JP2005095744A - Surface treatment method of insulating member, and surface treatment apparatus for insulating member - Google Patents

Surface treatment method of insulating member, and surface treatment apparatus for insulating member Download PDF

Info

Publication number
JP2005095744A
JP2005095744A JP2003331627A JP2003331627A JP2005095744A JP 2005095744 A JP2005095744 A JP 2005095744A JP 2003331627 A JP2003331627 A JP 2003331627A JP 2003331627 A JP2003331627 A JP 2003331627A JP 2005095744 A JP2005095744 A JP 2005095744A
Authority
JP
Japan
Prior art keywords
plasma
surface treatment
reaction vessel
processed
insulating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003331627A
Other languages
Japanese (ja)
Inventor
Makoto Soma
誠 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003331627A priority Critical patent/JP2005095744A/en
Publication of JP2005095744A publication Critical patent/JP2005095744A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface treatment method of insulation members that diminishes the reduction of effects of the surface treatment after performing the surface treatment using plasma, and to provide a surface treatment apparatus for insulation members. <P>SOLUTION: The surface treatment apparatus is provided with a conveying means 1 that transfers a substance P to be treated formed by an insulating material, a reaction vessel 2a equipped with an inflow port 2aa into which a gas G for producing plasma flows and a blowoff port 2bb that blows off plasma PL produced towards the substance P to be treated, a plasma production part 2b that produces the plasma PL by imparting a voltage to the gas G having flowed into the reaction vessel 2a and a static elimination part 3 to eliminate charges from the substance P to be treated in a non-contact state. The conveying means 1 is formed so that it transfers the substance P to be treated from the position in contact with the plasma PL blown off from the reaction vessel 2a to the position in which the charges are eliminated by the static elimination part 3 in a non-contact state. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、樹脂やガラスなどの絶縁材料からなる絶縁部材の表面をプラズマ処理して濡れ性や接着性を改善する絶縁部材の表面処理方法及び絶縁部材の表面処理装置に関するものである。   The present invention relates to an insulating member surface treatment method and an insulating member surface treatment apparatus for improving wettability and adhesion by plasma-treating the surface of an insulating member made of an insulating material such as resin or glass.

近年、液晶ディスプレイの各工程での汚染物除去、樹脂成形部品への接着剤の濡れ性や接着性の改善、セラミックやガラスへの蒸着膜の密着性改善のために、絶縁材料からなる絶縁部材に表面処理を施して表面改質を行うことが多くなっている。   Insulating members made of insulating materials to remove contaminants in each process of liquid crystal displays in recent years, improve the wettability and adhesion of adhesives to resin molded parts, and improve the adhesion of deposited films to ceramics and glass In many cases, surface modification is carried out by subjecting the material to surface treatment.

そのため、従来、絶縁部材を真空中に配置し、真空中でプラズマを発生させ、このプラズマ中に含まれるイオンやラジカルのエネルギーにより、被処理物の表面を処理することが一般的に行われている。また、特許文献1のように、大気圧下で発生させたプラズマを金属製のメッシュを介して被処理物に吹き付けて処理する方法も近年行われている。
特許3147137号公報
Therefore, conventionally, an insulating member is generally placed in a vacuum, a plasma is generated in a vacuum, and the surface of an object to be processed is processed by the energy of ions or radicals contained in the plasma. Yes. In addition, as in Patent Document 1, a method of spraying plasma generated at atmospheric pressure on a workpiece through a metal mesh has been recently performed.
Japanese Patent No. 3147137

しかしながら、被処理物に対して上述のような表面処理を行なっても、大気中に置いておくと、被処理物が、例えば大気中の有機物などを吸着することにより、表面処理の効果が大きく低下する。   However, even if the above-described surface treatment is performed on the object to be treated, if the object is left in the atmosphere, the object to be treated adsorbs, for example, organic substances in the atmosphere, so that the effect of the surface treatment is large. descend.

特許文献1に開示された表面処理装置は、金属製のメッシュを介してプラズマを被処理物に吹き付けることにより、被処理物に加わる電気的なダメージを少なすることができるので有用である。しかしながら、このものは、メッシュを介してプラズマを吹き付けるので、メッシュに付着した汚染物がプラズマにより飛散して被処理物に付着することも生じかねないし、プラズマを用いた表面処理がされた後で帯電していると、大気中に置いたときにプラズマ処理の効果が低下する点に関しては、一般的なプラズマ処理と同様であった。   The surface treatment apparatus disclosed in Patent Document 1 is useful because electrical damage applied to the object to be processed can be reduced by spraying plasma on the object to be processed through a metal mesh. However, in this case, since the plasma is blown through the mesh, the contaminants attached to the mesh may be scattered by the plasma and adhere to the object to be processed, and after the surface treatment using the plasma is performed. When charged, it was the same as general plasma processing in that the effect of the plasma processing was lowered when placed in the atmosphere.

本願発明は、上記事由を考慮してなされたもので、その目的とするところは、プラズマを用いた表面処理を行なった後の表面処理の効果の低減を少なくする絶縁部材の表面処理方法及び絶縁部材の表面処理装置を提供することにある。   The present invention has been made in consideration of the above-described reasons, and the object of the present invention is to provide a surface treatment method and insulation for an insulating member that reduce the reduction of the effect of the surface treatment after performing the surface treatment using plasma. It is providing the surface treatment apparatus of a member.

上記課題を解決するために、本願発明の絶縁部材の表面処理方法は、反応容器内のプラズマ生成用ガスに電圧を印加することによりプラズマを生成し、生成されたプラズマを絶縁材料により形成される被処理物に接触させてから、その被処理物を除電する処理を行うようにしている。   In order to solve the above-described problem, the surface treatment method for an insulating member according to the present invention generates plasma by applying a voltage to a plasma generating gas in a reaction vessel, and the generated plasma is formed of an insulating material. After contacting the object to be processed, a process for neutralizing the object to be processed is performed.

また、本願発明の絶縁部材の表面処理装置は、絶縁材料により形成される被処理物を移動させる搬送手段と、プラズマ生成用ガスが流入する流入口と生成されたプラズマを被処理物に向けて吹き出す吹出口とを備える反応容器と、反応容器内に流入したプラズマ生成用ガスに電圧を与えてプラズマを生成するプラズマ生成部と、被処理物から非接触で電荷を取り除く除電部とを備え、搬送手段は、反応容器から吹き出されたプラズマと接触する位置から除電部により非接触で電荷が取り除かれる位置に被処理物を移動させるように形成している。   Further, the surface treatment apparatus for an insulating member according to the present invention has a conveying means for moving an object to be processed formed of an insulating material, an inlet into which a plasma generating gas flows, and a generated plasma toward the object to be processed. A reaction vessel provided with a blow-off port, a plasma generation unit that generates a plasma by applying a voltage to the plasma generation gas that has flowed into the reaction vessel, and a charge removal unit that removes charges from the object to be processed without contact, The transfer means is formed so as to move the object to be processed from a position in contact with the plasma blown out from the reaction vessel to a position where the charge is removed in a non-contact manner by the charge removal unit.

本願発明の絶縁部材の表面処理方法においては、絶縁材料により形成される被処理物にプラズマに接触させてから除電する処理を行うので、被処理物の帯電が抑えられ、被処理物が大気中の有機物などの汚染物質をクーロン力により引きつけて再び汚染されることを抑えることができる。そのため、プラズマを用いた表面処理を行なった後の表面処理の効果の低減を少なくすることができる。   In the surface treatment method for an insulating member according to the present invention, since the object to be processed formed of the insulating material is subjected to the process of removing electricity after being brought into contact with the plasma, charging of the object to be processed is suppressed, and the object to be processed is in the atmosphere. It is possible to suppress contamination by attracting pollutants such as organic matter by Coulomb force. Therefore, the reduction in the effect of the surface treatment after performing the surface treatment using plasma can be reduced.

また、本願発明の絶縁部材の表面処理装置においては、搬送手段が絶縁材料により形成される被処理物をプラズマ処理部から除電部に移動させるので、被処理物にプラズマを吹き付けてから除電する処理を行うことになり、表面処理後の被処理物の帯電が抑えられ、被処理物が大気中の有機物などの汚染物質をクーロン力により引きつけて再び汚染されることを抑えることができる。そのため、プラズマを用いた表面処理を行なった後の表面処理の効果の低減を少なくすることができる。   Moreover, in the surface treatment apparatus for an insulating member of the present invention, since the object to be processed formed of the insulating material is moved from the plasma processing unit to the charge eliminating unit, the process of discharging the plasma after blowing the plasma on the object to be processed is performed. Thus, it is possible to suppress the charging of the object to be processed after the surface treatment, and to prevent the object to be processed from being contaminated again by attracting contaminants such as organic substances in the atmosphere by Coulomb force. Therefore, the reduction in the effect of the surface treatment after performing the surface treatment using plasma can be reduced.

