WO2003037553A1 - Method and apparatus for the production of metal powder - Google Patents

Method and apparatus for the production of metal powder Download PDF

Info

Publication number
WO2003037553A1
WO2003037553A1 PCT/JP2002/011026 JP0211026W WO03037553A1 WO 2003037553 A1 WO2003037553 A1 WO 2003037553A1 JP 0211026 W JP0211026 W JP 0211026W WO 03037553 A1 WO03037553 A1 WO 03037553A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
powder
titanium
electrode
water
Prior art date
Application number
PCT/JP2002/011026
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihiro Hirata
Yoshio Ueda
Hiroaki Takase
Kazuaki Suzuki
Original Assignee
Phild Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phild Co., Ltd. filed Critical Phild Co., Ltd.
Priority to JP2003539878A priority Critical patent/JPWO2003037553A1/en
Priority to CA002464910A priority patent/CA2464910A1/en
Priority to MXPA04003959A priority patent/MXPA04003959A/en
Priority to HU0401662A priority patent/HUP0401662A2/en
Priority to EP02802371A priority patent/EP1449605A4/en
Priority to BR0213735-6A priority patent/BR0213735A/en
Priority to US10/493,903 priority patent/US7300491B2/en
Publication of WO2003037553A1 publication Critical patent/WO2003037553A1/en
Priority to NO20042178A priority patent/NO20042178L/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a method and an apparatus for economically producing metal powder having a high elemental metal purity and a uniform powder shape and particle size.
  • the present invention also relates to the production of titanium, zirconium, germanium, tin, gold, platinum, silver, and particularly titanium powder as the metal powder.
  • Elemental metal raw materials are processed into various forms depending on the application, such as powdered products of high-purity elemental metals, plates, rods, fine wires and foils.
  • metal powder has been manufactured using the classical method of mechanically directly pulverizing metal particles into powder, or the method of blowing molten metal into powder by blowing it off with a gas.
  • the classical method of mechanically directly pulverizing metal particles into powder or the method of blowing molten metal into powder by blowing it off with a gas.
  • Hydrodehydrogenation and rotating electrode methods have been put into practical use as an improved method for producing titanium metal powder.
  • Hydrodehydrogenation is a method that uses titanium sponge, dispersing materials, chips generated by cutting, etc.
  • the raw material is heated in a hydrogen atmosphere, the hydrogen gas is absorbed to make the material embrittled, and the material is pulverized in this embrittled state, and then heated again in a vacuum to release the hydrogen gas to form a powder. How to get.
  • the rotating electrode method uses a material obtained by forming a round bar from a dispersing material or a dispersion-processed material obtained by adding a process such as forging or rolling to the dispersing material, and the raw material of the round bar is placed in an inert gas atmosphere such as argon or helium.
  • the tip is dispersed by a heat source such as an arc or plasma arc while rotating at high speed, and the molten metal flowing down is scattered by centrifugal force to obtain spherical powder.
  • a heat source such as an arc or plasma arc
  • the above-mentioned invention of the production of high-performance titanium-containing water is based on the fact that metal ion vapor generated by plasma water discharge between a titanium metal electrode and counter electrode contacts and disperses with water.
  • This invention relates to a method for producing high-performance water in which metallic titanium is ultra-finely dispersed by using the present invention.
  • Metal powder, particularly metal titanium powder can be obtained, and the production cost can be significantly reduced.
  • the present invention has the following constitutions (1) to (7), wherein metal ion vapor generated by plasma water discharge between an elemental metal electrode and a counter electrode is brought into contact with water to form a powder. This is based on
  • the counter electrode during plasma underwater discharge does not use the same kind of metal, forms a pair with carbon, and vibrates or slides the pair to prevent welding between the electrodes and instantaneously discharge the plasma. Therefore, the amount of dispersion can be easily controlled, and the current value flowing through the circuit can be easily changed by changing the diameter and length of the carbon pair, so that it is not necessary to select a power supply.
  • the electrode pair to be discharged uses carbon as the counter electrode without using the same kind of metal, and the electrode pair is vibrated or slid to prevent welding and discharge instantaneously, the amount of dispersion is easy to control.
  • the value of the current flowing through the circuit can be easily changed, eliminating the need to select a power supply.
  • the carbon particles dispersed at the same time as the elemental metal are harmless. Most of the carbon particles can be easily removed by a filtration filter, and a highly pure water of the elemental metal can be obtained.
  • titanium powder becomes powdered and dispersed, and the metal titanium powder settles out in a short time without melting or floating, and is separated. It is discharged from the metallic titanium powder outlet 9 and separated from the filtrate 12 by the filtration device 11 to form titanium powder 13.

Abstract

A method for producing a metal powder which comprises effecting a plasma discharge in water between an electrode of an elemental metal and a counter electrode to generate a metal ion vapor and contacting the metal ion vapor with water to thereby convert the metal ion vapor to a powder; and an apparatus for producing a metal powder which comprises a power source for high voltage high current discharge, a device for supplying an electrode of a metal such as titanium, a high voltage discharge device having an electrode of a metal such as titanium and a counter electrode, a device for vibrating or sliding anelectrode, a water tank, a water inlet, an outlet and a discharge pump for discharging a dispersion of a metal such as titanium, and a device for separating and recovering a powder of a metal such as titanium. The method and the apparatus allows the production of a metal powder having high purity and being uniform in the shape and size of particles, at a low cost.

