JP2005136101A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP2005136101A
JP2005136101A JP2003369568A JP2003369568A JP2005136101A JP 2005136101 A JP2005136101 A JP 2005136101A JP 2003369568 A JP2003369568 A JP 2003369568A JP 2003369568 A JP2003369568 A JP 2003369568A JP 2005136101 A JP2005136101 A JP 2005136101A
Authority
JP
Japan
Prior art keywords
lens
led chip
resin
silicone resin
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003369568A
Other languages
Japanese (ja)
Other versions
JP4526257B2 (en
Inventor
Tomoaki Abe
智明 阿部
Kaori Namioka
かおり 波岡
Hiroshi Hirasawa
洋 平澤
Yoshiko Kimura
能子 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2003369568A priority Critical patent/JP4526257B2/en
Publication of JP2005136101A publication Critical patent/JP2005136101A/en
Application granted granted Critical
Publication of JP4526257B2 publication Critical patent/JP4526257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor light emitting device having a high luminance and a good directivity wherein there hardly occurs a separation in an interface between a flexible translucent resin which seals an LED chip and a lens formed of hard translucent resin which covers the flexible translucent resin. <P>SOLUTION: The lens 8 is surface-treated to reinforce its adhesion with a transparent silicone resin 9 which seals the LED chip 6. Moreover, part of a contact face between a lamp house 4 whereon the LED chip 6 is mounted and the transparent silicone resin 9 is made to serve as a stress reducing section to reduce stress in the interface caused by heating and cooling due to a difference in coefficient of linear expansion between the lens 8 and the transparent silicone resin 9. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体発光装置に関するものであり、詳しくは発光ダイオード(LED)チップを封止する柔軟性のある第一の光透過性樹脂と、それを覆う堅硬な第二の光透明樹脂とを備えた半導体発光装置に関する。   The present invention relates to a semiconductor light-emitting device, and more specifically, includes a flexible first light-transmitting resin that seals a light-emitting diode (LED) chip and a hard second light-transparent resin that covers the first light-transmitting resin. The present invention relates to a provided semiconductor light emitting device.

発光ダイオード(LED)は半導体を材料とする発光素子であり、p型半導体とn型半導体を接合させて順方向にバイアス電圧を印加することにより接合部(活性層)で電気エネルギーが光エネルギーに変換されて光を発するという原理のものである。LEDのピーク発光波長は半導体材料によって異なるが、近紫外〜可視光〜近赤外の領域にあり、発光スペクトルは急峻な特性を有している。   A light-emitting diode (LED) is a light-emitting element made of a semiconductor. By applying a bias voltage in the forward direction by bonding a p-type semiconductor and an n-type semiconductor, electrical energy is converted into light energy at the junction (active layer). It is based on the principle that it is converted to emit light. The peak emission wavelength of the LED varies depending on the semiconductor material, but is in the near ultraviolet to visible light to near infrared region, and the emission spectrum has a steep characteristic.

また、LEDの発光体(LEDチップ)は、一辺の長さが0.5mm程度の6面体(サイコロ状)の形状をしており、小さくて発光光量が少なく、点光源に近い光学特性を有している。したがって、このような特性のLEDチップを光源にしたLEDを設計・製作するに当たっては、LEDチップの活性層で発光された光の量に対するLEDチップから出射される光の量の割合(外部量子効率)を高め、且つLEDチップから出射されてLEDの外部に放出される光を一方向に集めてLEDの軸上光度を上げるような手法が施されている。   In addition, the LED light emitter (LED chip) has a hexahedral shape (dice shape) with a side length of about 0.5 mm, and has small optical characteristics such as a point light source. doing. Therefore, in designing and manufacturing an LED using such an LED chip as a light source, the ratio of the amount of light emitted from the LED chip to the amount of light emitted from the active layer of the LED chip (external quantum efficiency). ) And the light emitted from the LED chip and emitted to the outside of the LED is collected in one direction to increase the on-axis luminous intensity of the LED.

LEDチップの電極構造はLEDチップを構成する半導体材料によって、LEDチップの同一面側にアノード電極とカソード電極とを設けたものと、LEDチップの対向する面の夫々にアノード電極とカソード電極とを設けたものとの二種類に大別される。また、LEDチップを光源とする半導体発光装置は構造によって、一列に並設された複数のリードフレームの一端にLEDチップを載設し、LEDチップを光透過性樹脂で封止してレンズ効果を持たせた砲弾型と称するものと、表面に電極パターンが形成されたプリント基板にLEDチップを載設し、LEDチップを光透過性樹脂で封止した表面実装型と称するものとの二種類に大別される。   The electrode structure of the LED chip is that the anode and cathode electrodes are provided on the same surface side of the LED chip, and the anode and cathode electrodes on the opposite surface of the LED chip, depending on the semiconductor material constituting the LED chip. It is roughly divided into two types. Also, a semiconductor light emitting device using an LED chip as a light source has a lens effect by mounting the LED chip on one end of a plurality of lead frames arranged in a row and sealing the LED chip with a light transmissive resin. There are two types: a so-called cannonball type and a surface-mounted type in which an LED chip is mounted on a printed circuit board with an electrode pattern formed on the surface and the LED chip is sealed with a light-transmitting resin. Broadly divided.

このような二種類のLEDチップと二種類の構造との組合わせによって構成されるLEDは、LEDチップに設けられた電極とLEDチップに外部から電圧を印加するために外部に導出するように設けられた電極とを接続する手段の一つとしてボンディングワイヤを介した接続方法が採られ、電気的導通が図られる。   The LED constituted by the combination of the two kinds of LED chips and the two kinds of structures is provided so as to be led out to apply an external voltage to the electrodes provided on the LED chip and the LED chip. As one of the means for connecting the formed electrodes, a connection method through a bonding wire is adopted to achieve electrical conduction.

