JP2002177766A - Atmospheric pressure plasma treating device provided with unit for recovering/reusing inert gas - Google Patents

Atmospheric pressure plasma treating device provided with unit for recovering/reusing inert gas

Info

Publication number
JP2002177766A
JP2002177766A JP2000383321A JP2000383321A JP2002177766A JP 2002177766 A JP2002177766 A JP 2002177766A JP 2000383321 A JP2000383321 A JP 2000383321A JP 2000383321 A JP2000383321 A JP 2000383321A JP 2002177766 A JP2002177766 A JP 2002177766A
Authority
JP
Japan
Prior art keywords
gas
inert gas
helium
atmospheric pressure
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000383321A
Other languages
Japanese (ja)
Inventor
Noboru Saeki
登 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pearl Kogyo Co Ltd
Original Assignee
Pearl Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pearl Kogyo Co Ltd filed Critical Pearl Kogyo Co Ltd
Priority to JP2000383321A priority Critical patent/JP2002177766A/en
Publication of JP2002177766A publication Critical patent/JP2002177766A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To decrease the running cost necessary when exhaust gas is plasma- treated continuously by removing impurities coexisting with an inert gas such as helium in the exhaust gas to be discharged into a chamber, recovering the inert gas and circulating/reusing the recovered inert gas. SOLUTION: An impurity removing unit 26 for removing impurities such as steam and oxygen coexisting with the inert gas such as helium in the exhaust gas is arranged in an exhaust gas discharging route 22 from the chamber 21 where an atmospheric pressure plasma treating device 20 is installed. The inert gas in which the impurities are removed by the unit 26 is recovered and stored in a tank 29. The recovered inert gas is circulated and reused by returning to a supply route 35 of a fresh inert gas or a mixed reactive gas to the device 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばポリエチレ
ンやポリプロピレン、PTFE(ポリ四フッ化エチレ
ン)などの撥水性を有する樹脂に塗料を塗布するとか水
性インクで印刷を施す際にその表面を親水性に改質した
り、プラスチックの表面に酸素のプラズマ処理によって
濡れ性を付与したり、ガラス、セラミックス、金属、半
導体等の疎水性表面を親水化したり、表面に付着した有
機物を洗浄したりするなどの表面処理を行なう場合に用
いられるプラズマ処理装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for applying a coating to a water-repellent resin such as polyethylene, polypropylene, PTFE (polytetrafluoroethylene) or the like when printing with a water-based ink. To improve wettability by applying oxygen plasma treatment to plastic surfaces, hydrophilize hydrophobic surfaces of glass, ceramics, metals, semiconductors, etc., and wash organic substances attached to the surfaces. The present invention relates to a plasma processing apparatus used when performing the surface treatment described above.

【0002】[0002]

【従来の技術】上記のような表面改質や有機物洗浄等の
表面処理に用いられるプラズマ処理装置として、本出願
人は、例えば特願平11−269211号や特願200
0−208160号等で、ヘリウムを含む不活性ガスも
しくは不活性ガスと酸素あるいはフルオロカーボン系の
含フッ素化合物ガス等の反応性気体とを混合してなる反
応ガスを大気圧もしくは大気圧近傍(弱減圧または弱加
圧)圧力下で高圧電極と接地電極との間に形成される放
電部に導入し通過させるとともに両電極に高周波電圧を
印加することにより放電部にグロー放電プラズマを発生
させて該プラズマにより生成される化学的に活性な励起
種を含むガス流を被処理物の表面に向けて吹出して所定
の表面処理を行なうように構成された大気圧プラズマ処
理装置を既に提案している。
2. Description of the Related Art As a plasma processing apparatus used for surface treatment such as surface modification and organic substance washing as described above, the present applicant has disclosed, for example, Japanese Patent Application Nos.
No. 0-208160 or the like, an inert gas containing helium or a reaction gas obtained by mixing an inert gas with a reactive gas such as oxygen or a fluorocarbon-based fluorine-containing compound gas is subjected to atmospheric pressure or near atmospheric pressure (slightly reduced pressure). Or weakly pressurized), the glow discharge plasma is generated in the discharge part by introducing and passing through a discharge part formed between the high-voltage electrode and the ground electrode and applying a high-frequency voltage to both electrodes. An atmospheric pressure plasma processing apparatus configured to perform a predetermined surface treatment by blowing a gas stream containing a chemically active excited species generated by the method toward a surface of an object to be processed has already been proposed.

【0003】これら本出願人が既に提案しているプラズ
マ処理装置は大気圧下での表面処理が実現可能であっ
て、それ以前から採用されていた低圧グロー放電プラズ
マによる処理装置、例えば真空容器内に互いに対向状態
に配置した高圧電極と接地電極との間の放電部に酸素等
の放電用反応ガスを導入させて両電極に高周波電圧を印
加することにより低圧グロー放電プラズマを発生させ、
該プラズマにより生成される化学的に活性な励起種を含
むガスによって接地電極上に設置保持させた被処理物の
表面を処理するように構成されていたプラスマ処理装置
に比べて、真空系を形成するための装置及び設備が不要
であることから、装置全体の小型化および低コスト化が
図れるとともに、被処理物を電極上に設置する必要もな
いので、被処理物の面積や厚み、形状に対応させやす
く、多種多様な被処理物に対する表面処理に適用可能で
あり、また、生産プロセスのインラインへの組込みも容
易で生産性の向上も図れるといった多くの特長を有して
いる。
[0003] The plasma processing apparatus proposed by the present applicant is capable of performing surface treatment under atmospheric pressure, and a processing apparatus using a low-pressure glow discharge plasma which has been employed before that, for example, a vacuum chamber. A low-pressure glow discharge plasma is generated by applying a high-frequency voltage to both electrodes by introducing a discharge reaction gas such as oxygen into a discharge portion between a high-voltage electrode and a ground electrode arranged in opposition to each other,
A vacuum system is formed as compared with a plasma processing apparatus that is configured to process the surface of an object to be processed installed and held on a ground electrode with a gas containing a chemically active excited species generated by the plasma. Since the apparatus and equipment for performing the processing are not required, the size and cost of the entire apparatus can be reduced, and the object to be processed does not need to be installed on the electrode. It has many features that it can be easily adapted, can be applied to surface treatment for a wide variety of workpieces, and can be easily incorporated into a production process in-line to improve productivity.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、本出願
人による既提案の大気圧プラズマ処理装置においては、
該大気圧プラズマ処理装置を設置したチャンバーからヘ
リウム等の不活性ガスを含む排気ガスの全てを気体のま
まで外部(大気)に排出していた。この排気ガスの成分
は不活性ガス、酸素、水蒸気が大半であり、大気汚染等
の問題は殆ど生じないものの、長時間連続してプラズマ
処理を行なう際、常時、必要量の新規かつ高純度のヘリ
ウム等の不活性ガスを供給消費しなければならず、これ
がランニングコストの上昇原因の一つであり、この点で
改良の余地が残されていた。
However, in the atmospheric pressure plasma processing apparatus already proposed by the present applicant,
All of the exhaust gas including an inert gas such as helium was discharged to the outside (atmosphere) as it was from the chamber in which the atmospheric pressure plasma processing apparatus was installed. Most of the components of this exhaust gas are inert gas, oxygen, and water vapor, and while there is almost no problem such as air pollution, when performing plasma treatment continuously for a long time, the required amount of new and high-purity It is necessary to supply and consume an inert gas such as helium, which is one of the causes of an increase in running cost, and there is room for improvement in this respect.