Description

明細書 金属粉末の製造方法及びその装置  Description Method for producing metal powder and apparatus therefor
技術分野 Technical field
本発明は、 元素金属の純度が高く、 かつ粉末形状や粒度が均一な金属粉末を 経済的に製造する方法及び装置に関する。  The present invention relates to a method and an apparatus for economically producing metal powder having a high elemental metal purity and a uniform powder shape and particle size.
また、 本発明は、 上記金属粉末としてチタン、 ジルコニウム、 ゲルマニウム、 スズ、 金、 白金、 銀、 特にチタン粉末の製造に関するものである。 背景技術  The present invention also relates to the production of titanium, zirconium, germanium, tin, gold, platinum, silver, and particularly titanium powder as the metal powder. Background art
元素金属原料は、 特に高純度の元素金属の粉末成形品、 板材、 棒状、 細線や 箔材など用途に応じて多種の形態に加工されている。  Elemental metal raw materials are processed into various forms depending on the application, such as powdered products of high-purity elemental metals, plates, rods, fine wires and foils.
最近、 粉末冶金法や溶射法などの成形分野において成形原料として高純度の 金属粉末の使用が注目されている。 粉末冶金法は、 機械部品の製造など応用面 が広く重要視されており、 それにともないその出発原料としての金属粉末の需 要も増大化している。  Recently, attention has been paid to the use of high-purity metal powder as a raw material for molding in molding fields such as powder metallurgy and thermal spraying. The application of powder metallurgy is widely regarded as important, for example, in the production of mechanical parts, and the demand for metal powder as a starting material is increasing accordingly.
従来、 金属粉末の製造には、 金属粒を機械的に直接粉砕して粉末にする古典 的方法や溶融金属をガスにて吹き飛ばして粉末にする方法などが利用されてい るが、 粉末形状や粒度の均一性又は経済性などに難点があった。  Conventionally, metal powder has been manufactured using the classical method of mechanically directly pulverizing metal particles into powder, or the method of blowing molten metal into powder by blowing it off with a gas. However, there were difficulties in the uniformity or economical efficiency of such a method.
金属粉末製造の比較的新しい方法として、 電解製造法なども知られているが、 この方法によって平滑緻密で均一な結晶組織の析出を得る電解条件の範囲外で 金属の析出を行なうと、 もろい海綿状又は粉末状の金属が得られることが報告 されている。 しかし、 このような公知の製造方法によって得られた金属粉末は、 純度の問題は勿論金属の粉末形状や粒度の均一性において満足できるものでは なく、 また経済性などの問題は解決されていなかった。  As a relatively new method for producing metal powders, electrolytic production is also known, but if this method is used to deposit metals outside the range of electrolytic conditions to obtain a smooth, dense and uniform crystal structure, brittle sponges It has been reported that metallic or powdery metals can be obtained. However, the metal powder obtained by such a known production method is not satisfactory in purity of course, as well as in the uniformity of metal powder shape and particle size, and has not solved problems such as economy. .
金属のなかで、 特に金属チタンは、 古来からの鉄や銅又はアルミニウムなど に比して比較的に新しい金属であり、 軽くて高温における優れた強度や耐食性 などを活かして工業的に多用されている。 Among metals, titanium in particular is a relatively new metal compared to ancient iron, copper or aluminum, and is light in weight and has excellent strength and corrosion resistance at high temperatures. It is widely used industrially by taking advantage of such factors.
例えば、 航空機宇宙分野におけるジ ットエンジン材料や航空機の構造部材 又は宇宙船部材、 火力発電や原子力発電における熱交換器材料、 高分子化学ェ 業における触媒材料、 日用品分野の眼鏡フレームやゴルフクラブヘッド、 さら には健康用品や医療機器又は医科歯科材料など多岐にわたっており、 利用分野 はさらに拡大する方向にある。 今後は、 ステンレス鋼やジュラルミンなどと用 途を競っており、 今やそれらを超える材料になると予想される。  Examples include jet engine materials in the aerospace field, aircraft structural or spacecraft components, heat exchanger materials in thermal and nuclear power generation, catalyst materials in the polymer chemistry industry, eyeglass frames and golf club heads in the daily necessities field, and more. There are a wide variety of products such as health supplies, medical equipment and medical and dental materials, and the fields of use are expanding further. In the future, it is competing with stainless steel and duralumin for applications, and it is expected that the material will surpass them now.
金属チタンは、 難加工性や難切削性などの物性のため、 複雑な形状の機械部 品を製造する場合、 原料として分散材を用いると、 熱間鍛造や圧延などの塑性 加工を行なった後に切削などの機械加ェを行なわなければならず、 製造工数が 増加し製造コストが嵩んでしまう。  Titanium metal is difficult to machine and hard to cut, so when manufacturing mechanical parts with complicated shapes, if a dispersing material is used as a raw material, after performing plastic working such as hot forging or rolling, Machine processing such as cutting must be performed, which increases the manufacturing man-hours and increases the manufacturing cost.
したがって、 金属チタンを利用する際には、 上述するように粉末冶金法が多 用されており、 このためにチタン粉末、 特に純度が高く、 粉末形状や粒度の均 一性の良好なチタン粉末が必要となっている。 従来の金属一般の粉末製造法に よりチタン粉末を製造しても、 他の金属の場合と同様に粉末形状や粒度の均一 性又は経済性などで問題があり、 現在では、 純度が高く、 粉末形状や粒度の均 一性においてより優れたチタン粉末の製造方法の開発が待たれている。  Therefore, when metal titanium is used, powder metallurgy is often used as described above. For this reason, titanium powder, especially titanium powder having high purity and uniform powder shape and particle size, is required. Is needed. Even if titanium powder is produced by the conventional powder production method for general metals, there are problems with the powder shape, particle size uniformity, and economic efficiency, as in the case of other metals. Development of a method for producing titanium powder that is more uniform in shape and particle size is awaited.
