JP5793802B2 - Gas carburizing method - Google Patents

Gas carburizing method Download PDF

Info

Publication number
JP5793802B2
JP5793802B2 JP2011067509A JP2011067509A JP5793802B2 JP 5793802 B2 JP5793802 B2 JP 5793802B2 JP 2011067509 A JP2011067509 A JP 2011067509A JP 2011067509 A JP2011067509 A JP 2011067509A JP 5793802 B2 JP5793802 B2 JP 5793802B2
Authority
JP
Japan
Prior art keywords
gas
carburizing
flow rate
furnace
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011067509A
Other languages
Japanese (ja)
Other versions
JP2012092423A (en
Inventor
貴弘 藤田
貴弘 藤田
阿部 浩次
浩次 阿部
文隆 虻川
文隆 虻川
恒孝 山田
恒孝 山田
俊明 大橋
俊明 大橋
正男 金山
正男 金山
宏次 堀内
宏次 堀内
英寿 十良澤
英寿 十良澤
昭浩 永石
昭浩 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Thermotech Co Ltd
Original Assignee
Dowa Thermotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Thermotech Co Ltd filed Critical Dowa Thermotech Co Ltd
Priority to JP2011067509A priority Critical patent/JP5793802B2/en
Publication of JP2012092423A publication Critical patent/JP2012092423A/en
Application granted granted Critical
Publication of JP5793802B2 publication Critical patent/JP5793802B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ガス浸炭方法に関する。   The present invention relates to a gas carburizing method.

従来のガス浸炭方法として、変成炉で生成された吸熱型の変成ガスを用いるものがあり、前記変成ガスの浸炭力の弱さを補うために、変成ガスに加えてエンリッチガスを炉内に供給して浸炭を行うことで、所定の表面浸炭濃度を確保している(特許文献1参照)。   As a conventional gas carburizing method, there is a method using an endothermic shift gas generated in a shift furnace, and in order to compensate for the weak carburizing power of the shift gas, an enriched gas is supplied into the furnace in addition to the shift gas. By performing carburization, a predetermined surface carburization concentration is secured (see Patent Document 1).

前記方法には、浸炭雰囲気ガスのカーボンポテンシャルが平衡状態図における浸炭処理温度でのγ相の飽和炭素量を超えると、スーティングが発生したり、処理品表面にセメンタイト等の異常組織が生成したりする等の問題がある。   In the above method, when the carbon potential of the carburizing atmosphere gas exceeds the saturated carbon content of the γ phase at the carburizing temperature in the equilibrium diagram, sooting occurs or abnormal structure such as cementite is generated on the surface of the treated product. There are problems such as.

そこで従来、浸炭処理温度でのγ相の飽和炭素量以下のできるだけ高いカーボンポテンシャルを有する雰囲気ガスで浸炭処理を行うのが効率の良い浸炭条件であると考えられている。   Therefore, conventionally, it is considered that carburizing treatment with an atmospheric gas having a carbon potential as high as possible below the saturated carbon amount of the γ phase at the carburizing temperature is an efficient carburizing condition.

特開2006−283116号公報JP 2006-283116 A

しかしながら、前記従来の方法では、浸炭雰囲気ガスのカーボンポテンシャルの上限に制約があるので、浸炭時間を短縮しようとしても限界がある。   However, in the conventional method, there is a limit to the upper limit of the carbon potential of the carburizing atmosphere gas, so there is a limit even if it is attempted to shorten the carburizing time.

本発明は、前記の如き事情に鑑みてなされたものであり、スーティングや異常組織の発生を抑制でき、浸炭時間も短縮できるガス浸炭方法を提供しようとするものである。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a gas carburizing method that can suppress the occurrence of sooting and abnormal tissue and can shorten the carburizing time.

前記課題を解決するため、本発明の発明者等は鋭意研究を重ね、その結果として、炭化水素系ガスと空気とを用いて生成された変成ガスからCOを低減させた組成に相当する組成を有するガスは、前記変成ガスよりもカーボンポテンシャル(CP値)が高く、且つ、処理品表面に炭素が浸入する速度が従来のエンリッチガスを用いた浸炭雰囲気ガスよりも遅いことを発見した。本発明は、このような知見に基づいてなされたもので、次の点に特徴を有する。 In order to solve the above problems, the inventors of the present invention have made extensive studies and, as a result, a composition corresponding to a composition in which CO 2 is reduced from a modified gas generated by using a hydrocarbon-based gas and air. It has been discovered that a gas having a carbon potential (CP value) is higher than that of the metamorphic gas, and the rate at which carbon enters the surface of the treated product is slower than a carburizing atmosphere gas using a conventional enriched gas. The present invention has been made based on such knowledge, and has the following features.

すなわち、本発明に係るガス浸炭方法は、炭化水素系ガスと空気とを用いて変成ガスを生成する工程と、この工程で得られた変成ガスにエンリッチガスを混合することなくCO の含有量を全体の0.1体積%以下に低減させる工程と、を経ることで、浸炭処理温度において鋼の平衡状態図におけるγ相の飽和炭素量を超える1.3%以上のカーボンポテンシャルを有する浸炭雰囲気ガスを生成し、この浸炭雰囲気ガスを用いて、処理品表面にセメンタイトが析出することがない温度領域で浸炭を行うことを特徴とする(請求項1)。 That is, the gas carburizing method according to the present invention includes a step of generating a modified gas using a hydrocarbon-based gas and air, and a content of CO 2 without mixing an enriched gas with the modified gas obtained in this step. A carburizing atmosphere having a carbon potential of 1.3% or more exceeding the saturated carbon content of the γ phase in the equilibrium diagram of the steel at the carburizing treatment temperature. A gas is generated, and carburization is performed in a temperature range in which cementite does not precipitate on the surface of the processed product using the carburized atmosphere gas (claim 1).