【0005】本発明は上記のような実情に鑑みてなされ
たもので、簡単な構成を付加することで排気ガス中の不
活性ガスを回収し循環再利用することを可能にし、連続
プラズマ処理時のランニングコストの低減に寄与するこ
とができる不活性ガス回収再利用装置付き大気圧プラズ
マ処理装置を提供することを目的としている。
[0005] The present invention has been made in view of the above circumstances, and by adding a simple structure, it is possible to recover the inert gas in the exhaust gas and to recycle and recycle it, and to perform continuous plasma processing. It is an object of the present invention to provide an atmospheric pressure plasma processing apparatus with an inert gas recovery and reuse apparatus that can contribute to a reduction in running cost of the apparatus.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る不活性ガス回収再利用装置付き大気圧
プラズマ処理装置は、高圧電極とこの高圧電極に絶縁体
を挟んで対向配置された接地電極との間に放電ギャップ
及び混合反応ガス噴出部が形成され、この放電ギャップ
及び混合反応ガス噴出部に、少なくともヘリウムを含む
不活性ガスもしくは不活性ガスと酸素またはフルオロカ
ーボン系の含フッ素化合物ガスを含む反応性気体との混
合反応ガスを大気圧もしくは大気圧近傍下で導入すると
ともに、両電極に高周波電圧を印加して放電ギャップに
グロー放電プラズマを発生させることにより、その放電
プラズマにより生成される化学的に活性な励起種を含む
ガス流を上記混合反応ガス噴出部の吹出口から被処理物
の表面に吹き出し照射させるように構成されている大気
圧プラズマ処理装置を設置したチャンバーに不活性ガス
を含む排気ガスの排出路を接続し、この排気ガス排出路
に、排気ガス中の不活性ガスに共存する不純物を除去す
る不純物除去装置を設置するとともに、不純物が除去さ
れた不活性ガスを強制回収し、かつ、その回収不活性ガ
スを上記大気圧プラズマ処理装置における不活性ガスま
たは混合反応ガスの供給通路に還流させて再利用するよ
うに構成していることを特徴とするものである。
In order to achieve the above object, an atmospheric pressure plasma processing apparatus with an inert gas recovery and reuse device according to the present invention comprises a high pressure electrode and a high pressure electrode opposed to each other with an insulator interposed therebetween. A discharge gap and a mixed reaction gas ejection portion are formed between the discharge gap and the mixed reaction gas ejection portion, and an inert gas or an inert gas containing at least helium and oxygen or fluorocarbon-based fluorine are formed in the discharge gap and the mixed reaction gas ejection portion. A reaction gas containing a compound gas and a mixed reaction gas are introduced at or near atmospheric pressure, and a high-frequency voltage is applied to both electrodes to generate a glow discharge plasma in a discharge gap. A gas flow containing the generated chemically active excited species is blown out from the outlet of the mixed reaction gas blowout part onto the surface of the object to be processed. A discharge path for an exhaust gas containing an inert gas is connected to a chamber provided with an atmospheric pressure plasma processing apparatus configured to emit the impurities, and an impurity coexisting with the inert gas in the exhaust gas is connected to the exhaust gas discharge path. Is installed, and the inert gas from which the impurities are removed is forcibly recovered, and the recovered inert gas is supplied to the supply path of the inert gas or the mixed reaction gas in the atmospheric pressure plasma processing apparatus. It is characterized in that it is configured to be refluxed and reused.

【0007】上記構成の本発明によれば、チャンバー内
に設置の大気圧プラズマ処理装置における放電ギャップ
に発生される放電プラズマにより生成される化学的に活
性な励起種を含むガス流を混合反応ガス噴出部の吹出口
から被処理物の表面に向けて吹き出し照射させることに
より、表面改質や有機物洗浄等の所定のプラズマ処理を
行ない、このプラズマ処理時にチャンバー内に放出され
るヘリウム等の不活性ガスを含む排気ガスは排出路に導
かれる。この排出路に導かれた排気ガスは不純物除去装
置に通され、ここで排気ガス中の不活性ガスに共存して
いる不要な水蒸気や酸素等の不純物が除去されてヘリウ
ム等の不活性ガスのみが回収され、その後、回収不活性
ガスが大気圧プラズマ処理装置における不活性ガスまた
は混合反応ガスの供給通路に還流されてプラズマ処理用
不活性ガスとして再利用されることになる。このように
連続プラズマ処理に必要な不活性ガスの大部分を循環再
使用することによって、新規な不活性ガスは不足分を補
給するだけの極く少量なものですみ、不活性ガスの無駄
な消費を抑えてランニングコストの低減を図ることが可
能である。
According to the present invention having the above structure, a gas flow containing a chemically active excited species generated by a discharge plasma generated in a discharge gap in an atmospheric pressure plasma processing apparatus installed in a chamber is mixed with a reaction gas. Predetermined plasma processing such as surface modification and organic substance cleaning is performed by blowing and irradiating the surface of the object to be processed from the outlet of the blowing part, and inert gas such as helium released into the chamber during this plasma processing is performed. Exhaust gas containing gas is led to an exhaust path. The exhaust gas led to this discharge path is passed through an impurity removing device, where unnecessary impurities such as water vapor and oxygen coexisting with the inert gas in the exhaust gas are removed, and only an inert gas such as helium is removed. Is recovered, and thereafter, the recovered inert gas is returned to the supply path of the inert gas or the mixed reaction gas in the atmospheric pressure plasma processing apparatus, and is reused as the inert gas for plasma processing. By circulating and reusing most of the inert gas necessary for continuous plasma processing in this way, only a small amount of new inert gas is needed to replenish the shortage and waste of inert gas is reduced. It is possible to reduce running cost while suppressing consumption.

【0008】上述の不純物除去装置としては、少なくと
も、排気ガス中の水分を冷却によって液化し除去するト
ラップと、水分除去後の排気ガスを通過させて酸素を除
去する酸素除去フィルターとを有するものを用いること
で、回収再利用される不活性ガスの成分を新規ガスとほ
とんど変わらない成分に保ち、循環再使用によるコスト
ダウンを図りながらも表面改質等の所定のプラズマ処理
性能を確実かつ安定よいものに維持することができる。
The above-described impurity removing apparatus has at least a trap for liquefying and removing moisture in exhaust gas by cooling, and an oxygen removing filter for removing oxygen by passing exhaust gas after removing moisture. By using, the component of the inert gas to be recovered and reused is kept almost the same as that of the new gas, and the predetermined plasma processing performance such as surface reforming is reliably and stably performed while reducing the cost by circulating reuse. Things can be maintained.

