JP2005026055A - Composite electrode for fuel cell, and solid electrolyte fuel cell - Google Patents

Composite electrode for fuel cell, and solid electrolyte fuel cell Download PDF

Info

Publication number
JP2005026055A
JP2005026055A JP2003189982A JP2003189982A JP2005026055A JP 2005026055 A JP2005026055 A JP 2005026055A JP 2003189982 A JP2003189982 A JP 2003189982A JP 2003189982 A JP2003189982 A JP 2003189982A JP 2005026055 A JP2005026055 A JP 2005026055A
Authority
JP
Japan
Prior art keywords
fuel cell
metal
composite electrode
component
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003189982A
Other languages
Japanese (ja)
Inventor
Hiromi Sugimoto
博美 杉本
Itaru Shibata
格 柴田
Mitsugi Yamanaka
貢 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003189982A priority Critical patent/JP2005026055A/en
Publication of JP2005026055A publication Critical patent/JP2005026055A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite electrode for a fuel cell possible to be easily manufactured in the low-temperature condition, facilitated in structure control and having many three-phase interfaces, and to provide a manufacturing method thereof and a solid electrolyte fuel cell using the same. <P>SOLUTION: This composite electrode for a fuel cell is formed by coating a porous electrode substrate with a second component by a chemical solution method. The porous electrode substrate as a first component has an opening part, and narrow holes having a mean narrow hole diameter of 500 μm or less, and the second component is coated on the porous electrode substrate in thickness of 0.01-10 μm. The porous electrode substrate as the first component is coated with a solution containing the second component or a precursor of the second component to act on each other, and a metal layer or a metal oxide layer is formed to form the composite electrode for a fuel cell. The solid electrolyte fuel cell uses this composite electrode for a fuel cell. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池用複合電極、その製造方法及び固体電解質型燃料電池に係り、更に詳細には、2つの主成分から成り、構造を容易に制御できる燃料電池用複合電極、その製造方法及び固体電解質型燃料電池に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来から、化学エネルギーを電気化学的な反応により電気エネルギーに変換する装置として、固体酸化物形燃料電池(SOFC)が知られている。このSOFCは、燃料極、固体電解質及び空気極の各層を互いに積層した3層を燃料電池の発電部とし、外部から燃料極には水素、炭化水素等の燃料ガスを供給し、空気極には空気等の酸化剤ガスを供給して電気を発生させる。
【0003】
また、SOFCにおいて、電極性能を向上させる技術として、粒子内の構造をミクロに制御したサーメット粉体の製造方法が提案されている。この製造方法は、図8に示すように、2種類以上の微粒子で電極を構成し、このうち1種類を外周部に偏在させること、また、ミスト状の原料を乾燥させ熱分解により反応させること、を特徴とする(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開平9−309768号公報
【0005】
更に、図9に示すように、多孔質酸化物粉体(YSZ等)に金属塩水溶液を含浸、熱処理し、表面に金属が担持された粒子を成型・焼成して電極とすることが提案されている。(例えば、特許文献2参照。)。
【0006】
【特許文献2】
特開平10−144337号公報
【0007】
しかし、作製された粉体を粉砕・スラリー化して焼成するので、2段階の焼成工程が必要となる、また、ミクロ構造制御したサーメット粉体を粉砕・混合する際に解砕してしまい、焼成後に所望の構造が得られないことがある、という問題点があった。
【0008】
更にまた、発泡剤を用いて多孔化した酸化物多孔質電極基体に粉体スラリーを含浸させてコーティングする方法が提案されている。この方法では、図10に示すように、骨格を発泡体で形成し、スラリー状の粉体を塗布して焼成することで、空間部の内壁まで粒子を被覆する(例えば、特許文献3参照。)。
【0009】
【特許文献3】
特開2000−200614号公報
【0010】
しかしながら、粉体スラリーを塗布するためには、ある程度以上の開口径を有するが多孔質電極基体を使用しなければならない、また、粉体塗布後に焼成工程が必要であるため、基体材料が限定される、という問題点があった。
【0011】
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、低温下で簡略に製造でき、構造制御が容易で、多くの三相界面を有する燃料電池用複合電極、その製造方法及び固体電解質型燃料電池を提供することにある。
【0012】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、化学溶液を用いて第1成分の有する細孔内に第2成分を浸入させること、第1成分として所定の細孔径を有するものを使用することにより、上記課題が解決できることを見出し、本発明を完成するに至った。
【0013】
【発明の実施の形態】
以下、本発明の燃料電池用複合電極について詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を示す。
また、説明の便宜上、基体や電極などの一方の面を「表面」、他の面を「裏面」などと記載するが、これらは等価な要素であり、相互に置換した構成も本発明の範囲に含まれるのは言うまでもない。
【0014】
上述の如く、本発明の燃料電池用複合電極は、第1成分として用いる多孔質電極基体に第2成分を被覆して成る。
具体的には、多孔質電極基体の表面、裏面のいずれか一方又は双方と、この表面、裏面のいずれか一方又は双方に開口部を有する細孔に、第2成分を化学溶液法(CSD法)により被覆して得られる。