本発明によれば、浸炭処理温度でのγ相の飽和炭素量を超えるカーボンポテンシャルを有する浸炭雰囲気ガスを用いて浸炭を行うので、浸炭の効率が良く、浸炭時間が短縮される。   According to the present invention, carburizing is performed using the carburizing atmosphere gas having a carbon potential exceeding the saturated carbon content of the γ phase at the carburizing temperature, so that the carburizing efficiency is good and the carburizing time is shortened.

また、本発明で用いる浸炭雰囲気ガスは、カーボンポテンシャルが1.3%以上と高くても処理品表面に炭素が浸入する速度が遅く、且つ、比較的高温域において処理することで処理品内部に炭素が拡散する速度が速くなる。本発明の発明者等は、処理品表面にセメンタイトを析出させず、且つ処理品内部に炭素を拡散させ得る温度領域があることを見出した。 In addition, the carburizing atmosphere gas used in the present invention has a slow rate of carbon intrusion into the surface of the processed product even when the carbon potential is as high as 1.3% or more , and the inside of the processed product is processed in a relatively high temperature range. The rate at which carbon diffuses into the substrate increases. The inventors of the present invention have found that there is a temperature region in which cementite is not deposited on the surface of the treated product and carbon can be diffused inside the treated product.

さらに本発明では、処理品表面にセメンタイトが析出することがない温度領域で浸炭を行うので、処理品の品質も良い。エンリッチガスを用いないので、スーティングも起こりにくい。   Furthermore, in the present invention, since carburization is performed in a temperature range in which cementite does not precipitate on the surface of the treated product, the quality of the treated product is good. Since no enriched gas is used, sooting is unlikely to occur.

好適な実施の一形態として、前記温度領域が900〜1060℃である態様を例示する(請求項2)。さらに好ましい前記温度領域として、920〜970℃を例示する(請求項3)。   As a preferred embodiment, a mode in which the temperature region is 900 to 1060 ° C. is exemplified (Claim 2). A more preferable temperature range is 920 to 970 ° C. (Claim 3).

好適な実施の一形態として、前記浸炭雰囲気ガスの炉内流速が1.5m/s以上の流速である態様(請求項)、及び、前記浸炭雰囲気ガスの炉内流量が炉内雰囲気置換回数29回/h以上となる流量である態様(請求項)を採用することもできる。これらの態様によれば、有効硬化層深さを確実に目標値に到達させることができるとともに、浸炭時間も短縮できる。 As a preferred embodiment, a mode in which the in-furnace flow rate of the carburizing atmosphere gas is a flow rate of 1.5 m / s or more (Claim 4 ), and the in-furnace flow rate of the carburizing atmosphere gas is the number of times the furnace atmosphere is replaced An embodiment (Claim 5 ) having a flow rate of 29 times / h or more may be employed. According to these aspects, the effective hardened layer depth can surely reach the target value, and the carburizing time can be shortened.

本発明の実施例1、2及び比較例1、2の各処理品において、処理品表面からの距離と炭素濃度との関係を示したグラフである。It is the graph which showed the relationship between the distance from a processed goods surface, and carbon concentration in each processed goods of Examples 1 and 2 and Comparative Examples 1 and 2 of this invention. 比較例3の処理品において、処理品表面からの距離と炭素濃度との関係を示したグラフである。In the processed goods of the comparative example 3, it is the graph which showed the relationship between the distance from a processed goods surface, and carbon concentration. 実施例3の処理品において、処理品表面からの距離と炭素濃度との関係を示したグラフである。In the processed goods of Example 3, it is the graph which showed the relationship between the distance from a processed goods surface, and carbon concentration. 本発明の実施例1〜3及び比較例1〜3において、浸炭処理温度と表面炭素濃度のピーク値との関係、及び、浸炭処理温度とγ相の飽和炭素量との関係を示すグラフである。In Examples 1-3 and Comparative Examples 1-3 of this invention, it is a graph which shows the relationship between the carburizing process temperature and the peak value of surface carbon concentration, and the relationship between the carburizing process temperature and the saturated carbon amount of the (gamma) phase. . 本発明の一実施例における処理工程図である。It is a processing-process figure in one Example of this invention. 本発明の一実施例に係る流速とカーボン濃度が0.3wt%である試験片表面からの深さとの関係を示すグラフである。It is a graph which shows the relationship between the flow velocity which concerns on one Example of this invention, and the depth from the test piece surface whose carbon concentration is 0.3 wt%. 本発明の一実施例に係る流量とカーボン濃度が0.3wt%である試験片表面からの深さとの関係を示すグラフである。It is a graph which shows the relationship between the flow volume which concerns on one Example of this invention, and the depth from the test piece surface whose carbon concentration is 0.3 wt%.

以下、添付図面を参照して、本発明の実施の一形態に係るガス浸炭方法について説明する。   Hereinafter, a gas carburizing method according to an embodiment of the present invention will be described with reference to the accompanying drawings.

