JP5837282B2 - Surface modification method - Google Patents

Surface modification method Download PDF

Info

Publication number
JP5837282B2
JP5837282B2 JP2010057430A JP2010057430A JP5837282B2 JP 5837282 B2 JP5837282 B2 JP 5837282B2 JP 2010057430 A JP2010057430 A JP 2010057430A JP 2010057430 A JP2010057430 A JP 2010057430A JP 5837282 B2 JP5837282 B2 JP 5837282B2
Authority
JP
Japan
Prior art keywords
gas
carburizing
reforming
treatment
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010057430A
Other languages
Japanese (ja)
Other versions
JP2011190498A (en
Inventor
河田 一喜
一喜 河田
関谷 慶之
慶之 関谷
浅井 茂太
茂太 浅井
孝紀 梅原
孝紀 梅原
Original Assignee
オリエンタルエンヂニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリエンタルエンヂニアリング株式会社 filed Critical オリエンタルエンヂニアリング株式会社
Priority to JP2010057430A priority Critical patent/JP5837282B2/en
Publication of JP2011190498A publication Critical patent/JP2011190498A/en
Application granted granted Critical
Publication of JP5837282B2 publication Critical patent/JP5837282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

本発明は、ガス浸炭処理又はガス浸炭窒化処理によって表面及び表面近傍に酸化物が生成した鋼製の被処理品の表面を改質する方法に関する。   The present invention relates to a method for modifying the surface of a steel article to be processed in which oxides are generated on the surface and in the vicinity of the surface by gas carburizing or gas carbonitriding.

現在、鋼製部品等の金属製部品に施す表面硬化処理として、浸炭法及び浸炭窒化法が最も多く適用されている。浸炭法及び浸炭窒化法としては、ガス法、真空法、及び真空法とガス法の両方を組み合わせた方法があるが、これらの中でもガス浸炭法及びガス浸炭窒化法は、処理品質の安定性や経済性が優れていることから、現在のところ最も多く適用されている。   Currently, the carburizing method and the carbonitriding method are most frequently applied as surface hardening treatments for metal parts such as steel parts. As the carburizing method and the carbonitriding method, there are a gas method, a vacuum method, and a method in which both the vacuum method and the gas method are combined. Among these methods, the gas carburizing method and the gas carbonitriding method include stability of processing quality, It is most widely used at present because of its economic efficiency.

ガス浸炭法及びガス浸炭窒化法においては、処理の自動化の観点から、キャリヤーガス(搬送ガス)とエンリッチガスによる浸炭が主に採用されている。キャリヤーガスを浸炭炉内に導入する方法としては、RXガス(CO,H2 ,N2 を主成分とする吸熱型変成ガス)を外部から供給する方法や、液体のメタノール(CH3 OH)を直接浸炭炉内に供給してキャリヤーガス(CO,H2 を主成分とするガス)を生成させる方法等がある。一方、エンリッチガスとしては、プロパンガス(C3 8 )等の炭化水素ガスを使用する場合が多い。 In the gas carburizing method and the gas carbonitriding method, carburizing with a carrier gas (carrier gas) and an enriched gas is mainly employed from the viewpoint of automation of processing. As a method for introducing the carrier gas into the carburizing furnace, RX gas (an endothermic modified gas mainly composed of CO, H 2 , and N 2 ) is supplied from the outside, or liquid methanol (CH 3 OH) is used. There is a method of generating a carrier gas (a gas mainly composed of CO and H 2 ) by directly supplying it into the carburizing furnace. On the other hand, hydrocarbon gas such as propane gas (C 3 H 8 ) is often used as the enriched gas.

ガス浸炭法、ガス浸炭窒化法いずれにおいても、浸炭炉内での浸炭反応は、下記の(1),(2),(3)式で表すことができる。(1),(2),(3)式において(C)は、鋼中に浸透した炭素を表す。
2CO=(C)+CO2 ・・・(1)
CO=(C)+1/2O2 ・・・(2)
CO+H2 =(C)+H2 O ・・・(3)
In both the gas carburizing method and the gas carbonitriding method, the carburizing reaction in the carburizing furnace can be expressed by the following equations (1), (2), and (3). In formulas (1), (2), and (3), (C) represents carbon that has penetrated into the steel.
2CO = (C) + CO 2 (1)
CO = (C) + 1 / 2O 2 (2)
CO + H 2 = (C) + H 2 O (3)

また、ガス浸炭窒化法の場合は、浸炭ガスに主にNH3 ガスを加えて浸炭炉内に添加することにより、(4)式のように鋼中に窒素を浸透拡散させる。(4)式において(N)は、鋼中に浸透した窒素を表す。
NH3 =(N)+3/2H2 ・・・(4)
キャリヤーガスを使用する目的は、浸炭に必要なCOやH2 を供給することである。また、エンリッチガスを使用する目的は、浸炭炉内に存在するCO2 ,O2 ,H2 Oという酸化性ガスと反応させて、その添加の有無により酸化性ガスの量を増減させることである。すなわち、ガス浸炭法やガス浸炭窒化法においては、鋼中に浸透した炭素(C)の表面炭素濃度は、(1),(2),(3)式中の還元性ガスCO,H2 と酸化性ガスCO2 ,O2 ,H2 Oとの濃度比によって決定する。
In the case of the gas carbonitriding method, NH 3 gas is mainly added to the carburizing gas and added to the carburizing furnace, so that nitrogen is infiltrated and diffused into the steel as expressed by equation (4). In the formula (4), (N) represents nitrogen that has penetrated into the steel.
NH 3 = (N) + 3 / 2H 2 (4)
The purpose of using the carrier gas is to supply CO and H 2 necessary for carburizing. The purpose of using the enriched gas is to react with an oxidizing gas such as CO 2 , O 2 , and H 2 O existing in the carburizing furnace, and to increase or decrease the amount of the oxidizing gas depending on whether or not it is added. . That is, in the gas carburizing method and the gas carbonitriding method, the surface carbon concentration of carbon (C) that has penetrated into the steel is the reducing gases CO and H 2 in the formulas (1), (2), and (3). It is determined by the concentration ratio with the oxidizing gases CO 2 , O 2 , and H 2 O.