ここで、「化学溶液法」とは、出発原料として被覆成分を含む溶液状の薬剤を基体に被覆し、加熱その他の手段で反応を進行させることにより、所望の成分より成る被覆層を形成する方法を示す。例えば、熱スプレー分解法(SPD法)により第2成分又はその前駆物質を被覆すると同時に反応させることで、多孔質電極基体の細孔内まで第2成分から成る薄膜を形成でき、更にこの表面にも連続して電極層又は電解質層を形成できるので、工程が簡略化できるとともに、分子レベルで連続的に機能や構造を傾斜させて燃料電池を作製できる。
【0015】
このように、本発明では第2成分又はその前駆物質を溶液状にして被覆するので、多孔質電極基体の細孔内まで第2成分が侵入し、第2成分の被覆面積が増大する。言い換えれば、多孔質電極基体に流通させるガスが接触する部分の多くに所望の第2成分を被覆できる。また、ミクロな構造制御が可能となるので、電極性能に重要な三相界面が増大する等、燃料電池の性能が向上する。更に、通常は2種成分を粉体で混合する場合は、それぞれの粉体を製造した後に混合するが、CSD法を使用することによりかかる工程が簡略化される。
【0016】
また、本発明の燃料電池用複合電極は、表面、裏面のいずれか一方又は双方に開口部を有し平均細孔径が500μm以下の細孔を有する多孔質電極基体を用いる。また、この多孔質電極基体の表面、裏面のいずれか一方又は双方と細孔内に第2成分を0.01〜10μmの厚さで被覆して成る。これより、多孔質電極基体に流通するガスと第2成分との接触頻度が高められるため3相界面が増大し、優れた電極性能を発揮させ得る。平均細孔径が500μmを超えると、三相界面が減少し電極としての性能を発揮できない。また、第2成分の被覆厚が上記範囲から外れると、ガス透過能が低下したり、剥離が起こったりして電池性能が低下する。また、上記平均細孔径は100μm以下であることがより好適である。
なお、上記「細孔」とは、ガス透過体である多孔質電極基体においてガスと接触可能な基体内部空間を示す。例えば、多孔質電極基体が粉末焼結体の場合は、粒子間の空隙、造孔剤等で作った空間部などを含み、多孔質電極基体が金属繊維の場合は、繊維間の空間部をいう。また、「平均細孔径」とは、多孔質電極基体を光学顕微鏡又はSEM等で、同一視野の中に10個以上の空間部が点在する倍率で観察し、空間部の隔壁間サイズ平均を算出するものとする。
【0017】
また、上記多孔質電極基体としては、所定の細孔を有する種々の材料を選択でき、例えば、粉体状、薄膜状及び板状などの形状で使用できる。
代表的には、厚さが1μm〜2mmである電極材料焼結体、具体的には、Ni、Pt、NiO、Sm添加セリア(SDC)、Y添加安定化ジルコニア(YSZ)、Sc添加安定化ジルコニア(SSZ)、Sr添加ランタンコバルト酸化物(LSC)、Sr添加ランタンマンガン酸化物(LSM)、Sr添加Smコバルト酸化物(SSC)等の酸化物や金属粉体を塗布させたもの、又は成型後に焼結させたものを使用できる。なお、厚さが1μm未満であると、第2成分が電極基体(第1成分)層を完全に覆ってしまい、三相界面が得られないことがある。また、2mmを超えると燃料電池全体の重量・体積が増加し、小型軽量化が困難となり易い。より好ましくは5μm〜1mmとするのが良い。
【0018】
また、厚さが0.05mm〜2mmである多孔質金属、即ちそれ自体がガス透過性を有する金属基板を使用できる。具体的には、金属を繊維状にして接着した不織布、メッシュ状金属、発泡状金属及びスルーホール金属板等が挙げられる。厚さが0.05mm未満であると、支持体としての強度を保持することが困難であり、2mmを超えると燃料電池全体の重量・体積が増加し、小型軽量化が困難となり易い。
【0019】
更に、Ni、Cu、SUS及びインコネル等の金属から成り、エッチング加工やEBパンチング加工等により穿孔して得られるスルーホール金属板の貫通孔(孔径0.1〜1mm程度)に電極材料粉体(電解質材料、燃料極材料又は空気極材料)を充填して得られるガス透過性電極基体も使用できる。このときはより三相界面を増大させ得る。なお、上記孔径を有するメッシュ金属や発泡金属などに電極材料粉体を充填することもできる。
【0020】
一方、上記第2成分としては、イオン導電性、混合導電性のいずれか一方又は双方を有する酸化物などが挙げられる。これより、電極層及び電解質層を連続的に形成して三相界面を増大させ得るので、燃料電池の性能を向上できる。また、第1成分(被覆される基板など)として、単一材の金属基板が使用できるので安価に製造できる。更に、金属成分を骨格とするときは、集電体の機能を付与できるので、小型化・薄膜化を実現できる。
【0021】
具体的には、上記酸化物としては、化学溶液法で得られる酸素イオン伝導性材料、例えば、安定化ジルコニア、セリア固溶体、酸化ビスマス固溶体又はぺロブスカイト、及びこれらの任意の組合せに係るものを使用できる。上記安定化ジルコニア、セリア(CeO)系固溶体、酸化ビスマス固溶体は、酸化サマリウム(Sm)、酸化ガドリニウム(Gd)、酸化ネオウジム(Nd)、イットリア(Y)又は酸化スカンジウム(Sc)、及びこれらの任意の組合せに係るものを固溶して成り、上記ペロブスカイトは、ランタンガリウム(LaGa)にSr、Mn等を固溶して成る。
更に、ランタンコバルト系酸化物(La1−xSrCoOなど)やランタンマンガン系酸化物(La1−xSrMnOなど)又はランタン鉄系酸化物、及びこれらを任意に組合わせたものを空気極材料として使用できる。
【0022】
また、上記第2成分としては、金属、金属酸化物のいずれか一方又は双方を使用することもできる。これより、SOFC等の高温作動させるデバイスに使用するときは、電解質材料と同一材料で骨格を形成後に、金属等の第2成分を添加して、熱膨張係数を合わせることができ、熱サイクルによる熱衝撃等を有効に軽減できる。
具体的には、ニッケル(Ni)、白金(Pt)、パラジウム(Pd)、ルテニウム(Ru)、コバルト(Co)、モリブデン(Mo)、タングステン(W)、鉄(Fe)、銅(Cu)、銀(Ag)又はクロム(Cr)、及びこれらの任意の組合せに係るものを含むことが好適である。
更に、上記金属や金属酸化物は、その前駆体である、金属アルコキシド、金属アセチルアセトナート、金属酢酸塩、シュウ酸塩等のカルボン酸塩、ナフテン酸塩、オクチル酸塩、金属硝酸塩、塩化物、オキシ塩化物又は酸化物微粒子、及びこれらの任意の組合せに係るものを含む溶液を、加熱などにより反応させて得ることができる。
【0023】
次に、本発明の燃料電池用複合電極の製造方法について詳細に説明する。
まず、第1成分として、上述した電極材料などで構成される多孔質電極基体を用意する。次いで、この多孔質電極基体の表面、裏面のいずれか一方又は双方と、この表面、裏面のいずれか一方又は双方に開口部を有する細孔に、第2成分、この前駆体のいずれか一方又は双方を含む溶液を被覆する。その後、被覆した溶液を反応させて金属層又は金属酸化物層を形成して、燃料電池用複合電極とする。
【0024】
このとき、上記金属層又は金属酸化物層は、金属アルコキシド、金属アセチルアセトナート、金属酢酸塩、シュウ酸塩等のカルボン酸塩、ナフテン酸塩、オクチル酸塩、金属硝酸塩、塩化物、オキシ塩化物又は酸化物微粒子、及びこれらの任意の組合せに係るものを含む溶液を用いて形成することが好適である。
また、上記被覆工程においては、スピンコート法、ディッピング法、スプレー法、熱スプレー分解法、ポッティング法又は刷毛塗り法、及びこれらを任意に組合せることが、工程簡略化、量産化の観点から好適である。
このように、本発明では、低温下で簡略に燃料電池用複合電極を製造できる。また、図11に示すように第1成分や第2成分を適宜選択することで、容易に構造を制御でき、多くの三相界面を有する燃料電池用複合電極が得られる。
【0025】
次に、本発明の固体酸化物形燃料電池について詳細に説明する。
かかる燃料電池は、上述の燃料電池用複合電極を用い、従来の製法より低温で燃料電池を作製できるので、選択できる材料種が大幅に増大し、安価な材料を適宜使用することで低コスト化が可能となる。また、全体を薄膜化できるので、電池の内部抵抗が低減し、高出力、また低温作動型のSOFC設計が可能となる。更に、三相界面が多数点在することより電極反応が大幅に向上する。例えば、図12に示すような燃料電池スタックが挙げられる。
【0026】
【実施例】
以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0027】
(実施例1)
