JP2004303613A - 負極材料及びこれを用いた負極並びに該負極を用いたリチウムイオン二次電池 - Google Patents

負極材料及びこれを用いた負極並びに該負極を用いたリチウムイオン二次電池 Download PDF

Info

Publication number
JP2004303613A
JP2004303613A JP2003096254A JP2003096254A JP2004303613A JP 2004303613 A JP2004303613 A JP 2004303613A JP 2003096254 A JP2003096254 A JP 2003096254A JP 2003096254 A JP2003096254 A JP 2003096254A JP 2004303613 A JP2004303613 A JP 2004303613A
Authority
JP
Japan
Prior art keywords
negative electrode
carbon
electrode material
fiber
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003096254A
Other languages
English (en)
Inventor
Yusuke Watarai
祐介 渡会
Akio Mizuguchi
暁夫 水口
Hiroyuki Imai
浩之 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003096254A priority Critical patent/JP2004303613A/ja
Publication of JP2004303613A publication Critical patent/JP2004303613A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】電解液に含まれるプロピレンカーボネート(PC)の分解反応を抑制し、かつ黒鉛の高容量が得られ、更に高率充放電が可能な負極材料及びこれを用いた負極並びに該負極を用いたリチウムイオン二次電池を提供する。
【解決手段】複数のチューブ状グラファイト網が同心円状に形成されたチューブ本体を有するCNT又は平面状のグラファイト網が複数積層されグラファイト網がファイバの縦軸に対して実質的に垂直であるファイバ本体を有するCNFのいずれか一方又はその双方を主成分とし、CNT又はCNFがチューブ又はファイバのX線回折において測定されるチューブ本体又はファイバ本体のグラファイト網平面の積層間隔d002が0.3356nm〜0.3450nmであって、チューブ本体又はファイバ本体の表面が厚さ0.1nm〜5nmの無定形炭素層で被覆されている。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、カーボンナノチューブ又はカーボンナノファイバいずれか一方又はその双方を主成分として含む負極材料及びこれを用いた負極並びに該負極を用いたリチウムイオン二次電池に関するものである。
【0002】
【従来の技術】
近年、リチウム二次電池のリチウムを担持させる負極材料として炭素材料の研究が盛んに行われている。例えば、黒鉛にリチウムを担持させた炭素材料を用いる場合には、電池の充電時にリチウムが黒鉛の層間に挿入され、放電時に黒鉛層間よりリチウムが放出される。しかしながら、黒鉛材料をリチウム二次電池の負極材料として用いる場合には、電解液として低温特性に優れたプロピレンカーボネート(以下、PCという。)が黒鉛表面で電気化学的に分解されてしまうため、このPCを含む電解液が使用できない問題があった。
【0003】
そのため、PCを含まない電解液、例えばエチレンカーボネート(以下、ECという。)やジエチルカーボネート(以下、DECという。)等のエチレンカーボネート系電解液を用いる方法も検討されているが、電池としての低温特性が低下するという新たな問題を生じる。
【0004】
この問題を解決する方策として、表面が熱分解アモルファス状炭素により被覆された黒鉛系炭素材料の製造方法において、熱分解炭素源となる原料を黒鉛系炭素材料に化学蒸着させて、熱分解炭素被覆層を生成させた後、蒸着温度よりも高い温度で熱処理することを特徴とする黒鉛系炭素材料の製造方法が開示されている(例えば、特許文献1参照。)。この製造方法では、出発原料として天然黒鉛、人造黒鉛、黒鉛化されたメソカーボンマイクロビーズ、黒鉛化されたピッチ系炭素繊維のような、平均粒径が0.1〜100μm程度の粒子状物を用い、この粒子状の出発原料表面に熱分解炭素被覆層を生成させた後、高温熱処理することにより黒鉛系炭素材料を得ている。このような黒鉛系炭素材料を負極材料として使用することでリチウム二次電池に低温特性の優れたPCを含む電解液を用いる場合においても、初期効率が良好でかつ放電容量が高い電池が得られる。