本発明の実施の一形態に係るガス浸炭方法は、炭化水素系ガスと空気とを用いて生成された変成ガスからCOを低減させた組成に相当する組成を有する低CO変成ガスを雰囲気ガスとして使用する。 In the gas carburizing method according to one embodiment of the present invention, a low CO 2 modified gas having a composition corresponding to a composition obtained by reducing CO 2 from a modified gas generated using a hydrocarbon-based gas and air is used as an atmosphere. Use as gas.

前記変成ガスは、従来公知の変成炉を用いて生成できる。変成炉で生成される変成ガスは、炭化水素系ガス(例えば、13Aガス、天然ガス、プロパン、ブタン等)と空気の混合比や、また目的とするガス組成、CP値によって様々であるが、概ね、CO:18〜25体積%、H:30〜41体積%、N:35〜50体積%、CO:0.12〜0.25体積%、HO:0.6体積%以下、CH:0.04体積%以下であることが好ましい。さらに、炭化水素系ガスとして13A(都市ガス)を用いた場合の変成ガス組成の一例を挙げると次の通りである(850℃、CP値0.8のとき)。 The shift gas can be generated using a conventionally known shift furnace. The shift gas generated in the shift furnace varies depending on the mixing ratio of hydrocarbon gas (for example, 13A gas, natural gas, propane, butane, etc.) and air, the target gas composition, and the CP value. generally, CO: 18 to 25 vol%, H 2: 30-41 vol%, N 2: 35 to 50 vol%, CO 2: 0.12~0.25 vol%, H 2 O: 0.6% by volume hereinafter, CH 4: is preferably 0.04 vol% or less. Furthermore, an example of the modified gas composition when 13A (city gas) is used as the hydrocarbon-based gas is as follows (at 850 ° C. and CP value of 0.8).

(窒素): 約39.85体積%
(水素): 約36体積%
CO(一酸化炭素): 約24体積%
CO(二酸化炭素):約0.15体積%
前記低CO変成ガスは、前記変成炉で生成された変成ガスから、従来公知のCO吸着器を用いてCOを吸着分離することによって生成できる。したがって、前記低CO変成ガスは、COの割合が前記変成ガスよりも小さくなる。具体的には、COが0.15体積%未満、さらには0.1体積%以下、0.05体積%以下であることが好ましい。
N 2 (nitrogen): about 39.85% by volume
H 2 (hydrogen): about 36% by volume
CO (carbon monoxide): about 24% by volume
CO 2 (carbon dioxide): about 0.15% by volume
The low CO 2 converted gas from reformed gas generated in the reforming furnace can be generated by adsorptive separation of CO 2 using a conventionally known CO 2 adsorber. Therefore, the low CO 2 modified gas has a smaller CO 2 ratio than the modified gas. Specifically, CO 2 is preferably less than 0.15% by volume, more preferably 0.1% by volume or less, and 0.05% by volume or less.

なお、本発明において、低CO変成ガスとは、COがゼロの場合も含む。 In the present invention, the low CO 2 modified gas includes a case where CO 2 is zero.

低CO変成ガスのCP(カーボンポテンシャル)は、前記変成ガスよりもCOが低減されたことで、前記変成ガスのCPよりも高くなり、これを浸炭雰囲気ガスとして用いることで浸炭力が高まる。また、変成ガスの浸炭力の弱さを補うために従来添加されていたエンリッチガスを使用する必要がなくなり、炭化水素系ガスの分解がなく、安定した浸炭雰囲気ガス中で浸炭が行われるので、浸炭むらやスーティングが生じにくい。この利点は、前記低CO変成ガスのみを雰囲気ガスとして浸炭を行う場合だけでなく、前記変成ガスと前記低CO変成ガスとの混合ガスを雰囲気ガスとして用いて浸炭を行う場合にも得られる。 The CP (carbon potential) of the low CO 2 shift gas is higher than the CP of the shift gas due to the reduction of CO 2 compared to the shift gas, and the carburizing power is increased by using this as the carburizing atmosphere gas. . In addition, it is no longer necessary to use the enriched gas that has been added in the past to compensate for the weak carburizing power of the metamorphic gas, there is no decomposition of hydrocarbon gases, and carburizing is performed in a stable carburizing atmosphere gas. Carburizing unevenness and sooting are less likely to occur. This advantage is obtained wherein only the low CO 2 converted gas not only when performing carburizing as the atmospheric gas, even when performing carburizing with a mixed gas of the low CO 2 converted gas and the reformed gas as the atmosphere gas It is done.

本発明の実施の一形態では、前記低CO変成ガスであって、浸炭処理温度において鋼の平衡状態図(Fe−C系平衡状態図)におけるγ相の飽和炭素量を超えるカーボンポテンシャルを有するものを浸炭雰囲気ガスとする。そして、この浸炭雰囲気ガスを用いて、処理品表面にセメンタイトが析出することなく処理品内部に炭素が拡散する温度領域で浸炭・拡散処理を行う。 In one embodiment of the present invention, the low-CO 2 metamorphic gas has a carbon potential that exceeds the saturated carbon content of the γ phase in the steel equilibrium diagram (Fe-C system equilibrium diagram) at the carburizing temperature. Use carburizing atmosphere gas. And using this carburizing atmosphere gas, carburizing / diffusion treatment is performed in a temperature range where carbon diffuses inside the treated product without precipitation of cementite on the treated product surface.

