JP6626537B2 - Semiconductor device and optical coupling device - Google Patents

Semiconductor device and optical coupling device Download PDF

Info

Publication number
JP6626537B2
JP6626537B2 JP2018134498A JP2018134498A JP6626537B2 JP 6626537 B2 JP6626537 B2 JP 6626537B2 JP 2018134498 A JP2018134498 A JP 2018134498A JP 2018134498 A JP2018134498 A JP 2018134498A JP 6626537 B2 JP6626537 B2 JP 6626537B2
Authority
JP
Japan
Prior art keywords
silicone
light emitting
resin portion
emitting chip
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018134498A
Other languages
Japanese (ja)
Other versions
JP2018186292A (en
Inventor
直也 鷹居
直也 鷹居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Devices and Storage Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Devices and Storage Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Devices and Storage Corp filed Critical Toshiba Corp
Priority to JP2018134498A priority Critical patent/JP6626537B2/en
Publication of JP2018186292A publication Critical patent/JP2018186292A/en
Application granted granted Critical
Publication of JP6626537B2 publication Critical patent/JP6626537B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Description

本発明の実施形態は、半導体装置および光結合装置に関する。   Embodiments described herein relate generally to a semiconductor device and an optical coupling device.

受光チップ上に発光チップを設けた光結合装置が知られている。この種の光結合装置は、発光チップの保護のために発光チップの表面を第1樹脂部で覆っている。また、第1樹脂部の表面は第2樹脂部で覆われている。
しかしながら、第1樹脂部と第2樹脂部は通常、熱膨張係数が異なっているため、第1樹脂部と第2樹脂部との密着性が高いと、第2樹脂部からの応力を受けて、発光チップが剥離してしまうおそれがある。
An optical coupling device in which a light emitting chip is provided on a light receiving chip is known. In this type of optical coupling device, the surface of the light emitting chip is covered with a first resin portion to protect the light emitting chip. The surface of the first resin portion is covered with the second resin portion.
However, since the first resin portion and the second resin portion usually have different coefficients of thermal expansion, if the adhesion between the first resin portion and the second resin portion is high, the first resin portion receives stress from the second resin portion. Then, the light emitting chip may be peeled off.

特開2003−192875号公報JP 2003-192875 A

本実施形態は、第1半導体素子上に設けられた第2半導体素子が剥離しないようにした半導体装置および光結合装置を提供するものである。   The present embodiment provides a semiconductor device and an optical coupling device in which a second semiconductor element provided on a first semiconductor element is not separated.

本実施形態によれば、第1半導体素子と、
前記第1半導体素子上に設けられた第2半導体素子と、
前記第2半導体素子の表面を覆うゲル状のシリコーンと、
前記シリコーンの表面と前記第1半導体素子の表面とを覆う樹脂部と、を備える半導体装置が提供される。
According to the present embodiment, the first semiconductor element;
A second semiconductor element provided on the first semiconductor element;
Gel-like silicone covering the surface of the second semiconductor element;
A semiconductor device is provided that includes a resin portion that covers a surface of the silicone and a surface of the first semiconductor element.

本実施形態による光結合装置の斜視図。FIG. 2 is a perspective view of the optical coupling device according to the embodiment. 図1AのA−A線の断面図。Sectional drawing of the AA line of FIG. 1A. 第1樹脂部の表面を第2樹脂部で覆う場合の応力の方向を矢印で示す要部拡大断面図。The principal part enlarged sectional view which shows the direction of the stress at the time of covering the surface of a 1st resin part with a 2nd resin part with an arrow. 受光チップの外形形状が長方形の場合の第1樹脂部の配置を表す模式図。FIG. 4 is a schematic diagram illustrating an arrangement of a first resin portion when an outer shape of a light receiving chip is rectangular. 受光チップの外形形状が正方形の場合の第1樹脂部の配置を表す模式図。FIG. 4 is a schematic diagram illustrating an arrangement of a first resin portion when the outer shape of the light receiving chip is a square. 発光チップと受光チップの周辺の模式的な断面図。FIG. 4 is a schematic cross-sectional view around a light emitting chip and a light receiving chip. ゴム状シリコーンと樹脂部との界面付近を模式的に示す拡大断面図。FIG. 2 is an enlarged cross-sectional view schematically showing the vicinity of an interface between a rubbery silicone and a resin part.

以下、図面を参照して本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)
図1Aは本実施形態による光結合装置1の斜視図、図1Bは図1AのA−A線の断面図である。本実施形態による光結合装置1は、基板2上にそれぞれ離して配置される第1パッド3、第2パッド4および第3パッド5と、第1パッド3上に設けられる受光チップ6と、受光チップ6上に設けられる発光チップ7と、第2パッド4上に設けられる第1MOSFET(Metal Oxide Semiconductor Field Effect Transistor)8と、第3パッド5上に設けられる第2MOSFET9と、発光チップ7の表面を覆うゲル状のシリコーン10と、シリコーン10の表面を覆う樹脂部11とを備えている。第1MOSFET8と第2MOSFET9は、IGBT等のパワー半導体素子である。
(1st Embodiment)
FIG. 1A is a perspective view of the optical coupling device 1 according to the present embodiment, and FIG. 1B is a cross-sectional view taken along line AA of FIG. 1A. The optical coupling device 1 according to the present embodiment includes a first pad 3, a second pad 4, and a third pad 5, which are separately arranged on the substrate 2, a light receiving chip 6 provided on the first pad 3, The light emitting chip 7 provided on the chip 6, the first MOSFET (Metal Oxide Semiconductor Field Effect Transistor) 8 provided on the second pad 4, the second MOSFET 9 provided on the third pad 5, and the surface of the light emitting chip 7 It comprises a gel-like silicone 10 to be covered and a resin part 11 to cover the surface of the silicone 10. The first MOSFET 8 and the second MOSFET 9 are power semiconductor elements such as IGBTs.