そのため、このようなガスの平衡反応によるガス浸炭法やガス浸炭窒化法では、浸炭する温度域において鉄は酸化することはないが、鋼中の合金成分であるCr,Mn,Si等は浸炭ガス中の微量の酸化性ガス(CO2 ,O2 ,H2 O)によって酸化される。その結果、鋼製部品の表面及び表面近傍に、粒界酸化とそれに伴う不完全焼入れ層とが形成されることとなる。そして、このことにより、その部分の硬さが低下し、耐摩耗性や耐疲労強度が低下する。 Therefore, in such a gas carburizing method or gas carbonitriding method using an equilibrium reaction of gas, iron is not oxidized in the carburizing temperature range, but the alloy components such as Cr, Mn, and Si are not carburized gas. Oxidized by a small amount of oxidizing gas (CO 2 , O 2 , H 2 O). As a result, grain boundary oxidation and an accompanying incomplete quenching layer are formed on the surface of the steel part and in the vicinity of the surface. And the hardness of the part falls by this, and wear resistance and fatigue strength fall.

一方、真空浸炭法及び真空浸炭窒化法は、下記の(5)式のように、主にアセチレンガス(C2 2 )等の炭化水素ガスの一方的な分解反応(非平衡反応)による浸炭法である。
2 2 =2(C)+H2 ・・・(5)
真空浸炭法及び真空浸炭窒化法においては、ガス法とは異なり、浸炭炉内に酸化性ガスがほとんど存在しないので、粒界酸化とそれに伴う不完全焼入れ層とが表面及び表面近傍に生じることはほとんどない。
On the other hand, the vacuum carburizing method and the vacuum carbonitriding method are mainly carburized by unilateral decomposition reaction (non-equilibrium reaction) of hydrocarbon gas such as acetylene gas (C 2 H 2 ) as shown in the following formula (5). Is the law.
C 2 H 2 = 2 (C) + H 2 (5)
In the vacuum carburizing method and the vacuum carbonitriding method, unlike the gas method, there is almost no oxidizing gas in the carburizing furnace, so that grain boundary oxidation and the accompanying incomplete quenching layer occur on and near the surface. rare.

しかしながら、この真空浸炭法及び真空浸炭窒化法は、ガス法のようなガスの平衡反応によるものではなく、炭化水素ガスの一方的な分解反応、いわゆる非平衡反応であるため、雰囲気制御することが困難である。また、平衡反応ではないため、当然に被処理品の平坦部と鋭角部とでは炭素濃度が異なる。すなわち、鋭角部の炭素濃度の方が平坦部の炭素濃度よりも高くなり、場合によっては、鉄炭化物であるセメンタイトが析出することもある。鋭角部にセメンタイトが析出すると、その被処理品の寿命が極端に低下することが知られている。
このようなことから、真空浸炭法とガス浸炭法を組み合わせた浸炭方法により、被処理品の平坦部と鋭角部の炭素濃度の均一化を図る技術が提案されている(特許文献1,2を参照)。
However, the vacuum carburizing method and the vacuum carbonitriding method are not based on a gas equilibrium reaction as in the gas method, but are unilateral decomposition reactions of hydrocarbon gas, so-called non-equilibrium reactions, so that the atmosphere can be controlled. Have difficulty. Moreover, since it is not an equilibrium reaction, naturally the carbon concentration differs between the flat portion and the acute angle portion of the article to be processed. That is, the carbon concentration in the acute angle portion is higher than the carbon concentration in the flat portion, and in some cases, cementite that is iron carbide may be precipitated. It is known that when cementite precipitates at an acute angle portion, the life of the article to be treated is extremely reduced.
For this reason, a technique for making the carbon concentration of the flat portion and the acute angle portion of the article to be processed uniform by a carburizing method combining a vacuum carburizing method and a gas carburizing method has been proposed (see Patent Documents 1 and 2). reference).

特開2003−147506号公報JP 2003-147506 A 特開2005−179714号公報JP 2005-179714 A

しかしながら、特許文献1,2に提案の浸炭方法は、ガス浸炭期においては炉内に酸化性ガスが生成されるため、当然に粒界酸化とそれに伴う不完全焼入れ層が表面及び表面近傍に生じることになる。
そこで、本発明は上記のような従来技術が有する問題点を解決し、ガス浸炭処理又はガス浸炭窒化処理によって表面及び表面近傍に粒界酸化とそれに伴う不完全焼入れ層とが生じている鋼製の被処理品に対して好適な表面改質方法であり、粒界酸化とそれに伴う不完全焼入れ層とを低減して前記被処理品の表面品質を向上させる表面改質方法を提供することを課題とする。
However, in the carburizing methods proposed in Patent Documents 1 and 2, since an oxidizing gas is generated in the furnace during the gas carburizing period, the grain boundary oxidation and the accompanying incomplete quenching layer naturally occur on the surface and in the vicinity of the surface. It will be.
Therefore, the present invention solves the problems of the prior art as described above, and is made of steel in which grain carburization or gas carbonitriding causes grain boundary oxidation and an accompanying incomplete quenching layer on and near the surface. The present invention provides a surface modification method that is suitable for an article to be processed and that improves the surface quality of the article to be processed by reducing grain boundary oxidation and the accompanying incomplete quenching layer. Let it be an issue.

前記課題を解決するため、本発明は次のような構成からなる。すなわち、本発明の表面改質方法は、ガス浸炭処理又はガス浸炭窒化処理が施されて表面及び表面近傍に酸化物が生成した鋼製の被処理品に改質処理を施して、前記被処理品の表面改質を行うに際して、圧力0.01Pa以上3000Pa以下の改質処理室内に入れた前記被処理品を、下記の3つの条件A,B,Cのうちのいずれかの導入ガス条件下、温度700℃以上1200℃以下で10分以上180分以下熱処理することを特徴とする。
(条件A)前記改質処理室に導入ガスを全く導入しない。
(条件B)前記改質処理室に1種以上の還元性ガスを導入ガスとして導入する。
(条件C)前記改質処理室に不活性ガス及び1種以上の還元性ガスの混合ガスを導入ガスとして導入する。
In order to solve the above problems, the present invention has the following configuration. That is, in the surface modification method of the present invention, a gas carburizing process or a gas carbonitriding process is performed to perform a modification process on a steel processed product in which an oxide is generated on the surface and in the vicinity of the surface. When performing surface modification of a product, the product to be treated placed in a reforming chamber having a pressure of 0.01 Pa or more and 3000 Pa or less is introduced under any of the following three conditions A, B, and C. The heat treatment is performed at a temperature of 700 ° C. to 1200 ° C. for 10 minutes to 180 minutes.
(Condition A) No introduction gas is introduced into the reforming chamber.
(Condition B) One or more reducing gases are introduced into the reforming chamber as an introduction gas.
(Condition C) A mixed gas of an inert gas and one or more reducing gases is introduced as an introduction gas into the reforming chamber.

