JP2006351406A - Air electrode powder for ceria coated sofc, its manufacturing method, and manufacturing method of air electrode - Google Patents

Air electrode powder for ceria coated sofc, its manufacturing method, and manufacturing method of air electrode Download PDF

Info

Publication number
JP2006351406A
JP2006351406A JP2005177582A JP2005177582A JP2006351406A JP 2006351406 A JP2006351406 A JP 2006351406A JP 2005177582 A JP2005177582 A JP 2005177582A JP 2005177582 A JP2005177582 A JP 2005177582A JP 2006351406 A JP2006351406 A JP 2006351406A
Authority
JP
Japan
Prior art keywords
air electrode
ceria
sofc
coated
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005177582A
Other languages
Japanese (ja)
Inventor
Reiichi Chiba
玲一 千葉
Yoshitaka Tabata
嘉隆 田畑
Himeko Orui
姫子 大類
Takeshi Komatsu
武志 小松
Masayasu Arakawa
正泰 荒川
Kazuhiko Nozawa
和彦 野沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005177582A priority Critical patent/JP2006351406A/en
Publication of JP2006351406A publication Critical patent/JP2006351406A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide air electrode powders in which manufacturing is simple and easy, and in which a perovskite based oxide is used for the air electrode without deteriorating performance of a cell, supply-current initializing time is shortened, and low temperature characteristics are improved. <P>SOLUTION: This is a manufacturing method of the air electrode powders for ceria-coated SOFC in which the surface of the air electrode powder of perovskite based oxide (ABO<SB>3</SB>) having a lanthanum based element at A site and a transition metal element at B site are coated by ceria based electrolyte material, in which inorganic metal salt solution or organic metal solution corresponding to the composition of ceria based electrolyte material is impregnated into the air electrode powders, and this is dried, or heat-treated after drying, thereby the ceria based electrolyte thin film is formed on the surface of air electrode powder particles, or in which the air electrode powders for the ceria-coated SOFC are made to be a slurry, coated on the thin-film solid electrolyte on the solid electrolyte substrate 2 or on the fuel electrode substrate, and calcined. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、SOFC(Solide Oxide Fuel Cellすなわち固体酸化物燃料電池)用空気極に関するものである。   The present invention relates to an air electrode for SOFC (Solid Oxide Fuel Cell).

近年、酸素イオン伝導体を用いたSOFCに関心が高まりつつある。特にエネルギーの有効利用という観点から、固体燃料電池はカルノー効率の制約を受けないため本質的に高いエネルギー変換効率を有し、さらに良好な環境保全が期待されるなどの優れた特長を持っている。   In recent years, interest in SOFCs using oxygen ion conductors is increasing. In particular, from the viewpoint of effective use of energy, solid fuel cells are not subject to the restrictions of Carnot efficiency, so they have inherently high energy conversion efficiency and have excellent features such as better environmental conservation. .

この固体電解質型燃料電池は、当初、動作温度が900℃〜1000℃と高く、全ての部材がセラミックで構成されていた。そのため、セルスタックの製造コストの低減が難しかった。ここで、動作温度を800℃以下まで低減することができれば、インターコネクタに耐熱合金材料を用いることが可能となり、製造コストの低減が可能となる。しかしながら、動作温度の低減に伴い空気極における電気化学的な抵抗、即ち過電圧が、急激に増大し出力電圧の低下を招いてしまう。   This solid oxide fuel cell initially had a high operating temperature of 900 ° C. to 1000 ° C., and all members were made of ceramic. Therefore, it is difficult to reduce the manufacturing cost of the cell stack. Here, if the operating temperature can be reduced to 800 ° C. or lower, a heat-resistant alloy material can be used for the interconnector, and the manufacturing cost can be reduced. However, as the operating temperature decreases, the electrochemical resistance at the air electrode, that is, the overvoltage, increases rapidly, leading to a decrease in output voltage.

La(NiFe)Oなどニッケルと鉄をBサイトに含むペロブスカイト系酸化物は、高い電極活性を有するため、低温動作用空気極に適している。しかし、この空気極は、通電による初期化を経なければ十分な特性が得られない。この初期化のプロセスは、燃料電池セルの運転を少量の電流で開始し、電流を少しづつ増やして出力を上げるものである。特に、La(NiFe)Oなどニッケルと鉄をBサイトに含むペロブスカイト系酸化物を用いた空気極では、48時間から120時間と長い、初期化時間を要する。このような初期化のプロセスは経済的な観点からみて、なるべく短時間にしたい。 Perovskite-based oxides containing nickel and iron at the B site, such as La (NiFe) O 3, are suitable for air electrodes for low-temperature operation because they have high electrode activity. However, this air electrode cannot obtain sufficient characteristics unless it is initialized by energization. This initialization process starts the operation of the fuel cell with a small amount of current, and gradually increases the current to increase the output. In particular, an air electrode using a perovskite-based oxide containing nickel and iron at the B site such as La (NiFe) O 3 requires a long initialization time of 48 to 120 hours. This initialization process should be as short as possible from an economic point of view.

この初期化のプロセスにおいて、とくに空気極と電解質の界面に薄く形成されるとされるパイロクロア相の消失が起きていると考えられているが、この層は、低温におけるカソード特性を悪化させる。   In this initialization process, it is thought that the pyrochlore phase, which is supposed to be formed thinly at the interface between the air electrode and the electrolyte, is disappearing, but this layer deteriorates the cathode characteristics at a low temperature.

また、ランタンガレート系電解質とペロブスカイト系空気極とは、空気極の焼成時に相互拡散により固溶体を形成し易く、出力電圧の低下につながる。
「固体酸化物燃料電池と地球環境」(株式会社アグネ承風社、1998年、P155〜176)
Further, the lanthanum gallate electrolyte and the perovskite air electrode easily form a solid solution by mutual diffusion when the air electrode is fired, leading to a decrease in output voltage.
"Solid Oxide Fuel Cell and Global Environment" (Agune Seifusha, 1998, P155-176)

本発明は、製造が簡便で且つ、ペロブスカイト系酸化物を空気極に使用しセルの性能を劣化させず、通電初期化時間を短縮し、低温特性を向上させることを目的とする。   An object of the present invention is to manufacture easily and to use a perovskite-based oxide for an air electrode without deteriorating cell performance, shortening the energization initialization time, and improving low temperature characteristics.

上記課題を解決するため、本発明によるセリアコートSOFC用空気極粉末は、Aサイトにランタン系元素、Bサイトに遷移金属元素を持つペロブスカイト系酸化物(ABO)の空気極粉末の表面をセリア系電解質材料で被覆したことを特徴とする。 In order to solve the above-mentioned problems, the air electrode powder for ceria-coated SOFC according to the present invention has a surface of the air electrode powder of perovskite oxide (ABO 3 ) having a lanthanum element at the A site and a transition metal element at the B site. It is characterized by being coated with a system electrolyte material.