本願発明の絶縁部材の表面処理装置(以下、単に表面処理装置と呼ぶ)の第1の実施形態について、図1を用いて説明する。このものは、搬送手段1と、プラズマ処理部2と、除電部3とを有して形成されている。   A first embodiment of an insulating member surface treatment apparatus (hereinafter simply referred to as a surface treatment apparatus) of the present invention will be described with reference to FIG. This is formed to include a conveying means 1, a plasma processing unit 2, and a charge eliminating unit 3.

搬送手段1は、モーター等の駆動源(図示せず)によって一方向に略水平に進行するベルト1aにより形成されている。このものは、被処理物Pをベルト1a上に載せた状態で、自動的にベルト1aの進行方向に移動させる。ここで、被処理物Pは、例えばプリント基板や液晶ディスプレイのガラスなどの絶縁材料からなる絶縁部材である。また、後述のプラズマ処理部2の吹出口2abに対向するベルト1aの部分の裏側に流路1bを有し、この流路に水などの冷媒を循環させることにより、ベルト1a上の被処理物Pを冷却することができる。   The conveying means 1 is formed by a belt 1a that travels substantially horizontally in one direction by a drive source (not shown) such as a motor. In this case, the workpiece P is automatically moved in the traveling direction of the belt 1a with the workpiece P placed on the belt 1a. Here, the workpiece P is an insulating member made of an insulating material such as a printed board or glass of a liquid crystal display. In addition, a flow path 1b is provided on the back side of a portion of the belt 1a facing a blowout port 2ab of the plasma processing unit 2 described later, and a workpiece such as water is circulated through the flow path, thereby allowing an object to be processed on the belt 1a. P can be cooled.

プラズマ処理部2は、反応容器2aと、プラズマ生成部2bとを有して形成されている。反応容器2aは、絶縁材料で円筒状に真直に形成されたものであり、内径が0.1〜10mmになるように形成され、軸の方向が搬送手段1のベルト1aに対して直交するように固定されている。このものは、上面側の端部にプラズマ生成用ガスGが流入する流入口2aaを、下面側の端部にプラズマPLを被処理物Pに向けて吹き出す吹出口2abを有している。吹出口2abからのプラズマPLの吹き出し速度は、流入口2aaから流入するプラズマ生成用ガスGの流入速度により決定される。ここでは、この流入口2aaと、吹出口2abとは円形であり、反応容器2aの内径と同じ径を有しているので、プラズマ生成用ガスGの流入速度とプラズマPLの吹き出し速度はほぼ同じとなっている。また、吹出口2abは、円形であるので、吹き出されたプラズマPLにより処理できる領域もほぼ円形の領域となり、局所的に表面処理を行うことができる。この反応容器2aを形成する絶縁材料には、石英、アルミナ、イットリア部分安定化ジルコニウムなどのガラス質材料やセラミック材料などを用いることができる。   The plasma processing unit 2 includes a reaction vessel 2a and a plasma generation unit 2b. The reaction vessel 2a is made of an insulating material and is formed into a cylindrical shape, is formed so that the inner diameter is 0.1 to 10 mm, and the direction of the axis is orthogonal to the belt 1a of the conveying means 1. It is fixed to. This has an inlet 2aa into which the plasma generating gas G flows in at the end on the upper surface side, and an outlet 2ab through which the plasma PL is blown toward the workpiece P at the end on the lower surface side. The blowing speed of the plasma PL from the blower outlet 2ab is determined by the inflow speed of the plasma generating gas G flowing from the inlet 2aa. Here, since the inlet 2aa and the outlet 2ab are circular and have the same diameter as the inner diameter of the reaction vessel 2a, the inflow speed of the plasma generating gas G and the blowing speed of the plasma PL are almost the same. It has become. Moreover, since the blower outlet 2ab is circular, the area | region which can be processed with the blown-out plasma PL also becomes a substantially circular area | region, and can perform surface treatment locally. As the insulating material forming the reaction vessel 2a, a glassy material such as quartz, alumina, yttria partially stabilized zirconium, a ceramic material, or the like can be used.

ここで、プラズマ生成用ガスGとしては、希ガスまたは反応性ガスと希ガスとを混合したガスを用いる。希ガスとしては、ヘリウム、アルゴン、ネオン、クリプトンなどを単独で用いたり、複数種を併用したりすることができる。しかしながら、放電の安定性や経済性を考慮すると、アルゴンとヘリウムのうち少なくとも1つを用いることが好ましい。被処理物Pの表面の汚れが少なくてプラズマ処理を強く行う必要がないときには、希ガスのみを用いてプラズマPLを生成し被処理物Pを処理するだけで濡れ性や接着性は向上する。しかし、被処理物Pの表面の汚れが多いときには、反応性ガスを希ガスに混合したものをプラズマ生成用ガスGとして、プラズマPLを生成する方が良い。この反応性ガスとしては、酸素、窒素、空気などが挙げられるが、有機汚染物質を効率的に除去するには酸素を用いることが好ましい。この酸素の量は、希ガス全量に対して0.5〜5.0体積%を添加するのが良い。それは、酸素の添加量が希ガスの全量に対して0.5体積%未満であれば、汚染物の除去効果が低くなるときがあり、酸素の添加量が5.0体積%を越えると放電が不安定になるときがあるからである。   Here, as the gas G for plasma generation, a rare gas or a gas in which a reactive gas and a rare gas are mixed is used. As the rare gas, helium, argon, neon, krypton, or the like can be used alone, or a plurality of kinds can be used in combination. However, in consideration of discharge stability and economy, it is preferable to use at least one of argon and helium. When there is little dirt on the surface of the workpiece P and it is not necessary to perform plasma processing strongly, wettability and adhesiveness are improved simply by generating the plasma PL using only a rare gas and processing the workpiece P. However, when the surface of the workpiece P is heavily contaminated, it is better to generate the plasma PL by using a mixture of reactive gas and rare gas as the plasma generating gas G. Examples of the reactive gas include oxygen, nitrogen, air and the like, but it is preferable to use oxygen in order to efficiently remove organic contaminants. The amount of oxygen is preferably 0.5 to 5.0% by volume based on the total amount of the rare gas. That is, if the amount of oxygen added is less than 0.5% by volume relative to the total amount of the rare gas, the effect of removing contaminants may be reduced, and if the amount of oxygen added exceeds 5.0% by volume, discharge will occur. Because there are times when becomes unstable.

プラズマ生成部2bは、対をなす電極2ba,2bbと、電源2bcとを有して構成される。電極2ba,2bbは円環状(リング状)に形成されており、冷却効率を高くするために熱伝導性の高い金属材料、例えば、銅、アルミニウム、真鍮、耐食性の高いステンレス鋼(SUS304など)などで形成されている。電極2ba,2bbは、その内周面を反応容器2aの外周面に全周に亘って接触させるようにして反応容器2aの外側にそれぞれ配設されている。また、吹出口2abの上方において、電極2ba,2bbは、プラズマ生成用ガスGの流れの上流側と下流側に(図1中では上下に)対向させて配置されており、電極2ba,2bbの間に対応する位置において反応容器2a内には放電空間2acが形成されている。   The plasma generation unit 2b includes a pair of electrodes 2ba and 2bb and a power source 2bc. The electrodes 2ba and 2bb are formed in an annular shape (ring shape), and a metal material having high thermal conductivity, for example, copper, aluminum, brass, stainless steel having high corrosion resistance (SUS304, etc.), etc. in order to increase cooling efficiency. It is formed with. The electrodes 2ba and 2bb are respectively arranged outside the reaction vessel 2a so that the inner circumferential surfaces thereof are in contact with the outer circumferential surface of the reaction vessel 2a over the entire circumference. In addition, above the air outlet 2ab, the electrodes 2ba and 2bb are arranged to face the upstream side and the downstream side (up and down in FIG. 1) of the flow of the plasma generating gas G, and the electrodes 2ba and 2bb A discharge space 2ac is formed in the reaction vessel 2a at a position corresponding to the gap.