多孔質金属基体として、厚さ0.1mm、開孔径0.1mm(開孔率70%)のSUS304をケミカルエッチングにて作製した。次いで、この多孔質金属基体の穿孔部にNi−B(ボロン)粉末を充填し600℃で焼結させた。このときの多孔質金属基体の気孔率は30%であった。
また、Ni充填後の多孔質金属基体に、Y添加安定化ジルコニア(以下「YSZ」とする)原料として、アセチルアセトンジルコニア+塩化イットリウムブチルカルビトール溶液(8mol%Yに調製)を基板加熱300℃で熱スプレー分解法にて被覆し、厚さ50nmのCSD層を形成し、燃料電池用複合電極を得た。
得られた燃料電池用複合電極に、電解質層及び電極層を被覆し、燃料電池用単セルを得た。この詳細を表1に、概略図を図1に示す。
【0028】
(実施例2)
Niの周囲に、多孔質電極基体として、YSZ粉末を1200℃で焼結させて、厚さ5μm、気孔率30%のYSZ層を作製した。次いで、この周囲にNi原料として硝酸ニッケル水溶液をスプレー法にて被覆し700℃に加熱して反応させ、厚さ50nmのCSD層を形成し、燃料電池用複合電極を得た。このときのSEM写真を図2及び図3に示す。
得られた燃料電池用複合電極に、電解質層及び電極層を積層し、燃料電池用単セルを得た。この詳細を表1に、概略図を図4に示す。
【0029】
(実施例3)
多孔質電極基体として、YSZグリーンシートを1200℃で焼結させて、厚さ1mm、気孔率30%のYSZ層を作製した。次いで、この上にSr添加コバルト酸化物(以下「LSC」とする)原料として、La、CoO、SrCOの硝酸水溶液((La0.8Sr0.20.9CoOに調製)をスピンコート法にて被覆し800℃に加熱して反応させ、厚さ100nmのCSD層を形成し、燃料電池用複合電極を得た。
得られた燃料電池用複合電極に、電解質層及び電極層を被覆し、燃料電池用単セルを得た。この詳細を表1に、概略図を図5に示す。
【0030】
(実施例4)
多孔質電極基体として、厚さ250μm、気孔率70%のSUS304不織布を用意した。次いで、この上にSm添加セリア(以下「SDC」とする)原料として、CeO、Smの硝酸水溶液(Ce0.8Sm0.21.9に調製)を500℃でディッピング法にて被覆し、厚さ100nmのCSD層を形成し、燃料電池用複合電極を得た。
得られた燃料電池用複合電極に、電解質層及び電極層を積層し、燃料電池用単セルを得た。この詳細を表1に、概略図を図6に示す。
【0031】
(比較例1)
多孔質電極基体として、NiO粉末を1200℃で焼結させて、厚さ20μm、気孔率30%のNiO層を得た。次いで、この上に電解質層及び電極層を積層し、燃料電池用単セルを得た。この詳細を表1に、概略図を図7に示す。
【0032】
【表1】

Figure 2005026055
【0033】
<評価試験方法>
実施例1〜4及び比較例1で得られた燃料電池用単セルを還元雰囲気にて1000℃に保温した炉内に、10時間保持することにより耐久試験を行った。
【0034】
実施例1〜4で得られた燃料電池用単セルは、本発明の好適形態である材料を使用して成るため、長時間高温で使用した場合でもシンタリングが発生しにくいことがわかった。
一方、比較例1で得られた燃料電池用単セルは、CSD層を設けていないため、長期間加熱されるとNiOの焼結が進行し、性能が劣化することがわかった。
【0035】
【発明の効果】
以上説明してきたように、本発明によれば、化学溶液を用いて第1成分の有する細孔内に第2成分を浸入させること、第1成分として所定の細孔径を有するものを使用することとしたため、低温下で簡略に製造でき、構造制御が容易で、多くの三相界面を有する燃料電池用複合電極、その製造方法及び固体電解質型燃料電池を提供することができる。
【図面の簡単な説明】
【図1】実施例1で得られた燃料電池用単セルを示す概略図である。
【図2】実施例2で用いた燃料電池用複合電極の正面断面を示すSEM写真である。
【図3】実施例2で用いた燃料電池用複合電極の側面端部を示すSEM写真である。
【図4】実施例2で得られた燃料電池用単セルを示す概略図である。
【図5】実施例3で得られた燃料電池用単セルを示す概略図である。
【図6】実施例4で得られた燃料電池用単セルを示す概略図である。
【図7】比較例1で得られた燃料電池用単セルを示す概略図である。
【図8】従来の電極材料の一例を示す概略図である。
【図9】従来の電極材料の他の例を示す概略図である。
【図10】従来の電極材料の更に他の例を示す概略図である。
【図11】第1成分及び第2成分の一例を示す概略図である。
【図12】燃料電池スタックの一例を示す概略図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite electrode for a fuel cell, a method for producing the same, and a solid oxide fuel cell, and more specifically, a composite electrode for a fuel cell comprising two main components and capable of easily controlling the structure, a method for producing the same, and The present invention relates to a solid oxide fuel cell.
[0002]
[Prior art and problems to be solved by the invention]
Conventionally, a solid oxide fuel cell (SOFC) is known as a device that converts chemical energy into electrical energy by an electrochemical reaction. This SOFC uses a fuel cell, a solid electrolyte, and an air electrode layered together as a power generation part of a fuel cell. Fuel gas such as hydrogen and hydrocarbon is supplied to the fuel electrode from the outside, and the air electrode is supplied to the air electrode. Electricity is generated by supplying an oxidant gas such as air.
[0003]
Also, in SOFC, as a technique for improving electrode performance, a method for producing a cermet powder in which the structure inside the particles is controlled to be microscopically has been proposed. In this manufacturing method, as shown in FIG. 8, an electrode is composed of two or more kinds of fine particles, one of which is unevenly distributed in the outer periphery, and a mist-like raw material is dried and reacted by thermal decomposition. (For example, refer to Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 9-309768
Furthermore, as shown in FIG. 9, it has been proposed to impregnate a porous oxide powder (YSZ or the like) with an aqueous metal salt solution, heat-treat, and mold and sinter particles carrying the metal on the surface to form an electrode. ing. (For example, refer to Patent Document 2).