本発明の発明者等は、COとHとNの3種のガスを所定の割合(CO:24体積%、H:36体積%、N:約40体積%)で混合して、前記低CO変成ガスに相当する組成のガスを生成し、SCr420の被処理体(ワーク)に対してガス浸炭処理を行った。試験炉はゴールドファーネス、浸炭実施時間は2時間である。その浸炭条件(浸炭温度、CP値)と浸炭雰囲気ガス組成を表1に、浸炭結果を表2及び表3に示す。

Figure 0005793802
Figure 0005793802
Figure 0005793802
The inventors of the present invention mix three gases of CO, H 2 and N 2 at a predetermined ratio (CO: 24% by volume, H 2 : 36% by volume, N 2 : about 40% by volume). Then, a gas having a composition corresponding to the low CO 2 modified gas was generated, and a gas carburizing process was performed on the object (work) of SCr420. The test furnace is gold furnace and the carburization time is 2 hours. Table 1 shows the carburizing conditions (carburizing temperature, CP value) and carburizing atmosphere gas composition, and Tables 2 and 3 show the carburizing results.
Figure 0005793802
Figure 0005793802
Figure 0005793802

表1〜3において、CP値は、「(CO濃度)/(CO濃度)×Kp(平衡定数)×飽和炭素量(浸炭温度での鋼の飽和炭素量)」の計算式で求めた。CP値は、1.6%、6.5%である。 In Tables 1 to 3, the CP value was determined by a calculation formula of “(CO concentration) 2 / (CO 2 concentration) × Kp (equilibrium constant) × saturated carbon amount (saturated carbon amount of steel at carburizing temperature)”. . The CP values are 1.6% and 6.5%.

表1において、CO、HO、CHは、反応により微量生成されたものと考えられる。 In Table 1, CO 2 , H 2 O, and CH 4 are considered to be produced in a trace amount by the reaction.

表2に示すように、比較例1〜3、実施例1〜3ともに、使用した浸炭雰囲気ガスは、浸炭処理温度でのγ相の飽和炭素量を超えるカーボンポテンシャルを有する。   As shown in Table 2, the carburizing atmosphere gas used in Comparative Examples 1 to 3 and Examples 1 to 3 has a carbon potential that exceeds the saturated carbon content of the γ phase at the carburizing temperature.

表2,3に示すように、比較例1〜3では、ワークの表面炭素濃度のピーク値が高くなりすぎ、処理品表面にセメンタイトが析出した。これに対し、実施例1〜3では、ワークの表面炭素濃度のピーク値が適正値に抑制され、処理品表面にセメンタイトの析出はなく、良好な浸炭が行えた。いずれの例でもスーティングの発生はなかった。   As shown in Tables 2 and 3, in Comparative Examples 1 to 3, the peak value of the surface carbon concentration of the workpiece was too high, and cementite was deposited on the treated product surface. On the other hand, in Examples 1 to 3, the peak value of the surface carbon concentration of the workpiece was suppressed to an appropriate value, and there was no precipitation of cementite on the treated product surface, and good carburization could be performed. There was no sooting in any of the examples.

図1は、前記比較例1、2、前記実施例1、2の各処理品において、処理品表面からの距離(深さ)と炭素濃度との関係を示したグラフである。同様に、図2は、前記比較例3の処理品において、処理品表面からの距離(深さ)と炭素濃度との関係を示したグラフ、図3は、前記実施例3の処理品において、処理品表面からの距離(深さ)と炭素濃度との関係を示したグラフである。   FIG. 1 is a graph showing the relationship between the distance (depth) from the treated product surface and the carbon concentration in each treated product of Comparative Examples 1 and 2 and Examples 1 and 2. Similarly, FIG. 2 is a graph showing the relationship between the distance (depth) from the surface of the treated product and the carbon concentration in the treated product of Comparative Example 3, and FIG. 3 is the treated product of Example 3, It is the graph which showed the relationship between the distance (depth) from the surface of a processed goods, and carbon concentration.

これらの図を参照すれば、前記比較例と前記実施例における処理品表面の炭素濃度のピーク値の違いがより一層明らかとなる。   Referring to these figures, the difference in the peak value of the carbon concentration on the surface of the treated product in the comparative example and the example will become more apparent.

また、図1〜図3より明らかなように、処理品内部への炭素の拡散の深さが、比較例1〜3のものよりも実施例1〜3のものの方が深くなっている。よって、実施例1〜3のものは、比較例1〜3のものよりも、処理品の内部にまで良好な浸炭が行われたといえる。   As is clear from FIGS. 1 to 3, the depth of carbon diffusion into the treated product is deeper in Examples 1 to 3 than in Comparative Examples 1 to 3. Therefore, it can be said that the examples 1 to 3 were carburized better to the inside of the treated product than the comparative examples 1 to 3.

図4は、前記比較例1〜3、前記実施例1〜3において、浸炭処理温度と表面炭素濃度のピーク値との関係、及び、浸炭処理温度とγ相の飽和炭素量との関係を示すグラフである。   FIG. 4 shows the relationship between the carburizing temperature and the peak value of the surface carbon concentration and the relationship between the carburizing temperature and the saturated carbon content of the γ phase in Comparative Examples 1 to 3 and Examples 1 to 3. It is a graph.