電源2bcは電極2ba,2bbに電気的に接続されており、パルス状の電圧又は交番する電圧(交流電圧または高周波電圧)を発生するものである。電源2bcにより電極2ba,2bbの間にパルス状の電圧又は交番する電圧が印加されると、放電空間2acに生じる電気力線は反応容器2aの内周面に沿って上下方向(電極2ba,2bbが並ぶ方向)になる。このように、電極間に電圧を与えることにより、流入口2aaから放電空間2ac内に流入したプラズマ生成用ガスGからプラズマPLが生成される。ここで、電極2ba,2bbの間隔L(電極2baの下端と電極2bbの上端の間隔L)は3〜20mmに設定するのが好ましい。また、電極2ba,2bbは冷媒により冷却されるのが好ましい。   The power source 2bc is electrically connected to the electrodes 2ba and 2bb, and generates a pulsed voltage or an alternating voltage (an alternating voltage or a high frequency voltage). When a pulsed voltage or an alternating voltage is applied between the electrodes 2ba and 2bb by the power source 2bc, the electric lines of force generated in the discharge space 2ac are moved in the vertical direction (electrodes 2ba and 2bb along the inner peripheral surface of the reaction vessel 2a). Direction). Thus, by applying a voltage between the electrodes, plasma PL is generated from the plasma generating gas G flowing into the discharge space 2ac from the inlet 2aa. Here, the distance L between the electrodes 2ba and 2bb (the distance L between the lower end of the electrode 2ba and the upper end of the electrode 2bb) is preferably set to 3 to 20 mm. The electrodes 2ba and 2bb are preferably cooled by a refrigerant.

プラズマ処理部2は、上述のような構成を有することにより、反応容器2aの流入口2aaからプラズマ生成用ガスGを流入させ、プラズマ生成部2bにより反応容器2a内の放電空間2acにプラズマPLを生成し、反応容器2aの吹出口2abからプラズマPLを被処理物Pに向けて吹き出すことができる。   Since the plasma processing unit 2 has the above-described configuration, the plasma generation gas G is introduced from the inlet 2aa of the reaction vessel 2a, and the plasma PL is generated in the discharge space 2ac in the reaction vessel 2a by the plasma generation unit 2b. It can produce | generate and can blow off plasma PL toward the to-be-processed object P from the blower outlet 2ab of the reaction container 2a.

除電部3は、除電電極3aと、ケース3bとを有して形成されている。除電電極3aは、タングステンで直線状に形成されたものであり、樹脂製のケース3bに支持されて搬送手段1の上方に搬送手段1のベルト1aの進行方向に直交するように設けられる。このものは、電源(図示せず)により1〜10kVの高電圧が印加されると、周囲に強電界を生じ、その強電界内に帯電した被処理物Pを存在させることにより、被処理物Pの表面に存在する電荷を吸収し、被処理物Pから非接触で電荷を取り除く。除電電極3aと被処理物Pとの距離は、除電電極3aの印加電圧と被処理物Pの帯電量により、20mm〜150mmの間で設定できる。   The static elimination part 3 has the static elimination electrode 3a and the case 3b, and is formed. The neutralizing electrode 3a is formed in a straight line with tungsten, and is provided above the conveying means 1 so as to be orthogonal to the traveling direction of the belt 1a of the conveying means 1 by being supported by a resin case 3b. In this case, when a high voltage of 1 to 10 kV is applied by a power source (not shown), a strong electric field is generated around the object, and the object to be processed P is present in the strong electric field, whereby the object to be processed is present. The charge existing on the surface of P is absorbed, and the charge is removed from the workpiece P in a non-contact manner. The distance between the static elimination electrode 3a and the workpiece P can be set between 20 mm and 150 mm depending on the voltage applied to the static elimination electrode 3a and the charge amount of the workpiece P.

ケース3bは、樹脂により断面視長方形形状の筒状に形成されており、その両端は樹脂により閉じられている。このものは、樹脂製の固定部4を用いてプラズマ処理部2に固定されており、搬送手段1の進行方向と断面形状の長方形の長辺とがほぼ平行になるように設けられている。そして、このものは、断面視で中心付近に筒の長さ方向に沿って除電電極3aを支持しており、除電電極3aの下方に除電電極3aに平行に設けられたスリット3baを有している。このスリット3baを設けることにより、除電電極3aは、除電電極3aの下方に位置する被処理物Pの表面に存在する電荷を吸収して除去する。   The case 3b is formed in a cylindrical shape having a rectangular shape in a sectional view with resin, and both ends thereof are closed with resin. This is fixed to the plasma processing unit 2 using a resin fixing unit 4 and is provided so that the traveling direction of the transport means 1 and the long side of the cross-sectional rectangle are substantially parallel. And this thing has the slit 3ba provided in parallel with the static elimination electrode 3a under the static elimination electrode 3a below the static elimination electrode 3a, supporting the static elimination electrode 3a along the length direction of a pipe | tube near the center by sectional view. Yes. By providing the slit 3ba, the static elimination electrode 3a absorbs and removes the charges present on the surface of the workpiece P located below the static elimination electrode 3a.

次に、第1の実施形態の動作について説明する。まず、表面処理装置の主電源(図示せず)を投入すると、プラズマ処理部2は、プラズマ生成用ガスGを反応容器2a内に流入させ、放電空間2acに導き入れる。そして、プラズマ生成部2bは、電源2bcにより電極2ba,2bb間にパルス状もしくは交番する電圧を印加することにより、大気圧近傍の圧力下(93.3〜106.7kPa(700〜800Torr))で放電空間2acにグロー状の放電を発生させると共にグロー状の放電によりプラズマ生成用ガスGをプラズマ化してプラズマ活性種を含むプラズマPLを生成する。この後、プラズマ生成用ガスGの流入速度により決定される吹き出し速度でプラズマPLがプラズマジェットとして吹出口2abから下方に向けて吹き出される。一方、除電部3は、除電電極3aに高電圧が印加され、搬送手段1は、駆動源(図示せず)によりベルト1aの駆動を開始する。   Next, the operation of the first embodiment will be described. First, when the main power supply (not shown) of the surface treatment apparatus is turned on, the plasma processing unit 2 causes the plasma generating gas G to flow into the reaction vessel 2a and introduce it into the discharge space 2ac. The plasma generating unit 2b applies a pulsed or alternating voltage between the electrodes 2ba and 2bb from the power source 2bc, so that the pressure is near atmospheric pressure (93.3 to 106.7 kPa (700 to 800 Torr)). A glow discharge is generated in the discharge space 2ac, and the plasma generating gas G is turned into plasma by the glow discharge to generate a plasma PL containing plasma active species. Thereafter, the plasma PL is blown downward from the blowout port 2ab as a plasma jet at a blowing speed determined by the inflow speed of the plasma generating gas G. On the other hand, in the static elimination unit 3, a high voltage is applied to the static elimination electrode 3a, and the conveying unit 1 starts driving the belt 1a by a drive source (not shown).

そして、前工程によりベルト1a上に被処理物Pが置かれて水平方向に移動し、その被処理物Pがプラズマ処理部2の下方を通過するときに、流路1bを流れる冷媒により冷却されつつプラズマPLが吹き付けられる。そのため、その吹き付けられた部分の表面に存在する汚染物質は、プラズマPLの活性種で分解(灰化)されて吹き飛ばされ、除去される。ここで、被処理物Pは、プラズマPLを吹き付けられたことにより帯電し、電荷を有している。このため、大気中の汚染物質(例えば大気中の有機汚染物質など)をクーロン力により引きつけ、被処理物Pの表面が再び汚れ始める状態となっている。搬送手段1は、ベルト1aにより被処理物Pを移動させ、被処理物PにプラズマPLを吹き付けられた後すぐに連続して、除電部3の下方を通過させる。そのため、被処理物Pの表面から電荷が除去されるので、被処理物Pが大気中の汚染物質をクーロン力により引きつけて再び汚れるのを抑えることができる。プラズマPLが被処理物Pに吹き出されてから除電部3により電荷を取り除かれるまでの時間は、短ければ短いほど良いが、数秒以内であれば十分な効果が得られる。   Then, the workpiece P is placed on the belt 1a and moved in the horizontal direction in the previous process, and when the workpiece P passes below the plasma processing section 2, it is cooled by the refrigerant flowing through the flow path 1b. While plasma PL is sprayed. Therefore, contaminants present on the surface of the sprayed portion are decomposed (ashed) by the active species of plasma PL, blown off, and removed. Here, the workpiece P is charged and charged by being sprayed with the plasma PL. For this reason, pollutants in the atmosphere (for example, organic pollutants in the atmosphere, etc.) are attracted by the Coulomb force, and the surface of the object to be processed P begins to get dirty again. The conveying means 1 moves the workpiece P by the belt 1a, and continuously passes immediately below the neutralization section 3 after the plasma PL is sprayed on the workpiece P. Therefore, since electric charges are removed from the surface of the workpiece P, it is possible to prevent the workpiece P from being contaminated again by attracting contaminants in the atmosphere by Coulomb force. The shorter the time from when the plasma PL is blown to the workpiece P until the charge is removed by the charge removal unit 3, the shorter the better. However, a sufficient effect can be obtained within a few seconds.