【0005】
【特許文献1】
特開2002−241117号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記特許文献1に示される炭素材料では、粒子状の出発原料に熱分解炭素被覆層を生成し、更に高温熱処理を施さなければならないため、製造効率が悪い問題があった。
【0007】
本発明の目的は、電解液に含まれるプロピレンカーボネート(PC)の分解反応を抑制し、かつ黒鉛の高容量が得られ、更に高率充放電が可能な負極材料及びこれを用いた負極並びに該負極を用いたリチウムイオン二次電池を提供することにある。
【0008】
【課題を解決するための手段】
請求項1に係る発明は、図1又は図3に示すように、カーボンナノチューブ(以下、単にCNTという。)10又はカーボンナノファイバ(以下、単にCNFという。)20のいずれか一方又はその双方を主成分とし、CNT10は、複数のチューブ状グラファイト網が同心円状に形成されたチューブ本体11を有し、チューブ本体11が10nm〜500nmの平均直径と、100nm以上の長さと、10以上のアスペクト比を有し、CNF20は、平面状のグラファイト網が複数積層されグラファイト網がファイバの縦軸に対して実質的に垂直であるファイバ本体21を有し、ファイバ本体21が10nm〜500nmの平均直径と、100nm以上の長さと、10以上のアスペクト比を有し、CNT10又はCNF20がチューブ又はファイバのX線回折において測定されるチューブ本体11又はファイバ本体21のグラファイト網平面の積層間隔d002が0.3356nm〜0.3450nmであって、チューブ本体11又はファイバ本体21の表面が厚さ0.1nm〜5nmの無定形炭素層12,22で被覆されたことを特徴とする負極材料である。
請求項1に係る負極材料の主成分であるCNT10やCNF20は、チューブ本体11又はファイバ本体21がグラファイト網平面の積層間隔d002が0.3356nm〜0.3450nmであるため、高い電気伝導性を有する一方、チューブ本体11又はファイバ本体21の表面が厚さ0.1nm〜5nmの無定形炭素層12,22で被覆されているため、表面活性度が低く化学的に安定である。また、無定形炭素層12,22が活性な黒鉛層を被覆しているため、電解液に含まれるPCの分解反応を抑制し、かつ黒鉛の高容量が得られ、更に高率充放電が可能となる。更に、CNTやCNFは従来より負極材料として用いられてきた炭素系材料に比べて、平均直径が小さい材料であるため、電池の電極を作製した場合、高密度での充電が可能となり、電池のエネルギー密度向上に繋がる。
【0009】
請求項2に係る発明は、請求項1に係る発明であって、無定形炭素層12,22がチューブ本体11全表面又はファイバ本体21全表面のいずれか一方又はその双方の少なくとも80%の割合で被覆された負極材料である。
請求項2に係る発明では、チューブ本体11全表面又はファイバ本体21全表面のいずれか一方又はその双方の少なくとも80%を無定形炭素層12,22で被覆することで、化学安定性がより向上し、加工性にも優れる。
【0010】
請求項3に係る発明は、請求項1に係る発明であって、CNT10又はCNF20のいずれか一方又はその双方に加えて、更に黒鉛構造を有する炭素微粉からなる粒子状凝集体を含み、CNT10又はCNF20のいずれか一方又はその双方が80重量%〜99.5重量%、粒子状凝集体が0.5重量%〜20重量%の割合である負極材料である。
請求項3に係る発明では、負極材料に粒子状凝集体を含むことによって主成分であるCNT同士やCNF同士、CNTとCNFとの接触が良好になり、高率充放電特性が更に向上する。
【0011】
請求項4に係る発明は、請求項1ないし3いずれか1項に係る発明であって、金属又は金属酸化物のいずれか一方又はその双方が、CNT10又はCNF20のいずれか一方又はその双方の長軸上にある負極材料である。
請求項5に係る発明は、請求項1ないし4いずれか1項に係る発明であって、平均粒径10nm〜500nmの金属又は金属酸化物のいずれか一方又はその双方を0.5重量%〜10重量%更に含む負極材料である。