例えば、 金属チタン粉末の改良製法としては、 水素化脱水素法や回転電極法 が実用化されており、 水素化脱水素法は、 スポンジチタンや分散材又は切削加 ェなどで生じた切り屑などを原料とし、 この原料を水素雰囲気中で加熱し、 水 素ガスを吸収させて脆化させ、 この脆化した状態で粉砕した後、 再び真空中で 加熱して水素ガスを放出させて粉末を得る方法である。 回転電極法は、 分散材 又は分散材に鍛造や圧延などの加工を加えた分散加工材から丸棒に成形した材 料を原料とし、 この丸棒原料をアルゴンやヘリゥムなどの不活性ガス雰囲気中 で高速回転させながら、 その先端をアークやプラズマアークなどの熱源で分散 し、 流下する溶湯を遠心力で飛散させて球状の粉末を得る方法である。 この方 法では、 分散させる金属の分散埴土の制御が非常に難しい。  For example, hydrodehydrogenation and rotating electrode methods have been put into practical use as an improved method for producing titanium metal powder.Hydrodehydrogenation is a method that uses titanium sponge, dispersing materials, chips generated by cutting, etc. The raw material is heated in a hydrogen atmosphere, the hydrogen gas is absorbed to make the material embrittled, and the material is pulverized in this embrittled state, and then heated again in a vacuum to release the hydrogen gas to form a powder. How to get. The rotating electrode method uses a material obtained by forming a round bar from a dispersing material or a dispersion-processed material obtained by adding a process such as forging or rolling to the dispersing material, and the raw material of the round bar is placed in an inert gas atmosphere such as argon or helium. In this method, the tip is dispersed by a heat source such as an arc or plasma arc while rotating at high speed, and the molten metal flowing down is scattered by centrifugal force to obtain spherical powder. In this method, it is very difficult to control the dispersed clay of the metal to be dispersed.
水素化脱水素化法で得られるチタン粉末は、 球状が不規則で、 金型による成 形が可能であるが、 加熱工程を二回繰り返す必要がある。 ボールミルなどによ る機械的な粉碎工程を講ずることもできるが、 チタン粉末の酸素による汚染が 避けられない。 また、 回転電極法では、 不活性ガス中で溶融したチタン原料を 粉化するので、 粉末の形状が球状であるために流動性が良好で、 酸素による汚 染は生じないが、 成形個化性に劣る欠点がある。 さらに、 上記両方法ではとも にバッチ式であるため、 粉末の製造コストが高くなるという問題もある。 このような、 品質上や製造コストの問題を解決したチタン粉末の製造方法と してアトマイズ法が開発された。 これは、 水冷銅ルツボ中でプラズマアークな どの熱源を用レヽて原料を分散し、 ルツボの一端から溶湯を連続的に流下させ、 この溶湯流にアルゴンやヘリウムなどの不活性ガスを噴射して溶湯を霧化して 粉末を得る方法である。 しかし、 この方法でもチタンの分散材又は分散加工材 を原料とするので、 従来法に比して製造コス トの大幅な低下は困難であった。 また、 製造コス トをより低下させ、 酸素による汚染も避け、 成形し易い不規 則な球状又は流動性のを改良した粉末チタンの製造方法が特開平 5— 9 3 2 1 3号公報に開示されているが、 この方法では、 スポンジチタンを冷間静水圧プ レス処理し固化した棒状材料を不活性ガス中で溶湯流として、 この溶湯流にァ ルゴンやへリウムなどの不活性ガスを嘖射して溶湯を霧化して粉末が得られる が、 この改良法によっても、 純度や粉末の球状形状又は粉末粒度の一定性が良 好とはいえず、 製造コストも満足できるものではなかった。 発明の開示 The titanium powder obtained by the hydrodehydrogenation method has irregular spheres and can be formed by a mold, but the heating step must be repeated twice. By ball mill etc. Although a mechanical pulverization process can be used, contamination of titanium powder with oxygen is inevitable. In addition, in the rotating electrode method, the titanium raw material melted in an inert gas is pulverized, so that the powder has a spherical shape, so that the flowability is good, and there is no contamination by oxygen. There is a disadvantage that is inferior. Furthermore, since both of the above methods are of a batch type, there is a problem that the production cost of the powder increases. The atomization method has been developed as a method for producing titanium powder that has solved such problems of quality and production cost. This is accomplished by dispersing the raw material in a water-cooled copper crucible using a heat source such as a plasma arc, allowing the molten metal to flow continuously from one end of the crucible, and injecting an inert gas such as argon or helium into the molten metal flow. This is a method of atomizing molten metal to obtain powder. However, even in this method, since a titanium dispersion material or a dispersion processed material is used as a raw material, it has been difficult to significantly reduce the production cost as compared with the conventional method. Also, a method for producing irregular titanium or powdered titanium with improved fluidity, which is easy to mold, which further reduces the production cost, avoids contamination by oxygen, and is disclosed in JP-A-5-93213. However, in this method, a rod-shaped material obtained by cold isostatic pressing titanium sponge and solidifying it is used as a molten metal stream in an inert gas, and an inert gas such as argon or helium is added to the molten metal stream. Powder can be obtained by spraying and atomizing the molten metal. However, even with this improved method, the purity, the spherical shape of the powder, or the uniformity of the powder particle size cannot be said to be good, and the production cost has not been satisfactory. Disclosure of the invention
上述するように金属粉末、 特に金属チタン粉末は、 粉末冶金法などの新しい 成形加工法の進展にともない、 必要性や需要が増大しているが、 従来かかる要 求に対して十分に対応できる粉末製造方法が開発されておらず、 特に元素金属 の純度、 粉末の球状形状や粉末粒度の均一性、 さらには製造コス トで問題があ つた。  As mentioned above, the need and demand for metal powders, especially metal titanium powders, are increasing with the development of new molding methods such as powder metallurgy, but powders that can sufficiently respond to such demands in the past Manufacturing methods have not been developed, and there have been problems in particular in the purity of elemental metals, the spherical shape and uniformity of powder particle size, and the manufacturing cost.
そこで、 本発明では、 粉末冶金法などの成形手段のための粉末の球状形状の 均一性や粉末粒度の一定性に優れた高純度の元素金属の粉末原料を供給製造す ることを課題とする。  Accordingly, an object of the present invention is to supply and manufacture a powder material of a high-purity elemental metal having excellent uniformity of the spherical shape of the powder and uniformity of the powder particle size for a molding means such as a powder metallurgy method. .
本発明者らは、 チタン粉末のような元素金属粉末の製造において、 元素金属 の純度、 粉末の球状形状の均一性、 粉末粒度の一定性や製造コストなどの問題 を解決するために、 種々の検討した結果、 本発明者が先の特許出願 (特願 2001 - 315446号) におけるチタン含有高機能水の製造に関する技術を利用して、 上記 課題を解決することができた。 In the production of elemental metal powders such as titanium powder, the present inventors In order to solve problems such as the purity of powder, the uniformity of the spherical shape of the powder, the uniformity of the particle size of the powder, and the manufacturing cost, the inventors of the present invention applied for a patent (Japanese Patent Application No. 2001-315446). The above-mentioned problems could be solved by utilizing the technology related to the production of high-performance titanium-containing water in Japan.