本発明の好ましい実施態様では、前記ペロブスカイト系酸化物の組成がLaNi1−XFe(X=0.3〜0.9)、または、La1−XSrFe1−YNi(X=0.1〜0.3,Y=0.1〜0.6,X+Y<0.7)、またはLa1−XSrFe1−YCo(X=0.1〜0.3,Y=0.1〜0.6,X+Y<0.7)、またはLa1−XSrCoO(X=0.1〜0.5)、であることを特徴とする。 In a preferred embodiment of the present invention, the perovskite composition of oxides LaNi 1-X Fe X O 3 (X = 0.3~0.9), or, La 1-X Sr X Fe 1-Y Ni Y O 3 (X = 0.1~0.3, Y = 0.1~0.6, X + Y <0.7), or La 1-X Sr X Fe 1 -Y Co Y O 3 (X = 0. 1 to 0.3, Y = 0.1 to 0.6, X + Y <0.7), or La 1-X Sr X CoO 3 (X = 0.1 to 0.5), To do.

さらに、前記セリア系電解質材料はCe1−x(x=0.1〜0.4)またはCe1−xSm(x=0.1〜0.4)またはCe1−xGd(x=0.1〜0.4)であることを特徴とする。 Further, the ceria-based electrolyte material is Ce 1-x Y x O 2 (x = 0.1 to 0.4) or Ce 1-x Sm x O 2 (x = 0.1 to 0.4) or Ce 1. −x Gd x O 2 (x = 0.1 to 0.4).

また、本発明によるセリアコートSOFC用空気極粉末の製造方法は、セリア系電解質材料に対応する無機金属塩溶液または有機金属溶液を前記空気極粉末に含浸し、これを乾燥する、または乾燥後に酸化雰囲気で熱処理することでセリア系電解質薄膜を空気極粉末の粒子の表面に形成することを特徴とする。   The method for producing an air electrode powder for ceria-coated SOFC according to the present invention includes impregnating the air electrode powder with an inorganic metal salt solution or an organic metal solution corresponding to a ceria-based electrolyte material, and drying or oxidizing the air powder after drying. A ceria-based electrolyte thin film is formed on the surface of air electrode powder particles by heat treatment in an atmosphere.

本発明によるSOFC用空気極の製造方法の一実施態様では、前記無機金属塩溶液または有機金属溶液にさらにセリア系電解質材料を添加することを特徴とする。   In one embodiment of the method for producing an SOFC air electrode according to the present invention, a ceria-based electrolyte material is further added to the inorganic metal salt solution or the organic metal solution.

本発明による前述の実施態様では、前記空気極粉末と前記セリア系電解質材料粉末を予め混合し、前記無機金属塩溶液または有機金属溶液に混合することを特徴とする。   In the above-described embodiment according to the present invention, the air electrode powder and the ceria-based electrolyte material powder are mixed in advance and mixed with the inorganic metal salt solution or the organic metal solution.

さらに前述の実施態様において、前記無機金属塩溶液または有機金属溶液由来のセリア系電解質材料の割合が、熱処理後の時点で全セリア系電解質材料の1wt%以上であることを特徴とする。   Furthermore, in the above-described embodiment, the ratio of the ceria-based electrolyte material derived from the inorganic metal salt solution or the organic metal solution is 1 wt% or more of the total ceria-based electrolyte material after the heat treatment.

本発明の好ましい実施態様では、前記無機金属塩溶液または有機金属溶液に粒径が微細なカーボン粒子またはプラスチック造孔剤を混合することを特徴とする。   In a preferred embodiment of the present invention, carbon particles having a fine particle size or a plastic pore-forming agent are mixed with the inorganic metal salt solution or the organic metal solution.

また、本発明によるSOFC用空気極の製造方法は、本発明のセリアコートSOFC用空気極粉末をスラリとし、固体電解質基板あるいは燃料極基板上の薄膜固体電解質上に塗布し、焼成することを特徴とする。   In addition, the SOFC air electrode manufacturing method according to the present invention is characterized in that the ceria-coated SOFC air electrode powder of the present invention is used as a slurry, applied onto a solid electrolyte substrate or a thin film solid electrolyte on a fuel electrode substrate, and fired. And

本発明は、La(NiFe)Oなどペロブスカイト系酸化物を使用した空気極からなる多孔質の空気極に、これらと反応性の低いセリア系電解質材料でこれらの粉末を予めコートすることで電極焼成時にできるジルコニアとの反応によりできるパイロクロア相の成長を抑制することで通電初期化時間を短縮させることができ、高性能な固体電解質型燃料電池用空気極を得ることに成功した。本発明はSOFCの高信頼性、高効率化に大きな貢献をなすものである。 In the present invention, a porous air electrode composed of an air electrode using a perovskite oxide such as La (NiFe) O 3 is coated with these powders in advance with a ceria-based electrolyte material having low reactivity with these electrodes. By suppressing the growth of the pyrochlore phase formed by the reaction with zirconia formed during firing, the energization initialization time can be shortened, and a high-performance air electrode for a solid oxide fuel cell was successfully obtained. The present invention greatly contributes to high reliability and high efficiency of SOFC.

本発明によるセリアコートSOFC用空気極粉末は、Aサイトにランタン系元素、Bサイトに遷移金属元素を持つペロブスカイト系酸化物(ABO)の空気極粉末の表面をセリア系電解質材料で被覆したことを特徴とする。 The air electrode powder for ceria-coated SOFC according to the present invention is obtained by coating the surface of a perovskite oxide (ABO 3 ) air electrode powder having a lanthanum element at the A site and a transition metal element at the B site with a ceria electrolyte material. It is characterized by.

好ましいペロブスカイト系酸化物としては、その組成がLaNi1−XFe(X=0.3〜0.9)、または、La1−XSrFe1−YNi(X=0.1〜0.3,Y=0.1〜0.6,X+Y<0.7)、またはLa1−XSrFe1−YCo(X=0.1〜0.3,Y=0.1〜0.6,X+Y<0.7)、またはLa1−XSrCoO(X=0.1〜0.5)を挙げることができる。 Preferable perovskite-based oxides have a composition of LaNi 1-X Fe X O 3 (X = 0.3 to 0.9) or La 1-X Sr X Fe 1-Y Ni Y O 3 (X = 0.1~0.3, Y = 0.1~0.6, X + Y <0.7), or La 1-X Sr X Fe 1 -Y Co Y O 3 (X = 0.1~0.3 , Y = 0.1 to 0.6, X + Y <0.7), or La 1-X Sr X CoO 3 (X = 0.1 to 0.5).