光結合装置1では、入力信号を発光チップ7が光信号に変換し、この光信号を電気的に絶縁された状態で受光チップが受光して電気信号に変換し、この電気信号に基づいて第1MOSFET8と第2MOFET9が負荷(図示しない)を駆動する。   In the optical coupling device 1, the light emitting chip 7 converts an input signal into an optical signal, and the light receiving chip receives the optical signal in an electrically insulated state and converts it into an electric signal. The first MOSFET 8 and the second MOSFET 9 drive a load (not shown).

図1Aおよび図1Bの光結合装置1は、第1MOSFET8と第2MOSFET9を内蔵しているが、第1MOSFET8と第2MOFET9を光結合装置1とは別の半導体素子で実現してもよい。   Although the optical coupling device 1 of FIGS. 1A and 1B includes the first MOSFET 8 and the second MOSFET 9, the first MOSFET 8 and the second MOSFET 9 may be realized by a semiconductor element different from the optical coupling device 1.

基板2は、第1方向xにおいて、表面2aの一端側に第1領域2bと、他端側に第2領域2cとを有する。また、裏面2dにはパターン18が設けられている。第1領域2bには、第1端子12および第2端子13が配置され、第2領域2cには、第3端子14および第4端子15が配置されている。第1端子12は、ボンディングワイヤ16にて発光チップ7のアノードに接続され、第2端子13は、別個のボンディングワイヤ16にて発光チップ7のカソードに接続されている。第3端子14は電源端子であり、第4端子15は接地端子である。第3端子14と第4端子15はそれぞれ別々のコンタクト17を介して、パターン18と電気的に接続している。これらパターン18は、別のコンタクト17を介して、第2パッド4および第3パッド5と電気的に接続している。この他、受光チップ6と第1および第2MOSFET8,9とをそれぞれ接続するボンディングワイヤ16と、第1および第2MOSFET8,9同士を接続するボンディングワイヤ16とが設けられている。   The substrate 2 has a first region 2b on one end of the front surface 2a and a second region 2c on the other end in the first direction x. Further, a pattern 18 is provided on the back surface 2d. The first terminal 12 and the second terminal 13 are arranged in the first region 2b, and the third terminal 14 and the fourth terminal 15 are arranged in the second region 2c. The first terminal 12 is connected to the anode of the light emitting chip 7 by a bonding wire 16, and the second terminal 13 is connected to the cathode of the light emitting chip 7 by a separate bonding wire 16. The third terminal 14 is a power supply terminal, and the fourth terminal 15 is a ground terminal. The third terminal 14 and the fourth terminal 15 are electrically connected to the pattern 18 via separate contacts 17, respectively. These patterns 18 are electrically connected to the second pad 4 and the third pad 5 via another contact 17. In addition, a bonding wire 16 for connecting the light receiving chip 6 to the first and second MOSFETs 8 and 9 and a bonding wire 16 for connecting the first and second MOSFETs 8 and 9 are provided.

発光チップ7は、LED(Light Emitting Diode)等の発光素子単体の半導体装置でもよいし、発光素子が実装された基板と、発光素子の周辺回路が実装された基板とを一つのパッケージに収納した半導体素子でもよい。受光チップ6は、フォトダイオード等の受光素子を内蔵する半導体素子である。   The light-emitting chip 7 may be a semiconductor device having a light-emitting element alone such as an LED (Light Emitting Diode), or a substrate on which a light-emitting element is mounted and a substrate on which a peripheral circuit of the light-emitting element is mounted are housed in one package. A semiconductor element may be used. The light receiving chip 6 is a semiconductor element having a built-in light receiving element such as a photodiode.

発光チップ7の発光面は、受光チップ6の上面側に配置された受光面に対向して配置されている。発光チップ7と受光チップ6とは、例えば、ペースト状の透明なシリコーンを硬化させた透明接着部材19により接着されている。ここで、透明とは、発光チップ7が発光する光の発光波長に対して透過性を有することを意味する。発光チップ7を受光チップ6上に積層し、発光チップ7の発光面と受光チップ6の受光面とを短い距離で対向配置することで、発光チップ7からの光を損失なく受光チップ6で受光でき、受光効率を表す光の結合特性を向上できる。   The light emitting surface of the light emitting chip 7 is arranged to face a light receiving surface arranged on the upper surface side of the light receiving chip 6. The light emitting chip 7 and the light receiving chip 6 are bonded together by, for example, a transparent bonding member 19 obtained by curing paste-like transparent silicone. Here, “transparent” means that the light-emitting chip 7 has transparency with respect to the emission wavelength of the light emitted. The light emitting chip 7 is stacked on the light receiving chip 6, and the light emitting surface of the light emitting chip 7 and the light receiving surface of the light receiving chip 6 are arranged to face each other at a short distance, so that the light from the light emitting chip 7 is received by the light receiving chip 6 without loss. As a result, the light coupling characteristics representing the light receiving efficiency can be improved.