ガス浸炭処理又はガス浸炭窒化処理が施されることによって、鋼製の被処理品の表面及び表面近傍には粒界酸化とそれに伴う不完全焼入れ層とが生じるが、本発明の表面改質方法に係る改質処理を該被処理品に施せば、表面及び表面近傍に生成している酸化物が還元されるため、粒界酸化とそれに伴う不完全焼入れ層とを低減することができる。   By performing the gas carburizing process or the gas carbonitriding process, grain boundary oxidation and an incompletely hardened layer are caused on the surface and in the vicinity of the surface of the steel processed article. Since the oxide produced on the surface and in the vicinity of the surface is reduced when the article to be treated is subjected to the modification treatment according to, grain boundary oxidation and the incomplete quenching layer accompanying it can be reduced.

鋼製の被処理品のガス浸炭処理及び改質処理を行うガス浸炭炉の構造を説明する概略図である。It is the schematic explaining the structure of the gas carburizing furnace which performs the gas carburizing process and the modification | reformation process of steel to-be-processed goods. 比較例1の被処理品に施した処理の処理条件及び処理工程を説明する図である。It is a figure explaining the process conditions and the process of a process performed to the to-be-processed goods of the comparative example. 実施例A1,A2の被処理品に施した処理の処理条件及び処理工程を説明する図である。It is a figure explaining the process conditions and process of the process performed to the to-be-processed goods of Example A1, A2. 実施例A1,比較例1の被処理品の切断面を走査型電子顕微鏡で観察した結果を示す図である。It is a figure which shows the result of having observed the cut surface of the to-be-processed goods of Example A1 and Comparative Example 1 with the scanning electron microscope. 比較例2の被処理品に施した処理の処理条件及び処理工程を説明する図である。It is a figure explaining the process conditions and process of the process performed to the to-be-processed goods of the comparative example 2. FIG.

本発明の表面改質方法の実施の形態について、以下に詳細に説明する。
鋼製の被処理品にガス浸炭処理又はガス浸炭窒化処理を施すと、前記被処理品の表面が酸化されて、表面及び表面近傍に粒界酸化とそれに伴う不完全焼入れ層とが生じる。粒界酸化とそれに伴う不完全焼入れ層が生じると、その部分の硬さが低下し、前記被処理品の耐摩耗性や耐疲労強度が低下するので、耐摩耗性や耐疲労強度を向上させるため、粒界酸化とそれに伴う不完全焼入れ層とを低減して前記被処理品の表面品質を向上させる改質処理を施した。この改質処理について以下に説明する。
Embodiments of the surface modification method of the present invention will be described in detail below.
When a gas carburizing treatment or a gas carbonitriding treatment is performed on a steel workpiece, the surface of the workpiece is oxidized, and grain boundary oxidation and an accompanying incomplete quenching layer are generated on the surface and in the vicinity of the surface. When grain boundary oxidation and the accompanying incomplete quenching layer occur, the hardness of the part decreases, and the wear resistance and fatigue strength of the article to be treated decrease, so that the wear resistance and fatigue resistance are improved. For this reason, the grain boundary oxidation and the incomplete quenching layer associated therewith were reduced to improve the surface quality of the article to be treated. This reforming process will be described below.

まず、浸炭処理又は浸炭窒化処理が施されて表面及び表面近傍に酸化物が生成した鋼製の被処理品を、改質処理室内に入れ、真空ポンプ等の減圧装置を用いて改質処理室内を減圧する。そして、改質処理室内に導入する導入ガスの条件を下記の3つの条件A,B,Cのうちのいずれかとして、所定の時間熱処理する。
(条件A)改質処理室に導入ガスを全く導入しない。
(条件B)改質処理室に1種以上の還元性ガスを導入ガスとして導入する。
(条件C)改質処理室に不活性ガス及び1種以上の還元性ガスの混合ガスを導入ガスとして導入する。
First, a steel product to be treated, which has been subjected to carburizing or carbonitriding and having oxides formed on the surface and in the vicinity of the surface, is placed in the reforming chamber, and then used in a reforming chamber using a decompression device such as a vacuum pump. The pressure is reduced. Then, heat treatment is performed for a predetermined time with the condition of the introduced gas introduced into the reforming chamber as one of the following three conditions A, B, and C.
(Condition A) No introduction gas is introduced into the reforming chamber.
(Condition B) One or more reducing gases are introduced into the reforming chamber as an introduction gas.
(Condition C) A mixed gas of an inert gas and one or more reducing gases is introduced as an introduction gas into the reforming chamber.

例えば、被処理品に施された浸炭処理がガス浸炭法である場合は、その浸炭期又は拡散期が終了した時点で、上記のような改質処理を施せばよい。そうすれば、被処理品の各部分における炭素濃度の均一性が保たれつつ、浸炭処理により表面及び表面近傍に生成した酸化物が還元されるため、酸化物の量が低減する。その結果、表面及び表面近傍に生じた粒界酸化とそれに伴う不完全焼入れ層も低減する。   For example, when the carburizing process performed on the product to be processed is a gas carburizing method, the above-described reforming process may be performed at the time when the carburizing period or the diffusion period ends. If it does so, since the oxide produced | generated on the surface and the surface vicinity by a carburizing process is reduced, the amount of oxides reduces, maintaining the uniformity of the carbon concentration in each part of to-be-processed goods. As a result, the grain boundary oxidation occurring on the surface and in the vicinity of the surface and the accompanying incomplete quenching layer are also reduced.