請求項5に係る発明では、平均粒径10nm〜500nmの金属又は金属酸化物のいずれか一方又はその双方を更に含ませることで、金属又は金属酸化物が電子伝導の基点となるため、より高率の放電が可能となる。
【0012】
請求項6に係る発明は、請求項5に係る発明であって、金属又は金属酸化物中の金属のいずれか一方又はその双方がFe、Co、Ni、Mg及びAlからなる群より選ばれた少なくとも1種の元素である負極材料である。
請求項7に係る発明は、請求項1ないし6いずれか1項に記載の負極材料と、結着剤とを用いて形成された負極である。
請求項7に係る発明では、主成分であるCNT又はCNFのいずれか一方又はその双方によってリチウムイオンの吸蔵及び放出がスムーズに進行するので、高率充放電特性が向上する。
【0013】
請求項8に係る発明は、請求項7記載の負極を用いて形成されたリチウムイオン二次電池である。
請求項8に係るリチウムイオン二次電池では、負極材料の主成分であるCNT又はCNFのいずれか一方又はその双方によってリチウムイオンの吸蔵及び放出がスムーズに進行するので、高率充放電特性が向上する。また、負極材料のCNT、CNFには無定形炭素層が活性な黒鉛層を被覆しているため、電解液に含まれる低温特性に優れたPCの分解反応を抑制し、かつ黒鉛の高容量が得られ、更に高率充放電が可能となる。更に負極材料に従来より用いられてきた炭素材料に比べて、サイズの小さいCNT又はCNFを用いているため、高密度での充電か可能となり、電池のエネルギー密度向上につながる。
【0014】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
図1又は図3に示すように、リチウムイオン二次電池の負極は、CNT10又はCNF20のいずれか一方又はその双方を主成分とした負極材料が用いられる。負極材料に含まれるCNT10は、複数のチューブ状グラファイト網が同心円状に形成されたチューブ本体11を有し、チューブ本体11が10nm〜500nmの平均直径と、100nm以上の長さと、10以上のアスペクト比を有するように構成される。また、CNF20は、平面状のグラファイト網が複数積層されグラファイト網がファイバの縦軸に対して実質的に垂直であるファイバ本体21を有し、ファイバ本体21が10nm〜500nmの平均直径と、100nm以上の長さと、10以上のアスペクト比を有するように構成される。
【0015】
本発明の負極材料の特徴ある構成は、CNT10又はCNF20がチューブ又はファイバのX線回折において測定されるチューブ本体11又はファイバ本体21のグラファイト網平面の積層間隔d002が0.3356nm〜0.3450nmであり、チューブ本体11又はファイバ本体21の表面が厚さ0.1nm〜5nmの無定形炭素層12,22で被覆されたところにある。グラファイト網平面の積層間隔d002を0.3356nm〜0.3450nmの範囲内に規定することで高い電気伝導性を有する。0.3356nm未満のものは合成が難しく、0.3450nmを越えると十分な導電性が得られない上、グラファイトの結晶性が低下して容量も低下する。具体的には、CNTにおけるグラファイト網平面の積層間隔d002を0.3370nm〜0.3450nmの範囲内に、CNFにおけるグラファイト網平面の積層間隔d002を0.3356nm〜0.3370nmの範囲内に規定する。好ましい積層間隔d002は、0.3357nm〜0.3375nmである。チューブ本体11、ファイバ本体21の表面が厚さ0.1nm〜5nmの無定形炭素層12,22で被覆されているため、CNT表面及びCNF表面がそれぞれ化学的に安定になる。無定形炭素層12,22の厚さは上記製造条件により0.1nm〜5nmの範囲に形成される。0.1nm未満であると無定形炭素層12,22の存在価値が低く、本発明の効果が現れない。5nmを越えると充放電の効率が低下する不具合を生じる。無定形炭素層12,22の厚さはそれぞれ0.5nm〜2nmが好ましい。CNTとCNFをそれぞれ負極材料の主成分としたときの割合は、電池の放電容量を重視する場合は、CNTが0.5重量%〜10重量%、CNFが3重量%〜20重量%、好ましくはCNTが1重量%〜3重量%、CNFが5重量%〜10重量%であり、電池の放電容量維持率を重視する場合は、CNTが5重量%〜20重量%、CNFが10重量%〜30重量%、好ましくはCNTが5重量%〜10重量%、CNFが15重量%〜20重量%である。
【0016】
無定形炭素層12,22はチューブ本体11全表面、ファイバ本体21全表面の少なくとも80%の割合で被覆される。チューブ本体11全表面、ファイバ本体21全表面の少なくとも80%を無定形炭素層12,22で被覆することで、化学安定性がより向上し、加工性にも優れる。無定形炭素層12,22はチューブ本体11全表面、ファイバ本体21全表面の90%以上の割合で被覆することが好ましい。