先に開発した上記チタン含有高機能水の製造の発明 (特願 2001- 315446号) は、 金属チタン電極と対極の間でプラズマ水中放電して生じた金属イオン蒸気が水 と接触 ·分散させることによる金属チタンが超微分散した高機能水を製造する 方法にかかるものであるが、 本発明はこの技術を利用して、 純度が高く、 粉末 の球状形状や粉末粒度の均一性が優れた元素金属粉末、 特に金属チタン粉末が 得られ、 しかも製造コストを大幅に低下することができる。  The above-mentioned invention of the production of high-performance titanium-containing water (Japanese Patent Application No. 2001-315446) is based on the fact that metal ion vapor generated by plasma water discharge between a titanium metal electrode and counter electrode contacts and disperses with water. This invention relates to a method for producing high-performance water in which metallic titanium is ultra-finely dispersed by using the present invention. Metal powder, particularly metal titanium powder, can be obtained, and the production cost can be significantly reduced.
本発明の方法及び装置は、 従来の金属粉末の製造方法やチタン粉末の製造と は、 その発想又は構成が根本的に相違するもので、 基本的にプラズマ水中放電 により元素金属チタンを微粒子化させることによって水中に沈下した金属粉末 を得るもので、 この手法は、 チタン以外の金属にも適用であるものであって、 従来法とは全く異なる面から金属粉末の製造方法及び装置を改良したものであ る。  The method and apparatus of the present invention are fundamentally different from the conventional method for producing metal powder and the method for producing titanium powder in the concept or configuration. This method is intended to obtain metal powder that has submerged in water.This method is also applicable to metals other than titanium, and is an improvement of the method and apparatus for producing metal powder from a completely different aspect from the conventional method. It is.
すなわち、 本発明は、 以下の (1 ) 〜 (7 ) の構成を有するもので、 元素金 属の電極と対極の間でプラズマ水中放電して生じた金属イオン蒸気を水と接触 させて粉末化させることを基本とするものである。  That is, the present invention has the following constitutions (1) to (7), wherein metal ion vapor generated by plasma water discharge between an elemental metal electrode and a counter electrode is brought into contact with water to form a powder. This is based on
( 1 ) 元素金属の電極と対極の間でプラズマ水中放電して生ずる金属イオン蒸 気を水と接触させて粉末化させることを特徴とする金属粉末を製造する 方法。  (1) A method for producing metal powder, comprising: bringing metal ion vapor generated by discharge in plasma water between an element metal electrode and a counter electrode into contact with water to form a powder.
( 2 ) 元素金属原料が、 チタン、 ジルコニウム、 ゲルマニウム、 スズ、 金、 白 金又は銀であることを特徴とする上記 (1 ) 記載の金属粉末を製造する 方法。  (2) The method for producing a metal powder according to the above (1), wherein the elemental metal raw material is titanium, zirconium, germanium, tin, gold, platinum or silver.
( 3 ) 高電圧 ·高電流放電用電源、 元素金属電極供給装置、 元素金属と対極を 備えた高圧放電発生装置、 水収容タンク、 水収容タンクへの水供給口、 生成した元素金属微粒子の分散水の排出口、 排出ポンプ及びろ過装置よ り構成されることを特徴とする金属粉末を製造する装置。 ( 4 ) 元素金属として、 チタン、 ジルコニウム、 ゲルマニウム、 スズ、 金、 白 金又は銀から選ばれた元素金属原料を使用することをことを特徴とする 上記 (3 ) に記載の金属粉末を製造する装置。 (3) Power supply for high voltage and high current discharge, element metal electrode supply device, high pressure discharge generator with element metal and counter electrode, water storage tank, water supply port to water storage tank, dispersion of generated element metal fine particles A device for producing metal powder, comprising a water discharge port, a discharge pump and a filtration device. (4) The metal powder as described in (3) above, wherein an elemental metal material selected from titanium, zirconium, germanium, tin, gold, platinum or silver is used as the elemental metal. apparatus.
( 5 ) 電極の元素金属原料が、 棒状、 板状又は線状のものであることを特徴と する上記 (3 ) 又は (4 ) に記載の金属粉末を製造する装置。  (5) The apparatus for producing a metal powder according to the above (3) or (4), wherein the elemental metal raw material of the electrode is a rod-shaped, plate-shaped or linear-shaped material.
( 6 ) —方の電極を元素金属とし、 対極としてカーボン電極を用い、 該対の電 極を振動又は摺動させることにより電極同士の溶着を防ぎ、 瞬間的にプ ラズマ放電させるため分散量の制御を行うことを特徴とする上記 (4 ) (6) The negative electrode is made of elemental metal, a carbon electrode is used as the counter electrode, and the electrodes of the pair are vibrated or slid to prevent welding between the electrodes. (4) characterized in that the control is performed.
' 〜 (6 ) のいずれかに記載の金属粉末を製造する装置。 'An apparatus for producing a metal powder according to any one of (1) to (6).
( 7 ) カーボン電極の径及び/又は長さを変えることにより容易に回路に流れ る電流値を変更することを特徴とする上記 (3 ) 〜 (6 ) のいずれかに 記載の金属粉末を製造する装置。  (7) The metal powder according to any one of (3) to (6) above, wherein the current value flowing in the circuit is easily changed by changing the diameter and / or length of the carbon electrode. Equipment to do.
本発明の方法及び装置では、 きわめて効率良く、 元素金属粉末を製造するこ とができる。 そして、 本発明では、 目的とする金属粉末以外の副生成物や不純 物などの生成が全く無い。 また、 金属原料の加熱による金属酸化物の発生もき わめて微量で、 しかも得られた金属粉末の球状形状の均一性や粉末粒度の一定 性が優れており、 製造コストも大幅な低下が可能である。 また、 バッチ生産と 共に、 連続生産も可能で、 均一粒径の金属粉末の大量生産の実用化が可能で、 経済性を十分に満たすことができる。  According to the method and apparatus of the present invention, elemental metal powder can be produced very efficiently. In the present invention, there is no generation of by-products or impurities other than the target metal powder. In addition, the generation of metal oxides due to heating of the metal raw material is extremely small, and the obtained metal powder has excellent uniformity of spherical shape and uniformity of powder particle size. It is possible. In addition to batch production, continuous production is also possible, and mass production of metal powder with a uniform particle size can be put to practical use, and economic efficiency can be sufficiently satisfied.