LEDチップを光透過性樹脂で封止する目的は、上述したような働きを有するボンディングワイヤに直接接触することによって加わる力および間接的に加わる振動、衝撃によって電極からボンディングワイヤが剥離したり、ボンディングワイヤが切断したり、ボンディングワイヤの変形によって短絡したりすることによって生じる電気的な不具合を防止するためであり、また同時に、LEDチップを湿気、塵埃などの外部環境から保護し、長期間に亘って信頼性を維持するためのものでもある。   The purpose of sealing the LED chip with a light-transmitting resin is to peel off the bonding wire from the electrode due to the force applied by direct contact with the bonding wire having the above-mentioned function and indirectly applied vibration or impact, or bonding. This is to prevent an electrical failure caused by the wire being cut or being short-circuited due to deformation of the bonding wire. At the same time, the LED chip is protected from the external environment such as moisture, dust, etc. It is also for maintaining reliability.

ところが、LEDチップの線膨張率とLEDチップを封止する光透過性樹脂の線膨張率とに差がある場合、回路基板に実装するときに加えられる熱や、点灯時の自己発熱などに起因する樹脂応力が原因で電極からボンディングワイヤが剥離したり、ボンディングワイヤが切断したり、甚だしい場合はLEDチップが破損したりする不具合が発生することがある。   However, when there is a difference between the linear expansion coefficient of the LED chip and the linear expansion coefficient of the light-transmitting resin that seals the LED chip, it is caused by heat applied when mounting on the circuit board, self-heating during lighting, etc. Due to the stress of the resin, the bonding wire may be peeled off from the electrode, the bonding wire may be cut, or the LED chip may be damaged if it is severe.

通常、このような問題を解決する方法として、光透過性樹脂の膨張収縮によってLEDチップに加わる応力を緩和するために、LEDチップを透明シリコーン樹脂のような柔軟性のある光透過性樹脂で封止し、更にそれを堅硬な光透過性樹脂で覆うことが行なわれる。   Usually, as a method for solving such a problem, the LED chip is sealed with a flexible light-transmitting resin such as a transparent silicone resin in order to relieve stress applied to the LED chip due to expansion and contraction of the light-transmitting resin. It is stopped and further covered with a hard light-transmitting resin.

このような構成のLEDの従来例としては図10に示すような、非常に硬い性質を有する窒化物半導体からなるLEDチップを光源とするものがある。ここで使用されるLEDチップは、LEDチップを構成するサファイヤ基板20とその上に形成された窒化物半導体層21との格子不整合、線膨張率の差およびLEDチップの電極構造がLEDチップを封止する樹脂の応力に敏感に影響され、外部からの加熱、LEDチップの自己発熱などによって生じる封止樹脂の膨張収縮が与える応力によってLEDチップが反ったり、曲がったり、電極が剥がれたりする不具合を生じる。このような問題を回避するために、LEDチップに加わる応力の緩和材としてLEDチップを封止する樹脂に柔軟性のある透明シリコーン樹脂22を用い、更にそれを堅硬な透明エポキシ樹脂23で覆ったものがある(例えば、特許文献1参照。)。
特開平8−335720号公報
As a conventional example of an LED having such a configuration, an LED chip made of a nitride semiconductor having extremely hard properties as shown in FIG. 10 is used as a light source. The LED chip used here has a lattice mismatch between the sapphire substrate 20 constituting the LED chip and the nitride semiconductor layer 21 formed thereon, a difference in linear expansion coefficient, and an electrode structure of the LED chip. The LED chip warps, bends, and the electrode peels off due to the stress caused by the expansion and shrinkage of the sealing resin, which is sensitively influenced by the stress of the sealing resin and is caused by external heating, self-heating of the LED chip, etc. Produce. In order to avoid such a problem, a flexible transparent silicone resin 22 is used as a resin for sealing the LED chip as a stress relieving material applied to the LED chip, and the resin is further covered with a hard transparent epoxy resin 23. There are some (for example, refer to Patent Document 1).
JP-A-8-335720

しかしながら、上述した従来のLEDは、LEDチップを封止する透明シリコーン樹脂の線膨張率と更にそれを覆う透明エポキシ樹脂の線膨張率とが異なるために、シリコーン樹脂を加熱硬化した後の冷却時の収縮や、LEDチップの点灯時の発熱、消灯時の冷却が両樹脂を加熱、冷却し、その繰り返しによって両樹脂の界面が剥離し隙間24が生じる。その結果、隙間24部分で光の導光効率が低下して外部に放出される光量が減少し、また、隙間24部分での光の反射および屈折によって光の集中傾向が強くなり、配光特性の半値角が小さくなって所望するような設計に沿った配光が得られないことになる。   However, in the conventional LED described above, the linear expansion coefficient of the transparent silicone resin that seals the LED chip and the linear expansion coefficient of the transparent epoxy resin that covers the LED chip are different. Shrinkage, heat generation when the LED chip is turned on, and cooling when the LED is turned off heats and cools both resins, and the interface between the two resins peels off due to repetition of the two, and a gap 24 is generated. As a result, the light guiding efficiency is reduced at the gap 24 portion, the amount of light emitted to the outside is reduced, and the light concentration tendency is increased due to the reflection and refraction of the light at the gap 24 portion. Thus, the half-value angle of the light becomes small and the light distribution according to the desired design cannot be obtained.

そこで、本発明は上記問題に鑑みて創案なされたもので、高輝度で且つ所望する配光特性が得られる半導体発光装置を提供するものである。   Accordingly, the present invention has been made in view of the above problems, and provides a semiconductor light-emitting device capable of obtaining high luminance and desired light distribution characteristics.

上記課題を解決するために、本発明の請求項1に記載された発明は、絶縁体に複数の金属部を設けたランプハウスの少なくとも1ヶ所の金属部にLEDチップを載設し、第一の光透過性樹脂からなり開口部を有する形状のレンズを前記開口部が対向するように前記ランプハウスに取付け、該ランプハウスと前記レンズとで形成された空間に第二の光透過性樹脂を充填した半導体発光装置であって、前記レンズの前記第二の光透過性樹脂と接触する面に表面処理が施され、且つ、前記第二の光透過性樹脂と前記絶縁体とが接触する面の少なくとも一部を応力緩和部とすることを特徴とするものである。   In order to solve the above-mentioned problem, the invention described in claim 1 of the present invention is such that an LED chip is mounted on at least one metal part of a lamp house in which a plurality of metal parts are provided on an insulator. A lens made of a light transmissive resin and having an opening is attached to the lamp house so that the opening faces each other, and a second light transmissive resin is placed in the space formed by the lamp house and the lens. A filled semiconductor light emitting device, wherein a surface of the lens that is in contact with the second light-transmitting resin is subjected to surface treatment, and the surface that is in contact with the second light-transmitting resin and the insulator It is characterized in that at least a part of is a stress relaxation part.