ゲル状のシリコーン10は、図1Bに示すように、発光チップ7の表面と、発光チップ7の上面に接続されたボンディングワイヤ16の一部とを覆う。ゲル状のシリコーン10は、後述するように、ゴム状のシリコーンよりも硬度が低い、すなわち軟質であるという性質を有する。   The gel silicone 10 covers the surface of the light emitting chip 7 and a part of the bonding wire 16 connected to the upper surface of the light emitting chip 7, as shown in FIG. 1B. As described later, the gel-like silicone 10 has a property that the hardness is lower than that of the rubber-like silicone, that is, it is soft.

このため、ゲル状のシリコーン10は、温度や湿度等の環境条件の変化に対して、柔軟に形状を変化させることができる。よって、ゲル状のシリコーン10は、応力緩和部材として機能する。なお、ゲル状のシリコーン10は、透明または不透明のどちらでも構わない。   For this reason, the gel-like silicone 10 can flexibly change its shape in response to changes in environmental conditions such as temperature and humidity. Therefore, the gel silicone 10 functions as a stress relaxation member. The gel silicone 10 may be either transparent or opaque.

樹脂部11は、図1Bに示すように、ゲル状のシリコーン10の表面と、受光チップ6の表面とを覆い、第1MOSFET8と第2MOSFET9の表面も覆っている。樹脂部11は、例えば微小なカーボンやTiO等を混在させたエポキシ樹脂で形成されている。樹脂部11は、光結合装置1の外部からの光がシリコーン10に入り込まないように遮光性を有する。すなわち、樹脂部11は、発光チップ7から発光される光に対する透過性を持たない材料で形成されている。 As shown in FIG. 1B, the resin portion 11 covers the surface of the gel-like silicone 10 and the surface of the light receiving chip 6, and also covers the surfaces of the first MOSFET 8 and the second MOSFET 9. The resin portion 11 is formed of, for example, an epoxy resin in which minute carbon, TiO 2 and the like are mixed. The resin portion 11 has a light shielding property so that light from outside the optical coupling device 1 does not enter the silicone 10. That is, the resin portion 11 is formed of a material having no transparency with respect to light emitted from the light emitting chip 7.

従来は、発光チップ7の表面をゴム状のシリコーンで覆っていた。ゴム状のシリコーンと樹脂部11の密着性を高めるには、ゴム状のシリコーンの表面をプラズマ洗浄するのが望ましい。プラズマ洗浄では、高エネルギの電子およびイオンを洗浄対象物の表面に照射して、洗浄対象物の最表面の化学結合の一部を切断し、この表面の密着性を向上させることができる。   Conventionally, the surface of the light emitting chip 7 has been covered with rubber-like silicone. In order to enhance the adhesion between the rubber-like silicone and the resin portion 11, it is desirable to perform plasma cleaning on the surface of the rubber-like silicone. In the plasma cleaning, high-energy electrons and ions are irradiated to the surface of the object to be cleaned to cut a part of chemical bonds on the outermost surface of the object to be cleaned, thereby improving the adhesion of the surface.

ところが、ゴム状のシリコーンの表面をプラズマ洗浄してから樹脂部11を付着すると、シリコーンと樹脂部11の密着性が高くなりすぎて、発光チップ7が剥離するおそれがある。図2は、受光チップ6上に発光チップ7を積層し、発光チップ7の表面をゴム状のシリコーン10で覆い、シリコーン10の表面をプラズマ洗浄してから、シリコーン10の表面を樹脂部11で覆う場合の応力の方向を矢印y1,y2で示す図である。   However, if the resin portion 11 is adhered after the surface of the rubber-like silicone is plasma-cleaned, the adhesion between the silicone and the resin portion 11 becomes too high, and the light emitting chip 7 may be peeled off. FIG. 2 shows that the light emitting chip 7 is stacked on the light receiving chip 6, the surface of the light emitting chip 7 is covered with rubber-like silicone 10, the surface of the silicone 10 is plasma-cleaned, and then the surface of the silicone 10 is It is a figure which shows the direction of the stress at the time of covering with arrow y1, y2.

ゴム状のシリコーン10をエポキシ樹脂からなる樹脂部11で覆う場合、ゴム状のシリコーン10の方がエポキシ樹脂よりも熱膨張係数が大きいため、樹脂部11を成形する際の高温度によって、シリコーン10は樹脂部11よりも膨張し、その結果、シリコーン10が樹脂部11に押しつけられて、シリコーン10と樹脂部11とが強固に接合し、密着性が向上する。その後、温度が下がると、シリコーン10は図2の矢印y1の方向に収縮しようとする。ところが、シリコーン10と樹脂部11の密着性が高いと、シリコーン10と樹脂部11との界面が移動しないため、発光チップ7を矢印y2の方向に引っ張る応力がかかり、結果として、発光チップ7を受光チップ6に接着している透明接着部材19が剥がれて、発光チップ7が剥離してしまうおそれがある。発光チップ7が剥離すると、発光面と受光面との位置関係がずれるため、発光チップ7から発光される光のうち受光チップ6で受光されない漏れ光の割合が多くなり、受光効率を表す光の結合特性が劣化する。   When the rubber-like silicone 10 is covered with the resin portion 11 made of epoxy resin, the rubber-like silicone 10 has a larger coefficient of thermal expansion than the epoxy resin. Expands more than the resin part 11, and as a result, the silicone 10 is pressed against the resin part 11, and the silicone 10 and the resin part 11 are firmly joined to each other, and the adhesion is improved. Thereafter, when the temperature decreases, the silicone 10 tends to contract in the direction of arrow y1 in FIG. However, if the adhesiveness between the silicone 10 and the resin portion 11 is high, the interface between the silicone 10 and the resin portion 11 does not move, so that a stress is applied to pull the light emitting chip 7 in the direction of arrow y2. There is a possibility that the transparent adhesive member 19 adhered to the light receiving chip 6 is peeled off and the light emitting chip 7 is peeled off. When the light emitting chip 7 is peeled off, the positional relationship between the light emitting surface and the light receiving surface is shifted, so that the ratio of the leakage light not received by the light receiving chip 6 out of the light emitted from the light emitting chip 7 increases. The coupling characteristics deteriorate.