図4から分かるように、CP値1.6%の雰囲気ガスで処理を行う場合(比較例3、実施例3の場合)、浸炭処理温度を約920℃以上とすれば、処理品表面にセメンタイトが発生せず、浸炭深さも十分な処理品が得られる。同様に、CP値6.5%の雰囲気ガスで処理を行う場合(比較例1,2、実施例1,2の場合)、浸炭処理温度を約930℃以上とすれば、処理品表面にセメンタイトが発生せず、浸炭深さも十分な処理品が得られる。いずれの場合も、浸炭処理温度を高くしすぎると、粒界酸化の発生や処理品の軟化が起こるおそれがあるので、浸炭処理温度の上限は1060℃前後とする。   As can be seen from FIG. 4, when the treatment is performed with an atmospheric gas having a CP value of 1.6% (in the case of Comparative Example 3 and Example 3), if the carburizing treatment temperature is about 920 ° C. or higher, cementite is formed on the treated product surface. And a processed product with sufficient carburization depth can be obtained. Similarly, when processing is performed with an atmospheric gas having a CP value of 6.5% (in the case of Comparative Examples 1 and 2 and Examples 1 and 2), if the carburizing temperature is about 930 ° C. or higher, cementite is formed on the surface of the processed product. And a processed product with sufficient carburization depth can be obtained. In any case, if the carburizing temperature is too high, grain boundary oxidation or softening of the treated product may occur, so the upper limit of the carburizing temperature is about 1060 ° C.

CP値が1.6%より低い場合(例えば1.3%の場合等)には、浸炭処理温度は約900℃以上であればよいと考えられる。CP値が低すぎると浸炭能力が低いため、本願発明においては1.3%以上が好ましく1.4%以上がより好ましい。   When the CP value is lower than 1.6% (for example, 1.3%), it is considered that the carburizing temperature may be about 900 ° C. or higher. If the CP value is too low, the carburizing ability is low, so in the present invention 1.3% or more is preferable and 1.4% or more is more preferable.

なお、エンリッチガスを変成ガスに添加して行う従来の浸炭では、浸炭雰囲気ガスのカーボンポテンシャルを、浸炭処理温度でのγ相の飽和炭素量より低く、且つ浸炭処理温度でのγ相の飽和炭素量に近い値にするのが、浸炭速度を上げるための常識であった。そうしなければ処理品表面にセメンタイトが発生してしまうからである。   In the conventional carburizing performed by adding the enriched gas to the metamorphic gas, the carbon potential of the carburizing atmosphere gas is lower than the saturated carbon amount of the γ phase at the carburizing temperature, and the saturated carbon of the γ phase at the carburizing temperature. It was common sense to increase the carburization rate to make the value close to the amount. Otherwise, cementite will be generated on the treated product surface.

これに対し、本実施の形態では、低CO変成ガスの計算上のCP値は例えば1.6〜6.5%と高い値であり、浸炭処理温度でのγ相の飽和炭素量を大きく上回っている。にもかかわらず、浸炭温度を900℃以上や920℃以上、さらに好ましくは930〜970℃前後と、比較的高い温度領域で浸炭処理を行うことで、セメンタイト等の異常組織が生成せず、且つ、処理品の内部にまで適正な浸炭が行われる。 In contrast, in the present embodiment, the calculated CP value of the low CO 2 metamorphic gas is a high value, for example, 1.6 to 6.5%, and the saturated carbon content of the γ phase at the carburizing temperature is increased. It has exceeded. Nevertheless, the carburizing temperature is 900 ° C. or higher, 920 ° C. or higher, more preferably around 930 to 970 ° C., and by performing the carburizing treatment in a relatively high temperature region, no abnormal structure such as cementite is generated, and Appropriate carburization is performed even inside the treated product.

本発明の発明者等は、連続浸炭炉を使用して、本発明の実施の一形態に係るガス浸炭方法と、エンリッチガスを添加する従来のガス浸炭方法とをシミュレーションにより検討し、その結果を比較した。浸炭条件とその結果を表4に示す。

Figure 0005793802
The inventors of the present invention use a continuous carburizing furnace to examine the gas carburizing method according to one embodiment of the present invention and the conventional gas carburizing method of adding an enriched gas by simulation, and the results are shown. Compared. Table 4 shows the carburizing conditions and the results.
Figure 0005793802

表4において、比較例4,5が、従来のエンリッチ浸炭の例であり、実施例4が、本発明の実施の一形態に係るガス浸炭方法の例である。   In Table 4, Comparative Examples 4 and 5 are examples of conventional enriched carburizing, and Example 4 is an example of a gas carburizing method according to an embodiment of the present invention.

表4に示すように、実施例4では、比較例4,5と比べて浸炭時間が大幅に短縮(約20%短縮)される。処理品の品質は実施例、比較例とも同等である。   As shown in Table 4, in Example 4, the carburizing time is significantly shortened (about 20% shorter) than Comparative Examples 4 and 5. The quality of the processed product is the same in both the examples and comparative examples.