[0006]
[Patent Document 2]
Japanese Patent Laid-Open No. 10-144337
However, since the produced powder is pulverized / slurried and fired, a two-step firing process is required, and when the microstructured cermet powder is pulverized / mixed, it is crushed and fired. There was a problem that a desired structure could not be obtained later.
[0008]
Furthermore, a method has been proposed in which a porous oxide electrode substrate porous with a foaming agent is impregnated with a powder slurry and coated. In this method, as shown in FIG. 10, the skeleton is formed of a foam, and the particles are covered to the inner wall of the space portion by applying and baking slurry-like powder (see, for example, Patent Document 3). ).
[0009]
[Patent Document 3]
[Patent Document 1] Japanese Patent Laid-Open No. 2000-200614
However, in order to apply the powder slurry, a porous electrode substrate must be used although it has an opening diameter of a certain degree or more, and since a baking process is necessary after the powder application, the substrate material is limited. There was a problem that.
[0011]
The present invention has been made in view of such problems of the prior art. The object of the present invention is to provide a fuel that can be simply manufactured at low temperature, has an easy structure control, and has many three-phase interfaces. The object is to provide a composite electrode for a battery, a method for producing the same, and a solid oxide fuel cell.
[0012]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have made a second pore penetrate into the pores of the first component using a chemical solution, and have a predetermined pore diameter as the first component. By using what has, it discovered that the said subject could be solved and came to complete this invention.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the composite electrode for a fuel cell of the present invention will be described in detail. In the present specification, “%” indicates a mass percentage unless otherwise specified.
Further, for convenience of explanation, one surface of the substrate or the electrode is described as “front surface”, and the other surface is described as “rear surface”. However, these are equivalent elements, and the configurations substituted for each other are also within the scope of the present invention. It goes without saying that it is included in
[0014]
As described above, the composite electrode for a fuel cell according to the present invention is formed by coating the second component on the porous electrode substrate used as the first component.
Specifically, the second component is added to a chemical solution method (CSD method) in pores having openings on either or both of the front and back surfaces of the porous electrode substrate and on either or both of the front and back surfaces. ) To obtain.
Here, the “chemical solution method” is to form a coating layer composed of a desired component by coating a substrate with a solution-like drug containing a coating component as a starting material and causing the reaction to proceed by heating or other means. The method is shown. For example, a thin film comprising the second component can be formed into the pores of the porous electrode substrate by coating and reacting with the second component or its precursor by the thermal spray decomposition method (SPD method). In addition, since the electrode layer or the electrolyte layer can be continuously formed, the process can be simplified, and the fuel cell can be manufactured by continuously inclining the function and structure at the molecular level.
[0015]
Thus, in the present invention, since the second component or its precursor is coated in the form of a solution, the second component penetrates into the pores of the porous electrode substrate, and the coating area of the second component increases. In other words, a desired second component can be coated on many of the portions that are in contact with the gas flowing through the porous electrode substrate. In addition, since the micro structure can be controlled, the performance of the fuel cell is improved such that the three-phase interface important for the electrode performance is increased. In addition, when two kinds of components are usually mixed with powder, they are mixed after the respective powders are manufactured. However, the use of the CSD method simplifies such a process.
[0016]
The composite electrode for a fuel cell of the present invention uses a porous electrode substrate having openings on one or both of the front surface and the back surface and having pores with an average pore diameter of 500 μm or less. The porous electrode substrate is formed by coating the second component with a thickness of 0.01 to 10 [mu] m on one or both of the front and back surfaces and the pores. As a result, the contact frequency between the gas flowing through the porous electrode substrate and the second component is increased, so that the three-phase interface is increased and excellent electrode performance can be exhibited. When the average pore diameter exceeds 500 μm, the three-phase interface decreases and the performance as an electrode cannot be exhibited. On the other hand, if the coating thickness of the second component is out of the above range, the gas permeation ability is reduced or peeling occurs, resulting in a decrease in battery performance. The average pore diameter is more preferably 100 μm or less.
The “pore” refers to the internal space of the substrate that can contact the gas in the porous electrode substrate that is a gas permeable material. For example, when the porous electrode substrate is a powder sintered body, it includes voids between particles, spaces formed by a pore-forming agent, etc., and when the porous electrode substrate is metal fibers, the spaces between the fibers are included. Say. The “average pore diameter” means that the porous electrode substrate is observed with an optical microscope or SEM at a magnification at which 10 or more space portions are scattered in the same field of view, and the average size between the partition walls in the space portion is calculated. It shall be calculated.
[0017]
Further, as the porous electrode substrate, various materials having predetermined pores can be selected. For example, the porous electrode substrate can be used in the form of powder, thin film or plate.
Typically, an electrode material sintered body having a thickness of 1 μm to 2 mm, specifically, Ni, Pt, NiO, Sm-added ceria (SDC), Y-added stabilized zirconia (YSZ), and Sc-added stabilized Zirconia (SSZ), Sr-added lanthanum cobalt oxide (LSC), Sr-added lanthanum manganese oxide (LSM), Sr-added Sm cobalt oxide (SSC), etc. What was sintered later can be used. If the thickness is less than 1 μm, the second component may completely cover the electrode substrate (first component) layer, and a three-phase interface may not be obtained. On the other hand, if it exceeds 2 mm, the weight and volume of the entire fuel cell increase, and it is difficult to reduce the size and weight. More preferably, the thickness is 5 μm to 1 mm.
[0018]
Also, a porous metal having a thickness of 0.05 mm to 2 mm, that is, a metal substrate that itself has gas permeability can be used. Specifically, a nonwoven fabric, a mesh-like metal, a foam-like metal, a through-hole metal plate, and the like obtained by bonding a metal in a fibrous form can be used. If the thickness is less than 0.05 mm, it is difficult to maintain the strength as a support, and if it exceeds 2 mm, the weight and volume of the entire fuel cell increase, and it is difficult to reduce the size and weight.
[0019]
Furthermore, the electrode material powder (through the hole diameter of about 0.1 to 1 mm) made of a metal such as Ni, Cu, SUS, and Inconel, is obtained by drilling by etching or EB punching. A gas-permeable electrode substrate obtained by filling an electrolyte material, a fuel electrode material, or an air electrode material can also be used. At this time, the three-phase interface can be further increased. It is also possible to fill the electrode material powder with a mesh metal or foam metal having the above pore diameter.