このように、ゴム状のシリコーン10を用いて、シリコーン10と樹脂部11との密着性を向上させるためにプラズマ洗浄を行うと、発光チップ7の剥離が起きやすくなる。   When the plasma cleaning is performed using the rubber-like silicone 10 to improve the adhesion between the silicone 10 and the resin portion 11, the light-emitting chip 7 is easily peeled.

一方、ゴム状のシリコーン10を用いて、プラズマ洗浄を行わずにシリコーン10の表面に樹脂部11を付着させると、エポキシ樹脂で形成された樹脂部11よりもゴム状のシリコーン10の方が収縮率が大きいため、シリコーン10と樹脂部11の間に剥離が生じてしまう。シリコーン10が樹脂部11から剥離してしまうと、発光チップ7の上面のボンディングワイヤ16が断線しやすくなる。   On the other hand, when the resin portion 11 is adhered to the surface of the silicone 10 without performing plasma cleaning using the rubber-like silicone 10, the rubber-like silicone 10 shrinks more than the resin portion 11 formed of the epoxy resin. Since the ratio is large, separation occurs between the silicone 10 and the resin portion 11. When the silicone 10 is separated from the resin portion 11, the bonding wires 16 on the upper surface of the light emitting chip 7 are easily broken.

このような背景から、本実施形態では、ゴム状ではなく、ゲル状のシリコーンを採用した。ゲル状のシリコーンは、エポキシ樹脂やゴム状のシリコーンよりも硬さの値が小さく、塑性変形しやすい材料である。ゲル状のシリコーンの硬さの値は、例えばデュロメータにより計測することが可能である。本実施形態で使用したゲル状のシリコーンは、JIS
K 6253またはJIS K 7215(タイプA)に準拠してデュロメータで計測した硬さの値が10〜24の範囲内のものである。本発明者が硬さの値を種々に変えて実験を行ったところ、硬さの値が10未満となると、ゲル状のシリコーンの形状が崩れやすくなり、シリコーンの外形形状を安定に維持できなくなるおそれがあることがわかった。
硬さが16以上でより安定な形状が形成できることが分かった。また、硬さの値が24を超えると、硬くなりすぎて、樹脂部11との密着性が悪くなり、隙間ができるおそれがあることがわかった。
From this background, the present embodiment employs a gel-like silicone instead of a rubber-like silicone. Gel-like silicone is a material that has a lower hardness value than an epoxy resin or rubber-like silicone and is easily plastically deformed. The value of the hardness of the gel silicone can be measured, for example, with a durometer. The gel silicone used in this embodiment is JIS
The hardness value measured with a durometer according to K 6253 or JIS K 7215 (type A) is in the range of 10 to 24. When the present inventor conducted experiments with various values of hardness, when the value of hardness was less than 10, the shape of the gel-like silicone was easily collapsed, and the external shape of the silicone could not be stably maintained. It turned out there was a risk.
It was found that a more stable shape with a hardness of 16 or more can be formed. Further, it was found that when the value of the hardness exceeds 24, it becomes too hard, the adhesion to the resin portion 11 is deteriorated, and a gap may be formed.

なお、参考のために、デュロメータにて、エポキシ樹脂からなる樹脂部11の硬さの値を測定したところ、75であった。ゲル状のシリコーンで硬さが10〜24の範囲内であれば、シリコーン10と樹脂部11とは密着性がよく、PCT等の加速寿命試験の前後で剥離等は生じず、またシリコーン10の表面に剥離は生じなかった。このように、樹脂部11の硬さの値は、シリコーン10の硬さの値の3倍以上、すなわち30以上であるのが望ましい。   In addition, the value of the hardness of the resin part 11 made of an epoxy resin was measured with a durometer for reference, and was 75. If the hardness of the gel-like silicone is in the range of 10 to 24, the silicone 10 and the resin part 11 have good adhesion, and do not peel off before and after an accelerated life test such as PCT. No delamination occurred on the surface. Thus, the value of the hardness of the resin portion 11 is desirably three times or more the value of the hardness of the silicone 10, that is, 30 or more.

本発明者の実験によると、硬さの値が10〜24、望ましくは16〜24のゲル状のシリコーンにて発光チップ7を覆うと、プレッシャクッカー試験(PCT)などの高温高湿度での加速寿命試験を行っても、発光チップ7の剥離は生じないことがわかった。   According to the experiment of the present inventor, when the light emitting chip 7 is covered with a gel silicone having a hardness value of 10 to 24, desirably 16 to 24, acceleration at high temperature and high humidity such as pressure cooker test (PCT) is performed. It was found that even when the life test was performed, the light emitting chip 7 did not peel off.