【0017】
また本発明の負極材料は、CNT10又はCNF20のいずれか一方又はその双方に加えて、更に黒鉛構造を有する炭素微粉からなる粒子状凝集体を含む。負極材料中のCNT10又はCNF20のいずれか一方又はその双方が80重量%〜99.5重量%、粒子状凝集体が0.5重量%〜20重量%の割合である。好ましくはCNT10又はCNF20のいずれか一方又はその双方が90重量%〜99重量%、粒子状凝集体が1重量%〜10重量%の割合である。CNT10又はCNF20のいずれか一方又はその双方を80重量%〜99.5重量%の範囲に規定したのは、80重量%未満では十分な電極密度が得られず、エネルギー密度の向上が少ないからであり、99.5重量%を越えると十分な高率放電特性が得難いからである。
【0018】
平均粒径10nm〜500nmの金属又は金属酸化物のいずれか一方又はその双方を0.5重量%〜10重量%更に含ませることにより、平均粒径10nm〜500nmの金属又は金属酸化物が電子伝導の基点となるため、より高率の放電が可能となる。金属又は金属酸化物のいずれか一方又はその双方は、CNT、CNFの長軸上に位置するように構成される。金属としてはFe、Co、Ni、Mg及びAlからなる群より選ばれた少なくとも1種の元素が選ばれ、単一金属や合金、金属酸化物の形態で使用される。
【0019】
次に、本発明の負極材料の製造方法を説明する。本実施の形態ではCNFの製造方法をその一例として説明する。
先ず、CNFを製造するために必要な触媒粒子をファイバの成長核として基板上に配置する。触媒粒子は、平均粒径が0.01μm〜100μm、好ましくは0.1μm〜10μmの範囲内の微粉末がカーボンナノファイバを製造する際に好適な大きさであり、Fe、Ni、Co、Mn、Cu、Mg、Al及びCaからなる群より選ばれた1種の金属若しくは2種以上の金属からなる合金又は少なくとも1種の金属を含む金属酸化物が触媒材料として挙げられる。所定の反応温度において、Feのα相を維持するような合金組成比で調製された金属触媒が好ましく、具体的にはFe−Ni合金やFe−Co合金、Fe−Cu合金がより好ましい。Fe−Ni合金に含まれるFeとNiのモル比(Fe/Ni)は20/80〜99/1、好ましくは40/60〜90/10である。Fe−Co合金に含まれるFeとCoのモル比(Fe/Co)は20/80〜99/1、好ましくは50/50〜95/5である。Fe−Cu合金に含まれるFeとCuのモル比(Fe/Cu)は20/80〜99/1、好ましくは80/20〜95/5である。
【0020】
触媒粒子の基板上への配置は、触媒粒子をそのまま均一に振りかけてよい。また触媒粒子をアルコール等の溶媒に懸濁させて懸濁液を調製し、この懸濁液を基板上に散布して乾燥することにより、所定の間隔で所望の量を基板上に配置してもよい。また、触媒粒子を構成する金属の硝酸塩溶液を調製し、この溶液を基板表面に塗布あるいは散布し、熱処理炉内に基板を挿入して炉内を200℃以上に昇温することによっても所定の間隔で所望の量を基板上に配置することができる。更に、基板を事前に熱処理炉内に収容して炉内を加熱し、触媒粒子を構成する金属の有機化合物等を熱処理炉内に任意の流量で供給して熱分解させ、触媒粒子を直接基板上に形成させることでも所定の間隔で所望の量を基板上に配置することができる。触媒粒子はCNFを製造する前に前処理を施し活性化させることが好ましい。活性化は、触媒粒子をHe及びHを含む混合ガス雰囲気下で加熱することにより行われる。
【0021】
続いて、CNFの原料となる所定の混合ガスを基板上に配置された触媒粒子に0.01〜24時間供給してファイバ表面が無定形炭素で被覆されたCNFを触媒粒子から成長させる。
図5に本発明のCNFを製造する熱処理炉30を示す。なお、この熱処理炉30では、触媒の種類、温度等の製造条件を代えることによってCNTを製造することができる。この熱処理炉30は断熱性材質からなる装置本体31から構成され、装置本体31内部は所定の間隔をあけて2枚の仕切板36により水平に仕切られる。仕切板36,36により仕切られた装置本体31内部の頂部及び底部には発熱体32がそれぞれ設置される。熱処理炉内で熱処理に用いられる発熱体32の加熱源としては白熱ランプ、ハロゲンランプ、アークランプ、グラファイトヒータ等が挙げられる。仕切板36,36で仕切られた空間に原料となる混合ガスを供給するように装置本体31の一方の側部には、ガス供給口34が設けられる。