【0009】特に、回収対象とする不活性ガスがヘリウ
ムである場合の不純物除去装置として、排気ガス中の水
分を冷却によって液化し除去して粗ヘリウムとするトラ
ップと、その粗ヘリウムを冷却活性炭に通して高純度ヘ
リウムとするフィルターとを有するものを使用すること
により、回収再利用されるヘリウムの純度を高めること
が可能で、ヘリウムの循環再使用によるコストダウンを
図りながらも表面改質等の所定のプラズマ処理性能の安
定維持を一層確実なものとすることができる。
In particular, as an impurity removing device when the inert gas to be recovered is helium, a trap that liquefies and removes moisture in exhaust gas to cool helium by cooling, and the crude helium is converted into cooled activated carbon By using a filter with high-purity helium through the filter, it is possible to increase the purity of helium that is recovered and reused. The stable maintenance of the predetermined plasma processing performance can be further ensured.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を図面
にもとづいて説明する。図1は本発明に係る不活性ガス
回収再利用装置付き大気圧プラズマ処理装置全体の構成
を示す系統図であり、この実施の形態では、回収対象と
する不活性ガスがヘリウムである場合について説明す
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram showing the overall configuration of an atmospheric pressure plasma processing apparatus with an inert gas recovery and reuse device according to the present invention. In this embodiment, a case where the inert gas to be recovered is helium will be described. I do.

【0011】図1において、後述する大気圧プラズマ処
理装置20はほぼ密閉されたチャンバー21内に設置さ
れている。このチャンバー21には排気ガス排出路22
が接続されているとともに、その排気ガス排出路22に
三方弁23を介してダイヤフラムポンプ等の吸排気ポン
プ24を備えたヘリウム強制回収路25が接続されてい
る。
In FIG. 1, an atmospheric pressure plasma processing apparatus 20, which will be described later, is installed in a substantially closed chamber 21. This chamber 21 has an exhaust gas exhaust passage 22
And a helium forced recovery passage 25 provided with an intake / exhaust pump 24 such as a diaphragm pump via a three-way valve 23 to the exhaust gas discharge passage 22.

【0012】上記排気ガス排出路22には、チャンバー
21から吸引される排気ガス中のヘリウムに共存する水
分や酸素等の不純物を除去する不純物除去装置26が設
置されている。この不純物除去装置26としては、例え
ば二酸化炭素(CO2 )で冷却したエタノール中にヘリ
ウムを混在する排気ガスを通過させて冷却することによ
り、その排気ガス中に含まれている水蒸気(H2 O)を
液化し除去して粗ヘリウムとする水分トラップ26A
と、その粗ヘリウムを液体窒素で冷却された活性炭に通
すことにより酸素等を除去して純度99.995%のヘ
リウムとするフィルター26Bとの少なくとも二段の不
純物除去装置を備えたものを用いことが望ましい。それ
以外に混合反応ガスに各種の薬品類を添加する場合は、
排気ガス中に含まれている各種薬品類を除去するトラッ
プを付加してもよいこともちろんである。
The exhaust gas discharge passage 22 is provided with an impurity removing device 26 for removing impurities such as moisture and oxygen coexisting with helium in the exhaust gas sucked from the chamber 21. The impurity removing device 26 is cooled by passing an exhaust gas containing helium in ethanol cooled with, for example, carbon dioxide (CO 2 ), thereby cooling water vapor (H 2 O) contained in the exhaust gas. ) Is liquefied and removed to obtain crude helium.
And a filter 26B for removing oxygen and the like by passing the crude helium through activated carbon cooled with liquid nitrogen to obtain helium having a purity of 99.995%, and using a filter having at least two-stage impurity removing device. Is desirable. In addition, when adding various chemicals to the mixed reaction gas,
It goes without saying that a trap for removing various chemicals contained in the exhaust gas may be added.

【0013】また、上記ヘリウム強制回収路25には、
圧力計27及び安全弁28等を備えたヘリウム貯蔵タン
ク29が接続されており、この貯蔵タンク29の出口
を、開閉弁30、逆止弁31、圧力調整用減圧弁32、
圧力計33及び酸素またはフルオロカーボン系の含フッ
素化合物ガスを含む反応性気体との混合器34等を備え
たヘリウム供給通路35の途中に開閉弁36を介して接
続することにより、貯蔵タンク29に回収し貯蔵したヘ
リウムを大気圧プラズマ処理装置20における混合反応
ガス供給通路に還流させて循環再利用するように構成し
ている。
In the helium forced recovery path 25,
A helium storage tank 29 equipped with a pressure gauge 27 and a safety valve 28 is connected, and the outlet of the storage tank 29 is connected to an on-off valve 30, a check valve 31, a pressure regulating pressure reducing valve 32,
The helium supply passage 35 provided with a pressure gauge 33 and a mixer 34 with a reactive gas containing oxygen or a fluorocarbon-based fluorine-containing compound gas is connected to a storage tank 29 in the middle of a helium supply passage 35 via an on-off valve 36. The stored helium is recirculated to the mixed reaction gas supply passage in the atmospheric pressure plasma processing apparatus 20 to be circulated and reused.

【0014】なお、上記排気ガス排出路22の下流側部
分からヘリウム供給通路35の混合器34よりも上流側
部分までの間に位置する三方弁23、吸排気ポンプ2
4、貯蔵タンク29、開閉弁36、減圧弁32、圧力計
33等は単一のボックス37内に収納配置されている。
The three-way valve 23 and the suction / exhaust pump 2 are located between the downstream portion of the exhaust gas discharge passage 22 and the upstream portion of the helium supply passage 35 with respect to the mixer 34.
4. The storage tank 29, the on-off valve 36, the pressure reducing valve 32, the pressure gauge 33 and the like are housed and arranged in a single box 37.

【0015】上記のように構成された不活性ガス(ヘリ
ウム)回収再利用装置付き大気圧プラズマ処理装置にお
いては、チャンバー21内に設置の大気圧プラズマ処理
装置20における放電ギャップに発生される放電プラズ
マにより生成される化学的に活性な励起種を含むガス流
を混合反応ガス噴出部の吹出口から被処理物の表面に向
けて吹き出し照射させることにより表面改質や有機物洗
浄等の所定のプラズマ処理を行なう。このプラズマ処理
時にチャンバー21内に放出されるヘリウムを含む排気
ガスは吸排気ポンプ24を介して排出路22に設置され
た不純物除去装置26に導入される。
In the atmospheric pressure plasma processing apparatus with the inert gas (helium) recovery and recycling apparatus configured as described above, the discharge plasma generated in the discharge gap in the atmospheric pressure plasma processing apparatus 20 installed in the chamber 21 A predetermined plasma treatment such as surface modification or organic matter washing is performed by irradiating a gas flow containing a chemically active excited species generated by the above from the outlet of the mixed reaction gas ejection part toward the surface of the object to be treated. Perform Exhaust gas containing helium released into the chamber 21 at the time of this plasma processing is introduced into the impurity removing device 26 provided in the exhaust passage 22 via the intake / exhaust pump 24.