本発明の製造工程においては、 水中で元素金属電極と対極の間でプラズマ放 電させると、 元素金属のイオン蒸気が得られ、 その蒸気が水と接触し、 水中で 瞬時に分散して微粒子化し、 微粉末を形成する。 すなわち、 プラズマ水中放電 時の対極を同種の金属を使用せず、 カーボンとの対を構成し、 かつその対を振 動又は摺動させることにより電極同士の溶着を防ぎ、 瞬間的にプラズマ放電さ せるため分散量の制御が簡単に行え、 またカーボン対の径及び長さを変えるこ とにより容易に回路に流れる電流値を変更することができるため、 電源の選択 の必要が無くなる。 また、 金属と同時に分散したカーボン粒子は無害であり、 ほとんどすべてをろ過装置で容易に除去でき、 純度の高い金属分散水ができる c かく して、 本発明において求める電極に用いた元素金属の微粉末となる。 本発明によれば、 元素金属原料としては、 チタンの他に、 、 ジルコニウム、 ゲルマニウム、 スズ、 金、 白金又は銀を使用して、 それら金属の微細粉末を製 造することができる。 In the production process of the present invention, when plasma discharge is performed between water and the elemental metal electrode in the water, ion vapor of the elemental metal is obtained, and the vapor comes into contact with water and is instantaneously dispersed in water to become fine particles. Forming a fine powder. In other words, the counter electrode during plasma underwater discharge does not use the same kind of metal, forms a pair with carbon, and vibrates or slides the pair to prevent welding between the electrodes and instantaneously discharge the plasma. Therefore, the amount of dispersion can be easily controlled, and the current value flowing through the circuit can be easily changed by changing the diameter and length of the carbon pair, so that it is not necessary to select a power supply. Further, the carbon particles dispersed simultaneously with the metal is harmless, almost all can easily be removed by filtration apparatus, and c thus can high metal dispersion water purity, fine elemental metal used in the electrode for obtaining the present invention It becomes a powder. According to the present invention, fine powders of these metals can be produced using zirconium, germanium, tin, gold, platinum or silver in addition to titanium as the elemental metal raw material.
本発明の基本構成は、 上述するように元素金属の電極とカーボンなどの対極 を用いてプラズマ水中放電により発生した金属イオン蒸気を水と接触させて粉 末化させることにより、 均一粒径の金属粉末を製造する方法であって、 その製 造工程の概略は、 図 1の製造フローチャートに示す。  As described above, the basic configuration of the present invention is to form a metal particle having a uniform particle size by contacting metal ion vapor generated by plasma underwater discharge with water using an elemental metal electrode and a counter electrode such as carbon to form powder. This is a method for producing a powder, and the outline of the production process is shown in the production flowchart of FIG.
図 1に示すように、 金属チタン粉末製造の水収容タンク内に蒸留水などの精 製水を注入しておく。 元素金属の電極供給装置より電極の金属チタン棒などを 供給して対極の炭素棒との間でプラズマ水中放電する。 水中放電によって発生 した元素金属イオン蒸気が水と接触すると、 瞬間的に水中に分散することとな る。 このときにミクロンスケールの非常に細かいチタンの微粒子が生成し、 粉 末状となって分散状態となり、 元素金属の分散水を形成する。 水中の元素金属 の微粉末は、 熔融や浮遊することなく、 短時間のうちに沈降する。 これをろ過 精製して、 元素金属の微粉末を得る。 得られた元素金属の微粉末は、 高純度で、 粉末の球形形状が一定で、 粒度がそろっている。 図面の簡単な説明  As shown in Fig. 1, purified water, such as distilled water, is poured into the water storage tank for the production of titanium metal powder. A metal titanium rod, etc., is supplied from an elemental metal electrode supply device, and a discharge in the plasma is generated between the element and the carbon rod. When elemental metal ion vapor generated by underwater discharge comes into contact with water, it is instantaneously dispersed in water. At this time, very fine micron-scale titanium fine particles are formed, become powdery and dispersed, and form water in which elemental metal is dispersed. The fine powder of elemental metal in water sediments in a short time without melting or floating. This is filtered and purified to obtain elemental metal fine powder. The obtained fine powder of elemental metal is of high purity, the spherical shape of the powder is constant, and the particle size is uniform. BRIEF DESCRIPTION OF THE FIGURES
「図 1」  "Figure 1"
本発明の金属粉末製造時のフローチャート  Flow chart of manufacturing the metal powder of the present invention
「図 2」  "Figure 2"
本発明の金属粉末製造のための装置 符号の説明  Apparatus for producing metal powder of the present invention
1 プラズマ放電発生装置  1 Plasma discharge generator
2 高圧 ·高電流放電用電源  2 Power supply for high voltage and high current discharge
3 電極振動又は摺動装置  3 Electrode vibration or sliding device
4 8 水供給口 Four 8 Water supply port
9 元素金属分散液排出口  9 Element metal dispersion outlet
1 0 排出ポンプ  1 0 Discharge pump
1 1 ろ過装置  1 1 Filtration device
1 2 濾液  1 2 Filtrate
1 3 金属粉末  1 3 Metal powder
1 4 水収容タンク 発明を実施するための最良の形態  1 4 Water storage tank BEST MODE FOR CARRYING OUT THE INVENTION
以下に金属チタン粉末の製造を例にとって説明するが、 本発明はチタン粉末 の製造に限定されるものではない。  Hereinafter, the production of titanium metal powder will be described as an example, but the present invention is not limited to the production of titanium powder.
本発明においては、 極めて効率良く、 純度の高いチタン粉末の製造を実現で きるものであるが、 このためには、 金属チタンとなる電極の供給量の制御が重 要である。 例えば、 カーボン対の径及ぴ長さを変えて回路に流れる電流値を変 更することも一つの手段である。  In the present invention, it is possible to realize highly efficient production of highly pure titanium powder, but for this purpose, it is important to control the supply amount of the electrode to be metallic titanium. For example, one method is to change the value of the current flowing through the circuit by changing the diameter and length of the carbon pair.
本発明の製造装置によれば、 水収容タンク内でプラズマ水中放電するため、 それに耐える程度の耐圧性を有する水収容タンクが必要である。  According to the production apparatus of the present invention, since the plasma underwater discharge occurs in the water storage tank, a water storage tank having a pressure resistance enough to withstand the discharge is required.
また、 放電させる電極対を同種の金属を使用せずにカーボンを対極に使用し、 その電極対を振動又は摺動させることにより溶着を防ぎ、 瞬間的に放電させる ため、 分散量の制御が簡単に行え、 さらにカーボン極の径及ぴ長さを変えるこ とにより容易に回路に流れる電流値を変更できるため電源の選択の必要が無く なる。 この際、 元素金属と同時に分散したカーボン粒子は無害であり、 ほとん どすベてをろ過フィルターで容易に除去でき、 純度の高い元素金属の分散水が 得られる。  In addition, since the electrode pair to be discharged uses carbon as the counter electrode without using the same kind of metal, and the electrode pair is vibrated or slid to prevent welding and discharge instantaneously, the amount of dispersion is easy to control. By changing the diameter and length of the carbon electrode, the value of the current flowing through the circuit can be easily changed, eliminating the need to select a power supply. At this time, the carbon particles dispersed at the same time as the elemental metal are harmless. Most of the carbon particles can be easily removed by a filtration filter, and a highly pure water of the elemental metal can be obtained.
また、 金属チタン原料である電極は、 棒状及び板状材又は線状のいずれでも 使用でき。 1 トン規模の容器による生産スケールよりかなり小規模の容器での 製造では、 棒状の代わりに線状の金属チタンの供給が適当となる。  The electrode, which is a raw material of metallic titanium, can be used in any of a rod-like, plate-like, or linear shape. For production in containers much smaller than the production scale with one-ton containers, a linear supply of titanium metal instead of a rod would be appropriate.
本発明の製造装置を用いて製造できる金属粉末の製造のために使用可能な元  An element usable for the production of metal powder that can be produced using the production apparatus of the present invention.
7 素金属原料は、 チタン以外では、 例えばジルコニウム、 ゲルマニウム、 スズ、 金、 白金、 銀などが挙げられるが, これらに限定されるものではない。 7 The elemental metal raw materials other than titanium include, for example, zirconium, germanium, tin, gold, platinum, and silver, but are not limited thereto.
図面に沿って、 本発明の実施の態様を詳説するが、 本発明はこれらに限定さ れるものではない。  Embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.
図 1は、 前述するように本発明における金属粉末の製造フローチャートを示 すものである。  FIG. 1 shows a flow chart for producing a metal powder according to the present invention as described above.
図 2は、 本発明の金属粉末製造装置を示すもので、 水収容タンク 1 4、 元素 金属電極と対極を有するブラズマ放電発生装置 1、 元素金属粉末のろ過装置 1 1より構成されている。  FIG. 2 shows a metal powder production apparatus of the present invention, which comprises a water storage tank 14, a plasma discharge generator 1 having an elemental metal electrode and a counter electrode, and an elemental metal powder filtration apparatus 11.
金属粉末製造耐圧容器には、 高圧 ·高電流放電用電源 2、 電極を振動又は摺 動させるための装置 3、 元素金属の電極を供給する装置 4、 元素金属電極 6と その対極 7を有するプラズマ放電発生装置 1、 水収容タンク 1 4への水供給口 8、 プラズマ水中放電後に生じた元素金属分散液の排出口 9と排出ポンプ 1 0、 元素金属分散液から金属粉末を分離するろ過装置 1 1が装備されている。 1 3 は生成された金属粉末を表わす。  The metal powder production pressure vessel contains a high-voltage / high-current discharge power supply 2, a device for vibrating or sliding the electrodes 3, a device for supplying elemental metal electrodes 4, a plasma having an elemental metal electrode 6 and its counter electrode 7. Discharge generator 1, Water supply port to water storage tank 14, Discharge port for elemental metal dispersion generated after discharge in plasma in water 9 and discharge pump 10, Filter device 1 for separating metal powder from elemental metal dispersion Equipped with one. 13 represents the produced metal powder.
プラズマ放電発生装置の設置されている水収容タンクに精製水が注入される。 タンク内の水に浸漬されている元素金属であるチタン電極とその対極である カーボンとの間にプラズマ放電させる。 水中におけるプラズマ放電によりチタ ンのィオン蒸気が発生し、 この蒸気が水と接触してチタン金属の分散液が生ず る。  Purified water is injected into a water storage tank in which the plasma discharge generator is installed. Plasma discharge is caused between the titanium electrode, which is an elemental metal immersed in the water in the tank, and carbon, which is the counter electrode. Titanium ion vapor is generated by the plasma discharge in water, and the vapor comes into contact with water to form a titanium metal dispersion.
プラズマ放電に際しては、 電極を浸動又は摺動装置 3によつて振動又は摺動 することにより電極同士の溶着を防ぎ、 瞬間的アークを発生させるため分散量 の制御が簡単に行える。 また、 金属チタン電極が逐次消費されるため連続的あ るいは間欠的に電極供給装置 4により供給されるようにする。 プラズマ水中放 電によりチタン材料が瞬間的に溶解され、 水中に分散する。  During plasma discharge, the electrodes are vibrated or slid by the sliding device 3 to prevent welding between the electrodes and to generate an instantaneous arc, so that the amount of dispersion can be easily controlled. In addition, since the metal titanium electrodes are sequentially consumed, the metal titanium electrodes are supplied continuously or intermittently by the electrode supply device 4. The titanium material is instantaneously dissolved by the discharge in the plasma water and dispersed in the water.
このときにミクロンスケールの非常に細かいチタンの微粒子 4_が生成され、 粉末状となって分散状態となり、 金属チタン粉末は、 熔融や浮遊することなく、 短時間のうちに粉末として沈降し、 分離され、 金属チタン粉末取り出し口 9よ り排出されてろ過装置 1 1によって濾液 1 2と分離されてチタン粉末 1 3とな る。 水収納タンクに水 1 トンを入れておき、 金属チタン棒を 2 5 k g消費した とき、 水に若干量のチタンがとけ込んだ水が得られるが、 それ以外はチ夕ン粉 末として容器底部に沈殿した。 チタン粉末の平均粒径は、 1 0〜3 0 μ πιであ つた。 At this time, very fine micron-scale titanium fine particles 4_ are generated, become powdered and dispersed, and the metal titanium powder settles out in a short time without melting or floating, and is separated. It is discharged from the metallic titanium powder outlet 9 and separated from the filtrate 12 by the filtration device 11 to form titanium powder 13. You. When 1 ton of water is put in the water storage tank and 25 kg of titanium metal rod is consumed, water with a small amount of titanium dissolved in the water is obtained.Otherwise, titanium powder is placed at the bottom of the container as dust powder. Settled. The average particle size of the titanium powder was 10 to 30 μπι.
また、 得られたチタン粉末は、 副生成物や不純物などの生成が全く無く、 チ タン粉末の球状形状の均一性や粉末粒度の一定性が優れたものであった。  Further, the obtained titanium powder had no generation of by-products or impurities, and was excellent in uniformity of the spherical shape and uniformity of the particle size of the titanium powder.
本方法と装置によれば、 きわめて経済的にチタン粉末の均一粒径のものが得 られた。 産業上の利用可能性  According to the present method and apparatus, titanium powder having a uniform particle size can be obtained very economically. Industrial applicability
本発明では、 純度の高い金属粉末、 特にチタン粉末を極めて効率良く安定に 製造することができる。 本発明における製造方法によれば元素成分以外の副生 成物や不純物の生成が無く、 得られた粉末の球状形状や粉末粒度の均一性はき わめて優れており、 しかも装置が小さく効率的であるため製造コストを大幅に 低下することができる。 また、 パッチ生産、 連続生産、 大量生産が可能である。  In the present invention, highly pure metal powder, particularly titanium powder, can be produced very efficiently and stably. According to the production method of the present invention, no by-products or impurities other than elemental components are generated, and the obtained powder has extremely excellent spherical shape and uniformity of powder particle size. Therefore, the manufacturing cost can be greatly reduced. Also, patch production, serial production, and mass production are possible.