また、本発明の請求項2に記載された発明は、請求項1において、前記応力緩和部は、前記絶縁体の前記第二の光透過性樹脂側に形成された窪みであることを特徴とするものである。   The invention described in claim 2 of the present invention is characterized in that, in claim 1, the stress relaxation portion is a recess formed on the second light-transmitting resin side of the insulator. To do.

また、本発明の請求項3に記載された発明は、請求項1または2の何れか1項において、前記レンズと前記第二の光透過性樹脂との接着強度が、前記絶縁体と前記第二の光透過性樹脂との接着強度よりも大きいことを特徴とするものである。   According to a third aspect of the present invention, in any one of the first or second aspect, the adhesive strength between the lens and the second light-transmitting resin is such that the insulator and the second It is characterized by being larger than the adhesive strength with the second light transmissive resin.

以下、この発明の好適な実施形態を図1から図9を参照しながら、詳細に説明する(同一部分については同じ符号を付す)。尚、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIGS. 1 to 9 (the same reference numerals are used for the same parts). The embodiments described below are preferable specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention particularly limits the present invention in the following description. As long as there is no description of the effect, it is not restricted to these aspects.

図1は本発明の半導体発光装置の実施形態の構造を示す平面図、図2は図1のA−A断面図、図3および図4は図2のB部詳細図である。PPA(ポリフタルアミド)等からなる絶縁体1の2ヶ所に金属部材からなる第一電極2および第二電極3を外部に導出させてランプハウス4を形成する。   FIG. 1 is a plan view showing the structure of an embodiment of a semiconductor light emitting device of the present invention, FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1, and FIGS. The lamp house 4 is formed by leading out the first electrode 2 and the second electrode 3 made of metal members to two places on the insulator 1 made of PPA (polyphthalamide) or the like.

次に、第一電極2の上面に半田、Cu、Ag等を含有した導電性ペースト5を介してLEDチップ6を載設し、LEDチップ6の下部電極と第一電極2との電気的導通を図る。一方、LEDチップ6の上部電極はAu、Al等のボンディングワイヤ7を介して第二電極3に接続し、LEDチップ6の上部電極と第二電極3との電気的導通を図る。   Next, the LED chip 6 is mounted on the upper surface of the first electrode 2 via the conductive paste 5 containing solder, Cu, Ag or the like, and the lower electrode of the LED chip 6 and the first electrode 2 are electrically connected. Plan. On the other hand, the upper electrode of the LED chip 6 is connected to the second electrode 3 via a bonding wire 7 such as Au or Al, so that the upper electrode of the LED chip 6 and the second electrode 3 are electrically connected.

更に、堅硬で透明なポリカーボネート樹脂からなり、開口部を有するレンズ8を開口部が対向するようにランプハウス4に取付け、ランプハウス4とレンズ8とで形成される空間に柔軟性のある透明なシリコーン樹脂9を充填して加熱硬化する。   Further, the lens 8 made of a hard and transparent polycarbonate resin is attached to the lamp house 4 so that the openings face each other, and the space formed by the lamp house 4 and the lenses 8 is flexible and transparent. Filled with silicone resin 9 and cured by heating.

このような工程を経て作製された半導体発光装置は、LEDチップ6の2つの電極の夫々に接続された第一の電極2と第二の電極3との間に順方向電圧を印加することによって、LEDチップ6を形成するp型半導体とn型半導体の接合部(活性層)で電気エネルギーが光エネルギーに変換され、変換された光がLEDチップ6から外部に放出されるものである。   The semiconductor light emitting device manufactured through such processes is applied by applying a forward voltage between the first electrode 2 and the second electrode 3 connected to each of the two electrodes of the LED chip 6. The electric energy is converted into light energy at the junction (active layer) of the p-type semiconductor and the n-type semiconductor forming the LED chip 6, and the converted light is emitted from the LED chip 6 to the outside.

ところが、LEDチップ6に供給された電気エネルギーがすべて光エネルギーに変換されるわけではなく、LEDチップ6に供給された電気エネルギーの内、光エネルギーの変換に寄与しない分があり、その場合は熱エネルギーとなってLEDチップ6自身の温度を上昇させると同時に、LEDチップ6を封止した樹脂が加熱されて樹脂表面から熱が外部に放出され、半導体発光装置が自己発熱によって温度上昇することになる。しかも、LEDチップ6は、温度が上昇するにつれて電気エネルギーを光エネルギーに変換する効率が低下するため、熱エネルギーに変換される割合が多くなる。従って、LEDチップ6に供給される電気エネルギーが増加するにつれてLEDチップ6の自己発熱の増加と光エネルギーへの変換効率の低下との悪循環が生じ、半導体発光装置の温度が益々上昇することになる。   However, not all of the electrical energy supplied to the LED chip 6 is converted into light energy, and there is a part of the electrical energy supplied to the LED chip 6 that does not contribute to the conversion of light energy. At the same time as the energy increases the temperature of the LED chip 6 itself, the resin sealing the LED chip 6 is heated, heat is released from the resin surface to the outside, and the temperature of the semiconductor light emitting device rises due to self-heating. Become. And since the efficiency which converts an electrical energy into a light energy falls as temperature rises, the ratio converted into a thermal energy increases. Accordingly, as the electrical energy supplied to the LED chip 6 increases, a vicious cycle occurs between the increase in self-heating of the LED chip 6 and the decrease in conversion efficiency to light energy, and the temperature of the semiconductor light emitting device increases more and more. .