さらに、好ましいセリア系電解質材料としては、Ce1−x(x=0.1〜0.4)またはCe1−xSm(x=0.1〜0.4)またはCe1−xGd(x=0.1〜0.4)を挙げることができる。 Furthermore, as a preferable ceria-based electrolyte material, Ce 1-x Y x O 2 (x = 0.1 to 0.4) or Ce 1-x Sm x O 2 (x = 0.1 to 0.4) or Ce 1-x Gd x O 2 (x = 0.1 to 0.4) can be mentioned.

本発明では、ペロブスカイト系酸化物粉末の表面をこれらの材料とほとんど反応しないセリア系電解質材料薄膜で予め覆うことで、焼成時におけるジルコニア系電解質との反応、またはランタンガレート系電解質との反応を抑制する。これにより通電初期化時間を短縮させ、且つ空気極特性も向上させることができる。   In the present invention, the surface of the perovskite oxide powder is covered in advance with a ceria-based electrolyte material thin film that hardly reacts with these materials, thereby suppressing the reaction with the zirconia-based electrolyte or the reaction with the lanthanum gallate-based electrolyte during firing. To do. As a result, the energization initialization time can be shortened and the air electrode characteristics can be improved.

空気極粉末を予めセリア系電解質材料で覆っておくだけで、これ以降のセル作製プロセスは、通常と同じ方法をとることができるので、プロセスを複雑化させないで済むという利点がある。   By simply covering the air electrode powder with a ceria-based electrolyte material in advance, the subsequent cell manufacturing process can be performed in the same manner as usual, and therefore there is an advantage that the process does not have to be complicated.

本発明によるセリアコートSOFC用空気極粉末の製造方法によれば、セリア系電解質材料の組成に対応する無機金属塩溶液または有機金属溶液を前記空気極粉末に含浸し、これを乾燥する、または乾燥後に酸化雰囲気で熱処理することでセリア系電解質薄膜を空気極粉末の粒子の表面に形成する。   According to the method for producing an air electrode powder for ceria-coated SOFC according to the present invention, the air electrode powder is impregnated with an inorganic metal salt solution or an organic metal solution corresponding to the composition of the ceria-based electrolyte material, and dried. A ceria-based electrolyte thin film is subsequently formed on the surface of the air electrode powder particles by heat treatment in an oxidizing atmosphere.

ここで空気極粉末は、数ミクロンからサブミクロンと非常に微細であることから、これらの粒子の表面を覆うためにはさらに微細な粒子を必要とする。これには、空気極粉末をセリア系電解質材料の組成に対応する金属を含有する有機金属溶液または無機金属塩溶液に展開するなどし、全体を乾燥させることで非常に微細なセリア系電解質材料で空気極粉末の表面を覆うことができる。この方法では、空気極粉末の表面上でセリア系電解質膜を直接合成するため、空気極粉末との密着性、被覆性が非常に優れている。   Here, since the air electrode powder is very fine, from several microns to submicron, finer particles are required to cover the surface of these particles. For this purpose, the air electrode powder is developed into an organic metal solution or inorganic metal salt solution containing a metal corresponding to the composition of the ceria-based electrolyte material, and the whole is dried to obtain a very fine ceria-based electrolyte material. The surface of the air electrode powder can be covered. In this method, since the ceria-based electrolyte membrane is directly synthesized on the surface of the air electrode powder, the adhesion and covering properties with the air electrode powder are very excellent.

上記の溶液にセリア系電解質材料の微粒子を加えることでも同様の効果が期待できるが、セリア系電解質材料(焼成後の全量)の空気極粉末に対する混合量は、60wt%を上限とすることが好ましい。これ以上の混合を行うと空気極の電子伝導性を損なうからである。   The same effect can be expected by adding fine particles of ceria-based electrolyte material to the above solution, but the mixing amount of the ceria-based electrolyte material (total amount after firing) with respect to the air electrode powder is preferably up to 60 wt%. . This is because the electron conductivity of the air electrode is impaired when mixing beyond this.

ただし、空気極を2層構造とする事で、上記制限を緩和することが可能である。電解質に近い部分は、イオン伝導体であるセリアを多くしセリアと空気極材料の接触界面長を長くすることが好ましい反面、この層は、層自体を構成している粒子径のオーダー程度以上に長くしてもイオンが流れにくくなるため界面抵抗の向上の観点からは効果は期待できない。一方、セリアを多く含む層では電子伝導性を確保しにくくなる。2層にすることで、空気極材料とセリアとの混合比の許容範囲を層ごとに設定することができる様になる。このように空気極を2層構造とする場合は電解質に近い層を1〜20μm程度とし、セリア系電解質材料の総重量を30wt%〜80wt%程度とするのがよい。また電解質に遠い10〜200μmの層では、セリア系電解質材料の総重量を40wt%以下とすることが好ましい。   However, the restriction can be relaxed by making the air electrode have a two-layer structure. The portion close to the electrolyte is preferably ceria, which is an ionic conductor, to increase the contact interface length between the ceria and the air electrode material, but this layer is more than the order of the particle size constituting the layer itself. Even if the length is increased, it becomes difficult for ions to flow, so that no effect can be expected from the viewpoint of improving the interface resistance. On the other hand, it is difficult to ensure electron conductivity in a layer containing a large amount of ceria. By using two layers, the allowable range of the mixing ratio of the air electrode material and ceria can be set for each layer. In this way, when the air electrode has a two-layer structure, the layer close to the electrolyte is preferably about 1 to 20 μm, and the total weight of the ceria-based electrolyte material is preferably about 30 wt% to 80 wt%. Further, in the 10-200 μm layer far from the electrolyte, the total weight of the ceria-based electrolyte material is preferably 40 wt% or less.

上記金属溶液に微細なカーボン粒子、プラスチックなどの造孔剤を混入させることで、ペロブスカイト系の空気極微粉末同士が焼結を向上できるとともに、気孔率の向上、空気極における三相界面を増加させることができる。   By mixing fine pores such as fine carbon particles and plastic into the metal solution, the perovskite-based fine air powder can improve the sintering, improve the porosity, and increase the three-phase interface in the air electrode. be able to.

上記空気極粉末であるペロブスカイト系酸化物粉末の表面をセリア系電解質薄膜で予め覆うことで、電解質と空気極との界面付近に形成されるパイロクロア相の形成を抑制するため、この層を通電により部分的に取り除くことが容易となり、通電初期化時間を短縮することができる。また、空気極粉末表面を覆ったセリア系電解質は粒径が5〜50nmの超微粒子からなっているため、焼結性が高く、空気極粉末同士の結合を高める。ところで空気極内では空気極を構成する粒子同士が電気的に結合されていなければならないが、空気極粉末粒子は、これを覆っているセリア超微粒子層が薄いことと、空気極粉末粒子同士は親和性が高いことから、比較的容易に粒同士が接合を作る。これらにより空気極の強度や伝導度の向上が期待できる。以上の結果、空気極の電気化学的な特性が向上する。   By covering the surface of the perovskite oxide powder, which is the air electrode powder, with a ceria-based electrolyte thin film in advance, this layer is energized to suppress the formation of the pyrochlore phase formed near the interface between the electrolyte and the air electrode. It becomes easy to remove partially, and the energization initialization time can be shortened. Further, the ceria-based electrolyte covering the surface of the air electrode powder is composed of ultrafine particles having a particle size of 5 to 50 nm, so that the sinterability is high and the bonding between the air electrode powders is enhanced. By the way, the particles that make up the air electrode must be electrically coupled within the air electrode, but the air electrode powder particles have a thin ceria ultrafine particle layer covering them, and the air electrode powder particles Since the affinity is high, the grains form a bond relatively easily. These can be expected to improve the strength and conductivity of the air electrode. As a result, the electrochemical characteristics of the air electrode are improved.