また、被処理品に施された浸炭処理が、真空浸炭法とガス浸炭法を組み合わせた浸炭方法である場合は、そのガス浸炭期が終了した時点で、上記のような改質処理を施せばよい。そうすれば、被処理品の各部分における炭素濃度の均一性が保たれつつ、ガス浸炭期に表面及び表面近傍に生成した酸化物が還元されるため、酸化物の量が低減する。その結果、表面及び表面近傍に生じた粒界酸化とそれに伴う不完全焼入れ層も低減する。
改質処理終了後の被処理品は、粒界酸化が増加しないように、真空中、N2 中、N2 と還元性ガスとの混合ガス中等で焼入れ保持温度まで降温し、均熱を0分以上120分以下とり、その後に油焼入れ等を行って焼入れすればよい。
In addition, when the carburizing process applied to the product to be processed is a carburizing method that combines the vacuum carburizing method and the gas carburizing method, the above-described reforming process may be performed at the end of the gas carburizing period. Good. If it does so, since the oxide produced | generated on the surface and the surface vicinity in the gas carburizing period is reduced, the amount of oxides reduces, maintaining the uniformity of the carbon concentration in each part of to-be-processed goods. As a result, the grain boundary oxidation occurring on the surface and in the vicinity of the surface and the accompanying incomplete quenching layer are also reduced.
The processed product after the reforming treatment is cooled to the quenching holding temperature in a vacuum, in N 2 , in a mixed gas of N 2 and a reducing gas, etc., so that grain boundary oxidation does not increase, and soaking is 0 More than 120 minutes and less, and then quenching by oil quenching.

改質処理の温度は、700℃以上1200℃以下とすることが好ましい。700℃未満であると、還元力が弱いため、粒界酸化とそれに伴う不完全焼入れ層を十分に低減することが困難となるおそれがある。また、還元力を補うために処理時間を長くすると、ランニングコストが上昇してしまう。一方、1200℃超過であると、還元力は強くなり、処理時間も短くできるが、被処理品の材料である鋼材の結晶粒が粗大化するという問題が生じるおそれがある。このような不都合がより生じにくくするためには、改質処理の温度は、800℃以上980℃以下とすることがより好ましい。なお、結晶粒が粗大化しにくいような特殊元素を含有する鋼材であれば、改質処理の温度を1200℃超過とすることも可能である。   The temperature of the reforming treatment is preferably 700 ° C. or higher and 1200 ° C. or lower. If the temperature is lower than 700 ° C., the reducing power is weak, so that it may be difficult to sufficiently reduce the grain boundary oxidation and the incompletely hardened layer accompanying it. In addition, if the processing time is lengthened to supplement the reducing power, the running cost increases. On the other hand, when it exceeds 1200 ° C., the reducing power becomes strong and the processing time can be shortened, but there is a possibility that the crystal grains of the steel material, which is the material to be processed, become coarse. In order to make such inconvenience less likely to occur, the temperature of the reforming treatment is more preferably set to 800 ° C. or higher and 980 ° C. or lower. In addition, if it is a steel material containing the special element which a crystal grain does not coarsen easily, it is also possible to make the temperature of a modification process exceed 1200 degreeC.

次に、改質処理の圧力は、0.01Pa以上3000Pa以下とすることが好ましい。0.01Pa未満であると、還元力は強いため粒界酸化とそれに伴う不完全焼入れ層の低減には好適であるが、そのような圧力にするには排気能力の大きい真空ポンプを使用するか、又は、高真空に引ける数種類の真空ポンプを使用する必要があるため、コストが高くなるという問題がある。一方、3000Pa超過であると、還元力が弱いため、粒界酸化とそれに伴う不完全焼入れ層十分を十分に低減することが困難となるおそれがある。また、還元力を補うために処理時間を長くすると、ランニングコストが上昇してしまう。このような不都合がより生じにくくするためには、改質処理の圧力は、1.3Pa以上333Pa以下とすることがより好ましく、1Pa以上133Pa以下とすることがさらに好ましい。   Next, the pressure of the reforming treatment is preferably set to 0.01 Pa or more and 3000 Pa or less. If it is less than 0.01 Pa, the reducing power is strong, so it is suitable for reducing grain boundary oxidation and the accompanying incomplete quenching layer. To achieve such pressure, should a vacuum pump with a large exhaust capacity be used? Alternatively, it is necessary to use several types of vacuum pumps that can draw a high vacuum, which increases the cost. On the other hand, if it exceeds 3000 Pa, the reducing power is weak, and therefore it may be difficult to sufficiently reduce the grain boundary oxidation and the accompanying incomplete quenching layer. In addition, if the processing time is lengthened to supplement the reducing power, the running cost increases. In order to make such inconvenience less likely to occur, the pressure of the reforming treatment is more preferably 1.3 Pa or more and 333 Pa or less, and further preferably 1 Pa or more and 133 Pa or less.

また、改質処理の時間は、10分以上180分以下とすることが好ましい。10分未満であると、還元するための時間が不十分で、粒界酸化とそれに伴う不完全焼入れ層十分を十分に低減することが困難となるおそれがある。一方、180分超過であると、ランニングコストが高くなる場合がある。このような不都合がより生じにくくするためには、改質処理の時間は、20分以上90分以下とすることがより好ましい。   Further, the modification treatment time is preferably 10 minutes or more and 180 minutes or less. If it is less than 10 minutes, the time for reduction is insufficient, and it may be difficult to sufficiently reduce the grain boundary oxidation and the accompanying incomplete quenching layer. On the other hand, if it exceeds 180 minutes, the running cost may increase. In order to make such inconvenience less likely to occur, it is more preferable that the time for the modification treatment be 20 minutes or more and 90 minutes or less.