[0020]
On the other hand, examples of the second component include oxides having one or both of ionic conductivity and mixed conductivity. Thus, the electrode layer and the electrolyte layer can be continuously formed to increase the three-phase interface, so that the performance of the fuel cell can be improved. Further, since a single metal substrate can be used as the first component (substrate to be coated, etc.), it can be manufactured at low cost. Furthermore, when the metal component is used as a skeleton, the function of the current collector can be imparted, so that downsizing and thinning can be realized.
[0021]
Specifically, as the oxide, an oxygen ion conductive material obtained by a chemical solution method, for example, a stabilized zirconia, a ceria solid solution, a bismuth oxide solid solution or a perovskite, and any combination thereof is used. it can. The stabilized zirconia, ceria (CeO 2 ) -based solid solution, and bismuth oxide solid solution are samarium oxide (Sm 2 O 3 ), gadolinium oxide (Gd 2 O 3 ), neodymium oxide (Nd 2 O 3 ), yttria (Y 2 O 3 ) or scandium oxide (Sc 2 O 3 ) and any combination thereof. The perovskite is formed by dissolving Sr, Mn, etc. in lanthanum gallium (LaGa).
Furthermore, lanthanum cobalt-based oxides (La 1-x Sr x CoO 3 etc.), lanthanum manganese-based oxides (La 1-x Sr x MnO 3 etc.) or lanthanum iron-based oxides, and any combination thereof Can be used as the cathode material.
[0022]
In addition, as the second component, either one or both of a metal and a metal oxide can be used. As a result, when used in devices that operate at high temperatures, such as SOFC, the second component such as metal can be added after the skeleton is formed of the same material as the electrolyte material, and the thermal expansion coefficient can be adjusted. Thermal shock can be effectively reduced.
Specifically, nickel (Ni), platinum (Pt), palladium (Pd), ruthenium (Ru), cobalt (Co), molybdenum (Mo), tungsten (W), iron (Fe), copper (Cu), It is preferred to include silver (Ag) or chromium (Cr) and any combination thereof.
Furthermore, the above metals and metal oxides are precursors thereof, such as metal alkoxides, metal acetylacetonates, metal acetates, carboxylates such as oxalates, naphthenates, octylates, metal nitrates, chlorides. , Oxychloride or oxide fine particles, and a solution containing any combination thereof can be obtained by reaction by heating or the like.
[0023]
Next, the manufacturing method of the composite electrode for fuel cells of this invention is demonstrated in detail.
First, as a first component, a porous electrode substrate composed of the electrode material described above is prepared. Next, either one or both of the front and back surfaces of the porous electrode substrate, and the pores having openings on either or both of the front and back surfaces, the second component, either one of the precursors or A solution containing both is coated. Thereafter, the coated solution is reacted to form a metal layer or a metal oxide layer to obtain a fuel cell composite electrode.
[0024]
At this time, the metal layer or metal oxide layer is composed of metal alkoxide, metal acetylacetonate, metal acetate, oxalate, or other carboxylate, naphthenate, octylate, metal nitrate, chloride, oxychloride. It is preferable to form using a solution containing a product or oxide fine particles and any combination thereof.
In the coating step, a spin coating method, a dipping method, a spray method, a thermal spray decomposition method, a potting method or a brush coating method, and any combination thereof are preferable from the viewpoint of process simplification and mass production. It is.
As described above, in the present invention, a composite electrode for a fuel cell can be simply manufactured at a low temperature. In addition, as shown in FIG. 11, by appropriately selecting the first component and the second component, the structure can be easily controlled, and a composite electrode for a fuel cell having many three-phase interfaces can be obtained.
[0025]
Next, the solid oxide fuel cell of the present invention will be described in detail.
Such a fuel cell uses the above-described composite electrode for a fuel cell and can produce a fuel cell at a lower temperature than the conventional manufacturing method. Therefore, the number of material types that can be selected is greatly increased, and the cost can be reduced by appropriately using inexpensive materials. Is possible. In addition, since the whole can be made thin, the internal resistance of the battery is reduced, and a high output and low temperature operation type SOFC design becomes possible. Furthermore, the electrode reaction is greatly improved by the presence of a large number of three-phase interfaces. For example, a fuel cell stack as shown in FIG.
[0026]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.
[0027]
(Example 1)
As a porous metal substrate, SUS304 having a thickness of 0.1 mm and an opening diameter of 0.1 mm (opening ratio 70%) was produced by chemical etching. Next, Ni-B (boron) powder was filled in the perforated portion of the porous metal substrate and sintered at 600 ° C. At this time, the porosity of the porous metal substrate was 30%.
In addition, as a raw material for Y-added stabilized zirconia (hereinafter referred to as “YSZ”), acetylacetone zirconia + yttrium butyl carbitol solution (prepared to 8 mol% Y 2 O 3 ) is heated on the substrate on the porous metal substrate after Ni filling. A CSD layer having a thickness of 50 nm was formed by coating at 300 ° C. by a thermal spray decomposition method, and a composite electrode for a fuel cell was obtained.
The obtained fuel cell composite electrode was coated with an electrolyte layer and an electrode layer to obtain a fuel cell single cell. Details are shown in Table 1, and a schematic diagram is shown in FIG.
[0028]
(Example 2)
A YSZ layer having a thickness of 5 μm and a porosity of 30% was produced around Ni by sintering YSZ powder at 1200 ° C. as a porous electrode substrate. Next, a nickel nitrate aqueous solution was coated around this as a Ni raw material by a spray method and heated to 700 ° C. for reaction to form a CSD layer having a thickness of 50 nm to obtain a composite electrode for a fuel cell. The SEM photograph at this time is shown in FIGS.
An electrolyte layer and an electrode layer were laminated on the obtained composite electrode for fuel cells to obtain a single cell for fuel cells. Details are shown in Table 1, and a schematic diagram is shown in FIG.
[0029]
(Example 3)
As a porous electrode substrate, a YSZ green sheet was sintered at 1200 ° C. to prepare a YSZ layer having a thickness of 1 mm and a porosity of 30%. Next, as a raw material for Sr-added cobalt oxide (hereinafter referred to as “LSC”), an aqueous nitric acid solution of La 2 O 3 , CoO 3 , SrCO 3 ((La 0.8 Sr 0.2 ) 0.9 CoO 3 is used. Were prepared by spin coating and reacted by heating to 800 ° C. to form a CSD layer having a thickness of 100 nm to obtain a composite electrode for fuel cells.
The obtained fuel cell composite electrode was coated with an electrolyte layer and an electrode layer to obtain a fuel cell single cell. Details are shown in Table 1, and a schematic diagram is shown in FIG.