さらに、多数の半導体発光装置を密に実装して同時に点灯する場合、夫々の半導体発光装置間の熱の相互作用によって、単体あるいは粗に実装して点灯する場合よりも半導体発光装置の温度上昇が大きくなり、ファン等の冷却装置を使用して強制的に冷却する必要が生じるほどに温度上昇することがある。また、特に表面実装型の半導体発光装置を回路部品としてプリント基板等に実装するには半田リフローなどが採用されるが、その時に半導体発光装置にかなりの熱が加わることになる。   In addition, when a large number of semiconductor light emitting devices are closely mounted and lit simultaneously, the temperature of the semiconductor light emitting device increases due to the thermal interaction between the semiconductor light emitting devices, compared to when the light is mounted alone or roughly. The temperature may increase so that it becomes necessary to forcibly cool using a cooling device such as a fan. In particular, solder reflow or the like is employed to mount a surface-mount type semiconductor light emitting device on a printed circuit board or the like as a circuit component. At that time, a considerable amount of heat is applied to the semiconductor light emitting device.

このように、LEDチップの自己発熱および外部からの加熱によって半導体発光装置の温度が上昇すると、当然、半導体発光装置を構成する絶縁体からなるランプハウス4とシリコーン樹脂9とポリカーボネート樹脂からなるレンズ8も温度上昇する。   Thus, when the temperature of the semiconductor light emitting device rises due to self-heating of the LED chip and external heating, naturally, the lamp house 4 made of an insulator constituting the semiconductor light emitting device, the silicone resin 9 and the lens 8 made of polycarbonate resin. Temperature rises.

すると、絶縁体を形成するPPAとシリコーン樹脂9とレンズ8を形成するポリカーボネート樹脂の線膨張率の違いによって不具合が発生する。つまり、夫々の線膨張率は、PPAの線膨張率がα×10−5/K、シリコーン樹脂の線膨張率がβ×10−4/K、ポリカーボネート樹脂の線膨張率がγ×10−5/Kであり(α、βおよびγは何れも一桁の整数値で種類によって異なる)、特に、シリコーン樹脂とPPAおよびシリコーン樹脂とポリカーボネート樹脂の夫々の間に約一桁の線膨張率の差があるために夫々の界面でかなりのストレスが発生する。言い換えると、シリコーン樹脂9とランプハウス4およびシリコーン樹脂9とレンズ8の夫々の界面に強いストレスが加わることになる。ただし、ランプハウス4、シリコーン樹脂9およびレンズ8は加熱冷却によって一体となって相似的に膨張収縮するのではなく、シリコーン樹脂9は外周部材のランプハウス4およびレンズ8よりも顕著に膨張収縮するため、シリコーン樹脂9がランプハウス4およびレンズ8に与えるストレスの影響が最も大きい。 Then, a malfunction occurs due to the difference in the linear expansion coefficient among the PPA forming the insulator, the silicone resin 9 and the polycarbonate resin forming the lens 8. That is, the linear expansion coefficient of PPA is α × 10 −5 / K, the linear expansion coefficient of silicone resin is β × 10 −4 / K, and the linear expansion coefficient of polycarbonate resin is γ × 10 −5. / K (where α, β, and γ are all single-digit integer values depending on the type), and in particular, a difference of about one-digit linear expansion coefficient between silicone resin and PPA and between silicone resin and polycarbonate resin. Because of this, considerable stress occurs at each interface. In other words, a strong stress is applied to the interfaces between the silicone resin 9 and the lamp house 4 and between the silicone resin 9 and the lens 8. However, the lamp house 4, the silicone resin 9, and the lens 8 are not integrally expanded and contracted by heating and cooling, but the silicone resin 9 is significantly expanded and contracted more than the lamp house 4 and the lens 8 of the outer peripheral member. Therefore, the influence of the stress that the silicone resin 9 gives to the lamp house 4 and the lens 8 is the largest.

従って、シリコーン樹脂9が加熱硬化されて冷却するときの収縮によって、シリコーン樹脂9とランプハウス4の界面およびシリコーン樹脂9とレンズ8との界面でのストレスで剥離が生じることになる。   Therefore, due to the shrinkage when the silicone resin 9 is cured by heating and cooling, peeling occurs due to stress at the interface between the silicone resin 9 and the lamp house 4 and at the interface between the silicone resin 9 and the lens 8.

また、LEDチップに供給されていた電気エネルギーが断たれると、半導体発光装置は消灯し、冷却されて上述した界面でのストレスは緩和される。このように、半導体発光装置が点灯と消灯を繰返すことによって加熱と冷却が繰返されてシリコーン樹脂9とランプハウス4およびシリコーン樹脂9とレンズ8の夫々の界面でストレスの発生と緩和が繰返され、その結果、界面が剥離して界面を構成する二種類の部材の間に隙間が生じることになる。そこで、本発明では、シリコーン樹脂9と接するレンズ8の内表面に表面処理を施すことによって、シリコーン樹脂9とレンズ8との界面での接着強度を強くして剥離を生じ難くした。   Further, when the electric energy supplied to the LED chip is cut off, the semiconductor light emitting device is turned off and cooled to relieve the stress at the interface described above. In this way, the semiconductor light emitting device is repeatedly turned on and off, whereby heating and cooling are repeated, and generation and relaxation of stress are repeated at the interfaces of the silicone resin 9, the lamp house 4, and the silicone resin 9 and the lens 8, respectively. As a result, the interface peels off and a gap is formed between the two types of members constituting the interface. Therefore, in the present invention, the inner surface of the lens 8 that is in contact with the silicone resin 9 is subjected to a surface treatment, so that the adhesive strength at the interface between the silicone resin 9 and the lens 8 is increased to make it difficult for peeling.

ここで、ポリカーボネート樹脂からなるレンズ8のシリコーン樹脂9と接する内表面に施す表面処理の方法の一つは、レンズ面に紫外光を5分間照射して表面を酸化させて表面改質し、シリコーン樹脂との間で働く水素結合によって接着強度を強めるものである。   Here, one of the surface treatment methods applied to the inner surface of the lens 8 made of polycarbonate resin in contact with the silicone resin 9 is to modify the surface by irradiating the lens surface with ultraviolet light for 5 minutes to oxidize the surface. The bond strength is strengthened by hydrogen bonds that work with the resin.