ゲル状のシリコーン10では、シリコーン10と樹脂部11との接触界面が応力に応じて柔軟に移動しやすくなり、一部に応力がかかったとしても、その応力を周囲に逃がすことができ、シリコーン10は応力緩和部材として機能する。また、ゲル状のシリコーン10を用いた場合には、ゴム状のシリコーン10を用いた場合よりも樹脂部11との密着性がよくなるため、ゲル状のシリコーン10の表面をプラズマ洗浄する必要はない。これにより、製造工程を簡略化できる。   In the gel-like silicone 10, the contact interface between the silicone 10 and the resin portion 11 is easily and flexibly moved according to the stress, and even if a stress is applied to a part, the stress can be released to the surroundings. 10 functions as a stress relaxation member. In addition, when the gel-like silicone 10 is used, the adhesiveness to the resin portion 11 is better than when the rubber-like silicone 10 is used, so that it is not necessary to perform plasma cleaning of the surface of the gel-like silicone 10. . Thereby, the manufacturing process can be simplified.

なお、ゲル状のシリコーン10に対してプラズマ洗浄を行っても構わない。仮にプラズマ洗浄を行ったとしても、シリコーン10と樹脂部11との界面が応力に応じて柔軟に移動する性質が損なわれることはなく、シリコーン10が応力緩和部材として機能する点でも変わりはない。   Note that the gel-like silicone 10 may be subjected to plasma cleaning. Even if the plasma cleaning is performed, the property that the interface between the silicone 10 and the resin portion 11 moves flexibly in response to stress is not impaired, and there is no change in that the silicone 10 functions as a stress relaxation member.

また、プラズマ洗浄は、ゲル状のシリコーン10を形成する前に行ってもよい。すなわち、ゲル状のシリコーン10を形成する前に、発光チップ7と受光チップ6の表面をプラズマ洗浄することで、表面の濡れ性が向上し、ゲル状のシリコーン10が表面に付着しやすくなる。   The plasma cleaning may be performed before the formation of the gel silicone 10. That is, before the gel-like silicone 10 is formed, the surfaces of the light-emitting chip 7 and the light-receiving chip 6 are subjected to plasma cleaning, so that the wettability of the surfaces is improved, and the gel-like silicone 10 easily adheres to the surfaces.

ゲル状のシリコーン10の厚さが厚いほど、応力を緩和しやすくなるため、シリコーン10は、できるだけ厚くするのが望ましい。例えば、図1のように、受光チップ6の外形形状が長方形で、その上に積層される発光チップ7の外形形状が正方形の場合は、図3Aの模式図に示すように、受光チップ6の上面の略中央部に発光チップ7を配置し、受光チップ6の上面のほぼ全域にシリコーン10を配置するのが望ましい。この場合、受光チップ6の長辺側の第2方向yでは、シリコーン10がより厚く形成されることになり、この方向での発光チップ7の剥離をより防止できる。   The larger the thickness of the gel-like silicone 10, the more easily the stress can be relieved. Therefore, it is desirable that the thickness of the silicone 10 be as large as possible. For example, as shown in FIG. 1, when the outer shape of the light receiving chip 6 is rectangular and the outer shape of the light emitting chip 7 laminated thereon is square, as shown in the schematic diagram of FIG. It is desirable that the light emitting chip 7 is disposed substantially at the center of the upper surface, and the silicone 10 is disposed substantially all over the upper surface of the light receiving chip 6. In this case, the silicone 10 is formed to be thicker in the second direction y on the long side of the light receiving chip 6, and the light emitting chip 7 can be prevented from peeling off in this direction.

なお、受光チップ6の外形形状は必ずしも長方形であるとは限らず、例えば正方形の場合もありうる。この場合は、図3Bの模式図に示すように、受光チップ6の上面の略中央部に発光チップ7を配置し、4方向に均等にシリコーン10を配置するのが望ましい。   Note that the outer shape of the light receiving chip 6 is not necessarily rectangular, but may be, for example, square. In this case, as shown in the schematic diagram of FIG. 3B, it is desirable that the light emitting chip 7 is disposed substantially at the center of the upper surface of the light receiving chip 6 and the silicone 10 is disposed evenly in four directions.

このように、第1の実施形態では、受光チップ6上に発光チップ7を積層し、発光チップ7の表面をゲル状のシリコーン10で覆い、シリコーン10の表面をエポキシ樹脂からなる樹脂部11で覆うため、シリコーン10と樹脂部11との接触界面が応力に応じて柔軟に移動し、シリコーン10が応力緩和部材として機能するため、温度や湿度等の環境条件が変化しても、発光チップ7の剥離を防止できる。   As described above, in the first embodiment, the light emitting chip 7 is stacked on the light receiving chip 6, the surface of the light emitting chip 7 is covered with the gel silicone 10, and the surface of the silicone 10 is covered with the resin portion 11 made of epoxy resin. Because of this, the contact interface between the silicone 10 and the resin portion 11 moves flexibly according to the stress, and the silicone 10 functions as a stress relieving member. Therefore, even if environmental conditions such as temperature and humidity change, the light emitting chip 7 Can be prevented from peeling off.

(第2の実施形態)
第2の実施形態は、ゴム状のシリコーン10を用いて、発光チップ7の剥離を防止するものである。
(Second embodiment)
In the second embodiment, the light emitting chip 7 is prevented from being peeled off by using a rubber-like silicone 10.