以上述べたところから明らかように、本発明の実施の形態によれば、浸炭処理温度でのγ相の飽和炭素量を超えるカーボンポテンシャルを有する浸炭雰囲気ガスを用いて浸炭を行うので、浸炭の効率が良く、浸炭時間が短縮される。また、本発明で用いる浸炭雰囲気ガスは、カーボンポテンシャルが高くても、処理品表面に炭素が浸入する速度が遅いので、処理品表面にセメンタイトが析出しにくい。さらに、処理品表面にセメンタイトが析出することなく処理品内部に炭素が拡散する温度領域で浸炭・拡散処理を行うので、処理品の品質も良い。エンリッチガスを用いないので、スーティングも起こりにくい。   As is clear from the above description, according to the embodiment of the present invention, carburizing is performed using a carburizing atmosphere gas having a carbon potential exceeding the saturated carbon content of the γ phase at the carburizing temperature, so that the carburizing efficiency is increased. And carburizing time is shortened. Further, even if the carburizing atmosphere gas used in the present invention has a high carbon potential, the rate at which carbon enters the surface of the treated product is slow, so that cementite hardly precipitates on the surface of the treated product. Furthermore, since the carburizing / diffusion treatment is performed in the temperature range where carbon diffuses inside the treated product without precipitation of cementite on the treated product surface, the quality of the treated product is good. Since no enriched gas is used, sooting is unlikely to occur.

さらに、本発明の発明者は、本発明の方法を実施する際の、浸炭雰囲気ガスの好ましい流速及び流量について探求した。   Furthermore, the inventors of the present invention have sought for preferred flow rates and flow rates of carburizing atmosphere gases when carrying out the method of the present invention.

まず、実験用の装置として、既存のゴールドファーネス炉に内管を取替え挿入できるものを作製し、該内管内を炉として用いる。前記内管として、様々な内径を有するものを準備し、前記内管を取り替えて管内径を変更することで、前記内管内を流れる浸炭雰囲気ガスの流速や流量が変わるようにする。   First, as an experimental apparatus, an apparatus capable of replacing and inserting an inner pipe into an existing gold furnace furnace is prepared, and the inside of the inner pipe is used as a furnace. As the inner pipe, pipes having various inner diameters are prepared, and the inner pipe is changed to change the inner diameter of the pipe so that the flow rate and flow rate of the carburizing atmosphere gas flowing in the inner pipe are changed.

図5は、この実験における処理工程図である。図5に示すように、まず、窒素ガスを炉内(内管内)に供給し、10分で950℃まで昇温した。昇温後10分間保持した後COガスを供給し、N+COの雰囲気でさらに5分間保持した。次に低CO変成ガス(ガス組成は表5参照)を炉内に供給し、雰囲気を安定させるために30分間保持した。その後、試験片TP(テストピース:SCr420)を炉内に挿入して70分間保持し、前記低CO変成ガスを連続的に供給しながら浸炭処理を実施した。浸炭処理後には、拡散処理14分、降温処理14分を実施し、その後焼入れ処理を実施した。様々な内径を有する内管(表6の管内径を参照)を用いることで、浸炭処理中における低CO変成ガスの流速と流量を様々な値に変えることができる。

Figure 0005793802
FIG. 5 is a process diagram in this experiment. As shown in FIG. 5, first, nitrogen gas was supplied into the furnace (inside the inner tube), and the temperature was raised to 950 ° C. in 10 minutes. After raising the temperature and holding for 10 minutes, CO 2 gas was supplied, and the mixture was further kept for 5 minutes in an atmosphere of N 2 + CO 2 . Next, a low CO 2 gas (see Table 5 for the gas composition) was supplied into the furnace and held for 30 minutes to stabilize the atmosphere. Thereafter, a test piece TP (test piece: SCr420) was inserted into the furnace and held for 70 minutes, and carburizing was performed while continuously supplying the low CO 2 metamorphic gas. After the carburizing process, a diffusion process was performed for 14 minutes and a temperature lowering process was performed for 14 minutes, followed by a quenching process. By using the inner pipe having various inner diameters (see the inner diameter of the pipe in Table 6), the flow rate and flow rate of the low CO 2 metamorphic gas during the carburizing process can be changed to various values.
Figure 0005793802

前記実験の結果を表6に示す。

Figure 0005793802
The results of the experiment are shown in Table 6.
Figure 0005793802

表6のうち、上から三つの例、すなわち、比較例1と実施例1,2が、流速を変更した場合(流量一定)の実験結果である。それ以下の例、すなわち、実施例3と比較例2〜4が、流量を変更した場合(流速一定)の実験結果である。   In Table 6, three examples from the top, that is, Comparative Example 1 and Examples 1 and 2, are the experimental results when the flow velocity is changed (the flow rate is constant). The following examples, that is, Example 3 and Comparative Examples 2 to 4, are experimental results when the flow rate is changed (the flow rate is constant).

表6を参照して、浸炭雰囲気ガスの好ましい流速と流量について考察する。   With reference to Table 6, the preferred flow rate and flow rate of the carburizing atmosphere gas will be considered.

<流速について>
CP値の高い前記低CO変成ガスで浸炭しても、比較例1のように流速が小さいと本実験の目標としたカーボン濃度が0.3wt%である試験片表面からの深さ(位置)0.75mm以上に達しないことが分かる。これに対し、実施例1,2より、流速が3.04m/s、5.98m/sの場合には目標とする十分な浸炭深さを得られ、従来よりも早く浸炭できる。この試験結果を用いて流速とカーボン濃度が0.3wt%である試験片表面からの深さ(位置)との関係をグラフにしたものが図6である。図6より、目標とする深さ(0.75mm)を得るためには、浸炭雰囲気ガスの流速を1.5m/s以上にすればよいことが分かる。
<About flow velocity>
Even when carburizing with the low CO 2 gas having a high CP value, if the flow rate is small as in Comparative Example 1, the depth (position) from the specimen surface where the carbon concentration targeted in this experiment is 0.3 wt% It can be seen that it does not reach 0.75 mm or more. On the other hand, from Examples 1 and 2, when the flow velocity is 3.04 m / s and 5.98 m / s, a target sufficient carburization depth can be obtained, and carburization can be performed faster than before. FIG. 6 is a graph showing the relationship between the flow velocity and the depth (position) from the surface of the test piece having a carbon concentration of 0.3 wt% using this test result. FIG. 6 shows that the flow rate of the carburizing atmosphere gas should be 1.5 m / s or more in order to obtain the target depth (0.75 mm).

なお、浸炭炉の浸炭室或いは拡散室内のワーク設置範囲内において浸炭雰囲気ガスの流速を1.5m/s以上とするために、浸炭室或いは拡散室にガス攪拌用のファンを上下、左右に必要に応じて設置して流速のバラツキを抑制することが好ましく、これにより安定した浸炭処理を実現することができる。   In order to make the flow rate of the carburizing atmosphere gas 1.5 m / s or more within the work installation range of the carburizing furnace or diffusion chamber of the carburizing furnace, fans for gas agitation are required vertically and horizontally in the carburizing chamber or diffusion chamber. Therefore, it is preferable to suppress the variation in the flow rate, and a stable carburizing process can be realized.

ガス流速(風速)は風速計で測定することができる。また、流速を上げることで炭素移行係数(β値)が増加し、流速増加は流量(物質供給量)増加との関係はない。   The gas flow velocity (wind velocity) can be measured with an anemometer. In addition, increasing the flow rate increases the carbon transfer coefficient (β value), and the increase in flow rate is not related to the increase in flow rate (substance supply amount).

<流量について>
比較例2〜4より、浸炭雰囲気ガスの流量が小さい場合、すなわち、炉内ガス置換回数が1時間当たり5.1〜19回、流速約0.1m/sのときは、前記目標とする浸炭深さが得られないことが分かる。これに対し、実施例3のように流量が大きい場合は、目標とする浸炭深さが得られ、従来よりも早く浸炭できる。この試験結果を用いて流量とカーボン濃度が0.3wt%である試験片表面からの深さ(位置)との関係をグラフにしたものが図7である。図7より、目標とする深さ(0.75mm)を得るためには、浸炭雰囲気ガスの流量を炉内雰囲気置換回数29回/h以上となる流量にすればよいことが分かる。
<About flow rate>
From Comparative Examples 2 to 4, when the flow rate of the carburizing atmosphere gas is small, that is, when the number of gas replacements in the furnace is 5.1 to 19 times per hour and the flow rate is about 0.1 m / s, the target carburizing is performed. It can be seen that the depth cannot be obtained. On the other hand, when the flow rate is large as in Example 3, the target carburizing depth is obtained, and carburizing can be performed earlier than in the past. FIG. 7 is a graph showing the relationship between the flow rate and the depth (position) from the surface of the test piece having a carbon concentration of 0.3 wt% using this test result. From FIG. 7, it can be seen that in order to obtain the target depth (0.75 mm), the flow rate of the carburizing atmosphere gas may be set to a flow rate that is 29 times / h or more in the furnace atmosphere replacement.

なお、炉内雰囲気置換回数は、炉内に供給する1時間あたりのガス流量を炉内体積で割った値である。炉内雰囲気置換回数を大きくするために、炉内に連続的に新しいガスを供給しても良いが、炉内ガスを循環させて炉内に供給することがコスト面から好ましい。また、流量(置換回数)を増加させると炭素移行係数(β値)が低下することがわかり、浸炭効率を向上させるためにはガス流量よりもガス流速を増加させる方が好ましい。   The number of atmosphere replacements in the furnace is a value obtained by dividing the gas flow rate per hour supplied into the furnace by the furnace volume. In order to increase the number of times the atmosphere in the furnace is replaced, new gas may be continuously supplied into the furnace, but it is preferable from the viewpoint of cost that the furnace gas is circulated and supplied into the furnace. Moreover, it turns out that a carbon transfer coefficient ((beta value)) will fall when a flow rate (number of substitutions) is increased, and in order to improve carburizing efficiency, it is more preferable to increase a gas flow rate than a gas flow rate.

Claims (5)

炭化水素系ガスと空気とを用いて変成ガスを生成する工程と、この工程で得られた変成ガスにエンリッチガスを混合することなくCO の含有量を全体の0.1体積%以下に低減させる工程と、を経ることで、浸炭処理温度において鋼の平衡状態図におけるγ相の飽和炭素量を超える1.3%以上のカーボンポテンシャルを有する浸炭雰囲気ガスを生成し、この浸炭雰囲気ガスを用いて、処理品表面にセメンタイトが析出することがない温度領域で浸炭を行う、ガス浸炭方法。 A step of generating a modified gas using a hydrocarbon gas and air, and the content of CO 2 is reduced to 0.1% by volume or less without mixing an enriched gas with the modified gas obtained in this step. A carburizing atmosphere gas having a carbon potential of 1.3% or more that exceeds the saturated carbon content of the γ phase in the equilibrium diagram of the steel at the carburizing temperature by using the carburizing atmosphere gas. A gas carburizing method in which carburizing is performed in a temperature range in which cementite does not precipitate on the treated product surface. 前記温度領域が900〜1060℃である、請求項1に記載のガス浸炭方法。 The gas carburizing method according to claim 1, wherein the temperature region is 900 to 1060 ° C. 前記温度領域が920〜970℃である、請求項1に記載のガス浸炭方法。 The gas carburizing method according to claim 1, wherein the temperature region is 920 to 970 ° C. 前記浸炭雰囲気ガスの炉内流速が1.5m/s以上の流速である、請求項1乃至のいずれか一項に記載のガス浸炭方法。 The gas carburizing method according to any one of claims 1 to 3 , wherein a flow rate in the furnace of the carburizing atmosphere gas is a flow rate of 1.5 m / s or more. 前記浸炭雰囲気ガスの炉内流量が炉内雰囲気置換回数29回/h以上となる流量である、請求項1乃至のいずれか一項に記載のガス浸炭方法。 The gas carburizing method according to any one of claims 1 to 4 , wherein the in-furnace flow rate of the carburizing atmosphere gas is a flow rate at which the number of in-furnace atmosphere replacements is 29 times / h or more.
JP2011067509A 2010-09-30 2011-03-25 Gas carburizing method Active JP5793802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011067509A JP5793802B2 (en) 2010-09-30 2011-03-25 Gas carburizing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010222174 2010-09-30
JP2010222174 2010-09-30
JP2011067509A JP5793802B2 (en) 2010-09-30 2011-03-25 Gas carburizing method

Publications (2)

Publication Number Publication Date
JP2012092423A JP2012092423A (en) 2012-05-17
JP5793802B2 true JP5793802B2 (en) 2015-10-14

Family

ID=46386096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011067509A Active JP5793802B2 (en) 2010-09-30 2011-03-25 Gas carburizing method

Country Status (1)

Country Link
JP (1) JP5793802B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6773411B2 (en) * 2015-12-08 2020-10-21 日本エア・リキード合同会社 Carburizing system and manufacturing method of surface hardened steel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050159A (en) * 1983-08-29 1985-03-19 Hitachi Constr Mach Co Ltd Gas carburization hardening method
JPS62170469A (en) * 1986-01-24 1987-07-27 Mitsubishi Heavy Ind Ltd Production of gas for hardening steel surface
JPH04268062A (en) * 1991-02-22 1992-09-24 Kanto Yakin Kogyo Kk Atomsphere carburization method for steel
JPH05320822A (en) * 1992-05-22 1993-12-07 Nippon Steel Corp Manufacture of steel for driving transmission system parts with contact fatigue strength and driving transmission system parts
JP4079695B2 (en) * 2002-06-06 2008-04-23 大陽日酸株式会社 Carburizing atmosphere gas generator and method
JP2006063389A (en) * 2004-08-26 2006-03-09 Toyota Motor Corp Continuous carburizing furnace and continuous carburizing method
JP5272330B2 (en) * 2007-05-23 2013-08-28 大同特殊鋼株式会社 Steel for gas carburization, gas carburized parts, and method for manufacturing gas carburized parts
JP2009091632A (en) * 2007-10-10 2009-04-30 Dowa Thermotech Kk Heat-treatment apparatus and heat-treatment method

Also Published As

Publication number Publication date
JP2012092423A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
JP2013501852A5 (en)
JPS641527B2 (en)
JP5793802B2 (en) Gas carburizing method
JP2008057039A (en) Carburization method, steel product and heat treatment equipment
JP2013256687A (en) Gas carburizing method
JP2004332074A (en) Carburizing method
JP2009138207A (en) Method and apparatus for manufacturing steel having carbon concentration-controlled steel surface
JP5793803B2 (en) Gas carburizing method and gas carburizing apparatus
JP2009299122A (en) Nitriding-quenching method, heater for nitriding-quenching and nitriding-quenching apparatus
US20080149227A1 (en) Method for oxygen free carburization in atmospheric pressure furnaces
JP6773411B2 (en) Carburizing system and manufacturing method of surface hardened steel
US8679264B2 (en) Method for producing a gaseous atmosphere for treating metals
JP2009235451A (en) Heat-treatment method
JP2005200695A (en) Gas carburizing method
JP2004169101A (en) Carburizing method
JP6133326B2 (en) Method for producing a gas mixture containing substantially equal proportions of carbon monoxide and hydrogen
CN104789923A (en) Application method of rare earth in pre-oxidation and soft nitriding technology
JP6357042B2 (en) Gas soft nitriding method and gas soft nitriding apparatus
JPH0138870B2 (en)
JP2002356763A (en) Gas carburizing method and its device
JP2009270155A (en) Nitriding quenching method and nitrided quenched part
JP4340822B2 (en) Method for producing atmospheric gas for metal heat treatment
JP4125626B2 (en) Carburizing equipment
Neacșu et al. The Influence of the Carbon Content on the Depth of the Carbonitrurat Layer in Fluidized Layer for 1C15, 1C25 and 1C45 Steels
JP4180492B2 (en) Carburizing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150723

R150 Certificate of patent or registration of utility model

Ref document number: 5793802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250