また、プラズマ処理の効果を上げるためには、被処理物Pの種類やプラズマPLの生成条件によって異なるが、被処理物Pの搬送速度は、0.1mm/秒〜200mm/秒に、被処理物Pと吹出口2abの間隔は2〜10mmにそれぞれ設定するのが好ましい。また、電極2ba,2bb間に印加される電圧が交番する電圧(交流電圧)の場合、その周波数は1kHz〜200MHzに設定することができる。さらに、放電空間2acに印加される印加電力の密度は20〜3500W/cm3に設定することができる。印加電力の密度(W/cm3)は(放電空間2acに印加される印加電力/放電空間2acの体積)で定義される。さらに、反応容器2aの吹出口2abでのガス流速(プラズマPLの吹き出し速度)は2m/秒以上にすることが好ましく、このような値にすることにより、汚染物質の除去処理を効率よく行うことができる。 Further, in order to increase the effect of the plasma treatment, although depending on the type of the workpiece P and the generation conditions of the plasma PL, the conveyance speed of the workpiece P is 0.1 mm / sec to 200 mm / sec. The distance between the object P and the air outlet 2ab is preferably set to 2 to 10 mm. In addition, when the voltage applied between the electrodes 2ba and 2bb is an alternating voltage (AC voltage), the frequency can be set to 1 kHz to 200 MHz. Furthermore, the density of the applied power applied to the discharge space 2ac can be set to 20 to 3500 W / cm 3 . The density (W / cm 3 ) of applied power is defined by (applied power applied to discharge space 2ac / volume of discharge space 2ac). Further, the gas flow rate (plasma PL blowing speed) at the outlet 2ab of the reaction vessel 2a is preferably 2 m / second or more. By setting such a value, it is possible to efficiently perform the contaminant removal process. Can do.

ここで、反応容器2aの吹出口2abと、除電部3のスリット3baとの水平方向(ベルト1aの進行方向)の距離dは、短い方がよい。それは、被処理物Pの表面処理後の帯電した状態を短くすることができるからである。しかしながら、除電部3を反応容器2aに近づきすぎると、電極2bbに近づくことになり、電極2bbから除電部3に放電が生じると、放電空間2acに印加される電圧が不安定となるためプラズマPLを安定して生成することができなくなる。そのため、除電部3は、プラズマPLの生成を妨げない範囲でできる限り近くするのが望ましい。   Here, the distance d in the horizontal direction (the traveling direction of the belt 1a) between the outlet 2ab of the reaction vessel 2a and the slit 3ba of the static elimination unit 3 is preferably shorter. This is because the charged state after the surface treatment of the workpiece P can be shortened. However, if the charge removal unit 3 is too close to the reaction vessel 2a, the electrode 2bb is approached, and when a discharge occurs from the electrode 2bb to the charge removal unit 3, the voltage applied to the discharge space 2ac becomes unstable, so the plasma PL Cannot be generated stably. Therefore, it is desirable that the charge removal unit 3 be as close as possible within a range that does not hinder the generation of the plasma PL.

また、プラズマ処理部2として真空プラズマ処理を行うものを用いて、その後に除電部3を設けても効果があるが、除電部3を真空装置内への設置は一般に行いにくい。そして、被処理物Pを真空中から取り出して除電すると、真空中から取り出してから除電するまでに、セッティングなどのための時間を要するので、その間の汚染物の吸着量が多くなり、除電の効果が小さくなる。したがって、大気圧プラズマによる処理を行う場合には、除電部3をプラズマ処理部2の近傍に置きやすく、大気圧プラズマを用いて処理した後に搬送手段1に載せたまま連続して除電するように構成しやすいという利点を有している。   Further, although it is effective to use a device that performs vacuum plasma processing as the plasma processing unit 2 and then to provide the static elimination unit 3, it is generally difficult to install the static elimination unit 3 in the vacuum apparatus. And if the workpiece P is taken out from the vacuum and neutralized, it takes time for setting until it is taken out from the vacuum and then neutralized, so the amount of contaminant adsorbed during that time increases, and the effect of static elimination Becomes smaller. Therefore, when processing by atmospheric pressure plasma is performed, it is easy to place the static elimination unit 3 in the vicinity of the plasma processing unit 2, and after performing the processing using atmospheric pressure plasma, the static elimination is continuously performed while being placed on the conveying means 1. It has the advantage of being easy to construct.

ここで、第1の実施形態の表面処理装置を用いてポリイミドフィルム表面の汚染物質の除去を行なった例について示す。この例では、反応容器2aは外径が5mm、内径が3mmの円筒管であり、石英により形成した。また、プラズマ処理部2においては、プラズマ生成用ガスGとして、ヘリウムを0.5リットル/分、アルゴンを1リットル/分、酸素を0.05リットル/分の流量で反応容器2aに流入させた。また、電極2ba,2bbの間には周波数が13.56MHzの高周波電圧を印加し、印加電力を100Wとした。また、吹出口2abから吹き出されるプラズマPLの速度(ガス速度)は3.6m/秒とした。また、搬送手段1に設置した被処理物Pの搬送速度は50mm/秒とし、除電部3の除電電極3aには4kVの電圧を印加した。このとき、プラズマPLが被処理物Pに吹き出されてから除電部3により電荷を取り除かれるまでの時間は、3秒程度であった。   Here, an example in which contaminants on the polyimide film surface are removed using the surface treatment apparatus of the first embodiment will be described. In this example, the reaction vessel 2a is a cylindrical tube having an outer diameter of 5 mm and an inner diameter of 3 mm, and is formed of quartz. In the plasma processing unit 2, as the gas G for plasma generation, helium was introduced into the reaction vessel 2a at a flow rate of 0.5 liter / minute, argon at 1 liter / minute, and oxygen at 0.05 liter / minute. . A high frequency voltage with a frequency of 13.56 MHz was applied between the electrodes 2ba and 2bb, and the applied power was 100W. Further, the speed (gas speed) of the plasma PL blown from the blowout port 2ab was 3.6 m / sec. Moreover, the conveyance speed of the to-be-processed object P installed in the conveyance means 1 was 50 mm / second, and the voltage of 4 kV was applied to the static elimination electrode 3a of the static elimination part 3. FIG. At this time, the time from when the plasma PL was blown out to the workpiece P until the charge was removed by the charge removal unit 3 was about 3 seconds.

ここで、プラズマPLによる表面処理のみを行なった場合と、プラズマPLによる表面処理につづいて除電部3により除電処理を行なった場合について水接触角(水濡れ性)を比較すると、表面処理の直後には、順に13.4°および13.0°と大きな差はなかった。しかしながら、大気中に3時間放置すると、水接触角は順に24.3°および18.5°となり、除電を行なったものの方が、プラズマPLを用いた表面処理により改善した水接触角の特性の低減が抑えられていることを確認した。大気中に3時間放置したポリイミドフィルムの表面処理を行なった部分に銅を蒸着すると、除電処理をした方が密着性の高い銅蒸着膜が形成された。   Here, when the water contact angle (water wettability) is compared between the case where only the surface treatment by plasma PL is performed and the case where the surface removal treatment is performed by the charge removal unit 3 following the surface treatment by the plasma PL, immediately after the surface treatment. There was no significant difference in order of 13.4 ° and 13.0 °. However, when left in the atmosphere for 3 hours, the water contact angle becomes 24.3 ° and 18.5 ° in order, and the water contact angle improved by the surface treatment using the plasma PL is obtained after static elimination. It was confirmed that the reduction was suppressed. When copper was vapor-deposited on the surface of the polyimide film that had been left in the atmosphere for 3 hours, a copper vapor-deposited film having higher adhesion was formed by the charge removal treatment.