さらに、改質処理において導入ガスとして使用される還元性ガスの種類は、特に限定されるものではないが、例えば、CH4 ,C3 8 ,C2 2 ,C2 4 等の炭化水素ガスや、H2 ,CO,NH3 やその他の変成ガスがあげられる。これらの還元性ガスは1種類を単独で使用してもよいが、2種以上を混合して使用してもよい。また、還元性ガスと混合されて混合ガスを構成する不活性ガスの種類は、被処理品に対して不活性な性質であるならば特に限定されるものではないが、例えば、N2 ,Ar,He等やその他の変成ガスがあげられる。これらの不活性ガスは1種類を単独で使用してもよいが、2種以上を混合して使用してもよい。 Further, the type of reducing gas used as the introduction gas in the reforming treatment is not particularly limited, but for example, carbonization such as CH 4 , C 3 H 8 , C 2 H 2 , C 2 H 4, etc. Examples thereof include hydrogen gas, H 2 , CO, NH 3, and other modified gases. These reducing gases may be used alone or in combination of two or more. The type of the inert gas mixed with the reducing gas to form the mixed gas is not particularly limited as long as it is inactive with respect to the article to be processed. For example, N 2 , Ar , He and other metamorphic gases. These inert gases may be used alone or in combination of two or more.

このような改質処理を行う改質処理装置は、特に限定されるものではなく、温度,圧力,及び導入ガス条件を上記のように制御可能な改質処理室を備えていればよい。例えば、浸炭装置が改質処理室を備えている場合は、浸炭室でガス浸炭を行った後に、被処理品を浸炭室から改質処理室に移して、改質処理室内で改質処理を行うことができる。また、浸炭室を減圧する手段を備えていれば、通常の浸炭装置を改質処理装置として使用することができる。すなわち、浸炭装置の浸炭室で被処理品のガス浸炭を行った後に、浸炭室を減圧して、そのまま浸炭室内で上記改質処理を行うことができる。   The reforming apparatus for performing such a reforming process is not particularly limited as long as it includes a reforming process chamber in which the temperature, pressure, and introduced gas conditions can be controlled as described above. For example, when the carburizing apparatus has a reforming treatment chamber, after performing gas carburizing in the carburizing chamber, the product to be treated is transferred from the carburizing chamber to the reforming treatment chamber, and the reforming treatment is performed in the reforming treatment chamber. It can be carried out. If a means for reducing the pressure of the carburizing chamber is provided, a normal carburizing apparatus can be used as the reforming apparatus. That is, after performing the gas carburization of the article to be processed in the carburizing chamber of the carburizing apparatus, the carburizing chamber can be decompressed and the reforming process can be performed in the carburizing chamber as it is.

このように、改質処理を行う改質処理装置は、浸炭処理と改質処理とを同一の室内で行うタイプの装置でもよいし、浸炭処理と改質処理とを同装置内の別の室内で行うタイプの装置でもよい。さらに、浸炭装置とは別体の改質処理装置を用意して、被処理品の改質処理を行ってもよい。すなわち、浸炭装置でガス浸炭を行った後に、浸炭装置にてガス冷却又は油焼入れして室温まで冷却した被処理品を、別体の改質処理装置で改質処理してもよい。そして、さらに焼入れや焼戻しを施してもよい。
なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。例えば、本発明の表面改質方法に係る改質処理は、浸炭処理又は浸炭窒化処理が施された被処理品に対して好適であるが、窒化処理,酸窒化処理,酸炭窒化処理等の他の処理が施された被処理品に対しても適用することができる。
Thus, the reforming apparatus that performs the reforming process may be a type of apparatus that performs the carburizing process and the reforming process in the same room, or the carburizing process and the reforming process may be performed in different chambers in the apparatus. It may be a device of the type performed in Further, a reforming apparatus that is separate from the carburizing apparatus may be prepared to perform the reforming process on the product to be processed. That is, after performing gas carburizing with a carburizing apparatus, the article to be processed that has been cooled to room temperature by gas cooling or oil quenching with the carburizing apparatus may be reformed with a separate reforming apparatus. Further, quenching and tempering may be performed.
In addition, this embodiment shows an example of this invention and this invention is not limited to this embodiment. For example, the modification treatment according to the surface modification method of the present invention is suitable for a workpiece subjected to carburizing treatment or carbonitriding treatment, such as nitriding treatment, oxynitriding treatment, oxycarbonitriding treatment, etc. The present invention can also be applied to products to be processed that have been subjected to other processing.

また、被処理品にガス浸炭処理又はガス浸炭窒化処理を施した際に生じる粒界酸化とそれに伴う不完全焼入れ層は、できるだけ少ない方が好ましいので、ガス浸炭処理,ガス浸炭窒化処理における各操作を下記のようにすることが好ましい。すなわち、昇温や降温を真空中、N2 中、N2 と還元性ガスとの混合ガス中等で行う、浸炭期にカーボンポテンシャルを高くすることによって酸化性ガスの量が少ない雰囲気で浸炭する、拡散期にキャリヤーガスのCO濃度を下げることによって酸化性ガスの量が少ない雰囲気で拡散を行う、などである。これらは、いずれか1つを行ってもよいし、2つ以上を組み合わせて行ってもよい。このような操作によりガス浸炭処理又はガス浸炭窒化処理を施した被処理品に改質処理を行えば、粒界酸化とそれに伴う不完全焼入れ層をより一層低減することが可能である。 In addition, since the grain boundary oxidation and the incomplete quenching layer that accompanies the gas carburizing process or gas carbonitriding process on the product to be processed are preferably as small as possible, each operation in the gas carburizing process and gas carbonitriding process is preferable. Is preferably as follows. That is, the temperature is raised or lowered in vacuum, in N 2 , in a mixed gas of N 2 and a reducing gas, or the like, and carburized in an atmosphere with a small amount of oxidizing gas by increasing the carbon potential during the carburizing period. For example, diffusion is performed in an atmosphere with a small amount of oxidizing gas by reducing the CO concentration of the carrier gas during the diffusion period. Any one of these may be performed, or two or more thereof may be combined. By performing the reforming process on the article subjected to the gas carburizing process or the gas carbonitriding process by such an operation, it is possible to further reduce the grain boundary oxidation and the incomplete quenching layer associated therewith.