第2の実施形態による光結合装置1は、図1と同様に構成されている。図4は発光チップ7と受光チップ6の周辺の模式的な断面図である。図4に示すように、受光チップ6上に積層された発光チップ7の表面と、発光チップ7および受光チップ6に接続されるボンディングワイヤ16の一部とは、ゴム状のシリコーン10で覆われている。シリコーン10は、エポキシ樹脂等からなる樹脂部11で覆われている。図5はゴム状シリコーン10と樹脂部11との界面付近を模式的に示す拡大断面図である。   The optical coupling device 1 according to the second embodiment has the same configuration as that of FIG. FIG. 4 is a schematic sectional view around the light emitting chip 7 and the light receiving chip 6. As shown in FIG. 4, the surface of the light emitting chip 7 stacked on the light receiving chip 6 and a part of the bonding wire 16 connected to the light emitting chip 7 and the light receiving chip 6 are covered with rubber-like silicone 10. ing. The silicone 10 is covered with a resin part 11 made of an epoxy resin or the like. FIG. 5 is an enlarged sectional view schematically showing the vicinity of the interface between the rubber-like silicone 10 and the resin portion 11.

本実施形態によるゴム状のシリコーン10は、発光チップ7の上面側と側面側とで厚さが異なっている。より具体的には、シリコーン10は、発光チップ7の上面側の厚さを、側面側の厚さよりも薄くしている。ゴム状のシリコーン10は、高温度にして軟性を高めた状態で、発光チップ7の表面に付着されるため、発光チップ7の側面側に上面側よりも多くのシリコーンを付着させることは、比較的容易に行うことができる。   The thickness of the rubber-like silicone 10 according to the present embodiment is different between the upper surface side and the side surface side of the light emitting chip 7. More specifically, the thickness of the silicone 10 on the upper surface side of the light emitting chip 7 is smaller than the thickness on the side surface side. Since the rubber-like silicone 10 is attached to the surface of the light emitting chip 7 in a state where the softness is increased at a high temperature, it is difficult to attach more silicone to the side surface of the light emitting chip 7 than to the upper surface side. It can be done easily.

第2の実施形態では、発光チップ7の表面をシリコーン10で覆った後、シリコーン10の表面をプラズマ洗浄せずに樹脂部11を形成する。樹脂部11は例えばエポキシ樹脂で形成されている。このため、ゴム状のシリコーン10の表面にプラズマ洗浄せずに樹脂部11を成形すると、成形時の高温度により、シリコーン10は樹脂部11よりも膨張し、シリコーン10と樹脂部11は接して設けられる。このため、シリコーン10と樹脂部11の密着性はよくなる。樹脂部11の成形が終わって、シリコーン10および樹脂部11の温度が低下すると、シリコーン10は樹脂部11よりも大きく収縮する。シリコーン10は、発光チップ7の上面側よりも側面側により厚く形成されているため、上面側よりも側面側の方が収縮するサイズが大きくなる。これは、上面側よりも側面側の方がシリコーン10の厚さが大きいため、全体的な収縮量が大きくなるためである。   In the second embodiment, after the surface of the light emitting chip 7 is covered with the silicone 10, the resin portion 11 is formed without performing the plasma cleaning on the surface of the silicone 10. The resin portion 11 is formed of, for example, an epoxy resin. Therefore, when the resin portion 11 is formed on the surface of the rubber-like silicone 10 without performing plasma cleaning, the silicone 10 expands more than the resin portion 11 due to a high temperature at the time of molding, and the silicone 10 and the resin portion 11 come into contact with each other. Provided. Therefore, the adhesion between the silicone 10 and the resin portion 11 is improved. When the temperature of the silicone 10 and the resin portion 11 decreases after the molding of the resin portion 11, the silicone 10 shrinks more than the resin portion 11. Since the silicone 10 is formed to be thicker on the side surface than on the upper surface side of the light emitting chip 7, the size of the shrinkage on the side surface is larger than on the upper surface side. This is because the thickness of the silicone 10 is larger on the side surface side than on the upper surface side, so that the overall amount of shrinkage is larger.

よって、発光チップ7の側面側では、図5に示すように、シリコーン10と樹脂部11との間により大きな第1空隙部21が形成される。この第1空隙部21は、発光チップ7の上面側におけるシリコーン10と樹脂部11との間の第2空隙部22よりも大きくなる。シリコーン10と樹脂部11との間に第2空隙部22が形成されることで、シリコーン10が発光チップ7を引っ張る応力が緩和され、発光チップ7の剥離が防止される。   Therefore, on the side surface side of the light emitting chip 7, as shown in FIG. 5, a larger first void portion 21 is formed between the silicone 10 and the resin portion 11. The first gap 21 is larger than the second gap 22 between the silicone 10 and the resin portion 11 on the upper surface side of the light emitting chip 7. By forming the second gap portion 22 between the silicone 10 and the resin portion 11, the stress of the silicone 10 pulling the light emitting chip 7 is reduced, and the light emitting chip 7 is prevented from peeling.

発光チップ7の上面側では、シリコーン10の厚みが薄いために、シリコーン10の収縮量が小さく、シリコーン10と樹脂部11との間にも大きな隙間は形成されない。よって、発光チップ7の上面側に配置されるボンディングワイヤ16の断線を防止することができる。   On the upper surface side of the light emitting chip 7, since the thickness of the silicone 10 is small, the amount of shrinkage of the silicone 10 is small, and no large gap is formed between the silicone 10 and the resin portion 11. Therefore, disconnection of the bonding wires 16 arranged on the upper surface side of the light emitting chip 7 can be prevented.

なお、シリコーン10の表面を樹脂部11で覆う前に、シリコーン10の一部、具体的には発光チップ7の上面側だけをプラズマ洗浄し、発光チップ7の上面側におけるシリコーン10と樹脂部11の密着性を向上させてもよい。これにより、シリコーン10が収縮しても、シリコーン10と樹脂部11との間に第2空隙部22が生じにくくなる。シリコーン10と樹脂部11が接して設けられていると、シリコーン10が収縮しようとする応力は発光チップ7を引っ張る方向に働くが、発光チップ7の上面側は、シリコーン10の厚さが薄いため、シリコーン10の応力は小さい。よって、発光チップ7の剥離が起きやすくなることはない。また、シリコーン10の上面側では、シリコーン10と樹脂部11とが接して設けられている方が、ボンディングワイヤ16の断線防止にとっては都合がよい。   Before covering the surface of the silicone 10 with the resin portion 11, only a part of the silicone 10, specifically, only the upper surface side of the light emitting chip 7 is subjected to plasma cleaning, and the silicone 10 and the resin portion 11 on the upper surface side of the light emitting chip 7 are cleaned. May be improved. Thereby, even if the silicone 10 shrinks, the second gap 22 is less likely to be formed between the silicone 10 and the resin portion 11. When the silicone 10 and the resin portion 11 are provided in contact with each other, the stress that the silicone 10 tends to contract acts in the direction in which the light emitting chip 7 is pulled. The stress of the silicone 10 is small. Therefore, the light-emitting chip 7 does not easily peel off. It is more convenient to provide the silicone 10 and the resin portion 11 in contact with each other on the upper surface side of the silicone 10 in order to prevent the breaking of the bonding wire 16.

このように、第2の実施形態では、シリコーン10の厚さを、発光チップ7の上面側よりも側面側をより厚くするため、シリコーン10と樹脂部11の間の空隙の寸法が上面側よりも側面側の方が大きくなる。よって、発光チップ7の側面側から発光チップ7を引っ張る応力を緩和でき、発光チップ7の剥離を防止できる。第2の実施形態では、発光チップ7の剥離が問題となったゴム状のシリコーン10を用いながら、発光チップ7の剥離を防止できるため、シリコーンの材料を変更せずに、発光チップ7の剥離を防止できる。   As described above, in the second embodiment, since the thickness of the silicone 10 is made thicker on the side surface than on the upper surface side of the light emitting chip 7, the dimension of the gap between the silicone 10 and the resin portion 11 is larger than that on the upper surface side. Is also larger on the side. Therefore, the stress that pulls the light emitting chip 7 from the side surface side of the light emitting chip 7 can be reduced, and peeling of the light emitting chip 7 can be prevented. In the second embodiment, the peeling of the light emitting chip 7 can be prevented while using the rubber-like silicone 10 in which the peeling of the light emitting chip 7 has become a problem, so that the peeling of the light emitting chip 7 can be performed without changing the silicone material. Can be prevented.

上述した第1および第2の実施形態では、受光チップ6上に発光素子7を接着する場合の剥離を防止する構造について説明したが、受光チップ6と発光素子7は必須の構成ではない。本発明は、任意の第1半導体素子上に第2半導体素子を接着する種々の半導体装置に適用可能であり、第1半導体素子と第2半導体素子の具体的な種類については特に問わない。   In the first and second embodiments described above, the structure for preventing the light emitting element 7 from peeling when the light emitting element 7 is bonded to the light receiving chip 6 has been described. However, the light receiving chip 6 and the light emitting element 7 are not essential components. The present invention is applicable to various semiconductor devices in which a second semiconductor element is bonded on an arbitrary first semiconductor element, and the specific types of the first semiconductor element and the second semiconductor element are not particularly limited.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   While some embodiments of the invention have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. These new embodiments can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and their equivalents.

1 光結合装置、2 基板、3 第1パッド、4 第2パッド、5 第3パッド、6 受光チップ、7 発光チップ、8 第1MOSFET、9 第2MOSFET、10 第1樹脂部、11 第2樹脂部   REFERENCE SIGNS LIST 1 Optical coupling device, 2 substrate, 3 first pad, 4 second pad, 5 third pad, 6 light receiving chip, 7 light emitting chip, 8 first MOSFET, 9 second MOSFET, 10 first resin part, 11 second resin part

Claims (2)