セリア系電解質材料の組成に対応する金属溶液にセリア系電解質の微粒子を加えると、セリアの混合量を比較的容易に増加させることが可能である。この場合でも、空気極表面上およびセリア系電解質粉末上にセリア系電解質膜を直接生成させることができるのでこれらの粒子同士の密着性を高めることができ、単にこれらの粒子を混合した場合よりも、より高性能な空気極とすることができる。ここで、セリア系電解質材料粒子をまず空気極粉末に乾式で混合しこれに、セリア系電解質材料の組成に対応する金属溶液を含浸してもよい。ここで溶液由来のセリア系電解質材料の粒子は非常に小さいため、微量でも高い被覆率が得られ、セリア系電解質材料による被覆効果が期待できる。ただし含浸する溶液量を低減する場合、焼成後の状態で、溶液由来の重量が全セリア系電解質材料の1wt%以上が必要で、好ましくは5wt%以上、より好ましくは10wt%以上である。   When ceria-based electrolyte fine particles are added to a metal solution corresponding to the composition of the ceria-based electrolyte material, the amount of ceria mixed can be increased relatively easily. Even in this case, the ceria-based electrolyte membrane can be directly formed on the air electrode surface and the ceria-based electrolyte powder, so that the adhesion between these particles can be improved, compared to the case where these particles are simply mixed. It can be a higher performance air electrode. Here, the ceria-based electrolyte material particles may be first dry-mixed with the air electrode powder and impregnated with a metal solution corresponding to the composition of the ceria-based electrolyte material. Here, since the particles of the ceria-based electrolyte material derived from the solution are very small, a high coverage can be obtained even with a very small amount, and a coating effect by the ceria-based electrolyte material can be expected. However, when reducing the amount of the solution to be impregnated, the weight derived from the solution is required to be 1 wt% or more of the total ceria-based electrolyte material after firing, preferably 5 wt% or more, more preferably 10 wt% or more.

また、上記金属溶液に微細なカーボン粒子などの造孔剤を混入させることで、セリア系電解質膜の一部に穴があきペロブスカイト系の空気極粉末同士が焼結し電気的なネットワークを作ることを助けることができるので、ペロブスカイト系の空気極粉末同士の焼結を向上させることができる。この微細なカーボン粒子などの造孔剤の総重量は1wt%〜20wt%程度とし、好ましくは2〜15wt%、より好ましくは5〜10wt%とする。   Also, by mixing a pore-forming agent such as fine carbon particles into the above metal solution, perovskite-based air electrode powders are sintered in a part of the ceria-based electrolyte membrane to form an electrical network. Therefore, it is possible to improve the sintering between the perovskite-based air electrode powders. The total weight of the pore-forming agent such as fine carbon particles is about 1 wt% to 20 wt%, preferably 2 to 15 wt%, more preferably 5 to 10 wt%.

ここで、上記の方法は、空気極用粉末の粒子の表面をコートするなど予め空気極粒子を修飾するだけなので、以後のセル作製プロセスを複雑化させることはない利点がある。   Here, the above method has an advantage that the subsequent cell manufacturing process is not complicated because only the air electrode particles are modified in advance, such as by coating the surfaces of the particles of the air electrode powder particles.

以下に本発明の実施例を説明する。なお、当然のことであるが本発明は以下の実施例に限定されるものではない。   Examples of the present invention will be described below. Of course, the present invention is not limited to the following examples.

まずドクターブレード法で焼成した0.2mm厚でSc、Al添加ジルコニアSASZ(0.89ZrO−0.10Sc−0.01Al)固体電解質基板の片面にNiO−8YSZ(0.92ZrO−0.08Y)のスラリ(平均粒径が約0.6μmの10mol%、Y添加ジルコニア粉末、平均粒径が約0.2μmのNiO粉末が60wt%)をスクリーンプリント法で塗布したのち白金メッシュ集電体を乗せて、1400℃、8時間空気中で焼成し、厚さ60μmの燃料極を設けた。 First doctor blade method Sc 2 O 3 in 0.2mm thickness was fired at, Al 2 O 3 doped zirconia SASZ (0.89ZrO 2 -0.10Sc 2 O 3 -0.01Al 2 O 3) on one surface of the solid electrolyte substrate NiO-8YSZ (0.92ZrO 2 -0.08Y 2 O 3 ) slurry (10 mol% with an average particle size of about 0.6 μm, Y 2 O 3 added zirconia powder, NiO powder with an average particle size of about 0.2 μm 60 wt%) was applied by a screen printing method, and then a platinum mesh current collector was placed thereon and baked in air at 1400 ° C. for 8 hours to provide a fuel electrode having a thickness of 60 μm.

次にその裏面に粒径1.0μmのLNF(LaNi0.6Fe0.4)空気極のスラリを塗布し白金メッシュ集電体を乗せて、1000℃、2時間の条件で焼成し、厚さ60μmの空気極とした。燃料極、空気極ともに10mm径とした。この比較例であるところの燃料電池セルをセル#1−0−0とする。このセルの模式図を図1に示す。図中、1は空気極、2は電解質、3は参照極であり、燃料極は空気極1の形成されている電解質2の裏側に同じ形状として設けられているため、図示されていない。 Next, a slurry of an LNF (LaNi 0.6 Fe 0.4 O 3 ) air electrode having a particle size of 1.0 μm is applied to the back surface, and a platinum mesh current collector is placed thereon, followed by firing at 1000 ° C. for 2 hours. The air electrode was 60 μm thick. Both the fuel electrode and the air electrode have a diameter of 10 mm. The fuel cell which is this comparative example is designated as cell # 1-0-0. A schematic diagram of this cell is shown in FIG. In the figure, 1 is an air electrode, 2 is an electrolyte, 3 is a reference electrode, and the fuel electrode is not shown because it is provided in the same shape on the back side of the electrolyte 2 on which the air electrode 1 is formed.