【0016】この不純物除去装置26に導入された排気
ガスが、まず水分トラップ26Aにおいて冷却エタノー
ル中に通過されて冷却されることにより、その排気ガス
中に含まれている水蒸気(H2 O)が液化し除去されて
粗ヘリウムとなる。続いて、その粗ヘリウムがフィルタ
ー26Bの冷却活性炭に通されることにより酸素等が除
去されて純度99.995%のヘリウムとなり、その高
純度のヘリウムは強制回収路25を経て貯蔵タンク29
内に回収され貯蔵される。そして、貯蔵タンク29内の
回収ヘリウムは開閉弁36を経てヘリウム供給路35に
導かれ混合器34で酸素またはフルオロカーボン系の含
フッ素化合物ガスを含む反応性気体と混合されたのち、
大気圧プラズマ処理装置20における反応ガス供給通路
(後述する)に還流されて不活性ガスのヘリウムとして
再利用されることになる。
The exhaust gas introduced into the impurity removing device 26 is first passed through cooled ethanol in the moisture trap 26A and cooled, so that water vapor (H 2 O) contained in the exhaust gas is removed. It is liquefied and removed to become crude helium. Subsequently, the crude helium is passed through the cooling activated carbon of the filter 26B to remove oxygen and the like to become helium having a purity of 99.995%, and the high-purity helium passes through the forced recovery path 25 and is stored in the storage tank 29.
Collected and stored inside. Then, the recovered helium in the storage tank 29 is guided to the helium supply path 35 via the on-off valve 36 and mixed with the reactive gas containing oxygen or fluorocarbon-based fluorine-containing compound gas by the mixer 34.
The gas is returned to a reaction gas supply passage (described later) in the atmospheric pressure plasma processing apparatus 20 and is reused as helium as an inert gas.

【0017】このように不活性ガスとして用いられるヘ
リウムは化学的に安定で他の元素と化合物を作らないと
いう特性を有しており、この特性を活用して排気ガス中
に含まれているヘリウムを不純物である他の排気ガス成
分から分離回収し、かつ、これを高純度ヘリウムに再生
した上で連続プラズマ処理を行なう際に必要なヘリウム
の大部分として循環再使用することによって、ヘリウム
供給路35には不足分の新規ヘリウムを補給するだけで
よくなり、ヘリウムの無駄な消費を抑えてランニングコ
ストの低減を図りながら、所定のプラズマ処理を安定よ
く行なうことが可能である。
Helium used as an inert gas in this way has the property of being chemically stable and not forming a compound with another element, and utilizing this property, helium contained in exhaust gas is utilized. Is separated and recovered from other exhaust gas components that are impurities, and is recycled and reused as most of the helium required when performing continuous plasma processing after regenerating it into high-purity helium. It is only necessary to replenish the shortage of new helium to 35, and it is possible to stably perform predetermined plasma processing while suppressing unnecessary consumption of helium and reducing running costs.

【0018】なお、チャンバー21内に設置する大気圧
プラズマ処理装置20としては、大気圧もしくは大気圧
近傍(弱減圧または弱加圧)圧力下で混合反応ガスを供
給するだけで、グロー放電プラズマによりイオン、ラジ
カル等の化学的に活性な励起種を含む反応性ガス流を生
成しこれを被処理物の表面に向けて噴出可能なものであ
れば、どのような構造のものであってもよいが、以下、
その代表的な二つの例を図面とともに説明する。
The atmospheric pressure plasma processing apparatus 20 installed in the chamber 21 simply supplies the mixed reaction gas under the atmospheric pressure or a pressure near the atmospheric pressure (weakly decompressed or weakly pressurized). Any structure may be used as long as it can generate a reactive gas stream containing chemically active excited species such as ions and radicals and eject the reactive gas stream toward the surface of the workpiece. But
Two representative examples will be described with reference to the drawings.

【0019】図2〜図5は大気圧プラズマ処理装置20
の一例を示す。この大気圧プラズマ処理装置20は、中
実帯板状に形成された高圧電極1と、この高圧電極1の
厚み方向(図3のx−x方向)の両側にそれぞれ、四弗
化樹脂板など帯状の絶縁板2,2を挟んで対向配置する
ことで上記高圧電極1に対して電気的に隔離してアース
接地された表裏一対の帯板状の接地電極3,3と、これ
ら高圧電極1、接地電極3,3及び絶縁板2,2のうち
短辺方向(図3及び図5のz−z方向)の一端部側で高
圧電極1と接地電極3,3との間に形成される放電ギャ
ップ15,15及び混合反応ガス噴出通路(噴出部)1
6,16を除く全体を包囲するように角U字形状に形成
されたアルミニウム製等のカバーケーシング4とからな
る。
2 to 5 show an atmospheric pressure plasma processing apparatus 20.
An example is shown below. The atmospheric pressure plasma processing apparatus 20 includes a high voltage electrode 1 formed in a solid band plate shape and a tetrafluoride resin plate on both sides in the thickness direction (the xx direction in FIG. 3) of the high voltage electrode 1. A pair of front and back strip-shaped ground electrodes 3 and 3 electrically opposed to the high-voltage electrode 1 and grounded by being opposed to each other with the strip-shaped insulating plates 2 and 2 interposed therebetween. , The ground electrodes 3 and 3 and the insulating plates 2 and 2 are formed between the high-voltage electrode 1 and the ground electrodes 3 and 3 on one end side in the short side direction (the zz direction in FIGS. 3 and 5). Discharge gaps 15, 15 and mixed reaction gas ejection passage (ejection portion) 1
And a cover casing 4 made of aluminum or the like formed in a square U-shape so as to surround the whole except 6 and 16.

【0020】上記高圧電極1の短辺方向(図3のz−z
方向)の一端部分1Aは、図3及び図4に示すように、
その両側面1a,1aが先端部に近付くほど漸次接近す
るような傾斜面となる略二等辺三角形状に形成され、そ
の先端部は円弧状の湾曲面1bに形成されている。この
略二等辺三角形状部分1Aの両側傾斜面1a,1a及び
先端湾曲面1bは、セラミックコーティングにより形成
される絶縁体9で被覆されている。
The short side direction of the high voltage electrode 1 (z-z in FIG. 3)
Direction), as shown in FIG. 3 and FIG.
The sides 1a, 1a are formed in an approximately isosceles triangular shape having an inclined surface that gradually approaches as they approach the tip, and the tip is formed in an arcuate curved surface 1b. The inclined surfaces 1a, 1a on both sides and the curved end surface 1b of the substantially isosceles triangular portion 1A are covered with an insulator 9 formed by ceramic coating.

【0021】一方、上記一対の接地電極3,3の各中実
内部には、図5に示すように、電極長辺方向(図5のy
−y方向)の全長に亘る孔明け加工及びその孔両端部へ
の栓5の圧入固定(図5参照)によってヘリウムガスま
たはヘリウムガス及び水素を含む不活性ガスと酸素また
はフルオロカーボン系の含フッ素化合物ガスを含む反応
性気体との混合反応ガスを大気圧下で供給する反応ガス
供給通路6,6が電極長辺方向に沿わせて形成されてい
るとともに、該反応ガス供給通路6,6よりも上部の中
実内部には、電極長辺方向の全長に亘る孔明け加工及び
その孔両端部への栓7の圧入固定によって上記反応ガス
供給通路6,6に並行する状態の冷却水循環用通路8,
8が形成されている。なお、上記高圧電極1の中実内部
にも上記接地電極3の冷却水循環用通路8と同様にして
冷却水循環用通路18が形成されている。
On the other hand, as shown in FIG. 5, inside the solids of the pair of ground electrodes 3 and 3, as shown in FIG.
The inert gas containing helium gas or helium gas and hydrogen and the oxygen- or fluorocarbon-based fluorine-containing compound are formed by drilling the entire length of the hole (−y direction) and press-fitting and fixing the plug 5 to both ends of the hole (see FIG. 5). Reaction gas supply passages 6 and 6 for supplying a mixed reaction gas with a reactive gas containing a gas at atmospheric pressure are formed along the long side direction of the electrode, and the reaction gas supply passages 6 and 6 A cooling water circulation passage 8 parallel to the reaction gas supply passages 6 and 6 is formed in the upper solid body by drilling a hole over the entire length in the long side direction of the electrode and press-fitting a plug 7 into both ends of the hole. ,
8 are formed. A cooling water circulation passage 18 is also formed inside the solid of the high voltage electrode 1 in the same manner as the cooling water circulation passage 8 of the ground electrode 3.