基板上に配置された第1半導体素子と、
上面及び側面を有し、前記第1半導体素子上に接着された第2半導体素子と、
前記第2半導体素子の表面の上面側よりも側面側をより厚く覆うゴム状のシリコーンと、
前記シリコーンの表面と前記第1半導体素子の表面とを覆う樹脂部と、
前記第2半導体素子の上面に一端が接続され、前記ゴム状のシリコーンと前記樹脂部とに一部が覆われたボンディングワイヤと、
前記第2半導体素子の上面における前記シリコーンと前記樹脂部との間に設けられた第1空隙部と、
前記第2半導体素子の側面における前記シリコーンと前記樹脂部との間に設けられ、前記第1空隙部よりも空隙の寸法が大きい第2空隙部と、を備え、
前記第1半導体素子は、受光部を含み、
前記第2半導体素子は、発光部を含み、
前記発光部の発光面は、前記受光部の受光面に対向して配置される、半導体装置。
A first semiconductor element disposed on a substrate,
A second semiconductor device having an upper surface and side surfaces and bonded on the first semiconductor device;
A rubber-like silicone covering the side surface side more thickly than the upper surface side of the surface of the second semiconductor element;
A resin portion covering a surface of the silicone and a surface of the first semiconductor element;
A bonding wire having one end connected to the upper surface of the second semiconductor element and a part of which is covered by the rubber-like silicone and the resin portion;
A first void portion provided between the silicone and the resin portion on the upper surface of the second semiconductor element;
A second void portion provided between the silicone and the resin portion on a side surface of the second semiconductor element, and having a void size larger than the first void portion;
The first semiconductor element includes a light receiving unit,
The second semiconductor device includes a light emitting unit,
A semiconductor device , wherein a light emitting surface of the light emitting unit is arranged to face a light receiving surface of the light receiving unit.
基板上に配置された受光チップと、
上面及び側面を有し、前記受光チップ上に接着された発光チップと、
前記発光チップの表面の上面側よりも側面側をより厚く覆うゴム状のシリコーンと、
前記シリコーンの表面と前記受光チップの表面とを覆う樹脂部と、
前記発光チップの上面に一端が接続され、前記ゴム状のシリコーンと前記樹脂部とに一部が覆われたボンディングワイヤと、
前記発光チップの上面における前記シリコーンと前記樹脂部との間に設けられた第1空隙部と、
前記発光チップの側面における前記シリコーンと前記樹脂部との間に設けられ、前記第1空隙部よりも空隙の寸法が大きい第2空隙部と、
を備え、
前記受光チップは、受光部を含み、
前記発光チップは、発光部を含み、
前記発光部の発光面は、前記受光部の受光面に対向して配置される、光結合装置。
A light-receiving chip arranged on a substrate,
A light emitting chip having a top surface and side surfaces, and bonded on the light receiving chip,
Rubber-like silicone covering the side surface side more thickly than the upper surface side of the surface of the light emitting chip,
A resin portion covering the surface of the silicone and the surface of the light-receiving chip,
One end is connected to the upper surface of the light emitting chip, a bonding wire partially covered with the rubber-like silicone and the resin portion,
A first void portion provided between the silicone and the resin portion on the upper surface of the light emitting chip,
A second gap portion provided between the silicone and the resin portion on the side surface of the light emitting chip and having a larger gap size than the first gap portion;
With
The light receiving chip includes a light receiving unit,
The light emitting chip includes a light emitting unit,
An optical coupling device , wherein a light emitting surface of the light emitting unit is arranged to face a light receiving surface of the light receiving unit.
JP2018134498A 2018-07-17 2018-07-17 Semiconductor device and optical coupling device Active JP6626537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018134498A JP6626537B2 (en) 2018-07-17 2018-07-17 Semiconductor device and optical coupling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018134498A JP6626537B2 (en) 2018-07-17 2018-07-17 Semiconductor device and optical coupling device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015175055A Division JP6626294B2 (en) 2015-09-04 2015-09-04 Semiconductor device and optical coupling device

Publications (2)

Publication Number Publication Date
JP2018186292A JP2018186292A (en) 2018-11-22
JP6626537B2 true JP6626537B2 (en) 2019-12-25

Family

ID=64355108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018134498A Active JP6626537B2 (en) 2018-07-17 2018-07-17 Semiconductor device and optical coupling device

Country Status (1)

Country Link
JP (1) JP6626537B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7273741B2 (en) 2020-02-07 2023-05-15 株式会社東芝 Optical coupling device and high frequency device
JP7216678B2 (en) 2020-02-10 2023-02-01 株式会社東芝 optical coupler

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6445008B1 (en) * 2001-10-25 2002-09-03 Opto Tech Corporation Photo sensing device and the manufacturing method thereof
US6943378B2 (en) * 2003-08-14 2005-09-13 Agilent Technologies, Inc. Opto-coupler
JP2006202936A (en) * 2005-01-20 2006-08-03 Mitsubishi Electric Corp Semiconductor device
JP2009289920A (en) * 2008-05-28 2009-12-10 Mitsubishi Electric Corp Method for manufacturing semiconductor device
JP2012238796A (en) * 2011-05-13 2012-12-06 Panasonic Corp Semiconductor device and manufacturing method of the same
JP2015029037A (en) * 2013-06-25 2015-02-12 パナソニックIpマネジメント株式会社 Optical coupling semiconductor device

Also Published As

Publication number Publication date
JP2018186292A (en) 2018-11-22

Similar Documents

Publication Publication Date Title
JP6626294B2 (en) Semiconductor device and optical coupling device
JP2021192117A (en) Display device
JP6515515B2 (en) Manufacturing method of light emitting device
TWI587537B (en) Optocoupler
US7883910B2 (en) Light emitting diode structure, LED packaging structure using the same and method of forming the same
JP5806994B2 (en) Optical coupling device
JP4910220B1 (en) LED module device and manufacturing method thereof
JP2013045888A (en) Light emitting device and manufacturing method of the same
JP2007180227A (en) Optical semiconductor device and its manufacturing method
WO2017209149A1 (en) Light-emitting device
JP6626537B2 (en) Semiconductor device and optical coupling device
KR20110052522A (en) Optocoupler devices
JP6128367B2 (en) LIGHT EMITTING DEVICE AND WIRING BOARD MANUFACTURING METHOD
JP2018049938A (en) Semiconductor device
US20130062613A1 (en) Light emitting device
JP4526257B2 (en) Semiconductor light emitting device
JP2013120821A (en) Light-emitting device
JP6416800B2 (en) Semiconductor device
JP2010283063A (en) Light emitting device and light emitting module
JP2015195401A (en) Optical coupling device
JP2008091671A (en) Optical coupling apparatus
KR100658936B1 (en) Light emitting diode pakage and fabricating method thereof
JP6989632B2 (en) Semiconductor device
JP7386417B2 (en) Light emitting device and its manufacturing method
JP2010182884A (en) Semiconductor light-emitting device and wiring substrate for light-emitting chip mounting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191129

R150 Certificate of patent or registration of utility model

Ref document number: 6626537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150