Claims

請求の範囲 高圧水中において、 元素金属の電極と対極の間でプラズマ水中放電して生 ずる金属イオン蒸気を水と接触させて粉末化させることを特徴とする金属 粉末を製造する方法。 Claims A method for producing metal powder, characterized in that in high-pressure water, metal ion vapor generated by plasma water discharge between an elemental metal electrode and a counter electrode is brought into contact with water to be powdered.
元素金属原料が、 チタン、 ジルコニウム、 ゲルマニウム、 スズ、 金、 白金 又は銀であることを特徴とする請求項 1に記載の金属粉末を製造する方法。 高電圧 ·高電流放電用電源、 元素金属電極供給装置、 電極に請求項 2記載 の元素金属と対極を備えた高圧放電発生装置、 水収容タンク、 水収容タン クへの水供給口、 生成した元素金属微粒子の分散水の排出口、 排出ポンプ 及びろ過装置より構成されることを特徴とする金属粉末を製造する装置。 一方の電極として、 チタン、 ジルコニウム、 ゲルマニウム、 スズ、 金、 白 金又は銀から選ばれた元素金属原料を使用することを特徴とする請求項 3 に記載の金属粉末を製造する装置。 2. The method for producing a metal powder according to claim 1, wherein the elemental metal raw material is titanium, zirconium, germanium, tin, gold, platinum or silver. Power supply for high-voltage / high-current discharge, elemental metal electrode supply device, high-pressure discharge generator having the elemental metal according to claim 2 and a counter electrode, a water storage tank, a water supply port to the water storage tank, An apparatus for producing metal powder, comprising: a discharge port of a dispersion of elemental metal fine particles; a discharge pump; and a filtration device. The apparatus for producing metal powder according to claim 3, wherein one of the electrodes uses an elemental metal raw material selected from titanium, zirconium, germanium, tin, gold, platinum, and silver.
電極の元素金属原料が、 棒状、 板状又は線状であることを特徴とする請求 項 3又は 4に記載の金属粉末を製造する装置。 The apparatus for producing a metal powder according to claim 3 or 4, wherein the elemental metal raw material of the electrode is a rod, a plate, or a line.
対極としてカーボン電極を使用し、 両電極を振動又は摺動させることによ り電極同士の溶着を防ぎ、 瞬間的にプラズマ放電させるため分散量の制御 を行うことを特徴とする請求項 3〜 5のいずれかに記載の金属粉末を製造 する装置。 The method according to claim 3, wherein a carbon electrode is used as a counter electrode, and both electrodes are vibrated or slid to prevent welding between the electrodes and to control the amount of dispersion for instantaneous plasma discharge. An apparatus for producing the metal powder according to any one of the above.
対極のカーボン電極の径及び/又は長さを変えることにより容易に回路に 流れる電流値を変更することを特徴とする請求項 3〜 6のいずれかに記載 の金属粉末を製造する装置。 The apparatus for producing metal powder according to any one of claims 3 to 6, wherein the value of the current flowing through the circuit is easily changed by changing the diameter and / or the length of the counter electrode carbon electrode.
PCT/JP2002/011026 2001-10-29 2002-10-24 Method and apparatus for the production of metal powder WO2003037553A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003539878A JPWO2003037553A1 (en) 2001-10-29 2002-10-24 Method and apparatus for producing metal powder
CA002464910A CA2464910A1 (en) 2001-10-29 2002-10-24 Method and apparatus for the production of metal powder
MXPA04003959A MXPA04003959A (en) 2001-10-29 2002-10-24 Method and apparatus for the production of metal powder.
HU0401662A HUP0401662A2 (en) 2001-10-29 2002-10-24 Method and apparatus for the production of metal powder
EP02802371A EP1449605A4 (en) 2001-10-29 2002-10-24 Method and apparatus for the production of metal powder
BR0213735-6A BR0213735A (en) 2001-10-29 2002-10-24 Method and apparatus for producing metal dust.
US10/493,903 US7300491B2 (en) 2001-10-29 2002-10-24 Method and apparatus for the production of metal powder
NO20042178A NO20042178L (en) 2001-10-29 2004-05-26 Method and apparatus for making metal powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-330583 2001-10-29
JP2001330583 2001-10-29

Publications (1)

Publication Number Publication Date
WO2003037553A1 true WO2003037553A1 (en) 2003-05-08

Family

ID=19146292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/011026 WO2003037553A1 (en) 2001-10-29 2002-10-24 Method and apparatus for the production of metal powder

Country Status (13)

Country Link
US (1) US7300491B2 (en)
EP (1) EP1449605A4 (en)
JP (1) JPWO2003037553A1 (en)
KR (1) KR20050039690A (en)
CN (1) CN1311898C (en)
BR (1) BR0213735A (en)
CA (1) CA2464910A1 (en)
HU (1) HUP0401662A2 (en)
MX (1) MXPA04003959A (en)
NO (1) NO20042178L (en)
PL (1) PL369221A1 (en)
TW (1) TW561085B (en)
WO (1) WO2003037553A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050679A (en) * 2006-08-28 2008-03-06 Ikuo Iwasaki Metal powder production method and metal powder production apparatus
WO2008099618A1 (en) * 2007-02-15 2008-08-21 National University Corporation Hokkaido University Method for producing conductor fine particles
JP2011058064A (en) * 2009-09-11 2011-03-24 Hokkaido Univ Plasma treatment apparatus in liquid, method for producing metal nanoparticle, and method for producing metal-carried matter
JP2012036468A (en) * 2010-08-10 2012-02-23 Ehime Univ Nanoparticle and method for producing nanoparticle
JP2012515084A (en) * 2009-01-15 2012-07-05 ジーアール インテレクチュアル リザーブ リミティド ライアビリティ カンパニー Continuous, semi-continuous, and batch processes, devices, and resulting nanoparticles, and nanoparticle / liquid solutions and colloids that process liquids to produce certain components (eg, nanoparticles) in liquids
JP2013185171A (en) * 2012-03-06 2013-09-19 Ulvac Japan Ltd Method for producing metal fine particle
KR20190074032A (en) * 2017-12-19 2019-06-27 주식회사 엔팩 Apparatus and method of preparing nanoparticle comprising metal