以下に実施例を示して、本発明をより詳細に説明する。
〔実施例A〕
図1に示すような構造の2室バッチ型ガス浸炭炉(処理質量:200kg/gross)を使用して、鋼製の被処理品のガス浸炭処理及び改質処理を行った。
まず、図1のガス浸炭炉の構造を説明する。このガス浸炭炉は、図示しない被処理品を収納してガス浸炭処理を施す加熱室2と、加熱室2でガス浸炭処理を施された被処理品をガス冷する前室1と、被処理品を油冷する油槽3と、を備えている。そして、前室1及び加熱室2は、図示しない真空ポンプにより減圧できるようになっている。
Hereinafter, the present invention will be described in more detail with reference to examples.
[Example A]
Using a two-chamber batch type gas carburizing furnace having a structure as shown in FIG. 1 (processing mass: 200 kg / gross), the gas carburizing process and the reforming process were performed on the steel products.
First, the structure of the gas carburizing furnace of FIG. 1 will be described. The gas carburizing furnace includes a heating chamber 2 that accommodates a workpiece to be processed (not shown) and performs a gas carburizing process, a front chamber 1 that gas-cools the workpiece that has been subjected to the gas carburizing process in the heating chamber 2, and a processing target. And an oil tank 3 for oil-cooling the product. The front chamber 1 and the heating chamber 2 can be decompressed by a vacuum pump (not shown).

前室1と加熱室2との間には開閉可能な中間扉が設けられていて、この中間扉が開状態となったときには両室1,2が連通するようになっている。また、前室1には開閉可能な前扉が設けられていて、この前扉が開状態となったときには前室1が外気と連通するようになっている。さらに、前室1の下方には、油槽3が連続して設けられていて、被処理品を油槽3内の油に浸漬することにより油冷できるようになっている。   An openable / closable intermediate door is provided between the front chamber 1 and the heating chamber 2, and the two chambers 1 and 2 communicate with each other when the intermediate door is opened. The front chamber 1 is provided with a front door that can be opened and closed. When the front door is opened, the front chamber 1 communicates with the outside air. Further, an oil tank 3 is continuously provided below the front chamber 1 so that the product can be cooled by immersing the product to be treated in the oil in the oil tank 3.

このようなガス浸炭炉を使用して、鋼(SCM415)製の被処理品にガス浸炭処理を施した。まず、比較例1の被処理品は、メタノールを直接加熱室2内に供給してキャリヤーガスを生成させC3 8 をエンリッチガスとする滴注式ガス浸炭法(浸炭期のカーボンポテンシャル(CP)は0.8%)にて、図2に示すような処理条件で浸炭処理を行った。すなわち、加熱室2内に被処理品を入れ、大気圧下950℃で120分間ガス浸炭を行った。その後、同じ加熱室2内で、被処理品を850℃に降温して30分間保持した後に、130℃の油を備える油槽3に投入して油焼入れを行った。 Using such a gas carburizing furnace, a gas carburizing process was performed on an article to be processed made of steel (SCM415). First, the article to be treated of Comparative Example 1 is a drop-type gas carburizing method (carbon potential (CP of carburizing period (CP)) in which methanol is directly supplied into the heating chamber 2 to generate a carrier gas and C 3 H 8 is an enriched gas. ) Was 0.8%), and carburizing was performed under the processing conditions shown in FIG. That is, the article to be treated was placed in the heating chamber 2 and gas carburized at 950 ° C. for 120 minutes under atmospheric pressure. Thereafter, in the same heating chamber 2, the article to be treated was cooled to 850 ° C. and held for 30 minutes, and then put into an oil tank 3 equipped with 130 ° C. oil for oil quenching.

次に、実施例A1,A2の被処理品は、メタノールを直接加熱室2内に供給してキャリヤーガスを生成させC3 8 をエンリッチガスとする滴注式ガス浸炭法(浸炭期のカーボンポテンシャル(CP)は1.2%)にて、図3に示すような処理条件でガス浸炭処理を行った。すなわち、加熱室2内に被処理品を入れ、大気圧下950℃で70分間ガス浸炭を行った。そして、ガス浸炭が終了したら、加熱室2内を減圧し、950℃で50分間改質処理を行った。 Next, in the products to be processed in Examples A1 and A2, methanol was directly supplied into the heating chamber 2 to generate a carrier gas, and C 3 H 8 was used as an enriched gas. Gas carburizing treatment was performed under the treatment conditions shown in FIG. 3 at a potential (CP) of 1.2%. That is, the article to be treated was placed in the heating chamber 2 and gas carburized at 950 ° C. under atmospheric pressure for 70 minutes. When the gas carburization was completed, the inside of the heating chamber 2 was depressurized, and a reforming process was performed at 950 ° C. for 50 minutes.

実施例A1は、加熱室2内に導入ガスを全く導入せず、圧力1Paで50分間熱処理を行い、実施例A2は、加熱室2内に導入ガスとしてメタンガスを導入しながら(流量は3L/分)、圧力10Paで50分間熱処理を行った。熱処理が終了したら、同じ加熱室2内で、被処理品を850℃に降温して30分間保持した後に、130℃の油を備える油槽3に投入して油焼入れを行った。
実施例A1,A2及び比較例1の被処理品の表面及び表面近傍を検査して、粒界酸化の深さ及び不完全焼入れ層の深さを測定した。結果を表1に示す。
In Example A1, no introduction gas was introduced into the heating chamber 2 and heat treatment was performed at a pressure of 1 Pa for 50 minutes. In Example A2, methane gas was introduced into the heating chamber 2 as an introduction gas (the flow rate was 3 L / Min), heat treatment was performed at a pressure of 10 Pa for 50 minutes. After the heat treatment was completed, the article to be treated was cooled to 850 ° C. and held for 30 minutes in the same heating chamber 2, and then put into an oil tank 3 equipped with 130 ° C. oil for oil quenching.
The surface of the article to be processed of Examples A1 and A2 and Comparative Example 1 and the vicinity of the surface were inspected, and the depth of grain boundary oxidation and the depth of the incompletely quenched layer were measured. The results are shown in Table 1.