また、表面処理の他の方法は、プラズマ照射によって表面改質を行なうもので、ArやHeなどの不活性ガスとOやNなどの反応性ガスとの混合ガスのプラズマを使用し、プラズマの作用によってポリカーボネート樹脂の表面ではスパッタエッチングなどの物理反応あるいは極性基の形成や架橋反応による不飽和結合の形成などの化学反応が起こる。これにより、表面の濡れ性や接着性を向上させることができる。本発明の具体的なプラズマ照射条件は、ArとOの混合ガスを使用して各40cc、合計80cc/minの割合で1.5minの照射を行なった。なお、レンズ8の表面に紫外線照射或いはプラズマ照射を行なって表面改質層11を形成し、シリコーン樹脂9との接着強度を向上させた状態を図3で示している。 Another method of surface treatment is to perform surface modification by plasma irradiation, using a plasma of a mixed gas of an inert gas such as Ar or He and a reactive gas such as O 2 or N 2 , By the action of plasma, a physical reaction such as sputter etching or a chemical reaction such as formation of an unsaturated bond due to formation of a polar group or crosslinking reaction occurs on the surface of the polycarbonate resin. Thereby, the wettability and adhesiveness of the surface can be improved. As specific plasma irradiation conditions of the present invention, irradiation was performed for 1.5 min at a rate of 40 cc each using a mixed gas of Ar and O 2 at a total rate of 80 cc / min. FIG. 3 shows a state in which the surface modification layer 11 is formed by irradiating the surface of the lens 8 with ultraviolet rays or plasma to improve the adhesive strength with the silicone resin 9.

さらに、表面処理の他の方法は、ブラスト処理によって表面を凸凹に荒らすもので、アルミナ粉末を30min吹付けた後に水で洗浄し、空気で乾燥させる方法である。この方法によって、図4に示すようにポリカーボネートからなるレンズ8の表面に形成された凸凹面10の凹部にシリコーン樹脂9が入り込むと同時にシリコーン樹脂9との接触面積が大きくなるため、レンズ8とシリコーン樹脂9との接着強度が増すことになる。   Furthermore, another method of surface treatment is a method in which the surface is roughened by blasting, and after spraying alumina powder for 30 minutes, it is washed with water and dried with air. By this method, as shown in FIG. 4, the silicone resin 9 enters the concave portion of the concave and convex surface 10 formed on the surface of the lens 8 made of polycarbonate, and at the same time, the contact area with the silicone resin 9 is increased. The adhesive strength with the resin 9 is increased.

また、ランプハウスを構成する絶縁体1とシリコーン樹脂9との界面においても両樹脂の加熱冷却によってストレスが生じるが、本発明ではここで発生するストレスを有効に利用した。つまり、図5に示すように、絶縁体1の外周部とレンズ8のシリコーン樹脂9と接触する面の端部とで囲まれた部分を断面形状を凹形状にしてリング状に形成し、シリコーン樹脂9とレンズ8との界面で生じるストレスを、シリコーン樹脂9とレンズ8との接着強度よりも弱いシリコーン樹脂9とランプハウス4を構成する絶縁体1との界面で緩和させ、シリコーン樹脂9とレンズ8との界面でのストレスを低減させたものである。その結果、シリコーン樹脂9とランプハウス4を構成する絶縁体1との界面での剥離で隙間12が生じることが考えられるが、この部分での隙間12は光学的な特性に悪影響を与える部分ではないため、光学特性を確保することを最重点にしてこのような施策を施すことにより、レンズ8とシリコーン樹脂9との界面の剥離を極力防止するようにしたものである。つまり、界面の剥離で生じた間隔12が応力緩和部として働いている。   In addition, although stress occurs at the interface between the insulator 1 and the silicone resin 9 constituting the lamp house due to heating and cooling of both resins, the stress generated here is effectively used in the present invention. That is, as shown in FIG. 5, a portion surrounded by the outer peripheral portion of the insulator 1 and the end portion of the surface of the lens 8 that contacts the silicone resin 9 is formed in a ring shape with a concave cross-sectional shape. Stress generated at the interface between the resin 9 and the lens 8 is relieved at the interface between the silicone resin 9 that is weaker than the adhesive strength between the silicone resin 9 and the lens 8 and the insulator 1 that constitutes the lamp house 4. The stress at the interface with the lens 8 is reduced. As a result, it is conceivable that a gap 12 is generated due to peeling at the interface between the silicone resin 9 and the insulator 1 constituting the lamp house 4, but the gap 12 in this part is a part that adversely affects the optical characteristics. Therefore, by taking such measures with the highest emphasis on ensuring optical characteristics, peeling of the interface between the lens 8 and the silicone resin 9 is prevented as much as possible. That is, the interval 12 generated by the separation of the interface works as a stress relaxation part.

また、図6に示すように、応力緩和部としてランプハウス4のシリコーン樹脂9側の一部に窪み13を設けた形状とし、予めシリコーン樹脂9との非接着部14を設けることにより、応力緩和部を一定の位置に設けることも可能である。シリコーン樹脂9との非接着部14が応力緩和部として働き、レンズ8とシリコーン樹脂9との界面の剥離防止が可能となる。   Further, as shown in FIG. 6, the stress relief portion has a shape in which a depression 13 is provided in a part of the lamp house 4 on the silicone resin 9 side, and a non-adhesive portion 14 with the silicone resin 9 is provided in advance, thereby reducing the stress. It is also possible to provide the portion at a certain position. The non-bonding portion 14 with the silicone resin 9 functions as a stress relaxation portion, and it is possible to prevent peeling of the interface between the lens 8 and the silicone resin 9.