[0030]
(Example 4)
As the porous electrode substrate, a SUS304 nonwoven fabric having a thickness of 250 μm and a porosity of 70% was prepared. Next, a nitric acid aqueous solution of CeO 2 and Sm 2 O 3 (prepared to Ce 0.8 Sm 0.2 O 1.9 ) was dipped at 500 ° C. as a Sm-added ceria (hereinafter referred to as “SDC”) material. Then, a CSD layer having a thickness of 100 nm was formed to obtain a composite electrode for a fuel cell.
An electrolyte layer and an electrode layer were laminated on the obtained composite electrode for fuel cells to obtain a single cell for fuel cells. Details are shown in Table 1, and a schematic diagram is shown in FIG.
[0031]
(Comparative Example 1)
As a porous electrode substrate, NiO powder was sintered at 1200 ° C. to obtain a NiO layer having a thickness of 20 μm and a porosity of 30%. Next, an electrolyte layer and an electrode layer were laminated thereon to obtain a fuel cell single cell. Details are shown in Table 1, and a schematic diagram is shown in FIG.
[0032]
[Table 1]
Figure 2005026055
[0033]
<Evaluation test method>
A durability test was conducted by holding the single cells for fuel cells obtained in Examples 1 to 4 and Comparative Example 1 in a furnace kept at 1000 ° C. in a reducing atmosphere for 10 hours.
[0034]
Since the single cells for fuel cells obtained in Examples 1 to 4 are formed using the material which is a preferred embodiment of the present invention, it has been found that sintering does not easily occur even when used at a high temperature for a long time.
On the other hand, since the single cell for fuel cells obtained in Comparative Example 1 was not provided with a CSD layer, it was found that when heated for a long period of time, NiO sintering progressed and the performance deteriorated.
[0035]
【The invention's effect】
As described above, according to the present invention, the second component is infiltrated into the pores of the first component using a chemical solution, and the first component having a predetermined pore diameter is used. Therefore, it is possible to provide a composite electrode for a fuel cell that can be simply manufactured at a low temperature, can be easily controlled, and has many three-phase interfaces, a manufacturing method thereof, and a solid oxide fuel cell.
[Brief description of the drawings]
1 is a schematic diagram showing a single cell for a fuel cell obtained in Example 1. FIG.
2 is a SEM photograph showing a front cross section of a composite electrode for a fuel cell used in Example 2. FIG.
3 is a SEM photograph showing a side end of a composite electrode for a fuel cell used in Example 2. FIG.
4 is a schematic view showing a single cell for a fuel cell obtained in Example 2. FIG.
5 is a schematic view showing a single cell for a fuel cell obtained in Example 3. FIG.
6 is a schematic view showing a single cell for a fuel cell obtained in Example 4. FIG.
7 is a schematic view showing a single cell for a fuel cell obtained in Comparative Example 1. FIG.
FIG. 8 is a schematic view showing an example of a conventional electrode material.
FIG. 9 is a schematic view showing another example of a conventional electrode material.
FIG. 10 is a schematic view showing still another example of a conventional electrode material.
FIG. 11 is a schematic diagram illustrating an example of a first component and a second component.
FIG. 12 is a schematic view showing an example of a fuel cell stack.

Claims (15)

第1成分として表面及び/又は裏面に開口部を有する多孔質電極基体を用い、この多孔質電極基体の表面及び/又は裏面と細孔内に、第2成分を化学溶液法により被覆して成ることを特徴とする燃料電池用複合電極。A porous electrode substrate having openings on the front surface and / or back surface is used as the first component, and the second component is coated by a chemical solution method on the front surface and / or back surface and pores of the porous electrode substrate. A composite electrode for a fuel cell. 第1成分として用いる多孔質電極基体に第2成分を被覆して成る燃料電池用複合電極であって、
上記多孔質電極基体が、表面及び/又は裏面に開口部を有し平均細孔径が500μm以下である細孔を有し、上記第2成分が、この多孔質電極基体の表面及び/又は裏面と細孔内に0.01〜10μmの厚さで被覆されて成ることを特徴とする燃料電池用複合電極。
A fuel cell composite electrode comprising a porous electrode substrate used as a first component and a second component coated thereon,
The porous electrode substrate has pores having openings on the front surface and / or back surface and an average pore diameter of 500 μm or less, and the second component is formed on the front surface and / or back surface of the porous electrode substrate. A composite electrode for a fuel cell, wherein the pore is coated with a thickness of 0.01 to 10 μm.
上記多孔質電極基体が有する細孔の平均細孔径が100μm以下であることを特徴とする請求項1又は2に記載の燃料電池用複合電極。The composite electrode for a fuel cell according to claim 1 or 2, wherein an average pore diameter of pores of the porous electrode substrate is 100 µm or less. 上記多孔質電極基体が電極材料焼結体であり、その厚さが1μm〜2mmであることを特徴とする請求項1〜3のいずれか1つの項に記載の燃料電池用複合電極。The said porous electrode base | substrate is an electrode material sintered compact, The thickness is 1 micrometer-2 mm, The composite electrode for fuel cells of any one of Claims 1-3 characterized by the above-mentioned. 上記多孔質電極基体が多孔質金属であり、その厚さが0.05mm〜2mmであることを特徴とする請求項1〜3のいずれか1つの項に記載の燃料電池用複合電極。The composite electrode for a fuel cell according to any one of claims 1 to 3, wherein the porous electrode substrate is a porous metal and has a thickness of 0.05 mm to 2 mm. 上記多孔質電極基体がスルーホール金属基板の貫通孔に電極材料の焼結体を充填して成ることを特徴とする請求項1〜3のいずれか1つの項に記載の燃料電池用複合電極。The composite electrode for a fuel cell according to any one of claims 1 to 3, wherein the porous electrode substrate is formed by filling a through hole of a through-hole metal substrate with a sintered body of an electrode material. 上記第2成分がイオン導電性及び/又は混合導電性を有する酸化物であることを特徴とする請求項1〜6のいずれか1つの項に記載の燃料電池用複合電極。The composite electrode for a fuel cell according to any one of claims 1 to 6, wherein the second component is an oxide having ionic conductivity and / or mixed conductivity. 上記酸化物が化学溶液法で得られ、安定化ジルコニア、セリア固溶体、酸化ビスマス固溶体、ペロブスカイト型酸化物、ランタンコバルト系酸化物、ランタンマンガン系酸化物及びランタン鉄系酸化物から成る群より選ばれた少なくとも1種のものであることを特徴とする請求項7に記載の燃料電池用複合電極。The oxide is obtained by a chemical solution method and is selected from the group consisting of stabilized zirconia, ceria solid solution, bismuth oxide solid solution, perovskite oxide, lanthanum cobalt oxide, lanthanum manganese oxide, and lanthanum iron oxide. 8. The fuel cell composite electrode according to claim 7, wherein the composite electrode is at least one kind. 上記第2成分が金属及び/又は金属酸化物であることを特徴とする請求項1〜8のいずれか1つの項に記載の燃料電池用複合電極。The composite electrode for a fuel cell according to any one of claims 1 to 8, wherein the second component is a metal and / or a metal oxide. 上記金属及び/又は金属酸化物が、ニッケル、白金、パラジウム、ルテニウム、コバルト、モリブデン、タングステン、鉄、銅、銀及びクロムから成る群より選ばれた少なくとも1種のものを含んで成ることを特徴とする請求項9に記載の燃料電池用複合電極。The metal and / or metal oxide comprises at least one selected from the group consisting of nickel, platinum, palladium, ruthenium, cobalt, molybdenum, tungsten, iron, copper, silver and chromium. The composite electrode for a fuel cell according to claim 9. 上記金属及び/又は金属酸化物が、金属アルコキシド、金属アセチルアセトナート、金属酢酸塩、シュウ酸塩、ナフテン酸塩、オクチル酸塩、金属硝酸塩、塩化物、オキシ塩化物及び酸化物微粒子から成る群より選ばれた少なくとも1種のものを含む溶液を、加熱又は反応させて得られることを特徴とする請求項9又は10に記載の燃料電池用複合電極。The metal and / or metal oxide is composed of metal alkoxide, metal acetylacetonate, metal acetate, oxalate, naphthenate, octylate, metal nitrate, chloride, oxychloride and oxide fine particles. The composite electrode for a fuel cell according to claim 9 or 10, obtained by heating or reacting a solution containing at least one selected from the above. 請求項1〜11のいずれか1つの項に記載の燃料電池用複合電極を製造するに当たり、
第1成分として用いる多孔質電極基体の表面及び/又は裏面と、この表面及び/又は裏面に開口部を有する細孔に、第2成分を含む溶液及び/又は第2成分の前駆体を含む溶液を被覆し、反応させて金属層又は金属酸化物層を形成することを特徴とする燃料電池用複合電極の製造方法。
In producing the composite electrode for a fuel cell according to any one of claims 1 to 11,
A solution containing the second component and / or a precursor of the second component in the surface and / or back surface of the porous electrode substrate used as the first component and pores having openings on the surface and / or back surface. A method for producing a composite electrode for a fuel cell, wherein a metal layer or a metal oxide layer is formed by coating and reacting.
上記金属層又は金属酸化物層を、金属アルコキシド、金属アセチルアセトナート、金属酢酸塩、シュウ酸塩、ナフテン酸塩、オクチル酸塩、金属硝酸塩、塩化物、オキシ塩化物及び酸化物微粒子から成る群より選ばれた少なくとも1種のものを含む溶液を、上記多孔質電極基体に被覆し、反応させて形成することを特徴とする請求項12に記載の燃料電池用複合電極の製造方法。The metal layer or metal oxide layer is made of metal alkoxide, metal acetylacetonate, metal acetate, oxalate, naphthenate, octylate, metal nitrate, chloride, oxychloride and oxide fine particles. 13. The method for producing a composite electrode for a fuel cell according to claim 12, wherein a solution containing at least one selected from the above is coated on the porous electrode substrate and reacted. 上記被覆工程をスピンコート法、ディッピング法、スプレー法、熱スプレー分解法、ポッティング法及び刷毛塗り法から成る群より選ばれた少なくとも1種の方法で行うことを特徴とする請求項12又は13に記載の燃料電池用複合電極の製造方法。The coating step is performed by at least one method selected from the group consisting of a spin coating method, a dipping method, a spray method, a thermal spray decomposition method, a potting method, and a brush coating method. The manufacturing method of the composite electrode for fuel cells of description. 請求項1〜11のいずれか1つの項に記載の燃料電池用複合電極を用いて成ることを特徴とする固体電解質型燃料電池。A solid oxide fuel cell comprising the composite electrode for a fuel cell according to any one of claims 1 to 11.
JP2003189982A 2003-07-02 2003-07-02 Composite electrode for fuel cell, and solid electrolyte fuel cell Pending JP2005026055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003189982A JP2005026055A (en) 2003-07-02 2003-07-02 Composite electrode for fuel cell, and solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003189982A JP2005026055A (en) 2003-07-02 2003-07-02 Composite electrode for fuel cell, and solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2005026055A true JP2005026055A (en) 2005-01-27

Family

ID=34187996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003189982A Pending JP2005026055A (en) 2003-07-02 2003-07-02 Composite electrode for fuel cell, and solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2005026055A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006236850A (en) * 2005-02-25 2006-09-07 Dainippon Printing Co Ltd Electrode layer for solid oxide fuel cell and its manufacturing method
WO2006092912A1 (en) * 2005-02-28 2006-09-08 The Tokyo Electric Power Company, Incorporated Solid oxide type fuel battery cell and process for producing the same
JP2006244963A (en) * 2005-03-07 2006-09-14 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2006261101A (en) * 2005-02-21 2006-09-28 Dainippon Printing Co Ltd Manufacturing method of solid oxide fuel cell
JP2006269399A (en) * 2005-02-25 2006-10-05 Dainippon Printing Co Ltd Method of forming solid oxide fuel cell electrode layer
JP2006286607A (en) * 2005-03-07 2006-10-19 Dainippon Printing Co Ltd Solid oxide type fuel cell
JP2006351224A (en) * 2005-06-13 2006-12-28 Sumitomo Metal Mining Co Ltd Nickel powder for electrode of solid oxide fuel cell and its manufacturing method
JP2006351406A (en) * 2005-06-17 2006-12-28 Nippon Telegr & Teleph Corp <Ntt> Air electrode powder for ceria coated sofc, its manufacturing method, and manufacturing method of air electrode
JP2007042574A (en) * 2005-02-21 2007-02-15 Dainippon Printing Co Ltd Manufacturing method of solid oxide fuel cell
JP2007227161A (en) * 2006-02-23 2007-09-06 Dainippon Printing Co Ltd Method of manufacturing solid oxide fuel cell
JP2007258166A (en) * 2006-02-23 2007-10-04 Dainippon Printing Co Ltd Manufacturing method of solid oxide fuel cell
JP2007258016A (en) * 2006-03-23 2007-10-04 Dainippon Printing Co Ltd Solid oxide fuel cell and its manufacturing method
JP2009506507A (en) * 2005-08-31 2009-02-12 テクニカル ユニバーシティ オブ デンマーク Reversible solid oxide fuel cell stack and method for preparing the same
JP2010192458A (en) * 2010-04-28 2010-09-02 Dainippon Printing Co Ltd Electrode layer for solid oxide fuel cell
JP2011154787A (en) * 2010-01-26 2011-08-11 Tokyo Institute Of Technology Manufacturing method of electrode for solid electrolyte fuel cell and solid electrolyte fuel cell manufactured by this manufacturing method
CN108598497A (en) * 2018-04-28 2018-09-28 上海治臻新能源装备有限公司 A kind of nano metal layer and preparation method for fuel battery metal pole plate
WO2020166202A1 (en) * 2019-02-13 2020-08-20 パナソニックIpマネジメント株式会社 Membrane electrode assembly and fuel cell
JP2020155336A (en) * 2019-03-20 2020-09-24 日本碍子株式会社 Electrochemical cell
JP2020155337A (en) * 2019-03-20 2020-09-24 日本碍子株式会社 Electrochemical cell

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261101A (en) * 2005-02-21 2006-09-28 Dainippon Printing Co Ltd Manufacturing method of solid oxide fuel cell
JP2007042574A (en) * 2005-02-21 2007-02-15 Dainippon Printing Co Ltd Manufacturing method of solid oxide fuel cell
JP2006269399A (en) * 2005-02-25 2006-10-05 Dainippon Printing Co Ltd Method of forming solid oxide fuel cell electrode layer
JP2006236850A (en) * 2005-02-25 2006-09-07 Dainippon Printing Co Ltd Electrode layer for solid oxide fuel cell and its manufacturing method
WO2006092912A1 (en) * 2005-02-28 2006-09-08 The Tokyo Electric Power Company, Incorporated Solid oxide type fuel battery cell and process for producing the same
JP2006244963A (en) * 2005-03-07 2006-09-14 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2006286607A (en) * 2005-03-07 2006-10-19 Dainippon Printing Co Ltd Solid oxide type fuel cell
JP2006351224A (en) * 2005-06-13 2006-12-28 Sumitomo Metal Mining Co Ltd Nickel powder for electrode of solid oxide fuel cell and its manufacturing method
JP4517949B2 (en) * 2005-06-13 2010-08-04 住友金属鉱山株式会社 Nickel oxide powder for electrode of solid oxide fuel cell and method for producing the same
JP2006351406A (en) * 2005-06-17 2006-12-28 Nippon Telegr & Teleph Corp <Ntt> Air electrode powder for ceria coated sofc, its manufacturing method, and manufacturing method of air electrode
JP2009506507A (en) * 2005-08-31 2009-02-12 テクニカル ユニバーシティ オブ デンマーク Reversible solid oxide fuel cell stack and method for preparing the same
JP2007258166A (en) * 2006-02-23 2007-10-04 Dainippon Printing Co Ltd Manufacturing method of solid oxide fuel cell
JP2007227161A (en) * 2006-02-23 2007-09-06 Dainippon Printing Co Ltd Method of manufacturing solid oxide fuel cell
JP2007258016A (en) * 2006-03-23 2007-10-04 Dainippon Printing Co Ltd Solid oxide fuel cell and its manufacturing method
JP2011154787A (en) * 2010-01-26 2011-08-11 Tokyo Institute Of Technology Manufacturing method of electrode for solid electrolyte fuel cell and solid electrolyte fuel cell manufactured by this manufacturing method
JP2010192458A (en) * 2010-04-28 2010-09-02 Dainippon Printing Co Ltd Electrode layer for solid oxide fuel cell
CN108598497A (en) * 2018-04-28 2018-09-28 上海治臻新能源装备有限公司 A kind of nano metal layer and preparation method for fuel battery metal pole plate
CN108598497B (en) * 2018-04-28 2023-12-19 上海治臻新能源股份有限公司 Nano metal layer for fuel cell metal polar plate and preparation method
WO2020166202A1 (en) * 2019-02-13 2020-08-20 パナソニックIpマネジメント株式会社 Membrane electrode assembly and fuel cell
JP7378040B2 (en) 2019-02-13 2023-11-13 パナソニックIpマネジメント株式会社 Membrane electrode assembly and fuel cell
JP2020155336A (en) * 2019-03-20 2020-09-24 日本碍子株式会社 Electrochemical cell
JP2020155337A (en) * 2019-03-20 2020-09-24 日本碍子株式会社 Electrochemical cell

Similar Documents

Publication Publication Date Title
JP4883364B2 (en) Porous support / hydrogen selective permeable membrane substrate and porous support fuel cell
JP2005026055A (en) Composite electrode for fuel cell, and solid electrolyte fuel cell
US20060113034A1 (en) Electrochemical cell architecture and method of making same via controlled powder morphology
KR100424194B1 (en) Electrode part having microstructure of extended triple phase boundary by porous ion conductive ceria film coating and Method to manufacture the said electrode
CN107112564B (en) Battery structure, method for manufacturing same, and fuel cell
KR101978952B1 (en) High temperature solid oxide cell comprising barrier layer, method for manufacturing the same
US8337939B2 (en) Method of processing a ceramic layer and related articles
KR101186929B1 (en) Method of non-shrinkage fabrication of metal oxide thin film for solid oxide fuel cell by low temperature
JP2012033418A (en) Solid oxide fuel cell and method for manufacturing the same
KR101307560B1 (en) Fabrication and structure of low- and intermediate-temperature-operating solid oxide fuel cell by spin coating and low-temperature sintering
JP4362832B2 (en) Solid oxide fuel cell
JP2004265746A (en) Solid oxide fuel cell
JP2005158436A (en) Fuel electrode for solid oxide fuel cell and solid oxide fuel cell using it
WO2020004333A1 (en) Electrode for solid oxide cells, and solid oxide cell using same
JP6315581B2 (en) Cathode for solid oxide fuel cell, method for producing the same, and solid oxide fuel cell including the cathode
JP5355878B2 (en) Ceramic electrolyte structure, manufacturing method and related articles
WO2013125457A1 (en) Solid oxide fuel cell and method for producing same
JP6088949B2 (en) Fuel cell single cell and manufacturing method thereof
JP2020149803A (en) Method for manufacturing fuel electrode-solid electrolyte layer composite
CN111819720B (en) Electrolyte layer-anode composite member for fuel cell, cell structure, fuel cell, and method for manufacturing composite member
JP2003092113A (en) Fuel electrode membrane for solid electrolyte fuel cell and its manufacturing method
JP2006092896A (en) Complex electrode for solid oxide fuel cell and manufacturing method of the same
JP5971672B2 (en) Solid oxide fuel cell and manufacturing method thereof
KR20240000287A (en) Method of synthesize nanolayered cathodes for solid oxide fuel cell using ultrasonic spray infiltration and solid oxide fuel cell manufactured using same
JP2012204277A (en) Method of manufacturing internal reform type fuel battery cell having modified catalyst carried on anode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311