セル#1−0−0において、LNFに代えてLSF(La0.8Sr0.2FeO)、LSFC(La0.8Sr0.2Fe0.8Co0.2)、LSC(La0.8Sr0.2CoO)粉末を用いたセル#1−2−0〜セル#1−4−0を比較例とする。 In cell # 1-0-0, instead of LNF, LSF (La 0.8 Sr 0.2 FeO 3 ), LSFC (La 0.8 Sr 0.2 Fe 0.8 Co 0.2 O 3 ), LSC Cell # 1-2-0 to cell # 1-4-0 using (La 0.8 Sr 0.2 CoO 3 ) powder are taken as comparative examples.

次に、上記空気極用スラリにおいて、LNF粉末にYDC(Ce0.80.2)に対応するカチオンを含む酢酸塩水溶液を含浸させ、これを200℃で乾燥させた。この粉末へさらに上記の水溶液を含浸させたのち乾燥させ、この作業を合計4回行った後、500℃で空気中で焼成し、有機物成分を取り除いた。 Next, in the air electrode slurry, LNF powder was impregnated with an aqueous acetate solution containing a cation corresponding to YDC (Ce 0.8 Y 0.2 O 2 ), and dried at 200 ° C. The powder was further impregnated with the above aqueous solution and dried, and this operation was performed a total of 4 times, followed by firing in air at 500 ° C. to remove organic components.

これにより、LNF空気極粉末表面へYDCの超微粒子を被覆させることができた。この粉末をエチレングリコールへ展開してカソード用のスラリを用意した。これを用いて空気極を比較例と同じ条件で作製しセル#1−0−3および、セル#1−1−1〜セル#1−4−1とした。また、YDCに代えてSDC(Ce0.8Sm0.2)、GDC(Ce0.8Gd0.2)に対応する組成の溶液を使用してLNF粉末表面を被覆したカソードを持つセル#1−0−1、セル#1−0−2を作製した。 As a result, the surface of the LNF air electrode powder could be coated with the ultrafine particles of YDC. This powder was developed into ethylene glycol to prepare a slurry for the cathode. Using this, the air electrode was fabricated under the same conditions as in the comparative example, and designated as cell # 1-0-3 and cell # 1-1-1 to cell # 1-4-1. Further, a cathode having a LNF powder surface coated with a solution having a composition corresponding to SDC (Ce 0.8 Sm 0.2 O 2 ) and GDC (Ce 0.8 Gd 0.2 O 2 ) instead of YDC Cell # 1-0-1 and Cell # 1-0-2 were prepared.

ここで、燃料極には室温加湿水素ガスを用い、空気極1には酸素を用いた。開放起電力としては、800℃で1.13V以上の値が得られた。電極性能の指標である界面抵抗を交流インピーダンス法で測定した。ここでは、参照極3を図1に示すように取ることができるため、空気極1の界面抵抗値を分離して測定することができた。すなわち、5mV程度の電圧がかかるように、微少交流電流を燃料極と空気極1間にかけ、空気極1と参照極3間に現れる電圧の応答をインピーダンス測定器に入力し、その周波数応答性から界面抵抗値を求めた。ここで、参照極の雰囲気は空気極と同じ酸素ガスとした。   Here, room temperature humidified hydrogen gas was used for the fuel electrode, and oxygen was used for the air electrode 1. As the open electromotive force, a value of 1.13 V or more at 800 ° C. was obtained. Interfacial resistance, which is an index of electrode performance, was measured by the AC impedance method. Here, since the reference electrode 3 can be taken as shown in FIG. 1, the interface resistance value of the air electrode 1 can be measured separately. That is, a minute alternating current is applied between the fuel electrode and the air electrode 1 so that a voltage of about 5 mV is applied, and the response of the voltage appearing between the air electrode 1 and the reference electrode 3 is input to the impedance measuring instrument. The interface resistance value was determined. Here, the atmosphere of the reference electrode was the same oxygen gas as that of the air electrode.

電流値を一定(200mA/cm)とし、通電前と、24時間通電後、そして72時間通電後のインピーダンス測定器によって計測した開放起電力条件における界面抵抗値を比較し、通電初期化速度を評価した。その結果を表1の#1−0−0〜#1−4−1に示す。セル#1−0−1〜#1−3−1は比較例であるセル#1−0−0、セル#1−2−0、セル#1−3−0、セル#1−4−0、に比べて、初期の電極特性が優れており、また、24時間の通電によりさらに大きな改善が見られた。これはYDCの添加によりパイロクロア相の形成が抑制されたものと考えられる。YDCの添加量を増やすと初期特性は大きく改善される。 The current value is constant (200 mA / cm 2 ), and the interface resistance value in the open electromotive force condition measured by the impedance measuring instrument before energization, after energization for 24 hours, and after energization for 72 hours is compared. evaluated. The results are shown in # 1-0-0 to # 1-4-1 in Table 1. Cells # 1-0-1 to # 1-3-1 are comparative examples of cell # 1-0-0, cell # 1-2-0, cell # 1-3-0, cell # 1-4-0 In comparison with, the initial electrode characteristics were excellent, and further improvement was observed by energization for 24 hours. This is considered that the formation of the pyrochlore phase was suppressed by the addition of YDC. Increasing the amount of YDC added greatly improves the initial characteristics.

このようにセルを通電初期化時間を短縮し、また最終的な特性についても向上させることができた。   Thus, the energization initialization time of the cell was shortened, and the final characteristics could be improved.

Figure 2006351406
Figure 2006351406

実施例1の比較例であるセル#1−0−0において、電解質と燃料極については、ドクターブレード法により作製した電解質と燃料極のシートを張り合わせ、これを1300℃で焼成することで、燃料極支持型のハーフセルを作製し、この上に実施例1と同様にLNF空気極を焼き付けることで作製した。このセルを実施例2の比較例であるセル#2−0−0とし、その模式図を図2に示す。燃料極基板4に薄膜固体電解質5が積層され、その薄膜固体電解質5に空気極6が積層された構造になっている。図中、7は電流線、8は電圧線である。   In cell # 1-0-0, which is a comparative example of Example 1, for the electrolyte and the fuel electrode, the electrolyte and the fuel electrode sheet produced by the doctor blade method were bonded together and fired at 1300 ° C. A pole-supporting half-cell was manufactured, and an LNF air electrode was baked on the half-cell in the same manner as in Example 1. This cell is referred to as cell # 2-0-0, which is a comparative example of Example 2, and a schematic diagram thereof is shown in FIG. A thin film solid electrolyte 5 is laminated on the fuel electrode substrate 4, and an air electrode 6 is laminated on the thin film solid electrolyte 5. In the figure, 7 is a current line and 8 is a voltage line.