シリコーン樹脂9とランプハウス4との界面での剥離による隙間を応力緩和部とした場合の半導体発光装置の物理的、光学的な結果を図7から図9に示す。図7はレンズの内表面の処理方法に対する物理的、光学的な結果を数値によって表したものであり、図8はレンズに表面処理を施さない場合の半導体発光装置の指向特性、図9はレンズに表面処理を施した場合の半導体発光装置の指向特性である。   7 to 9 show physical and optical results of the semiconductor light-emitting device in the case where a gap formed by peeling at the interface between the silicone resin 9 and the lamp house 4 is a stress relaxation portion. FIG. 7 shows the physical and optical results for the processing method of the inner surface of the lens by numerical values. FIG. 8 shows the directivity characteristics of the semiconductor light emitting device when the lens is not surface-treated. FIG. 9 shows the lens. The directivity characteristics of the semiconductor light emitting device when surface treatment is applied to the semiconductor light emitting device.

図7から分かることは、シリコーン樹脂と接するレンズの内表面を紫外線照射あるいはプラズマ照射のいずれかの方法で表面処理しても、レンズとシリコーン樹脂との界面のせん断接着強さが増加していることが分かる。また、光学特性については、レンズの内表面に表面処理を施さない場合の光量が44mWであったのに対し、紫外線照射あるいはプラズマ照射のいずれかの方法で表面処理を施すことによって光量が47〜49mWに増加した。なお、表面処理の違いによる光量の差は、各表面処理方法で形成された固有の表面状態が光学特性に直接的に影響を及ぼしたためと考えられる。さらに、図8および図9で示した指向特性に関しては、半値角の設計値が22°であったのに対してレンズに表面処理を施さない場合は約20°で設計値よりも半値角が狭く、表面処理した場合は設計値の22°を満足する値となっている。   It can be seen from FIG. 7 that the shear bond strength at the interface between the lens and the silicone resin is increased even if the inner surface of the lens in contact with the silicone resin is surface-treated by either ultraviolet irradiation or plasma irradiation. I understand that. As for the optical characteristics, the light amount when the surface treatment was not performed on the inner surface of the lens was 44 mW, whereas the light amount was 47 to 47 by performing the surface treatment by either ultraviolet irradiation or plasma irradiation. Increased to 49mW. The difference in the amount of light due to the difference in the surface treatment is considered to be due to the fact that the unique surface state formed by each surface treatment method directly affected the optical characteristics. Further, regarding the directivity shown in FIG. 8 and FIG. 9, the half-value angle is about 20 ° when the lens is not subjected to surface treatment, whereas the half-value angle is about 20 ° when the lens is not surface-treated. When the surface treatment is narrow, the value satisfies the design value of 22 °.

また、設計仕様として目論んだ指向特性と製品を実測した指向特性との関係を図8と図9で比較すると、図9に示したようにレンズに表面処理を施した半導体発光装置の方が目論みの配光特性と製品を実測した特性特性との差が小さくなっており、レンズに表面処理を施すことによって目論みに近い指向特性を実現することが可能であることを示している。   Further, comparing the relationship between the directional characteristics intended as the design specification and the directional characteristics obtained by actually measuring the product in FIG. 8 and FIG. 9, the semiconductor light emitting device in which the lens is surface-treated as shown in FIG. The difference between this light distribution characteristic and the characteristic characteristic obtained by actually measuring the product is small, indicating that it is possible to realize a directivity characteristic close to the target by applying a surface treatment to the lens.

上述した結果より、いずれの表面処理によっても十分な接着強度を得ることができ、外部に放出される光量が増したことが検証できた。つまり、シリコーン樹脂とランプハウスを構成する絶縁体との接着強度よりもシリコーン樹脂とレンズとの接着強度のほうが大きかったことによる効果を示している。   From the results described above, it was verified that sufficient surface strength could be obtained by any surface treatment, and the amount of light emitted to the outside increased. That is, the effect is shown that the adhesive strength between the silicone resin and the lens is greater than the adhesive strength between the silicone resin and the insulator constituting the lamp house.

以上のように、絶縁体に複数の金属部を設けたランプハウスの少なくとも1ヶ所の金属部にLEDチップを載設し、ポリカーボネート樹脂等の光透過性部材からなり、開口部を有するレンズを開口部が対向するようにランプハウスに取付け、ランプハウスとレンズとで形成される空間に透明シリコーン樹脂が充填された半導体発光装置において、ポリカーボネート樹脂からなるレンズとシリコーン樹脂の両部材の線膨張率の違いがもとで加熱冷却時の膨張収縮で発生する界面の剥離を、シリコーン樹脂と接するレンズ面を表面処理することにより、両部材の界面の接着強度を増加させることによって生じ難くした。また、ランプハウスを構成する絶縁体とシリコーン樹脂の界面に剥離による隙間を発生させることにより、レンズとシリコーン樹脂との界面でのストレスを緩和させ、レンズとシリコーン樹脂との界面の剥離を防止して光学特性を確保するようにした。その結果、加熱冷却といった温度変化のある環境下にあっても、長期間に亘ってLEDチップから出射された光の取り出し効率を高め、且つ、指向特性の最適化が実現できる。また、レンズを形成する材料にシリコーン樹脂との接着性が特別優れたものを使用する必要がなく、安価な材料で機能を果たすことができるので製品コストが低減できる、などの優れた効果を奏するものである。   As described above, an LED chip is mounted on at least one metal part of a lamp house in which a plurality of metal parts are provided on an insulator, and a lens having an opening is made of a light transmitting member such as polycarbonate resin. In a semiconductor light emitting device in which a transparent silicone resin is filled in the space formed by the lamp house and the lens so that the parts face each other, the linear expansion coefficient of both the lens and the silicone resin member made of polycarbonate resin Due to the difference, peeling of the interface caused by expansion and contraction during heating and cooling was made difficult to occur by increasing the adhesive strength at the interface between both members by surface-treating the lens surface in contact with the silicone resin. In addition, by generating a gap due to peeling at the interface between the insulator and the silicone resin that make up the lamp house, the stress at the interface between the lens and the silicone resin is alleviated, and peeling at the interface between the lens and the silicone resin is prevented. So as to ensure optical characteristics. As a result, it is possible to improve the extraction efficiency of light emitted from the LED chip over a long period of time and to optimize the directivity even in an environment with temperature changes such as heating and cooling. In addition, it is not necessary to use a material excellent in adhesiveness with a silicone resin as a material for forming a lens, and an excellent effect such as reduction in product cost can be achieved because the function can be achieved with an inexpensive material. Is.