【0022】また、上記一対の接地電極3,3の短辺方
向(z−z方向)の一端部3A,3A側にはそれぞれ、
図3及び図4に示すように、上記高圧電極1の略二等辺
三角形状部分1Aの両側傾斜面1a,1aに平行状態で
対向する傾斜面3a,3aが形成されている。これら傾
斜面3a,3aのうち、基端部及び長辺方向の両端部を
除く部分に切り込みが設けられており、その切り込まれ
た傾斜面部分3a´,3a´と上記高圧電極1の略二等
辺三角形状部分1Aの両側傾斜面1a,1aとの間にそ
れぞれ放電ギャップ15,15及び混合反応ガス噴出通
路16,16が形成され、かつ、これら吹出し通路1
6,16の下流側に被処理物表面に向けての吹出し部1
7が形成されている。なお、高圧電極1の短辺方向一端
側の略二等辺三角形状部分1Aの両側傾斜面1a,1a
の交差角度θは、両側放電ギャップ15,15及び噴出
通路16,16を通過して噴出されるガス流同士が吹出
し部17よりも噴出方向(図4の矢印w方向)の下流位
置で衝突し合流する角度に設定されている。
Further, one end portions 3A, 3A of the pair of ground electrodes 3, 3 in the short side direction (z-z direction) are respectively provided.
As shown in FIGS. 3 and 4, inclined surfaces 3 a, 3 a are formed in parallel with and opposed to both inclined surfaces 1 a, 1 a of the approximately isosceles triangular portion 1 A of the high-voltage electrode 1. Of these inclined surfaces 3a, 3a, a cut is provided in a portion excluding the base end and both ends in the long side direction, and the cut inclined surface portions 3a ', 3a' and the high voltage electrode 1 are roughly cut. Discharge gaps 15, 15 and mixed reaction gas ejection passages 16, 16 are formed between the two inclined surfaces 1 a, 1 a of the isosceles triangular portion 1 A, respectively.
Blowing part 1 toward the surface of the workpiece on the downstream side of 6, 16
7 are formed. It should be noted that both side inclined surfaces 1a, 1a of the approximately isosceles triangular portion 1A at one end side in the short side direction of the high voltage electrode 1 are provided.
Is set at the intersection angle θ, the gas flows ejected through the both-side discharge gaps 15 and the ejection passages 16 and 16 collide with each other at a position downstream of the ejection portion 17 in the ejection direction (the direction of the arrow w in FIG. 4). The angle is set to meet.

【0023】さらに、上記接地電極3,3の短辺方向の
一端部3A,3Aの内部にはそれぞれ、電極長辺方向に
等間隔を隔てて、一端が上記反応ガス供給通路6に連通
接続し他端が傾斜面部分3a´,3a´に開口する複数
個の混合反応ガス吹出孔10…,10…が形成されてお
り、これら吹出孔10…,10…から上記高圧電極1の
傾斜面1a,1aと一対の接地電極3,3の傾斜面部分
3a´,3a´間に形成される両側放電ギャップ15,
15及び噴出通路16,16に混合反応ガスを導入し通
過させるとともに、高圧電極1に高周波電圧を印加する
ことにより、放電ギャップ15,15でのグロー放電プ
ラズマの発生に伴い生成される化学的に活性な励起種を
含むガス流(以下、プラズマフレアと称するものも含
む)を両側噴出通路16,16を通して吹出し部17か
ら被処理物の表面に直線状に噴出するように構成されて
いる。
Further, one ends of the ground electrodes 3 and 3 are connected to the reaction gas supply passage 6 at equal intervals in the long side direction of the electrodes, respectively, inside the one end portions 3A and 3A in the short side direction. A plurality of mixed reaction gas blowout holes 10..., 10... Having the other ends open to the inclined surface portions 3 a ′, 3 a ′ are formed, and the slopes 1 a of the high-voltage electrode 1 are formed from these blowout holes 10. , 1a and the two-sided discharge gaps 15, formed between the inclined surface portions 3a ', 3a' of the pair of ground electrodes 3, 3,
By introducing and passing the mixed reaction gas through the discharge gaps 15 and the jet passages 16 and 16 and applying a high-frequency voltage to the high-voltage electrode 1, chemically generated gas is generated along with the generation of glow discharge plasma in the discharge gaps 15 and 15. A gas flow (hereinafter, also referred to as a plasma flare) containing an active excited species is configured to be ejected linearly from the ejection portion 17 through the ejection passages 16 on both sides to the surface of the workpiece.

【0024】上記のように構成された大気圧プラズマ処
理装置20は、例えば図6に示すように、被処理物の一
例であるPTFEなどの樹脂シート材13を水平姿勢に
載置して連続搬送可能なコンベア14の搬送経路中間位
置の上部に横断状態に設置固定して使用される。そし
て、上記コンベア14によって樹脂シート材13を水平
搬送させつつ、大気圧もしくは大気圧近傍(弱減圧また
は弱加圧)圧力下で上記反応ガス供給通路6,6に混合
反応ガスを供給し、この混合反応ガスを複数個のガス吹
出し孔10…,10…を通して高圧電極1と接地電極
3,3との間に形成される放電ギャップ部15,15に
導入するとともに上記高圧電極1に高周波電圧(10K
Hz〜500MHz)を印加することによって、上記放
電ギャップ15,15に大気圧下でグロー放電プラズマ
を発生させ、該プラズマにより生成されるイオン、ラジ
カルなどの化学的に活性な励起種を含む反応性ガス流、
すなわち、プラズマフレアを両側噴出通路16,16を
通して吹出し部17に向けて流し、この吹出し部17か
ら樹脂シート材13の表面に向け直線状に噴出させるこ
とによって、それら噴出プラズマフレア同士を樹脂シー
ト材13の表面上で互いに衝突合流させて途切れのない
一直線状のプラズマフレアを樹脂シート材13の表面全
域に均等に作用させることが可能となり、これによっ
て、樹脂シート材13の表面を親水性に改質して樹脂シ
ート材13に対する塗料やインクののり具合や接着性を
著しく改善するといった所定のプラズマ処理を行なう。
In the atmospheric pressure plasma processing apparatus 20 configured as described above, for example, as shown in FIG. 6, a resin sheet material 13 such as PTFE, which is an example of an object to be processed, is placed in a horizontal position and continuously transported. It is installed and fixed in a transverse state above the intermediate position of the transport path of the possible conveyor 14. Then, while the resin sheet material 13 is horizontally conveyed by the conveyor 14, the mixed reaction gas is supplied to the reaction gas supply passages 6, 6 under the atmospheric pressure or a pressure close to the atmospheric pressure (weakly decompressed or weakly pressurized). The mixed reaction gas is introduced into the discharge gaps 15, 15 formed between the high-voltage electrode 1 and the ground electrodes 3, 3 through a plurality of gas blowing holes 10,. 10K
Hz to 500 MHz), a glow discharge plasma is generated under atmospheric pressure in the discharge gaps 15, 15, and a reactive gas containing chemically active excited species such as ions and radicals generated by the plasma is generated. Gas flow,
That is, the plasma flares are caused to flow toward the blowing portion 17 through the both-side blowing passages 16 and 16 and are blown straight from the blowing portion 17 toward the surface of the resin sheet material 13 so that the blown plasma flares are connected to each other by the resin sheet material. The surfaces of the resin sheet material 13 can be made hydrophilic by uniformly collapsing and merging with each other on the surface of the resin sheet material 13 so as to uniformly act on the entire surface of the resin sheet material 13. Then, a predetermined plasma treatment is performed to remarkably improve the degree of adhesion and adhesion of the paint or ink to the resin sheet material 13.