次に、空気極については実施例1と同様に予め空気極粉末(LNF)へセリア系電解質材料であるYDCの含浸処理を行ったが、LNF粉末はこの処理を行う前に同じ組成のYDC粉末と乾式混合を行った。YDC粉末と含浸溶液のYDC量については表2に示す様に変化させ、セル#2−1−1〜#2−3−3を作製した。そして、これらのセルを用いて実施例1と同様の試験を行った。これらの結果を表2に示す。ここで、界面抵抗は、燃料極と空気極との間で測定したため、空気極の界面抵抗と燃料極の界面抵抗を合計した値となっている。しかし、空気極の界面抵抗がほとんどを占めるほど大きいことが、実施例1のセルで明らかであることから、この界面抵抗値は実質的に空気極の値と言ってよい。   Next, the air electrode was impregnated with YDC, which is a ceria-based electrolyte material, in advance in the air electrode powder (LNF) in the same manner as in Example 1. The LNF powder was YDC powder having the same composition before this treatment. And dry mixing. The YDC powder and the YDC amount of the impregnation solution were changed as shown in Table 2 to prepare cells # 2-1-1 to # 2-3-3. And the test similar to Example 1 was done using these cells. These results are shown in Table 2. Here, since the interface resistance was measured between the fuel electrode and the air electrode, the interface resistance of the air electrode and the interface resistance of the fuel electrode are totaled. However, since it is clear in the cell of Example 1 that the interface resistance of the air electrode occupies most, it can be said that this interface resistance value is substantially the value of the air electrode.

実施例2のセル#2−1−1〜#2−3−3は、いずれのセルも比較例であるセル#2−0−0に比べ、通電初期化速度が速く、また、最終的な特性にも優れている。これは、YDCの添加により通電初期化特性が改善されたためと考えられる。   The cells # 2-1-1 to # 2-3-3 of Example 2 have a faster energization initialization speed than the cell # 2-0-0, which is a comparative example, and the final Excellent characteristics. This is presumably because the current-carrying initialization characteristics were improved by the addition of YDC.

次に、上記の空気極について、さらにYDCの量を変化させた空気極粉末原料をスラリとして用いて第一空気極層を作製し、この上に比較例と同じ組成の第二空気極を塗布し焼成を行ったセルである、セル#2−4−1、#2−4−2を作製した。セル#2−4−1〜#2−4−2は比較例であるセル#2−0−0に比べ、通電初期化速度、最終的な特性についても同等もしくは、良好な特性が得られた。   Next, for the above air electrode, a first air electrode layer is prepared by using an air electrode powder material in which the amount of YDC is further changed as a slurry, and a second air electrode having the same composition as that of the comparative example is applied thereon. Then, cells # 2-4-1 and # 2-4-2, which were cells fired and fired, were produced. The cells # 2-4-1 to # 2-4-2 have the same or better characteristics regarding the initializing speed of energization and the final characteristics compared to the cell # 2-0-0 which is a comparative example. .

Figure 2006351406
Figure 2006351406

実施例2の比較例であるセル#2−2−2において、空気極用スラリに粒径が0.1〜0.8μmの微細なカーボン粒子を混入させた後、YDCに対応する硝酸塩水溶液を含浸させ、このあと実施例2と同様に乾燥後にスラリを作製し、実施例2と同様に空気極を塗布し焼成を行った。これらの空気極におけるLNFとYDCそしてカーボン粒子の混合比は表3の通りである。これらのセル#3−1−1〜#3−2−1について実施例2と同様の測定を行った。これらの結果を表3に示す。セル#3−1−1〜#3−2−1は比較例であるセル#2−2−2に比べ、通電初期化速度、最終的な特性についても同等もしくは、良好な特性が得られた。   In cell # 2-2-2, which is a comparative example of Example 2, after mixing fine carbon particles having a particle size of 0.1 to 0.8 μm into the air electrode slurry, a nitrate aqueous solution corresponding to YDC was added. After impregnation, a slurry was prepared after drying in the same manner as in Example 2, and an air electrode was applied and fired in the same manner as in Example 2. Table 3 shows the mixing ratio of LNF, YDC, and carbon particles in these air electrodes. These cells # 3-1-1 to # 3-2-1 were measured in the same manner as in Example 2. These results are shown in Table 3. The cells # 3-1-1 to # 3-2-1 had the same or better energization initialization speed and final characteristics compared to the cell # 2-2-2 which is a comparative example. .

Figure 2006351406
Figure 2006351406

実施例1の比較例であるセル#1−0−0において、固体電解質を0.5mm厚のランタンガレートLSGM(La0.8Sr0.2Ga0.8Mg0.2)とし、まず、Ni−SDC燃料極(Niが60wt%)を1100℃で焼き付けた後、その裏面に空気極を設けた。ここで、空気極はLSFC粉末にSDC粉末を乾式混合させた後、実施例1と同様にSDC溶液を含浸、乾燥させ、実施例2と同様の方法でスラリを作製しこれをLSGM電解質上に塗布し、1000℃で焼成し空気極とした。実施例4における比較例としてセル#4−0−0を作製したが、このセルの空気極はLSFC粉末のみを用いたスラリを塗布して作製している。 In cell # 1-0-0, which is a comparative example of Example 1, the solid electrolyte is 0.5 mm thick lanthanum gallate LSGM (La 0.8 Sr 0.2 Ga 0.8 Mg 0.2 O 3 ), First, a Ni-SDC fuel electrode (Ni was 60 wt%) was baked at 1100 ° C., and then an air electrode was provided on the back surface thereof. Here, after the SDC powder was dry-mixed with the LSFC powder, the air electrode was impregnated with the SDC solution and dried in the same manner as in Example 1, and a slurry was prepared in the same manner as in Example 2, and this was placed on the LSGM electrolyte. It apply | coated and baked at 1000 degreeC and it was set as the air electrode. Cell # 4-0-0 was produced as a comparative example in Example 4, but the air electrode of this cell was produced by applying a slurry using only LSFC powder.

SDC粉末と含浸溶液のSDC量については表4に示す様に変化させ、セル#4−1−1〜#4−3−3を作製した。そして、これらのセルを用いて実施例1と同様の試験を行った。これらの結果を表4に示す。   The SDC powder and the SDC amount of the impregnation solution were changed as shown in Table 4 to prepare cells # 4-1-1 to # 4-3-3. And the test similar to Example 1 was done using these cells. These results are shown in Table 4.

実施例4のセル#4−1−1〜#4−3−3は、いずれのセルも比較例であるセル#4−0−0に比べ、通電初期化速度が速く、また、最終的な特性にも優れている。これは、SDCの添加により通電初期化特性が改善されたためと考えられる。   The cells # 4-1-1 to # 4-3-3 of Example 4 have a faster energization initialization speed than the cell # 4-0-0 which is a comparative example, and the final Excellent characteristics. This is presumably because the current-carrying initialization characteristics were improved by the addition of SDC.