本発明の実施形態に係わる半導体発光装置の平面図である。It is a top view of the semiconductor light-emitting device concerning embodiment of this invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. 図2のB部詳細図である。FIG. 3 is a detailed view of part B in FIG. 2. 図2のB部詳細図である。FIG. 3 is a detailed view of part B in FIG. 2. 図2のC部詳細図である。FIG. 3 is a detailed view of part C in FIG. 2. 本発明の別の実施形態に係わる半導体発光装置の断面図である。It is sectional drawing of the semiconductor light-emitting device concerning another embodiment of this invention. 本発明の実施形態に係わる半導体発光装置の特性表である。It is a characteristic table of the semiconductor light-emitting device concerning embodiment of this invention. 本発明の実施形態に係わる半導体発光装置の構成においてレンズに表面処理を施さない場合の指向特性である。FIG. 6 is a directivity characteristic when the lens is not subjected to surface treatment in the configuration of the semiconductor light emitting device according to the embodiment of the present invention. FIG. 本発明の実施形態に係わる半導体発光装置の構成においてレンズに表面処理を施した場合の指向特性である。FIG. 6 is a directivity characteristic when a surface treatment is performed on a lens in the configuration of the semiconductor light emitting device according to the embodiment of the present invention. FIG. 従来の半導体発光装置の一例を示す断面図である。It is sectional drawing which shows an example of the conventional semiconductor light-emitting device.

符号の説明Explanation of symbols

1 絶縁体
2 第一電極
3 第二電極
4 ランプハウス
5 導電性ペースト
6 LEDチップ
7 ボンディングワイヤ
8 レンズ
9 シリコーン樹脂
10 凹凸面
11 表面改質層11
12 隙間
13 窪み
14 非接着部
DESCRIPTION OF SYMBOLS 1 Insulator 2 1st electrode 3 2nd electrode 4 Lamp house 5 Conductive paste 6 LED chip 7 Bonding wire 8 Lens 9 Silicone resin 10 Uneven surface 11 Surface modification layer 11
12 Gap 13 Dimple 14 Non-adhesive part

Claims (3)

絶縁体に複数の金属部を設けたランプハウスの少なくとも1ヶ所の金属部にLEDチップを載設し、第一の光透過性樹脂からなり開口部を有する形状のレンズを前記開口部が対向するように前記ランプハウスに取付け、該ランプハウスと前記レンズとで形成された空間に第二の光透過性樹脂を充填した半導体発光装置であって、前記レンズの前記第二の光透過性樹脂と接触する面に表面処理が施され、且つ、前記第二の光透過性樹脂と前記絶縁体とが接触する面の少なくとも一部を応力緩和部とすることを特徴とする半導体発光装置。 An LED chip is mounted on at least one metal portion of a lamp house in which a plurality of metal portions are provided on an insulator, and the opening portion faces a lens made of a first light transmitting resin and having an opening portion. The semiconductor light emitting device is attached to the lamp house, and a space formed by the lamp house and the lens is filled with a second light transmissive resin, and the second light transmissive resin of the lens A semiconductor light emitting device, wherein a surface treatment is performed on a contact surface, and at least a part of a surface where the second light transmitting resin and the insulator are in contact with each other is a stress relaxation portion. 前記応力緩和部は、前記絶縁体の前記第二の光透過性樹脂側に形成された窪みであることを特徴とする請求項1に記載の半導体発光装置。 The semiconductor light emitting device according to claim 1, wherein the stress relaxation portion is a depression formed on the second light transmitting resin side of the insulator. 前記レンズと前記第二の光透過性樹脂との接着強度が、前記絶縁体と前記第二の光透過性樹脂との接着強度よりも大きいことを特徴とする請求項1または2の何れか1項に記載の半導体発光装置。 The adhesive strength between the lens and the second light transmissive resin is higher than the adhesive strength between the insulator and the second light transmissive resin. The semiconductor light emitting device according to item.
JP2003369568A 2003-10-29 2003-10-29 Semiconductor light emitting device Expired - Fee Related JP4526257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003369568A JP4526257B2 (en) 2003-10-29 2003-10-29 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003369568A JP4526257B2 (en) 2003-10-29 2003-10-29 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2005136101A true JP2005136101A (en) 2005-05-26
JP4526257B2 JP4526257B2 (en) 2010-08-18

Family

ID=34646872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003369568A Expired - Fee Related JP4526257B2 (en) 2003-10-29 2003-10-29 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4526257B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029961A1 (en) * 2005-09-05 2007-03-15 Luxpia Co., Ltd. Light emitting unit and direct light type back light apparatus using the same
JP2007201354A (en) * 2006-01-30 2007-08-09 Matsushita Electric Ind Co Ltd Light-emitting module
KR100756617B1 (en) 2006-09-29 2007-09-07 서울반도체 주식회사 Luminous element
WO2009116744A2 (en) * 2008-03-21 2009-09-24 (주)루멘스 Led lead frame, led package using the same and manufacturing method thereof
JP2011233928A (en) * 2006-07-13 2011-11-17 Cree Inc Package of lead frame base for solid light emitting device, and method of manufacturing package of lead frame base for solid light emitting device
JP2012015319A (en) * 2010-06-30 2012-01-19 Sharp Corp Light emitting element package, method for manufacturing the same, light emitting element array, and display device
US8207546B2 (en) 2006-05-17 2012-06-26 Stanley Electric Co., Ltd. Semiconductor light-emitting device and method for manufacturing the same
KR101161397B1 (en) 2005-09-30 2012-07-02 서울반도체 주식회사 Light emitting device with a lens of silicone and method of fabricating the same
JP2012138425A (en) * 2010-12-24 2012-07-19 Asahi Rubber Inc Resin lens, led device with lens and method of manufacturing led device with lens
JP2012138422A (en) * 2010-12-24 2012-07-19 Asahi Rubber Inc Silicone lens, led device with lens and method of manufacturing led device with lens
WO2014088260A1 (en) * 2012-12-07 2014-06-12 주식회사 루멘스 Light emitting device and backlight unit comprising same
JP2014179457A (en) * 2013-03-14 2014-09-25 Shinko Electric Ind Co Ltd Wiring board for mounting light-emitting element, light-emitting device, method of manufacturing wiring board for mounting light-emitting element, and method of manufacturing light-emitting device
US8941134B2 (en) 2006-07-13 2015-01-27 Cree, Inc. Leadframe-based packages for solid state light emitting devices having heat dissipating regions in packaging