Figure 0005837282
Figure 0005837282

その結果、実施例A1,A2の被処理品は、比較例1の被処理品に比べて粒界酸化の深さ及び不完全焼入れ層の深さが小さかった。この結果から、粒界酸化の深さ及び不完全焼入れ層の深さが改質処理により低減されたことが分かる。各被処理品の平坦部と鋭角部の表面炭素濃度を測定したところ、いずれの被処理品も両部の表面炭素濃度は均一で、実施例A1,A2、比較例1の間で差異はなかった。   As a result, the processed products of Examples A1 and A2 had a smaller depth of grain boundary oxidation and an incompletely hardened layer than the processed products of Comparative Example 1. From this result, it can be seen that the grain boundary oxidation depth and the depth of the incompletely quenched layer were reduced by the modification treatment. When the surface carbon concentration of the flat portion and the acute angle portion of each processed product was measured, the surface carbon concentration of both processed products was uniform, and there was no difference between Examples A1 and A2 and Comparative Example 1. It was.

また、比較例1の被処理品を切断し、その切断面を走査型電子顕微鏡で観察した結果を、図4の(a)に示し、同じく実施例A1の切断面を走査型電子顕微鏡で観察した結果を、図4の(b)に示す。この図から、実施例A1の被処理品は、比較例1の被処理品と比べて、粒界酸化の深さが浅いことが分かる。また、被処理品の仕上り肌についても、表1に示すように、実施例A1,A2の被処理品は、比較例1の被処理品と比べて光輝であった。   Moreover, the to-be-processed goods of the comparative example 1 were cut | disconnected, the result of having observed the cut surface with the scanning electron microscope is shown to (a) of FIG. 4, and the cut surface of Example A1 is similarly observed with the scanning electron microscope The result obtained is shown in FIG. From this figure, it can be seen that the processed product of Example A1 has a shallower grain boundary oxidation depth than the processed product of Comparative Example 1. In addition, as shown in Table 1, the finished products of the processed products of Examples A1 and A2 were brighter than the processed products of Comparative Example 1.

〔実施例B〕
実施例Aで使用したものとは別のバッチ型ガス浸炭炉(処理質量:50kg/gross)を使用して、鋼(SCM415)製の被処理品のガス浸炭処理を行った。
まず、比較例2の被処理品は、この浸炭炉の浸炭室内にメタノールを直接供給してキャリヤーガスを生成させC3 8 をエンリッチガスとする滴注式ガス浸炭法(浸炭期のカーボンポテンシャル(CP)は0.9%)にて、図5に示すような処理条件でガス浸炭処理を行った。すなわち、浸炭室内に被処理品を入れ、大気圧下930℃で120分間ガス浸炭を行った。そして、浸炭室内で被処理品を850℃に降温して30分間保持した後に、130℃の油を備える油槽に投入して油焼入れを行った。
[Example B]
Using a batch type gas carburizing furnace (processing mass: 50 kg / gross) different from that used in Example A, the steel (SCM415) processed product was gas carburized.
First, the article to be treated of Comparative Example 2 is a drop-type gas carburizing method in which methanol is directly supplied into the carburizing chamber of this carburizing furnace to generate carrier gas and enriched with C 3 H 8 (the carbon potential in the carburizing period). (CP) was 0.9%), and a gas carburizing process was performed under the processing conditions shown in FIG. That is, the article to be treated was placed in a carburizing chamber and gas carburized at 930 ° C. for 120 minutes under atmospheric pressure. And after lowering | hanging the to-be-processed goods to 850 degreeC in a carburizing chamber and hold | maintaining for 30 minutes, it injected into the oil tank provided with 130 degreeC oil, and performed oil quenching.

次に、実施例B1の被処理品は、比較例2の場合と全く同様にして930℃でガス浸炭を行った後に、加熱室では降温せず、前室にてN2 中で930℃から室温まで急冷した。そして、実施例Aで使用したバッチ型ガス浸炭炉を用いて改質処理を行った。すなわち、実施例Aで使用したガス浸炭炉の加熱室2内に、ガス浸炭された実施例B1の被処理品を入れ、加熱室2内に導入ガスを全く導入せず、圧力1Pa、温度930℃で50分間熱処理を行った。熱処理が終了したら、被処理品を加熱室2内にてN2 中で850℃に降温して30分間保持した後に、130℃の油を備える油槽3に投入して油焼入れを行った。
実施例B1び比較例2の被処理品の表面及び表面近傍を検査して、粒界酸化の深さ及び不完全焼入れ層の深さを測定した。結果を表2に示す。
Next, the article to be processed in Example B1 was subjected to gas carburization at 930 ° C. in the same manner as in Comparative Example 2, and then the temperature was not lowered in the heating chamber, but from 930 ° C. in N 2 in the front chamber. Quenched to room temperature. And the reforming process was performed using the batch type gas carburizing furnace used in Example A. That is, the gas-carburized product to be treated of Example B1 is placed in the heating chamber 2 of the gas carburizing furnace used in Example A, and no introduction gas is introduced into the heating chamber 2 at a pressure of 1 Pa and a temperature of 930. Heat treatment was performed at 50 ° C. for 50 minutes. When the heat treatment was completed, the article to be treated was cooled to 850 ° C. in N 2 in the heating chamber 2 and held for 30 minutes, and then put into an oil tank 3 equipped with 130 ° C. oil for oil quenching.
The surface of the article to be processed of Example B1 and Comparative Example 2 and the vicinity of the surface were inspected, and the depth of grain boundary oxidation and the depth of the incompletely quenched layer were measured. The results are shown in Table 2.

Figure 0005837282
Figure 0005837282

その結果、実施例B1の被処理品は、比較例2の被処理品に比べて粒界酸化の深さ及び不完全焼入れ層の深さが小さかった。この結果から、粒界酸化の深さ及び不完全焼入れ層の深さが改質処理により低減されたことが分かる。各被処理品の平坦部と鋭角部の表面炭素濃度を測定したところ、いずれの被処理品も両部の表面炭素濃度は均一で、実施例B1、比較例2の間で差異はなかった。また、被処理品の仕上り肌についても、実施例B1の被処理品は、比較例2の被処理品と比べて光輝であった。   As a result, the treated product of Example B1 had a smaller depth of grain boundary oxidation and an incompletely quenched layer than the treated product of Comparative Example 2. From this result, it can be seen that the grain boundary oxidation depth and the depth of the incompletely quenched layer were reduced by the modification treatment. When the surface carbon concentration of the flat part and the acute angle part of each processed product was measured, the surface carbon concentration of both processed products was uniform, and there was no difference between Example B1 and Comparative Example 2. In addition, regarding the finished skin of the treated product, the treated product of Example B1 was brighter than the treated product of Comparative Example 2.

本発明の表面改質方法に係る改質処理が施された鋼製部品は、自動車,建設機械,各種産業機械等に使用される部品として好適である。   Steel parts subjected to the modification treatment according to the surface modification method of the present invention are suitable as parts used in automobiles, construction machines, various industrial machines and the like.

1 前室
2 加熱室
3 油槽
1 Front chamber 2 Heating chamber 3 Oil tank

Claims (1)

ガス浸炭処理又はガス浸炭窒化処理が施されて表面及び表面近傍に酸化物が生成した鋼製の被処理品に改質処理を施して、前記被処理品の表面改質を行うに際して、
前記ガス浸炭処理又は前記ガス浸炭窒化処理における前記被処理品の昇温は、炭化水素ガス、水素、及びアンモニアの少なくとも1種とN 2 との混合ガス中で行うとともに、
前記改質処理として、圧力0.01Pa以上3000Pa以下の改質処理室内に入れた前記被処理品を、下記の3つの条件A,B,Cのうちのいずれかの導入ガス条件下、温度700℃以上1200℃以下で10分以上180分以下熱処理することを特徴とする表面改質方法。
(条件A)前記改質処理室に導入ガスを全く導入しない。
(条件B)前記改質処理室に1種以上の還元性ガスを導入ガスとして導入する。
(条件C)前記改質処理室に不活性ガス及び1種以上の還元性ガスの混合ガスを導入ガスとして導入する。
When the surface treatment of the article to be treated is performed by performing a modification treatment on the steel article to be treated in which gas carburizing treatment or gas carbonitriding treatment is performed and an oxide is generated on the surface and in the vicinity of the surface,
In the gas carburizing process or the gas carbonitriding process, the temperature of the article to be processed is increased in a mixed gas of N 2 and at least one of hydrocarbon gas, hydrogen, and ammonia ,
As the reforming treatment, the article to be treated put in a reforming treatment chamber having a pressure of 0.01 Pa or more and 3000 Pa or less is subjected to a temperature of 700 under an introduced gas condition in any of the following three conditions A, B, and C. A surface modification method characterized by performing a heat treatment at a temperature of not lower than 1200 ° C and not higher than 1200 ° C for not shorter than 10 minutes and not longer than 180 minutes.
(Condition A) No introduction gas is introduced into the reforming chamber.
(Condition B) One or more reducing gases are introduced into the reforming chamber as an introduction gas.
(Condition C) A mixed gas of an inert gas and one or more reducing gases is introduced as an introduction gas into the reforming chamber.
JP2010057430A 2010-03-15 2010-03-15 Surface modification method Active JP5837282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010057430A JP5837282B2 (en) 2010-03-15 2010-03-15 Surface modification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010057430A JP5837282B2 (en) 2010-03-15 2010-03-15 Surface modification method

Publications (2)

Publication Number Publication Date
JP2011190498A JP2011190498A (en) 2011-09-29
JP5837282B2 true JP5837282B2 (en) 2015-12-24

Family

ID=44795716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010057430A Active JP5837282B2 (en) 2010-03-15 2010-03-15 Surface modification method

Country Status (1)

Country Link
JP (1) JP5837282B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6935326B2 (en) * 2017-12-28 2021-09-15 エア・ウォーター株式会社 Gas carburizing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104066A (en) * 1984-10-27 1986-05-22 Chugai Ro Kogyo Kaisha Ltd Method for gas-carburizing and hardening steel part
JP3072537B2 (en) * 1992-03-31 2000-07-31 大同特殊鋼株式会社 Plasma carburizing method for steel surface
JP3854851B2 (en) * 2001-11-09 2006-12-06 中外炉工業株式会社 Carburizing method for steel parts
JP2005120404A (en) * 2003-10-15 2005-05-12 Nsk Ltd Gas carburization method, gas carbonitriding method, and surface treatment device
JP4292280B2 (en) * 2003-12-17 2009-07-08 Dowaサーモテック株式会社 Carburizing method
JP5233258B2 (en) * 2007-12-03 2013-07-10 アイシン精機株式会社 Method and apparatus for producing steel material having steel surface with controlled carbon concentration

Also Published As

Publication number Publication date
JP2011190498A (en) 2011-09-29

Similar Documents

Publication Publication Date Title
JP3894635B2 (en) Carburized member, manufacturing method thereof, and carburizing system
EP0242089B1 (en) Method of improving surface wear resistance of a metal component
JP2007046088A (en) Nitrided quenched part, and method for producing the same
EP2706131B1 (en) Method for manufacturing machine part
EP2390378A1 (en) Method and apparatus for nitriding metal articles
KR20060114368A (en) Method for activating surface of metal member
CN113862610A (en) Pretreatment method for improving corrosion resistance of carburized layer
JP5632454B2 (en) Spring steel and steel surface treatment method
JP3428936B2 (en) Gas curing method for metal surface
JP5837282B2 (en) Surface modification method
JP3996482B2 (en) Vacuum carburizing method
JP5593717B2 (en) Heat treatment method for steel
WO2015125767A1 (en) Method for producing machine component
JP3976221B2 (en) Gas soft nitriding method
JP6935326B2 (en) Gas carburizing method
EP2899292B1 (en) Method for producing machine part
JPH0586417A (en) Surface treatment for improving strength
KR102494316B1 (en) Gas carburizing method for reductions of raw materials of carburizing and grain boundary oxidation
KR20160075220A (en) Nitrogen solution process
JP2018028113A (en) Method for manufacturing steel material
KR100522919B1 (en) Low distortion treatment method of high speed tool steel with corrosion-resistance and abrasion-resistance
JP3995178B2 (en) Gas nitriding treatment method for maraging steel
JP3025493B1 (en) Gas nitriding method for maraging steel
KR20210093829A (en) Complex heat treatment method of steel for gear
KR20100115637A (en) Eco friendly nitrocarburizing process at high temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141202

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151105

R150 Certificate of patent or registration of utility model

Ref document number: 5837282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250