Figure 2006351406
Figure 2006351406

本発明は、低温動作時にも特性劣化の小さいSOFCの空気極に関するものである。従来のペロブスカイト系酸化物を空気極に用いると、電極を活性化するための初期化に時間を要する、また初期化に伴い特性劣化を生むなどの課題があった。本発明では、ペロブスカイト系酸化物粉末の表面をセリア系電解質薄膜で覆った空気電極を用いることで、通電初期化時間が短縮できるばかりでなく、電極の電気化学特性も向上できる。   The present invention relates to an SOFC air electrode with little characteristic deterioration even at low temperature operation. When conventional perovskite-based oxides are used for the air electrode, there are problems such as that it takes time for initialization to activate the electrode, and that deterioration of characteristics occurs with the initialization. In the present invention, by using an air electrode in which the surface of the perovskite oxide powder is covered with a ceria-based electrolyte thin film, not only the energization initialization time can be shortened but also the electrochemical characteristics of the electrode can be improved.

実施例1、4における自立膜型単セルの模式図。The schematic diagram of the self-supporting film | membrane single cell in Example 1, 4. FIG. 実施例2、3における支持膜型燃料電池セルの模式図。The schematic diagram of the support membrane type fuel cell in Example 2, 3. FIG.

符号の説明Explanation of symbols

1 空気極
2 電解質
3 参照極
4 燃料極基板
5 薄膜固体電解質
6 空気極
7 電流線
8 電圧線
DESCRIPTION OF SYMBOLS 1 Air electrode 2 Electrolyte 3 Reference electrode 4 Fuel electrode board | substrate 5 Thin film solid electrolyte 6 Air electrode 7 Current line 8 Voltage line

Claims (9)

Aサイトにランタン系元素、Bサイトに遷移金属元素を持つペロブスカイト系酸化物(ABO)の空気極粉末の表面をセリア系電解質材料で被覆したことを特徴とするセリアコートSOFC用空気極粉末。 An air electrode powder for ceria-coated SOFC, wherein the surface of an air electrode powder of a perovskite oxide (ABO 3 ) having a lanthanum element at the A site and a transition metal element at the B site is coated with a ceria-based electrolyte material. 前記ペロブスカイト系酸化物の組成がLaNi1−XFe(X=0.3〜0.9)、または、La1−XSrFe1−YNi(X=0.1〜0.3,Y=0.1〜0.6,X+Y<0.7)、またはLa1−XSrFe1−YCo(X=0.1〜0.3,Y=0.1〜0.6,X+Y<0.7)、またはLa1−XSrCoO(X=0.1〜0.5)、であることを特徴とする請求項1記載のセリアコートSOFC用空気極粉末。 The perovskite composition of oxides LaNi 1-X Fe X O 3 (X = 0.3~0.9), or, La 1-X Sr X Fe 1-Y Ni Y O 3 (X = 0.1 ~0.3, Y = 0.1~0.6, X + Y <0.7), or La 1-X Sr X Fe 1 -Y Co Y O 3 (X = 0.1~0.3, Y = The ceria coat according to claim 1, which is 0.1 to 0.6, X + Y <0.7), or La 1-X Sr X CoO 3 (X = 0.1 to 0.5). Air electrode powder for SOFC. 前記セリア系電解質材料はCe1−x(x=0.1〜0.4)またはCe1−xSm(x=0.1〜0.4)またはCe1−xGd(x=0.1〜0.4)であることを特徴とする請求項1又は2記載のセリアコートSOFC用空気極粉末。 The ceria-based electrolyte material is Ce 1-x Y x O 2 (x = 0.1 to 0.4) or Ce 1-x Sm x O 2 (x = 0.1 to 0.4) or Ce 1-x. gd x O 2 (x = 0.1~0.4 ) ceria coating SOFC air electrode powder of claim 1 or 2, wherein the a. セリア系電解質材料の組成に対応する無機金属塩溶液または有機金属溶液を前記空気極粉末に含浸し、これを乾燥する、または乾燥後に酸化雰囲気で熱処理することでセリア系電解質薄膜を空気極粉末の粒子の表面に形成することを特徴とするセリアコートSOFC用空気極粉末の製造方法。 The air electrode powder is impregnated with an inorganic metal salt solution or an organic metal solution corresponding to the composition of the ceria-based electrolyte material, and dried or heat-treated in an oxidizing atmosphere after drying to form the ceria-based electrolyte thin film of the air electrode powder. A method for producing an air electrode powder for ceria-coated SOFC, characterized by forming on the surface of particles. 前記無機金属塩溶液または有機金属溶液にさらにセリア系電解質材料を添加することを特徴とする請求項4記載のセリアコートSOFC用空気極粉末の製造方法。 The method for producing an air electrode powder for ceria-coated SOFC according to claim 4, wherein a ceria-based electrolyte material is further added to the inorganic metal salt solution or the organic metal solution. 前記空気極粉末と前記セリア系電解質材料粉末を予め混合し、前記無機金属塩溶液または有機金属溶液に混合することを特徴とする請求項4又は5記載のセリアコートSOFC用空気極粉末の製造方法。 6. The method for producing an air electrode powder for ceria-coated SOFC according to claim 4, wherein the air electrode powder and the ceria-based electrolyte material powder are mixed in advance and mixed with the inorganic metal salt solution or the organic metal solution. . 前記無機金属塩溶液または有機金属溶液由来のセリア系電解質材料の割合が、熱処理後の時点で全セリア系電解質材料の1wt%以上である請求項5又は6記載のセリアコートSOFC用空気極粉末の製造方法。 The ratio of the ceria-based electrolyte material derived from the inorganic metal salt solution or the organic metal solution is 1 wt% or more of the total ceria-based electrolyte material after the heat treatment, The air electrode powder for ceria-coated SOFC according to claim 5 or 6 Production method. 前記無機金属塩溶液または有機金属溶液に粒径が微細なカーボン粒子またはプラスチック造孔剤を混合することを特徴とする請求項4から7記載のいずれかのセリアコートSOFC用空気極粉末の製造方法。 The method for producing an air electrode powder for ceria-coated SOFC according to any one of claims 4 to 7, wherein carbon particles having a fine particle size or a plastic pore-forming agent are mixed with the inorganic metal salt solution or the organic metal solution. . 請求項1のセリアコートSOFC用空気極粉末をスラリとし、固体電解質基板あるいは燃料極基板上の薄膜固体電解質上に塗布し、焼成することを特徴とするSOFC用空気極の製造方法。 A method for producing an SOFC air electrode, comprising applying the ceria-coated SOFC air electrode powder according to claim 1 as a slurry to a thin film solid electrolyte on a solid electrolyte substrate or a fuel electrode substrate, followed by firing.
JP2005177582A 2005-06-17 2005-06-17 Air electrode powder for ceria coated sofc, its manufacturing method, and manufacturing method of air electrode Pending JP2006351406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005177582A JP2006351406A (en) 2005-06-17 2005-06-17 Air electrode powder for ceria coated sofc, its manufacturing method, and manufacturing method of air electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005177582A JP2006351406A (en) 2005-06-17 2005-06-17 Air electrode powder for ceria coated sofc, its manufacturing method, and manufacturing method of air electrode

Publications (1)