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022217A (en) * 1998-06-30 2000-01-21 Toshiba Corp Optical semiconductor module
JP2002185046A (en) * 2000-12-19 2002-06-28 Sharp Corp Chip-part type led and its manufacturing method
JP2002198570A (en) * 2000-12-26 2002-07-12 Toyoda Gosei Co Ltd Solid state optical element
JP2003204082A (en) * 2001-10-31 2003-07-18 Sanyu Rec Co Ltd Light emitting diode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022217A (en) * 1998-06-30 2000-01-21 Toshiba Corp Optical semiconductor module
JP2002185046A (en) * 2000-12-19 2002-06-28 Sharp Corp Chip-part type led and its manufacturing method
JP2002198570A (en) * 2000-12-26 2002-07-12 Toyoda Gosei Co Ltd Solid state optical element
JP2003204082A (en) * 2001-10-31 2003-07-18 Sanyu Rec Co Ltd Light emitting diode

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100738251B1 (en) * 2005-09-05 2007-07-16 럭스피아(주) Light emitting unit and direct light type back light apparatus using the same
WO2007029961A1 (en) * 2005-09-05 2007-03-15 Luxpia Co., Ltd. Light emitting unit and direct light type back light apparatus using the same
KR101161397B1 (en) 2005-09-30 2012-07-02 서울반도체 주식회사 Light emitting device with a lens of silicone and method of fabricating the same
JP2007201354A (en) * 2006-01-30 2007-08-09 Matsushita Electric Ind Co Ltd Light-emitting module
US8207546B2 (en) 2006-05-17 2012-06-26 Stanley Electric Co., Ltd. Semiconductor light-emitting device and method for manufacturing the same
US8941134B2 (en) 2006-07-13 2015-01-27 Cree, Inc. Leadframe-based packages for solid state light emitting devices having heat dissipating regions in packaging
JP2011233928A (en) * 2006-07-13 2011-11-17 Cree Inc Package of lead frame base for solid light emitting device, and method of manufacturing package of lead frame base for solid light emitting device
KR100756617B1 (en) 2006-09-29 2007-09-07 서울반도체 주식회사 Luminous element
WO2008038937A1 (en) * 2006-09-29 2008-04-03 Seoul Semiconductor Co., Ltd. Luminous element
WO2009116744A2 (en) * 2008-03-21 2009-09-24 (주)루멘스 Led lead frame, led package using the same and manufacturing method thereof
WO2009116744A3 (en) * 2008-03-21 2009-11-12 (주)루멘스 Led lead frame, led package using the same and manufacturing method thereof
JP2012015319A (en) * 2010-06-30 2012-01-19 Sharp Corp Light emitting element package, method for manufacturing the same, light emitting element array, and display device
JP2012138422A (en) * 2010-12-24 2012-07-19 Asahi Rubber Inc Silicone lens, led device with lens and method of manufacturing led device with lens
JP2012138425A (en) * 2010-12-24 2012-07-19 Asahi Rubber Inc Resin lens, led device with lens and method of manufacturing led device with lens
WO2014088260A1 (en) * 2012-12-07 2014-06-12 주식회사 루멘스 Light emitting device and backlight unit comprising same
KR101413596B1 (en) 2012-12-07 2014-07-02 주식회사 루멘스 Light emitting device and backlight unit comprising the same
US9690030B2 (en) 2012-12-07 2017-06-27 Lumens Co., Ltd. Light emitting device including a lens at a predetermined position and backlight unit comprising same
JP2014179457A (en) * 2013-03-14 2014-09-25 Shinko Electric Ind Co Ltd Wiring board for mounting light-emitting element, light-emitting device, method of manufacturing wiring board for mounting light-emitting element, and method of manufacturing light-emitting device

Also Published As

Publication number Publication date
JP4526257B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
US10158050B2 (en) Light-emitting device and method of manufacturing the same
US9263658B2 (en) Light-emitting device and method of manufacturing the same
EP2264798B1 (en) High powered light emitter packages with compact optics
WO2011125346A1 (en) Light emitting device and method for manufacturing same
JP4526257B2 (en) Semiconductor light emitting device
US20090289272A1 (en) Light emitting device package
JP2006140281A (en) Power led and its manufacturing method
WO2013168802A1 (en) Led module
JP2005079329A (en) Surface-mounting light emitting diode
JP2008270822A (en) Light emitting diode package
JP2006093697A (en) High luminance light-emitting diode provided with protection function against electrostatic discharge impact
JP2006245032A (en) Light emitting device and led lamp
WO2017209149A1 (en) Light-emitting device
TWI591103B (en) Semiconductor device and optical coupling device
JP2012169432A (en) Chip led
TWI464929B (en) Light source module with enhanced heat dissipation efficiency and embedded package structure thereof
KR101812741B1 (en) Light Emitting Diode Package and Method of manufacturing the same
KR101192816B1 (en) Led package and its manufacturing method
JP2006100753A (en) Semiconductor module and its manufacturing method
JP6626537B2 (en) Semiconductor device and optical coupling device
KR20140008911A (en) Optical module and manufacturing method thereof
KR101129002B1 (en) Optical package and manufacturing method of the same
KR200442383Y1 (en) Assembling structure of light emitting diode
US20130082293A1 (en) Led package device
KR101719816B1 (en) Light emitting diode array

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4526257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees