され、該変成ガスよりもカーボンポテンシャルの高いエンリッチガス、並びに、前記変成ガス及び前記エンリッチガスとは異なるガスにより、被処理品の浸炭処理を行うガス浸炭炉と
を含むガス浸炭システム。
A gas conversion furnace that converts the raw material gas for carburization into a converted gas,
The shift gas supplied from the gas shift furnace, the enrich gas having a higher carbon potential than the shift gas, and the gas different from the shift gas and the enrich gas are supplied from a location different from the gas shift furnace. A gas carburizing system including a gas carburizing furnace that performs carburizing treatment of products to be processed.
前記ガス浸炭システムは、前記変成ガス及び前記エンリッチガスとは異なるガスの種類及び供給量に応じて前記ガス浸炭炉内のカーボンポテンシャルを制御する請求項6記載のガス浸炭システム。

The gas carburizing system according to claim 6, wherein the gas carburizing system controls a carbon potential in the gas carburizing furnace according to a type and supply amount of a gas different from the metamorphic gas and the enriched gas.

JP2004007168A 2004-01-14 2004-01-14 Gas carburizing method Pending JP2005200695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004007168A JP2005200695A (en) 2004-01-14 2004-01-14 Gas carburizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004007168A JP2005200695A (en) 2004-01-14 2004-01-14 Gas carburizing method

Publications (1)

Publication Number Publication Date
JP2005200695A true JP2005200695A (en) 2005-07-28

Family

ID=34820904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004007168A Pending JP2005200695A (en) 2004-01-14 2004-01-14 Gas carburizing method

Country Status (1)

Country Link
JP (1) JP2005200695A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070254A (en) * 2012-09-28 2014-04-21 Dowa Thermotech Kk Carburization treatment method
JP2014237868A (en) * 2013-06-06 2014-12-18 エア・ウォーター株式会社 Carburization method and carburizing treatment gas used for the method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524916A (en) * 1978-08-07 1980-02-22 Mitsubishi Heavy Ind Ltd Gas carbo-nitriding method
JPS59177362A (en) * 1983-03-29 1984-10-08 Daido Steel Co Ltd Controlling method of carburizing atmosphere
JPS63199859A (en) * 1987-02-16 1988-08-18 Nippon Denso Co Ltd Automatic heat-treating device for steel
JPH04285152A (en) * 1991-03-13 1992-10-09 Honda Motor Co Ltd Atmosphere heat-treating device
JPH09125203A (en) * 1995-10-31 1997-05-13 Ntn Corp High damping rolling bearing made of graphite steel
JPH09257041A (en) * 1996-03-22 1997-09-30 Ntn Corp Rolling bearing resistant for surface flaw
JPH11117059A (en) * 1997-08-11 1999-04-27 Komatsu Ltd Carburized member, its production, and carburizing treatment system
JP2001011597A (en) * 1999-06-28 2001-01-16 Dowa Mining Co Ltd Gas carburizing nitriding method
JP2001214255A (en) * 2000-01-31 2001-08-07 Oriental Engineering Co Ltd Gas-hardening treatment method for metal surface
JP2002356763A (en) * 2001-03-29 2002-12-13 Denso Corp Gas carburizing method and its device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524916A (en) * 1978-08-07 1980-02-22 Mitsubishi Heavy Ind Ltd Gas carbo-nitriding method
JPS59177362A (en) * 1983-03-29 1984-10-08 Daido Steel Co Ltd Controlling method of carburizing atmosphere
JPS63199859A (en) * 1987-02-16 1988-08-18 Nippon Denso Co Ltd Automatic heat-treating device for steel
JPH04285152A (en) * 1991-03-13 1992-10-09 Honda Motor Co Ltd Atmosphere heat-treating device
JPH09125203A (en) * 1995-10-31 1997-05-13 Ntn Corp High damping rolling bearing made of graphite steel
JPH09257041A (en) * 1996-03-22 1997-09-30 Ntn Corp Rolling bearing resistant for surface flaw
JPH11117059A (en) * 1997-08-11 1999-04-27 Komatsu Ltd Carburized member, its production, and carburizing treatment system
JP2001011597A (en) * 1999-06-28 2001-01-16 Dowa Mining Co Ltd Gas carburizing nitriding method
JP2001214255A (en) * 2000-01-31 2001-08-07 Oriental Engineering Co Ltd Gas-hardening treatment method for metal surface
JP2002356763A (en) * 2001-03-29 2002-12-13 Denso Corp Gas carburizing method and its device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
日本金属学会, 金属データブック, vol. 改訂3版, JPN4006011363, 10 April 1999 (1999-04-10), JP, pages 650 - 651, ISSN: 0000749660 *
日本金属学会, 金属データブック, vol. 改訂3版, JPNX006049248, 10 April 1999 (1999-04-10), JP, pages 650 - 651, ISSN: 0000784130 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070254A (en) * 2012-09-28 2014-04-21 Dowa Thermotech Kk Carburization treatment method
JP2014237868A (en) * 2013-06-06 2014-12-18 エア・ウォーター株式会社 Carburization method and carburizing treatment gas used for the method

Similar Documents

Publication Publication Date Title
US9260775B2 (en) Low alloy steel carburization and surface microalloying process
KR100858598B1 (en) Method for activating surface of metal member
EP2706131A1 (en) Method for manufacturing machine part
JP2016148068A (en) Manufacturing method and manufacturing apparatus for metallic spring
WO2010044329A1 (en) Fluoridation treatment method, fluoridation treatment device, and method for using fluoridation treatment device
JP6374178B2 (en) Manufacturing method of machine parts
JP2021042398A (en) Nitrided steel member, and method and apparatus for manufacturing the same
JP2004332074A (en) Carburizing method
JP2005200695A (en) Gas carburizing method
Caliari et al. An investigation into the effects of different oxy-nitrocarburizing conditions on hardness profiles and corrosion behavior of 16MnCr5 steels
JP2015232164A (en) Manufacturing method for rolling bearing and heat treatment apparatus
JP4169864B2 (en) Method of carburizing steel
JP6543213B2 (en) Surface hardening method and surface hardening apparatus
JP5408465B2 (en) Method of carburizing steel
JP2009299122A (en) Nitriding-quenching method, heater for nitriding-quenching and nitriding-quenching apparatus
JP6257527B2 (en) Simultaneous flow of activated gas in low-temperature carburizing.
JP4858071B2 (en) Steel surface treatment method and surface-treated steel material
JP2011117027A (en) Method for carburizing workpiece having edge part
JP5793802B2 (en) Gas carburizing method
Balamurugan Evaluation of heat treatment characteristics for case hardening steels in automobiles
JP6071365B2 (en) Manufacturing method of machine parts
JP2005120404A (en) Gas carburization method, gas carbonitriding method, and surface treatment device
JP5837282B2 (en) Surface modification method
JP2002356763A (en) Gas carburizing method and its device
JP2008081813A (en) Gas carburizing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061020