Publication Number Publication Date
JP2006351406A true JP2006351406A (en) 2006-12-28

Family

ID=37647029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005177582A Pending JP2006351406A (en) 2005-06-17 2005-06-17 Air electrode powder for ceria coated sofc, its manufacturing method, and manufacturing method of air electrode

Country Status (1)

Country Link
JP (1) JP2006351406A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016350A (en) * 2007-07-04 2009-01-22 Korea Inst Of Science & Technology Electrode/electrolyte composite powder for fuel cell, and its preparation method
JP2009140800A (en) * 2007-12-07 2009-06-25 Toto Ltd Air pole support for solid oxide fuel cell, and solid oxide fuel cell body using the same
JP2009164031A (en) * 2008-01-09 2009-07-23 Toto Ltd Solid oxide type fuel battery cell body
JP2010044966A (en) * 2008-08-13 2010-02-25 Toshiba Corp Solid oxide electrochemical cell and method for manufacturing the same
JP2016152160A (en) * 2015-02-18 2016-08-22 株式会社ノリタケカンパニーリミテド Electrode material for solid oxide fuel cell, and utilization thereof
JP2016210661A (en) * 2015-05-13 2016-12-15 日本特殊陶業株式会社 Conductive oxide sintered body for oxygen sensor electrode, and oxygen sensor prepared therewith
JP2018073486A (en) * 2016-10-24 2018-05-10 株式会社ノリタケカンパニーリミテド Solid oxide fuel cell and material for forming reaction suppression layer of the fuel cell
JP2018073487A (en) * 2016-10-24 2018-05-10 株式会社ノリタケカンパニーリミテド Solid oxide fuel cell and material for forming cathode of the fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589884A (en) * 1991-09-26 1993-04-09 Tokyo Gas Co Ltd Method for forming air electrode of solid electrolyte type fuel cell
JP2000260436A (en) * 1999-03-10 2000-09-22 Tokyo Gas Co Ltd Film support solid electrolyte fuel cell having low temperature active electrode and manufacture of air electrode used for fuel cell
JP2001307750A (en) * 2000-04-25 2001-11-02 Tokyo Gas Co Ltd Solid electrolyte fuel battery and its manufacturing method
JP2005026055A (en) * 2003-07-02 2005-01-27 Nissan Motor Co Ltd Composite electrode for fuel cell, and solid electrolyte fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589884A (en) * 1991-09-26 1993-04-09 Tokyo Gas Co Ltd Method for forming air electrode of solid electrolyte type fuel cell
JP2000260436A (en) * 1999-03-10 2000-09-22 Tokyo Gas Co Ltd Film support solid electrolyte fuel cell having low temperature active electrode and manufacture of air electrode used for fuel cell
JP2001307750A (en) * 2000-04-25 2001-11-02 Tokyo Gas Co Ltd Solid electrolyte fuel battery and its manufacturing method
JP2005026055A (en) * 2003-07-02 2005-01-27 Nissan Motor Co Ltd Composite electrode for fuel cell, and solid electrolyte fuel cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016350A (en) * 2007-07-04 2009-01-22 Korea Inst Of Science & Technology Electrode/electrolyte composite powder for fuel cell, and its preparation method
US8647771B2 (en) 2007-07-04 2014-02-11 Korea Institute Of Science And Technology Electrode-electrolyte composite powders for a fuel cell and method for the preparation thereof
JP2009140800A (en) * 2007-12-07 2009-06-25 Toto Ltd Air pole support for solid oxide fuel cell, and solid oxide fuel cell body using the same
JP2009164031A (en) * 2008-01-09 2009-07-23 Toto Ltd Solid oxide type fuel battery cell body
JP2010044966A (en) * 2008-08-13 2010-02-25 Toshiba Corp Solid oxide electrochemical cell and method for manufacturing the same
JP2016152160A (en) * 2015-02-18 2016-08-22 株式会社ノリタケカンパニーリミテド Electrode material for solid oxide fuel cell, and utilization thereof
JP2016210661A (en) * 2015-05-13 2016-12-15 日本特殊陶業株式会社 Conductive oxide sintered body for oxygen sensor electrode, and oxygen sensor prepared therewith
JP2018073486A (en) * 2016-10-24 2018-05-10 株式会社ノリタケカンパニーリミテド Solid oxide fuel cell and material for forming reaction suppression layer of the fuel cell
JP2018073487A (en) * 2016-10-24 2018-05-10 株式会社ノリタケカンパニーリミテド Solid oxide fuel cell and material for forming cathode of the fuel cell

Similar Documents

Publication Publication Date Title
JP5260052B2 (en) Solid oxide fuel cell
US9252447B2 (en) Composite anode for a solid oxide fuel cell with improved mechanical integrity and increased efficiency
WO2007061043A1 (en) Solid oxide fuel cell
KR100424194B1 (en) Electrode part having microstructure of extended triple phase boundary by porous ion conductive ceria film coating and Method to manufacture the said electrode
JP2006351405A (en) Sofc fuel electrode, and its manufacturing method
JP2006351406A (en) Air electrode powder for ceria coated sofc, its manufacturing method, and manufacturing method of air electrode
JP4796895B2 (en) Ceria buffer layer for air electrode of solid oxide fuel cell and method for producing the same
JP2008300075A (en) Solid oxide fuel cell and its manufacturing method
JP2011119178A (en) Solid oxide fuel cell
JP6573243B2 (en) Air electrode composition, air electrode and fuel cell including the same
JP5226656B2 (en) Solid oxide fuel cell and method for producing solid oxide fuel cell
JP4534188B2 (en) Fuel cell electrode material and solid oxide fuel cell using the same
JP2010277877A (en) Solid oxide fuel cell
JP2007335193A (en) Ceria layer for air electrode of solid oxide fuel cell, and its manufacturing method
JP3661676B2 (en) Solid oxide fuel cell
JP6889900B2 (en) Anode for solid oxide fuel cell and its manufacturing method, and solid oxide fuel cell
JP4795701B2 (en) Solid oxide fuel cell and method for producing solid oxide fuel cell
EP3343682B1 (en) Flat plate-shaped solid oxide fuel cell and cell module comprising same
JP2004265746A (en) Solid oxide fuel cell
JP2011210623A (en) Power generation film for solid electrolyte fuel cell, and solid electrolyte fuel cell having the same
KR101146349B1 (en) Fabrication Method of Metal Supported Solid Oxide Fuel Cell
JP5365123B2 (en) Electrolyte for solid oxide fuel cell and solid oxide fuel cell using the same
JP3574439B2 (en) Microstructured electrode with extended three-phase interface by porous ion-conductive ceria membrane coating and method of manufacturing the same
JP2014107063A (en) Single chamber type solid oxide ful cell and air electrode thereof
Meepho et al. Reduction of electrode polarization in anode-supported solid oxide fuel cell

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070912

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070913

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823