【0025】図7及び図8は大気圧プラズマ処理装置2
0の他の一例を示す。この大気圧プラズマ処理装置20
は、高圧電極1と接地電極3,3との間に形成された混
合反応ガス噴出通路16,16下流の吹出し部17に対
向する箇所に補助電極41を設け、これを接地するか、
または、この補助電極41に直流のバイアス電圧を印加
する直流電源42を設け、また、補助電極41の内部に
も冷却水循環用通路43を形成したものであり、その他
の構成は図2〜図5に示したものと同一であるため、同
一の構成及び相当する部位に同一の符号を付して、それ
らの詳しい説明は省略する。
FIGS. 7 and 8 show an atmospheric pressure plasma processing apparatus 2.
0 shows another example. This atmospheric pressure plasma processing apparatus 20
Is to provide an auxiliary electrode 41 at a position opposed to the blowing section 17 downstream of the mixed reaction gas blowing passages 16 formed between the high voltage electrode 1 and the grounding electrodes 3, 3, and to ground the auxiliary electrode 41,
Alternatively, a DC power supply 42 for applying a DC bias voltage is provided to the auxiliary electrode 41, and a cooling water circulation passage 43 is also formed inside the auxiliary electrode 41. Other configurations are shown in FIGS. , The same configurations and corresponding parts are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0026】上記のような構成を有する図7及び図8に
示す大気圧プラズマ処理装置20においても、図6と同
様に、コンベア14によって水平搬送されるPTFEな
どの樹脂シート材(被処理物)13の表面に向けて、放
電ギャップ15,15でのグロー放電プラズマの発生に
伴い生成されるイオン、ラジカルなどの化学的に活性な
励起種を含む反応性ガス流、すなわち、プラズマフレア
を両側噴出通路16,16下流の吹出し部17から直線
状に噴出させ、それら噴出プラズマフレア同士を樹脂シ
ート材13の表面上で互いに衝突合流させて途切れのな
い一直線状のプラズマフレアを樹脂シート材13の表面
全域に均等に作用させることによって、樹脂シート材1
3の表面を親水性に改質して樹脂シート材13に対する
塗料やインクののり具合や接着性を著しく改善するとい
った所定のプラズマ処理を行なうが、このとき、補助電
極41に直流電源42を介して直流のバイアス電圧を印
加することによって、高周波電圧をスパークやアーク放
電などの異常放電による電力ロスが生じない比較的低い
値に設定し電力消費を節減しながらも、大気圧下でグロ
ー放電プラズマを確実かつ安定よく発生させて反応活性
度を大きくし所定のプラズマ処理速度及び処理性能を向
上できるものである。
In the atmospheric pressure plasma processing apparatus 20 shown in FIGS. 7 and 8 having the above configuration, similarly to FIG. 6, a resin sheet material such as PTFE (object to be processed) horizontally conveyed by the conveyor 14. A reactive gas flow containing chemically active excited species such as ions and radicals generated by the generation of glow discharge plasma in the discharge gaps 15, that is, a plasma flare is ejected to both surfaces toward the surface 13. The plasma flares are ejected linearly from the outlets 17 downstream of the passages 16, and the ejected plasma flares collide with each other on the surface of the resin sheet material 13 to form an uninterrupted linear plasma flare on the surface of the resin sheet material 13. By acting evenly over the entire area, the resin sheet material 1
3 is subjected to a predetermined plasma treatment such as modifying the surface of the resin sheet 3 to be hydrophilic so as to remarkably improve the degree of adhesion and adhesion of the paint or ink to the resin sheet material 13. By applying a DC bias voltage, the high-frequency voltage is set to a relatively low value that does not cause power loss due to abnormal discharge such as spark or arc discharge. Is generated reliably and stably to increase the reaction activity and improve the predetermined plasma processing speed and processing performance.

【0027】なお、上記実施の形態では、不活性ガスの
うち化学的に安定で他の元素と化合物を作らないという
特性を有するヘリウムを回収し循環再利用する場合につ
いて説明したが、ヘリウム以外に、例えばアルゴンなど
の不活性ガスを排気ガスから分離回収して循環再利用す
る場合に適用しても、上記と同様に、ランニングコスト
の低減が図れることはもちろんである。
In the above-described embodiment, a case has been described in which helium having the property of being chemically stable and not forming a compound with another element is collected from the inert gas and is recycled for reuse. For example, even when the present invention is applied to a case where an inert gas such as argon is separated and collected from exhaust gas and is recycled, the running cost can be reduced as described above.

【0028】[0028]

【発明の効果】以上のように、本発明によれば、プラズ
マ処理時にチャンバー内に放出される排気ガス中にヘリ
ウム等の不活性ガスと共存する水蒸気や酸素等の不純物
を除去して不活性ガスを回収し、その回収不活性ガスを
大気圧プラズマ処理装置における不活性ガスまたは混合
反応ガスの供給通路に還流して再利用することにより、
新規な不活性ガスは循環再利用不活性ガスの不足分を補
給するだけの極く少量なものとし、長時間に亘る連続プ
ラズマ処理時の不活性ガスの消費量を著しく節減するこ
とができ、したがって、不活性ガスの不必要な消費ロス
を抑えてランニングコストの低減を図ることができると
いう効果を奏する。
As described above, according to the present invention, an inert gas such as water vapor or oxygen coexisting with an inert gas such as helium is removed from an exhaust gas discharged into a chamber during plasma processing. By recovering the gas, returning the recovered inert gas to the supply path of the inert gas or mixed reaction gas in the atmospheric pressure plasma processing apparatus and reusing it,
The new inert gas is used in a very small amount to replenish the shortage of the circulating and reused inert gas, and it is possible to significantly reduce the consumption of the inert gas during continuous plasma processing for a long time. Therefore, there is an effect that the running cost can be reduced by suppressing unnecessary consumption loss of the inert gas.

【0029】特に、回収対象をヘリウムとする場合の不
純物除去装置として、少なくとも、排気ガス中の水分を
冷却によって液化し除去して粗ヘリウムとするトラップ
と、その粗ヘリウムを冷却活性炭に通して高純度ヘリウ
ムとするフィルターとを有するものを用いることによ
り、回収再利用されるヘリウムの純度を高めることが可
能で、ヘリウムの循環再使用によるコストダウンを図り
ながらも表面改質等の所定のプラズマ処理性能を確実か
つ安定よく維持することができる。
In particular, as a device for removing impurities when helium is to be collected, at least a trap that liquefies and removes moisture in exhaust gas by cooling to remove crude helium, and passes the crude helium through cooled activated carbon to attain high purity. By using a filter having a helium purity filter, it is possible to increase the purity of helium that is recovered and reused. Performance can be reliably and stably maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るヘリウム回収再利用装置付き大気
圧プラズマ処理装置全体の構成を示す系統図である。
FIG. 1 is a system diagram showing the overall configuration of an atmospheric pressure plasma processing apparatus with a helium recovery and reuse device according to the present invention.

【図2】大気圧プラズマ処理装置の一例を示す側面図で
ある。
FIG. 2 is a side view showing an example of an atmospheric pressure plasma processing apparatus.

【図3】図2のA−A線に沿った縦断正面図である。FIG. 3 is a longitudinal sectional front view taken along line AA of FIG. 2;

【図4】図3の要部の拡大図である。FIG. 4 is an enlarged view of a main part of FIG. 3;

【図5】図2の大気圧プラズマ処理装置の縦断側面図で
ある。
FIG. 5 is a vertical sectional side view of the atmospheric pressure plasma processing apparatus of FIG. 2;

【図6】同上大気圧プラズマ処理装置の使用形態を示す
概略斜視図である。
FIG. 6 is a schematic perspective view showing a usage mode of the atmospheric pressure plasma processing apparatus.

【図7】大気圧プラズマ処理装置の他の例を示す側面図
である。
FIG. 7 is a side view showing another example of the atmospheric pressure plasma processing apparatus.

【図8】図7のB−B線に沿った縦断正面図である。8 is a vertical sectional front view taken along line BB of FIG. 7;

【符号の説明】[Explanation of symbols]

1 高圧電極 2 絶縁板 3 接地電極 6,32 反応ガス供給通路 15 放電ギャツプ 17 吹出口 20 大気圧プラズマ処理装置 21 チャンバー 22 排気ガス排出路 25 ヘリウム強制回収路 26 不純物除去装置 26A 水分トラップ 26B フィルター 29 回収ヘリウム貯蔵タンク 35 ヘリウム供給通路 REFERENCE SIGNS LIST 1 high voltage electrode 2 insulating plate 3 ground electrode 6, 32 reaction gas supply passage 15 discharge gap 17 outlet 20 atmospheric pressure plasma treatment device 21 chamber 22 exhaust gas discharge passage 25 helium forced recovery passage 26 impurity removal device 26A moisture trap 26B filter 29 Recovery helium storage tank 35 Helium supply passage

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/302 B Fターム(参考) 4D052 AA03 BA05 GA01 GB11 HB01 4G075 AA30 BA05 BB04 BB07 BC02 BC06 BD05 BD14 CA03 CA16 CA47 EB42 4K030 AA16 DA02 EA12 LA15 5F004 AA14 AA16 BA20 BB18 BB24 BC04 DA00 DA01 DA02 DA03 DA22 DA23 DA24 DA26 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) H01L 21/302 BF Term (Reference) 4D052 AA03 BA05 GA01 GB11 HB01 4G075 AA30 BA05 BB04 BB07 BC02 BC06 BD05 BD14 CA03 CA16 CA47 EB42 4K030 AA16 DA02 EA12 LA15 5F004 AA14 AA16 BA20 BB18 BB24 BC04 DA00 DA01 DA02 DA03 DA22 DA23 DA24 DA26

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高圧電極とこの高圧電極に絶縁体を挟ん
で対向配置された接地電極との間に放電ギャップ及び混
合反応ガス噴出部が形成され、この放電ギャップ及び混
合反応ガス噴出部に、少なくともヘリウムを含む不活性
ガスもしくは不活性ガスと酸素またはフルオロカーボン
系の含フッ素化合物ガスを含む反応性気体との混合反応
ガスを大気圧もしくは大気圧近傍下で導入するととも
に、両電極に高周波電圧を印加して放電ギャップにグロ
ー放電プラズマを発生させることにより、その放電プラ
ズマにより生成される化学的に活性な励起種を含むガス
流を上記混合反応ガス噴出部の吹出口から被処理物の表
面に吹き出し照射させるように構成されている大気圧プ
ラズマ処理装置を設置したチャンバーに不活性ガスを含
む排気ガスの排出路を接続し、 この排気ガス排出路に、排気ガス中の不活性ガスに共存
する不純物を除去する不純物除去装置を設置するととも
に、 不純物が除去された不活性ガスを強制回収し、かつ、そ
の回収不活性ガスを上記大気圧プラズマ処理装置におけ
る不活性ガスまたは混合反応ガスの供給通路に還流させ
て再利用するように構成していることを特徴とする不活
性ガス回収再利用装置付き大気圧プラズマ処理装置。
A discharge gap and a mixed reactant gas jet are formed between the high voltage electrode and a ground electrode opposed to the high electrode with an insulator interposed therebetween. Introducing a reaction gas containing at least an inert gas containing helium or a reactive gas containing oxygen or a fluorocarbon-based fluorine-containing compound gas at or near atmospheric pressure, and applying a high-frequency voltage to both electrodes. By generating a glow discharge plasma in the discharge gap by applying the gas, the gas flow containing the chemically active excited species generated by the discharge plasma is applied from the outlet of the mixed reaction gas ejection part to the surface of the workpiece. A discharge path for exhaust gas containing inert gas is provided in a chamber in which an atmospheric pressure plasma processing apparatus configured to perform blowout irradiation is installed. In this exhaust gas discharge path, an impurity removal device that removes impurities coexisting with the inert gas in the exhaust gas is installed, and the inert gas from which the impurities have been removed is forcibly recovered. Atmospheric-pressure plasma processing with an inert-gas recovery and reuse device, wherein the active gas is configured to be recirculated to the supply path of the inert gas or the mixed reaction gas in the atmospheric-pressure plasma processing apparatus and reused. apparatus.
【請求項2】 上記不純物除去装置が、排気ガス中の水
分を冷却によって液化し除去するトラップと、水分除去
後の排気ガスを通過させて酸素を除去する酸素除去フィ
ルターとを少なくとも有している請求項1に記載の不活
性ガス回収再利用装置付き大気圧プラズマ処理装置。
2. The apparatus for removing impurities according to claim 1, further comprising: a trap for liquefying and removing moisture in the exhaust gas by cooling, and an oxygen removing filter for removing the oxygen by passing the exhaust gas after removing the moisture. An atmospheric pressure plasma processing apparatus with an inert gas recovery and reuse apparatus according to claim 1.
【請求項3】 対象とする不活性ガスがヘリウムであ
り、上記不純物除去装置が、排気ガス中の水分を冷却に
よって液化し除去して粗ヘリウムとするトラップと、そ
の粗ヘリウムを冷却活性炭に通して高純度ヘリウムとす
るフィルターとを有している請求項1に記載の不活性ガ
ス回収再利用装置付き大気圧プラズマ処理装置。
3. An inert gas of interest is helium, and the impurity removing device liquefies and removes moisture in exhaust gas by cooling to make coarse helium, and passes the crude helium through cooled activated carbon. The atmospheric pressure plasma processing apparatus with an inert gas recovery and reuse apparatus according to claim 1, further comprising a filter for converting the inert gas to high purity helium.
JP2000383321A 2000-12-18 2000-12-18 Atmospheric pressure plasma treating device provided with unit for recovering/reusing inert gas Pending JP2002177766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000383321A JP2002177766A (en) 2000-12-18 2000-12-18 Atmospheric pressure plasma treating device provided with unit for recovering/reusing inert gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000383321A JP2002177766A (en) 2000-12-18 2000-12-18 Atmospheric pressure plasma treating device provided with unit for recovering/reusing inert gas

Publications (1)

Publication Number Publication Date
JP2002177766A true JP2002177766A (en) 2002-06-25

Family

ID=18850995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000383321A Pending JP2002177766A (en) 2000-12-18 2000-12-18 Atmospheric pressure plasma treating device provided with unit for recovering/reusing inert gas

Country Status (1)

Country Link
JP (1) JP2002177766A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128085A (en) * 2004-09-29 2006-05-18 Sekisui Chem Co Ltd Plasma treatment device
JP2006278227A (en) * 2005-03-30 2006-10-12 Sekisui Chem Co Ltd Discharge plasma processing device and processing method
JP2006335410A (en) * 2005-06-01 2006-12-14 Takagi Seiko Corp Method of surface treatment of tank made of resin and its apparatus
JP2008086985A (en) * 2006-09-29 2008-04-17 Samsung Electronics Co Ltd Plasma process equipment and method for processing substrate by using the same
JP2010502416A (en) * 2006-08-23 2010-01-28 エイチ2ジーイーエヌ・イノベーションズ・インコーポレイテッド Improved method and apparatus for recycling a protective atmosphere
WO2010068798A3 (en) * 2008-12-10 2010-10-21 Thinsilicon Corporation System and method for recycling a gas used to deposit a semiconductor layer
KR101127238B1 (en) * 2009-09-22 2012-03-29 (주)케이씨이앤씨 Carrier gas retrieval device for atmospheric pressure plasma system
JP2012124447A (en) * 2010-01-28 2012-06-28 Air Products & Chemicals Inc Method and apparatus for selectively collecting processing exhaust
KR101354481B1 (en) * 2012-04-18 2014-01-27 한국기초과학지원연구원 A method for removing impurities of lithium transtion metal oxide
CN116726639A (en) * 2023-08-11 2023-09-12 佛山市天禄智能装备科技有限公司 Waste gas treatment method and treatment device based on high-temperature rotary furnace

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128085A (en) * 2004-09-29 2006-05-18 Sekisui Chem Co Ltd Plasma treatment device
JP4499005B2 (en) * 2004-09-29 2010-07-07 積水化学工業株式会社 Plasma processing equipment
JP2006278227A (en) * 2005-03-30 2006-10-12 Sekisui Chem Co Ltd Discharge plasma processing device and processing method
JP2006335410A (en) * 2005-06-01 2006-12-14 Takagi Seiko Corp Method of surface treatment of tank made of resin and its apparatus
JP4603422B2 (en) * 2005-06-01 2010-12-22 株式会社タカギセイコー Surface treatment method for resin tanks
JP2010502416A (en) * 2006-08-23 2010-01-28 エイチ2ジーイーエヌ・イノベーションズ・インコーポレイテッド Improved method and apparatus for recycling a protective atmosphere
JP2014054632A (en) * 2006-08-23 2014-03-27 Lummus Technology Inc Method and device improved for recycling of protective atmosphere
JP2008086985A (en) * 2006-09-29 2008-04-17 Samsung Electronics Co Ltd Plasma process equipment and method for processing substrate by using the same
CN102246272A (en) * 2008-12-10 2011-11-16 薄膜硅公司 System and method for recycling a gas used to deposit a semiconductor layer
US8444766B2 (en) 2008-12-10 2013-05-21 Thinsilicon Corporation System and method for recycling a gas used to deposit a semiconductor layer
WO2010068798A3 (en) * 2008-12-10 2010-10-21 Thinsilicon Corporation System and method for recycling a gas used to deposit a semiconductor layer
KR101127238B1 (en) * 2009-09-22 2012-03-29 (주)케이씨이앤씨 Carrier gas retrieval device for atmospheric pressure plasma system
JP2012124447A (en) * 2010-01-28 2012-06-28 Air Products & Chemicals Inc Method and apparatus for selectively collecting processing exhaust
JP2013128120A (en) * 2010-01-28 2013-06-27 Air Products & Chemicals Inc Method and equipment for selectively collecting process effluent
KR101354481B1 (en) * 2012-04-18 2014-01-27 한국기초과학지원연구원 A method for removing impurities of lithium transtion metal oxide
CN116726639A (en) * 2023-08-11 2023-09-12 佛山市天禄智能装备科技有限公司 Waste gas treatment method and treatment device based on high-temperature rotary furnace
CN116726639B (en) * 2023-08-11 2023-11-07 佛山市天禄智能装备科技有限公司 Waste gas treatment method and treatment device based on high-temperature rotary furnace

Similar Documents

Publication Publication Date Title
US8591660B2 (en) Method for the plasma cleaning of the surface of a material coated with an organic substance
JP2005095744A (en) Surface treatment method of insulating member, and surface treatment apparatus for insulating member
JP2002177766A (en) Atmospheric pressure plasma treating device provided with unit for recovering/reusing inert gas
JP2004179191A (en) Device and method for plasma treatment
CN111107949A (en) Surface treatment method and apparatus
US20080280065A1 (en) Method and Device for Generating a Low-Pressure Plasma and Applications of the Low-Pressure Plasma
JP4296523B2 (en) Plasma generator
JPH1116696A (en) Plasma generating method under atmospheric pressure, its device and surface treatment method
JP2003218099A (en) Method and system for discharge plasma processing
JP2002144231A (en) Surface treatment method and surface treatment device
JP2003338398A (en) Discharge plasma processing method and apparatus therefor
JP2004181306A (en) Surface treatment apparatus and surface treatment method
CN111867226A (en) Plasma jet generating system capable of recycling gas
JP5126983B2 (en) Plasma generator
JPH0878529A (en) Method and apparatus for surface treatment, surface treatment for substrate, method for forming multilayer wiring board, and formation of orientation film for liquid crystal panel
KR20020071694A (en) Method and apparatus for removing contaminants from the surface of a substrate with atmospheric-pressure plasma
KR100994298B1 (en) Method and apparatus for fluorine generation and recirculation
JP2002008895A (en) Plasma treatment device and plasma treatment method
JP2006005316A (en) Plasma processing apparatus
KR20020085149A (en) Plasma Dry type Cleaning apparatus in ambient temperature/atmospheric
JP4620322B2 (en) Plasma surface treatment equipment
JP2004211161A (en) Plasma generating apparatus
JP2003100733A (en) Discharge plasma treatment system
JP2934852B1 (en) Plasma processing equipment
WO2003023507A1 (en) Method for removing organic alignment layer coated on substrates and recovering the substrates using plasma