このように、第1の実施形態においては、搬送手段1が被処理物Pをプラズマ処理部2から除電部3に移動させるので、被処理物PにプラズマPLを吹き付けてから除電する処理を行うことになり、表面処理後の被処理物Pの帯電が抑えられ、大気中の汚染物質をクーロン力により引きつけることを抑えることができる。そのため、プラズマを用いた表面処理を行なった後の表面処理の効果の低減を少なくする表面処理装置を提供することができる。   Thus, in 1st Embodiment, since the conveyance means 1 moves the to-be-processed object P from the plasma processing part 2 to the static elimination part 3, it performs the process which discharges, after spraying plasma PL to the to-be-processed object P. That is, charging of the workpiece P after the surface treatment is suppressed, and it is possible to suppress attracting contaminants in the atmosphere by Coulomb force. Therefore, it is possible to provide a surface treatment apparatus that reduces the reduction in the effect of the surface treatment after performing the surface treatment using plasma.

なお、この実施形態において、除電部3は、直線状の除電電極3aを用いたが、針状の除電電極3aを用いてスポット的に除電を行うものであってもよい。   In this embodiment, the static elimination unit 3 uses the linear static elimination electrode 3a. However, the static elimination unit 3 may perform static elimination in a spot manner using the needle-like static elimination electrode 3a.

次に、本願発明の表面処理装置の第2の実施形態について、図2を用いて説明する。このものは、第1の実施形態のプラズマ処理部2を、図2に示すプラズマ処理部2に置き換えたものであり、第1の実施形態と比較して、プラズマ処理部2の反応容器2aと、電極2ba,2bbの形状が異なっており、その他の構成は第1の実施形態と同じである。   Next, a second embodiment of the surface treatment apparatus of the present invention will be described with reference to FIG. This is obtained by replacing the plasma processing unit 2 of the first embodiment with the plasma processing unit 2 shown in FIG. 2. Compared with the first embodiment, the reaction vessel 2 a of the plasma processing unit 2 The shapes of the electrodes 2ba and 2bb are different, and other configurations are the same as those of the first embodiment.

反応容器2aは、その厚み方向(厚み方向を矢印Bで示す)に並んで対向する一対の側壁2adと、反応容器2aの幅方向(幅方向を矢印Aで示す)に並んで対向する一対の側壁2aeと、反応容器5の下面を構成する矩形状(底面視で長方形)の底部2afとで有底の角形筒状に形成されている。また、反応容器2aの上面は流入口2aaとしてほぼ全面にわたって開放されているとともに底部2afの外面である反応容器2aの下面はほぼ平坦な面で形成されている。   The reaction vessel 2a has a pair of side walls 2ad facing each other in the thickness direction (thickness direction is indicated by an arrow B), and a pair of opposite sides facing each other in the width direction (the width direction is indicated by an arrow A) of the reaction vessel 2a. The side wall 2ae and a rectangular bottom portion 2af that forms the lower surface of the reaction vessel 5 (rectangular view in bottom view) are formed in a rectangular tube shape with a bottom. Further, the upper surface of the reaction vessel 2a is opened over almost the entire surface as the inflow port 2aa, and the lower surface of the reaction vessel 2a, which is the outer surface of the bottom portion 2af, is formed as a substantially flat surface.

そして、図2(b)に示すように、反応容器2aの下面の厚み方向の略中央部には反応容器2aの長手方向(幅方向)と平行な方向に長くて幅広の吹出口2abが形成されている。吹出口2abはスリット状であって、反応容器2aの底部2afを貫通して反応容器5内の放電空間2acと連通している。そのため、吹出口2abから吹き出されるプラズマPLは帯状のものとなり、第1の実施形態のプラズマ処理部2よりも幅広の範囲において被処理物Pの表面処理を行うことができる。   Then, as shown in FIG. 2 (b), a wide and wide outlet 2ab is formed at a substantially central portion in the thickness direction of the lower surface of the reaction vessel 2a in a direction parallel to the longitudinal direction (width direction) of the reaction vessel 2a. Has been. The air outlet 2ab is slit-shaped, and communicates with the discharge space 2ac in the reaction vessel 5 through the bottom 2af of the reaction vessel 2a. Therefore, the plasma PL blown out from the blowout port 2ab has a belt-like shape, and the surface treatment of the workpiece P can be performed in a wider range than the plasma processing unit 2 of the first embodiment.

プラズマ生成部2bの電極2ba,2bbは、角形の環状に形成されており、冷却効率を高くするために熱伝導性の高い金属材料、例えば、銅、アルミニウム、真鍮、耐食性の高いステンレス鋼(SUS304など)などで形成されている。電極2ba,2bbは、その内周面を反応容器2aの外周面に全周に亘って接触させるようにして反応容器2aの外側にそれぞれ配設されている。また、吹出口2abの上方において、電極2ba,2bbは上下に対向するように配置されている。   The electrodes 2ba and 2bb of the plasma generation unit 2b are formed in a rectangular ring shape, and a metal material having high thermal conductivity, for example, copper, aluminum, brass, stainless steel having high corrosion resistance (SUS304) is used to increase cooling efficiency. Etc.). The electrodes 2ba and 2bb are respectively arranged outside the reaction vessel 2a so that the inner circumferential surfaces thereof are in contact with the outer circumferential surface of the reaction vessel 2a over the entire circumference. In addition, above the air outlet 2ab, the electrodes 2ba and 2bb are arranged so as to face each other vertically.

反応容器2aは厚み寸法よりも幅寸法が非常に大きく形成された扁平形状であって、反応容器2aの厚み方向(幅狭方向)における内寸W、すなわち、反応容器2aの厚み方向(幅狭方向)に並んで対向する一対の側壁2adの内面の対向間隔Wは、0.1〜5mmに形成するのが好ましい。このように反応容器2aの厚み方向の内寸Wを0.1〜5mmにすることによって、放電空間2acの体積が比較的小さくなって、放電空間2acにおける単位空間あたりの電力を高くすることができ、つまり、放電空間2acにおける放電空間密度を上げることができ、低電力化及び小ガス流量化を図ることができるものであり、しかも、プラズマの生成効率が高まって、プラズマ処理(汚染物質3の除去処理)の能力を向上させることができるものである。   The reaction vessel 2a has a flat shape with a width dimension that is much larger than the thickness dimension, and has an inner dimension W in the thickness direction (narrow direction) of the reaction vessel 2a, that is, the thickness direction (narrow width) of the reaction vessel 2a. The facing interval W between the inner surfaces of the pair of side walls 2ad facing each other side by side in the direction is preferably 0.1 to 5 mm. Thus, by setting the inner dimension W in the thickness direction of the reaction vessel 2a to 0.1 to 5 mm, the volume of the discharge space 2ac becomes relatively small, and the power per unit space in the discharge space 2ac can be increased. In other words, the discharge space density in the discharge space 2ac can be increased, the power can be reduced, and the gas flow rate can be reduced. Moreover, the plasma generation efficiency is increased, and the plasma treatment (pollutant 3 The ability of the removal process can be improved.

第2の実施形態においては、上述のような構成のプラズマ処理部2を、その厚み方向が搬送手段1の進行方向になるとともに吹出口2abが搬送手段1のベルト1aの上面と対向するように設けられている。従って、被処理物Pが帯状のプラズマPLにより吹き付けられる。よって、プラズマPLが吹き付けられた後、被処理物Pは、幅広い領域で帯電している。ここで、除電部3の除電電極3aは、直線状の電極であるため、プラズマPLにより帯電した幅広い領域を除電して、プラズマPLを用いて表面処理した部分が再び汚染されることを防ぐことができる。   In the second embodiment, the plasma processing unit 2 having the above-described configuration is configured such that the thickness direction thereof is the traveling direction of the transport unit 1 and the air outlet 2ab is opposed to the upper surface of the belt 1a of the transport unit 1. Is provided. Accordingly, the workpiece P is sprayed by the strip-shaped plasma PL. Therefore, after the plasma PL is sprayed, the workpiece P is charged in a wide area. Here, since the static elimination electrode 3a of the static elimination part 3 is a linear electrode, it neutralizes the wide area | region electrically charged by plasma PL, and prevents that the part surface-treated using plasma PL is contaminated again. Can do.

ここで、第2の実施形態の表面処理装置を用いて液晶パネル用ガラス基板表面の汚染物の除去処理を行なった例について示す。この例では、反応容器2aの吹出口2abの大きさを2.5mm×35mmに形成した。また、プラズマ生成用ガスGとしては、ヘリウムを2リットル/分、アルゴンを8リットル/分、酸素を0.3リットル/分の流量で反応容器2aに流入させた。また、電極2ba,2bbの間には、周波数が13.56MHzの高周波電圧を印加し、印加電力を600Wとした。また、吹出口2abから吹き出されるプラズマPLの速度(ガス速度)は2.5m/秒とした。また、搬送手段1上に載置した被処理物Pの搬送速度は100mm/秒とし、除電部3の除電電極3aには2kVの電圧を印加した。このとき、プラズマPLが被処理物Pに吹き出されてから除電部3により電荷を取り除かれるまでの時間は、3秒程度であった。   Here, an example in which the contaminant removal process on the surface of the glass substrate for a liquid crystal panel is performed using the surface treatment apparatus of the second embodiment will be described. In this example, the size of the outlet 2ab of the reaction vessel 2a was formed to be 2.5 mm × 35 mm. As the plasma generating gas G, helium was introduced into the reaction vessel 2a at a flow rate of 2 liters / minute, argon at 8 liters / minute, and oxygen at 0.3 liters / minute. A high frequency voltage having a frequency of 13.56 MHz was applied between the electrodes 2ba and 2bb, and the applied power was 600W. Moreover, the speed (gas speed) of the plasma PL blown out from the blower outlet 2ab was set to 2.5 m / second. The conveyance speed of the workpiece P placed on the conveyance means 1 was 100 mm / second, and a voltage of 2 kV was applied to the static elimination electrode 3a of the static elimination unit 3. At this time, the time from when the plasma PL was blown out to the workpiece P until the charge was removed by the charge removal unit 3 was about 3 seconds.

ここで、プラズマPLによる表面処理のみを行なった場合と、プラズマPLによる表面処理につづいて除電部3により除電処理を行なった場合について水接触角(水濡れ性)を比較すると、表面処理の直後には、順に4.8°および4.5°と大きな差はなかった。しかしながら、大気中に3時間放置すると、水接触角は順に10.3°および7.0°となり、除電を行なったものの方が、プラズマPLを用いて改善した水接触角の特性の低減が抑えられていることを確認した。大気中に3時間放置したガラス基板の表面処理を行なった部分にITO(インジウムとスズの酸化物)を蒸着すると、除電処理をした方が密着性の高いITO蒸着膜が形成された。   Here, when the water contact angle (water wettability) is compared between the case where only the surface treatment by plasma PL is performed and the case where the surface removal treatment is performed by the charge removal unit 3 following the surface treatment by the plasma PL, immediately after the surface treatment. There was no significant difference in order between 4.8 ° and 4.5 °. However, when left in the atmosphere for 3 hours, the water contact angle becomes 10.3 ° and 7.0 ° in order, and the water contact angle improved by using the plasma PL is less suppressed when the charge is removed. It was confirmed that When ITO (indium and tin oxide) was vapor-deposited on the surface-treated portion of the glass substrate that was left in the atmosphere for 3 hours, an ITO vapor-deposited film with higher adhesion was formed by the charge removal treatment.

このように、第2の実施形態においては、幅広の領域を表面処理できるプラズマ処理部2と、幅広の領域を除電できる除電部3を有するので、幅広の範囲でプラズマを用いた表面処理を行い、かつ、その後の表面処理の効果の低減を少なくする表面処理装置を提供することができる。   As described above, in the second embodiment, since the plasma processing unit 2 that can surface-treat a wide region and the static elimination unit 3 that can neutralize a wide region, the surface treatment using plasma is performed in a wide range. And the surface treatment apparatus which reduces reduction of the effect of subsequent surface treatment can be provided.

次に、本願発明の表面処理装置の第3の実施形態について、図3を用いて説明する。このものは、第1の実施形態と比較して、プラズマ処理部2の反応容器2aが所定の角度θだけ傾いている点と、除電部3の位置が反応容器2aの吹出口2abに近づいている点が異なっており、その他は第1の実施形態と同じ構成である。   Next, a third embodiment of the surface treatment apparatus of the present invention will be described with reference to FIG. Compared with the first embodiment, this is because the reaction vessel 2a of the plasma processing unit 2 is inclined by a predetermined angle θ, and the position of the charge removal unit 3 approaches the outlet 2ab of the reaction vessel 2a. The other points are the same as in the first embodiment.

プラズマ処理部2の反応容器2aは、搬送手段1の進行方向とは逆の方向に所定の角度θだけ傾けられて配設されている。そのため、電極2bbのベルト1aの進行方向側の底面とベルト1aの上面との距離は、傾ける前と比較して広くなる。そのため、電極2bbから除電部3に放電を避けつつ、除電部3を第1の実施形態と比較して反応容器2aの吹出口2abに近づけることができる(つまり、d’<dにできる)。ここで、所定の角度θは、プラズマPLを用いた表面処理の効果と、除電部3による表面処理後における表面処理の効果の低減に対する抑制効果を考慮して決定する。   The reaction vessel 2a of the plasma processing unit 2 is disposed so as to be inclined by a predetermined angle θ in a direction opposite to the traveling direction of the transport means 1. Therefore, the distance between the bottom surface of the electrode 2bb on the traveling direction side of the belt 1a and the upper surface of the belt 1a is wider than before the inclination. For this reason, it is possible to bring the neutralization unit 3 closer to the outlet 2ab of the reaction vessel 2a as compared with the first embodiment (that is, d '<d) while avoiding discharge from the electrode 2bb to the neutralization unit 3. Here, the predetermined angle θ is determined in consideration of the effect of the surface treatment using the plasma PL and the suppression effect on the reduction of the effect of the surface treatment after the surface treatment by the static eliminating unit 3.

このように、第3の実施形態においては、被処理物Pの表面処理後の帯電した状態を短くすることができ、表面処理の効果の低減をさらに抑えることができる。   Thus, in 3rd Embodiment, the charged state after the surface treatment of the to-be-processed object P can be shortened, and the reduction of the effect of surface treatment can further be suppressed.

なお、実施形態の説明において、図1〜図3に示したプラズマ処理部2を用いる場合について示したが、これらのプラズマ処理部2の構成に限るものではなく、プラズマPLにより被処理物Pの表面処理を行なえるものであれば、どのような構成であっても構わない。   In the description of the embodiment, the case where the plasma processing unit 2 shown in FIGS. 1 to 3 is used has been described. However, the present invention is not limited to the configuration of the plasma processing unit 2, and the object P is processed by the plasma PL. Any configuration can be used as long as the surface treatment can be performed.

また、除電電極3aは、タングステンで形成されたものについてのみ説明したが、それに限るものではなく、その他の導電材料により形成することもできる。   Moreover, although the static elimination electrode 3a was demonstrated only about what was formed with tungsten, it is not restricted to it, It can also form with another electrically-conductive material.

また、搬送手段1に冷媒を通す流路1bを有するものについてのみ説明したが、被処理物がプラズマPLが吹き付けられることにより生じる熱に耐えることができるものであれば、この流路を形成しなくても構わない。   Further, although only the one having the flow path 1b for passing the refrigerant through the conveying means 1 has been described, this flow path is formed if the object to be processed can withstand the heat generated by the plasma PL being blown. It doesn't matter.

第1の実施形態に係る絶縁部材の表面処理装置を示す断面図である。It is sectional drawing which shows the surface treatment apparatus of the insulating member which concerns on 1st Embodiment. 第2の実施形態に係る絶縁部材の表面処理装置のプラズマ処理部を示すもので、(a)は、斜視図、(b)は底面図である。The plasma processing part of the surface treatment apparatus of the insulating member which concerns on 2nd Embodiment is shown, (a) is a perspective view, (b) is a bottom view. 第3の実施形態に係る絶縁部材の表面処理装置を示す断面図である。It is sectional drawing which shows the surface treatment apparatus of the insulating member which concerns on 3rd Embodiment.