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI291458B (en) * 2001-10-12 2007-12-21 Phild Co Ltd Method and device for producing titanium-containing high performance water
TWI255695B (en) * 2001-10-12 2006-06-01 Phild Co Ltd Method and device for producing ultrafine dispersion of noble metal
JP2009108001A (en) 2007-10-31 2009-05-21 Fuairudo Kk Pain-mitigating composition and use thereof
CN101785783A (en) * 2009-01-22 2010-07-28 朱晓颂 Use of metal Ti microparticles in promotion or increase of potency of externally-applied skin antibacterial or sterilizing medicaments
SG10201403497QA (en) 2009-07-08 2014-10-30 Gr Intellectual Reserve Llc Novel gold-based nanocrystals for medical treatments and electrochemical manufacturing processes therefor
CN101966590B (en) * 2010-10-09 2013-11-06 朱光明 Method for preparing nanometer metal copper powder through liquid-phase arc discharge
CN103567455A (en) * 2012-07-31 2014-02-12 苏州鲁信新材料科技有限公司 Metal powder production method and metal powder production equipment
CN103084580A (en) * 2013-01-11 2013-05-08 东南大学 Method for synthesizing water-solubility fluorescence silver nanocluster by electrochemistry
US9381588B2 (en) 2013-03-08 2016-07-05 Lotus BioEFx, LLC Multi-metal particle generator and method
CN104607648B (en) * 2015-01-15 2017-03-01 太原理工大学 A kind of method preparing nanometer or submicron order stannum or tin alloy microsphere
RU2614860C1 (en) * 2015-12-24 2017-03-29 Открытое акционерное общество "Научно-инженерный центр плазмохимических технологий" Device for electroerosive metal dispersion
JP6845324B2 (en) * 2017-06-27 2021-03-17 トヨタ自動車株式会社 Cluster-supported porous carrier and its manufacturing method
CN108580916A (en) * 2018-08-01 2018-09-28 重庆国际复合材料股份有限公司 A kind of electric spark corrode prepares the reaction unit of metal powder
CN111822727B (en) * 2020-06-28 2023-11-03 合肥百诺金科技股份有限公司 Method for synthesizing metal nano particles by liquid phase discharge of rough electrode surface structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63267431A (en) * 1987-04-24 1988-11-04 Hitachi Ltd Preparation of ultrafine particles
JPH02166202A (en) * 1988-12-20 1990-06-26 Ishikawajima Harima Heavy Ind Co Ltd Manufacture of metal particle
JPH0724305A (en) * 1993-07-07 1995-01-27 Ryoda Sato Production of new material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3171813A (en) * 1960-02-22 1965-03-02 Inoue Kiyoshi Production of semiconductor elements
US4731515A (en) * 1986-10-22 1988-03-15 Systems Research Laboratories, Inc. Method of making powders by electro-discharge machining in a cryogenic dielectric
CN1019459B (en) * 1988-03-09 1992-12-16 四川大学 Fabrication method of superifine colummar metallic powder
CN1028074C (en) * 1992-10-07 1995-04-05 中南工业大学 Secondary atomizer for double electrode arc melting
FR2724123A1 (en) * 1994-09-07 1996-03-08 Serole Bernard DEVICE FOR STABILIZING A CONTINUOUS CHEMICAL REACTION BETWEEN SEVERAL BODIES IN A PLASMA
US5879518A (en) * 1997-03-28 1999-03-09 Kuehnle; Manfred R. Method and apparatus for producing small particles of consistent size shape and structure
IL148073A0 (en) * 1999-09-03 2002-09-12 American Inter Metallics Inc Apparatus and methods for the production of powders
TW558471B (en) * 2001-03-28 2003-10-21 Phild Co Ltd Method and device for manufacturing metallic particulates and manufactured metallic particulates

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63267431A (en) * 1987-04-24 1988-11-04 Hitachi Ltd Preparation of ultrafine particles
JPH02166202A (en) * 1988-12-20 1990-06-26 Ishikawajima Harima Heavy Ind Co Ltd Manufacture of metal particle
JPH0724305A (en) * 1993-07-07 1995-01-27 Ryoda Sato Production of new material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050679A (en) * 2006-08-28 2008-03-06 Ikuo Iwasaki Metal powder production method and metal powder production apparatus
WO2008099618A1 (en) * 2007-02-15 2008-08-21 National University Corporation Hokkaido University Method for producing conductor fine particles
US8343253B2 (en) 2007-02-15 2013-01-01 Kankyou Engineering Co., Ltd. Method for producing conductor fine particles
JP2012515084A (en) * 2009-01-15 2012-07-05 ジーアール インテレクチュアル リザーブ リミティド ライアビリティ カンパニー Continuous, semi-continuous, and batch processes, devices, and resulting nanoparticles, and nanoparticle / liquid solutions and colloids that process liquids to produce certain components (eg, nanoparticles) in liquids
JP2011058064A (en) * 2009-09-11 2011-03-24 Hokkaido Univ Plasma treatment apparatus in liquid, method for producing metal nanoparticle, and method for producing metal-carried matter
JP2012036468A (en) * 2010-08-10 2012-02-23 Ehime Univ Nanoparticle and method for producing nanoparticle
JP2013185171A (en) * 2012-03-06 2013-09-19 Ulvac Japan Ltd Method for producing metal fine particle
KR20190074032A (en) * 2017-12-19 2019-06-27 주식회사 엔팩 Apparatus and method of preparing nanoparticle comprising metal
KR102007829B1 (en) 2017-12-19 2019-08-06 주식회사 엔팩 Apparatus and method of preparing nanoparticle comprising metal

Also Published As

Publication number Publication date
BR0213735A (en) 2004-10-19
CN1575215A (en) 2005-02-02
MXPA04003959A (en) 2004-11-29
HUP0401662A2 (en) 2005-02-28
PL369221A1 (en) 2005-04-18
EP1449605A1 (en) 2004-08-25
EP1449605A4 (en) 2007-05-16
CN1311898C (en) 2007-04-25
TW561085B (en) 2003-11-11
US7300491B2 (en) 2007-11-27
US20050092132A1 (en) 2005-05-05
NO20042178L (en) 2004-05-26
JPWO2003037553A1 (en) 2005-02-17
KR20050039690A (en) 2005-04-29
CA2464910A1 (en) 2003-05-08

Similar Documents

Publication Publication Date Title
WO2003037553A1 (en) Method and apparatus for the production of metal powder
CN112317752B (en) TiZrNbTa high-entropy alloy for 3D printing and preparation method and application thereof
JP5746207B2 (en) Method for producing high-purity copper powder using thermal plasma
JP2014515792A (en) Low cost processing method to produce spherical titanium and spherical titanium alloy powder
KR100830052B1 (en) Method and Device for Manufacturing Metallic Particulates
JP2014515792A5 (en)
WO2011054113A1 (en) Methods and apparatuses for preparing spheroidal powders
AU2003271852B2 (en) Purification of electrochemically deoxidised refractory metal particles by heat processing
EP1497061B1 (en) Powder formation method
JP2006249548A (en) Method for producing metal powder and method for producing target material
CN112575221A (en) TiAl alloy powder and preparation method and application thereof
CN108421984A (en) A kind of powder of stainless steel and preparation method thereof for increasing material manufacturing
JP4137643B2 (en) Method and apparatus for producing metal powder
JP4042095B2 (en) High purity metal powder manufacturing method and high purity metal powder manufacturing apparatus
JP2005154834A (en) Ruthenium ultrafine powder and its production method
JP2002180112A (en) Method for manufacturing high melting point metal powder material
RU2761494C1 (en) Method for obtaining an electrode for the production of powder materials from titanium alloys for additive and granular technologies
Kadyrov et al. Numerical Simulation of a Plasma Jet with Several Electrodes Used in the Technology of Creating Powders for 3d Printers
CN115635092A (en) Method and device for preparing superfine powder by taking strip as pulse discharge electrode
CN113333767A (en) TC4 spherical powder and preparation method and application thereof
CN115194169A (en) Platinum or platinum-rhodium alloy spherical powder for 3D printing and preparation method and application thereof
JPS63190106A (en) Device for producing powder
JPH01234506A (en) Device for producing powder

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN HU ID IN JP KR MX NO NZ PL RO SG TR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020047005432

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003539878

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20028208943

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/003959

Country of ref document: MX

Ref document number: 2464910

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2004 200400396

Country of ref document: RO

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 532782

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2002802371

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002363196

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1160/CHENP/2004

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2002802371

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10493903

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2002802371

Country of ref document: EP