符号の説明Explanation of symbols

1 搬送手段
2 プラズマ処理部
2a 反応容器
2b プラズマ生成部
3 除電部
3a 除電電極
4 固定部
P 被処理物(絶縁部材)
G プラズマ生成用ガス
PL プラズマ
DESCRIPTION OF SYMBOLS 1 Transfer means 2 Plasma processing part 2a Reaction container 2b Plasma generation part 3 Static elimination part 3a Static elimination electrode 4 Fixing part P To-be-processed object (insulating member)
G Plasma generation gas PL Plasma

Claims (4)

反応容器内のプラズマ生成用ガスに電圧を印加することによりプラズマを生成し、生成されたプラズマを絶縁材料により形成される被処理物に接触させてから、その被処理物を除電する処理を行う絶縁部材の表面処理方法。   Plasma is generated by applying a voltage to the plasma generating gas in the reaction vessel, and the generated plasma is brought into contact with the workpiece formed of an insulating material, and then the workpiece is discharged. Insulating member surface treatment method. 反応容器は、筒状に形成され、一方の端部からプラズマ生成用ガスを反応容器内に流入し、そのプラズマ生成用ガスの流入により、もう一方の端部から生成されたプラズマを吹き出すものであり、被処理物は、吹き出されたプラズマに接触することを特徴とする請求項1記載の絶縁部材の表面処理方法。   The reaction vessel is formed in a cylindrical shape, and the plasma generation gas flows into the reaction vessel from one end, and the plasma generated from the other end is blown out by the inflow of the plasma generation gas. 2. The surface treatment method for an insulating member according to claim 1, wherein the object to be treated is in contact with the blown-out plasma. 絶縁材料により形成される被処理物を移動させる搬送手段と、プラズマ生成用ガスが流入する流入口と生成されたプラズマを被処理物に向けて吹き出す吹出口とを備える反応容器と、反応容器内に流入したプラズマ生成用ガスに電圧を与えてプラズマを生成するプラズマ生成部と、被処理物から非接触で電荷を取り除く除電部とを備え、搬送手段は、反応容器から吹き出されたプラズマと接触する位置から除電部により非接触で電荷が取り除かれる位置に被処理物を移動させることを特徴とする絶縁部材の表面処理装置。   A reaction vessel comprising a transfer means for moving the object to be processed formed of an insulating material, an inflow port into which a plasma generating gas flows, and an outlet for blowing out the generated plasma toward the object to be processed; A plasma generating unit that generates a plasma by applying a voltage to the plasma generating gas that has flowed into the chamber, and a charge eliminating unit that removes charges in a non-contact manner from the object to be processed, and the conveying means is in contact with the plasma blown out of the reaction vessel A surface treatment apparatus for an insulating member, wherein the object to be treated is moved from a position to be removed to a position where electric charges are removed in a non-contact manner by a charge removal unit. 前記搬送手段は、被処理物を直線状に移動させるものであり、反応容器は、筒状に形成され、反応容器を取り巻く対をなす電極を有し、この反応容器の軸の方向が搬送手段による被処理物の移動方向とは逆の方向に傾けて配設されることを特徴とする請求項3記載の絶縁部材の表面処理装置。   The transport means moves the object to be processed in a straight line, and the reaction container is formed in a cylindrical shape and has a pair of electrodes surrounding the reaction container, and the direction of the axis of the reaction container is the transport means. The surface treatment apparatus for an insulating member according to claim 3, wherein the surface treatment apparatus is disposed to be inclined in a direction opposite to the moving direction of the object to be processed.
JP2003331627A 2003-09-24 2003-09-24 Surface treatment method of insulating member, and surface treatment apparatus for insulating member Pending JP2005095744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003331627A JP2005095744A (en) 2003-09-24 2003-09-24 Surface treatment method of insulating member, and surface treatment apparatus for insulating member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003331627A JP2005095744A (en) 2003-09-24 2003-09-24 Surface treatment method of insulating member, and surface treatment apparatus for insulating member

Publications (1)

Publication Number Publication Date
JP2005095744A true JP2005095744A (en) 2005-04-14

Family

ID=34460231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003331627A Pending JP2005095744A (en) 2003-09-24 2003-09-24 Surface treatment method of insulating member, and surface treatment apparatus for insulating member

Country Status (1)

Country Link
JP (1) JP2005095744A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188689A (en) * 2006-01-12 2007-07-26 Matsushita Electric Ind Co Ltd Atmospheric pressure plasma treatment method and device
JP2007220479A (en) * 2006-02-16 2007-08-30 Noritsu Koki Co Ltd Work processing device and plasma generator
JP2007220589A (en) * 2006-02-20 2007-08-30 Noritsu Koki Co Ltd Plasma generation nozzle, plasma generator, and workpiece treatment device used for the same
JP2007220499A (en) * 2006-02-17 2007-08-30 Noritsu Koki Co Ltd Plasma generator and workpiece treatment device using the same
JP2007220501A (en) * 2006-02-17 2007-08-30 Noritsu Koki Co Ltd Plasma generator and workpiece processor using it
JP2007220480A (en) * 2006-02-16 2007-08-30 Noritsu Koki Co Ltd Plasma generator and workpiece treatment device
JP2007227069A (en) * 2006-02-22 2007-09-06 Noritsu Koki Co Ltd Method and device for generating plasma, and workpiece treatment device using the same
JP2007227071A (en) * 2006-02-22 2007-09-06 Noritsu Koki Co Ltd Plasma generating device and workpiece processing device using same
JP2007227296A (en) * 2006-02-27 2007-09-06 Noritsu Koki Co Ltd Work treatment device
JP2007227123A (en) * 2006-02-23 2007-09-06 Noritsu Koki Co Ltd Plasma generating device and workpiece treatment device
JP2007234294A (en) * 2006-02-28 2007-09-13 Noritsu Koki Co Ltd Work processing device
JP2007234274A (en) * 2006-02-28 2007-09-13 Noritsu Koki Co Ltd Workpiece processing device and plasma generating device
JP2007234295A (en) * 2006-02-28 2007-09-13 Noritsu Koki Co Ltd Work processing device
JP2007234292A (en) * 2006-02-28 2007-09-13 Noritsu Koki Co Ltd Work processing device
JP2007265827A (en) * 2006-03-29 2007-10-11 Noritsu Koki Co Ltd Plasma generator and workpiece processing device using it
JP2008059839A (en) * 2006-08-30 2008-03-13 Noritsu Koki Co Ltd Plasma generating device and workpiece processing device
JP2008059837A (en) * 2006-08-30 2008-03-13 Noritsu Koki Co Ltd Plasma generating device and work treatment device using this
JP2008059838A (en) * 2006-08-30 2008-03-13 Noritsu Koki Co Ltd Plasma generating device and work treatment device using this
JP2008066059A (en) * 2006-09-06 2008-03-21 Noritsu Koki Co Ltd Plasma generating device and work treatment device using it
JP2008066058A (en) * 2006-09-06 2008-03-21 Noritsu Koki Co Ltd Plasma generation nozzle, plasma generating device, and work treatment device using it
JP2008066159A (en) * 2006-09-08 2008-03-21 Noritsu Koki Co Ltd Plasma generator and workpiece treatment device using it
JP2008071500A (en) * 2006-09-12 2008-03-27 Noritsu Koki Co Ltd Plasma generating device and work processing device using it
JP2008071739A (en) * 2006-09-14 2008-03-27 Ind Technol Res Inst Plasma formation device, and treatment system
JP2008293925A (en) * 2007-05-28 2008-12-04 Toshiba Corp Inner-tube flow control method, tube channel element, fluid apparatus, and fluid apparatus system
JP2008300279A (en) * 2007-06-01 2008-12-11 Noritsu Koki Co Ltd Plasma generating device, and workpiece treatment device using it
JP2009525566A (en) * 2006-01-30 2009-07-09 ノーリツ鋼機株式会社 Work processing apparatus and plasma generating apparatus
JP2010500702A (en) * 2006-09-13 2010-01-07 ノーリツ鋼機株式会社 Plasma generating apparatus and work processing apparatus using the same
US7921804B2 (en) 2008-12-08 2011-04-12 Amarante Technologies, Inc. Plasma generating nozzle having impedance control mechanism
US7976672B2 (en) 2006-02-17 2011-07-12 Saian Corporation Plasma generation apparatus and work processing apparatus
US8035057B2 (en) 2004-07-07 2011-10-11 Amarante Technologies, Inc. Microwave plasma nozzle with enhanced plume stability and heating efficiency
WO2014184910A1 (en) * 2013-05-15 2014-11-20 富士機械製造株式会社 Plasma treatment device
JP2018170216A (en) * 2017-03-30 2018-11-01 国立大学法人大阪大学 Plasma generator and plasma generation method by use thereof
JP2019199068A (en) * 2018-05-18 2019-11-21 国立大学法人大阪大学 Bonded body of resin material and metal material and method of manufacturing the same

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035057B2 (en) 2004-07-07 2011-10-11 Amarante Technologies, Inc. Microwave plasma nozzle with enhanced plume stability and heating efficiency
JP2007188689A (en) * 2006-01-12 2007-07-26 Matsushita Electric Ind Co Ltd Atmospheric pressure plasma treatment method and device
JP2009525566A (en) * 2006-01-30 2009-07-09 ノーリツ鋼機株式会社 Work processing apparatus and plasma generating apparatus
JP2007220479A (en) * 2006-02-16 2007-08-30 Noritsu Koki Co Ltd Work processing device and plasma generator
JP2007220480A (en) * 2006-02-16 2007-08-30 Noritsu Koki Co Ltd Plasma generator and workpiece treatment device
US7976672B2 (en) 2006-02-17 2011-07-12 Saian Corporation Plasma generation apparatus and work processing apparatus
JP2007220499A (en) * 2006-02-17 2007-08-30 Noritsu Koki Co Ltd Plasma generator and workpiece treatment device using the same
JP2007220501A (en) * 2006-02-17 2007-08-30 Noritsu Koki Co Ltd Plasma generator and workpiece processor using it
JP2007220589A (en) * 2006-02-20 2007-08-30 Noritsu Koki Co Ltd Plasma generation nozzle, plasma generator, and workpiece treatment device used for the same
JP2007227069A (en) * 2006-02-22 2007-09-06 Noritsu Koki Co Ltd Method and device for generating plasma, and workpiece treatment device using the same
JP2007227071A (en) * 2006-02-22 2007-09-06 Noritsu Koki Co Ltd Plasma generating device and workpiece processing device using same
JP2007227123A (en) * 2006-02-23 2007-09-06 Noritsu Koki Co Ltd Plasma generating device and workpiece treatment device
JP4680091B2 (en) * 2006-02-23 2011-05-11 株式会社サイアン Plasma generator and work processing apparatus
JP2007227296A (en) * 2006-02-27 2007-09-06 Noritsu Koki Co Ltd Work treatment device
JP4619966B2 (en) * 2006-02-27 2011-01-26 株式会社サイアン Work processing device
JP4619967B2 (en) * 2006-02-28 2011-01-26 株式会社サイアン Work processing device
JP2007234274A (en) * 2006-02-28 2007-09-13 Noritsu Koki Co Ltd Workpiece processing device and plasma generating device
JP4724572B2 (en) * 2006-02-28 2011-07-13 株式会社サイアン Work processing device
JP2007234294A (en) * 2006-02-28 2007-09-13 Noritsu Koki Co Ltd Work processing device
JP4680095B2 (en) * 2006-02-28 2011-05-11 株式会社サイアン Work processing apparatus and plasma generating apparatus
JP2007234295A (en) * 2006-02-28 2007-09-13 Noritsu Koki Co Ltd Work processing device
JP2007234292A (en) * 2006-02-28 2007-09-13 Noritsu Koki Co Ltd Work processing device
JP4525929B2 (en) * 2006-02-28 2010-08-18 ノーリツ鋼機株式会社 Work processing device
JP4619973B2 (en) * 2006-03-29 2011-01-26 株式会社サイアン Plasma generating apparatus and work processing apparatus using the same
JP2007265827A (en) * 2006-03-29 2007-10-11 Noritsu Koki Co Ltd Plasma generator and workpiece processing device using it
JP2008059839A (en) * 2006-08-30 2008-03-13 Noritsu Koki Co Ltd Plasma generating device and workpiece processing device
JP4724625B2 (en) * 2006-08-30 2011-07-13 株式会社サイアン Plasma generating apparatus and work processing apparatus using the same
JP2008059838A (en) * 2006-08-30 2008-03-13 Noritsu Koki Co Ltd Plasma generating device and work treatment device using this
JP2008059837A (en) * 2006-08-30 2008-03-13 Noritsu Koki Co Ltd Plasma generating device and work treatment device using this
JP4620015B2 (en) * 2006-08-30 2011-01-26 株式会社サイアン Plasma generating apparatus and work processing apparatus using the same
JP4647566B2 (en) * 2006-08-30 2011-03-09 株式会社サイアン Plasma generating apparatus and work processing apparatus using the same
JP2008066058A (en) * 2006-09-06 2008-03-21 Noritsu Koki Co Ltd Plasma generation nozzle, plasma generating device, and work treatment device using it
JP2008066059A (en) * 2006-09-06 2008-03-21 Noritsu Koki Co Ltd Plasma generating device and work treatment device using it
JP2008066159A (en) * 2006-09-08 2008-03-21 Noritsu Koki Co Ltd Plasma generator and workpiece treatment device using it
JP2008071500A (en) * 2006-09-12 2008-03-27 Noritsu Koki Co Ltd Plasma generating device and work processing device using it
US8128783B2 (en) 2006-09-13 2012-03-06 Amarante Technologies, Inc. Plasma generator and work processing apparatus provided with the same
JP4865034B2 (en) * 2006-09-13 2012-02-01 株式会社サイアン Plasma generating apparatus and work processing apparatus using the same
JP2010500702A (en) * 2006-09-13 2010-01-07 ノーリツ鋼機株式会社 Plasma generating apparatus and work processing apparatus using the same
JP2008071739A (en) * 2006-09-14 2008-03-27 Ind Technol Res Inst Plasma formation device, and treatment system
JP2008293925A (en) * 2007-05-28 2008-12-04 Toshiba Corp Inner-tube flow control method, tube channel element, fluid apparatus, and fluid apparatus system
JP2008300279A (en) * 2007-06-01 2008-12-11 Noritsu Koki Co Ltd Plasma generating device, and workpiece treatment device using it
JP4719184B2 (en) * 2007-06-01 2011-07-06 株式会社サイアン Atmospheric pressure plasma generator and work processing apparatus using the same
US7921804B2 (en) 2008-12-08 2011-04-12 Amarante Technologies, Inc. Plasma generating nozzle having impedance control mechanism
WO2014184910A1 (en) * 2013-05-15 2014-11-20 富士機械製造株式会社 Plasma treatment device
JPWO2014184910A1 (en) * 2013-05-15 2017-02-23 富士機械製造株式会社 Plasma processing equipment
JP2018170216A (en) * 2017-03-30 2018-11-01 国立大学法人大阪大学 Plasma generator and plasma generation method by use thereof
JP6991543B2 (en) 2017-03-30 2022-01-12 国立大学法人大阪大学 Plasma generator and plasma generation method using it
JP2019199068A (en) * 2018-05-18 2019-11-21 国立大学法人大阪大学 Bonded body of resin material and metal material and method of manufacturing the same
JP7239134B2 (en) 2018-05-18 2023-03-14 国立大学法人大阪大学 Joined body of resin material and metal material and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2005095744A (en) Surface treatment method of insulating member, and surface treatment apparatus for insulating member
JP2003217898A (en) Discharge plasma processing device
EP1441577A1 (en) Plasma processing device and plasma processing method
WO2002040742A1 (en) Method and device for atmospheric plasma processing
JP2003019433A (en) Discharge plasma treating apparatus and treating method using the same
JP2003218099A (en) Method and system for discharge plasma processing
US20200383197A1 (en) Atmospheric pressure linear rf plasma source for surface modification and treatment
JP4103565B2 (en) Surface treatment apparatus and surface treatment method
JP2004527071A (en) Material processing in atmospheric pressure radio frequency non-thermal plasma discharge
KR100491140B1 (en) Method and apparatus for removing contaminants from the surface of a substrate with atmospheric-pressure plasma
JP2003338398A (en) Discharge plasma processing method and apparatus therefor
JP2002151480A (en) Processing method for semiconductor element and device therefor
JP2002143795A (en) Method for cleaning glass substrate for liquid crystal
JP2003133291A (en) Discharge plasma treatment apparatus and discharge plasma treatment method using it
JP4306033B2 (en) Plasma processing apparatus and plasma processing method
JP2005191275A (en) Dry etching processing apparatus and processing method
JP2002177766A (en) Atmospheric pressure plasma treating device provided with unit for recovering/reusing inert gas
JP2002008895A (en) Plasma treatment device and plasma treatment method
JP2003163207A (en) Removing treatment method for remaining photo-resist
JP3846303B2 (en) Surface treatment apparatus and surface treatment method
JP2003173899A (en) Discharge plasma processor
JP5129665B2 (en) Plasma processing equipment
JP2004115896A (en) Discharge plasma treatment device, and discharge plasma treatment method
JP2003100733A (en) Discharge plasma treatment system
JP2004055301A (en) Plasma treatment device and the plasma treatment method