【0022】
カーボンナノファイバの原料となるガスとしては、CO及びHを含む混合ガス、COとHの混合ガスが挙げられる。混合ガスのCOに対するHの混合容積比(CO/H)は20/80〜90/10である。混合ガスのCOに対するHの混合容積比(CO/H)は40/60〜90/10が好ましい。なお、混合ガスのCOに対するHの混合容積比(CO/H)を示したが、混合ガスのCOに対するHの混合容積比(CO/H)も同様の混合容積比としてよい。
【0023】
仕切板36,36により仕切られた空間37は、粉末の触媒を散布した基板38が収容可能な大きさを有し、装置本体31の他方の側部には系外へ熱処理炉30内に供給した原料ガスを排出するガス排出口39が設けられる。空間37内に収容される基板38は取出し台41の上に載置されて、熱処理炉内に収容、搬出可能に設けられる。
【0024】
基板38に粉末の触媒42を載せた後、その基板38を取出し台41の上に載せて熱処理炉30まで搬送し、装置本体31の空間37内に収納する。その後、熱処理炉20内を0.08〜10MPaの範囲内に圧力を制御し、原料となる混合ガスをガス供給口34から供給し、発熱体32,32により加熱する。原料となる混合ガスの供給量は0.2L/min〜10L/min、加熱温度は400℃〜700℃、好ましくは500℃以上600℃未満に設定される。なお、混合ガスの供給量は触媒粒子の量や炉の大きさに依存する。従って、上記ガス供給量の数値範囲は一般的な製造方法における目安である。加熱温度を400℃〜700℃に規定したのは、下限値未満では反応速度が遅すぎてカーボンナノファイバを合成できず、上限値を越えるとファイバ状には合成されず、すすや黒鉛微粉が得られてしまうからである。原料となる混合ガスを供給しながら加熱し、0.01〜24時間保持しておくことにより、触媒粒子42を介してCNF43が成長する。得られたCNF43には触媒が含まれているので、必要に応じて熱処理炉30内より基板38を搬出して得られたCNF43を取出し、このCNF43を硝酸、塩酸、フッ酸等の酸性溶液に浸漬させて、CNF43に含まれる触媒粒子42を除去する。なお、触媒粒子42をそのままCNF中に含ませ、担持させた状態で使用してもよい。また、本実施の形態では、熱処理炉本体31の一方の側部より、原料となる混合ガスを供給する構成としたが、本体頂部又は底部より原料となる混合ガスを供給する構成としてもよい。このように上記製造方法により、従来よりも低温製造が可能で、黒鉛化処理を行うことなく、ファイバ本体が高結晶の黒鉛構造を有し、このファイバ本体が無定形炭素層で被覆されたCNFを得ることができる。
【0025】
このようにして得られた本発明の負極材料を用いて負極を作製する。
先ず得られた負極材料(負極活物質)と、導電助剤(炭素粉末、或いは銅やチタン等のリチウムと合金化し難い金属粉末)と、ポリフッ化ビニリデン(PVdF)等の結着剤とを所定の割合で混合することにより負極スラリーを調製する。ここで結着剤はアセトン等の溶剤に溶解させた状態で混合される。次に負極スラリーを負極集電体箔の上面に、スクリーン印刷法やドクターブレード法等により塗布して乾燥して負極を作製する。なお、負極スラリーをガラス基板上に塗布し乾燥した後に、ガラス基板から剥離して負極フィルムを作製し、更にこの負極フィルムを負極集電体に重ねて所定の圧力でプレス成形することにより、負極を作製してもよい。このように製造された負極では、CNTやCNFによってリチウムイオンの吸蔵及び放出がスムーズに進行するので、高率充放電特性が向上する。
【0026】
図6に示すように、負極集電体50上に負極活物質層51を形成して得られた本発明の負極52と、非水電解液を含む電解質層53と、正極集電体54上に結着剤、正極材料及び導電助剤からなる正極スラリーをドクターブレード法によって塗布し乾燥することにより正極活物質層56が形成された正極57とを積層することにより、リチウムイオン二次電池が得られる。非水電解液には、特に従来炭素材料を用いると電気化学的に分解されてしまっていた低温特性に優れたPCを使用することができる。また、ECやDEC、又はこれらの混合溶媒等を用いてもよい。このように製造されたリチウムイオン二次電池では、負極材料の主成分であるCNT又はCNFのいずれか一方又はその双方によってリチウムイオンの吸蔵及び放出がスムーズに進行するので、高率充放電特性が向上する。また、負極材料のCNT、CNFには無定形炭素層が活性な黒鉛層を被覆しているため、電解液に含まれる低温特性に優れたPCの分解反応を抑制し、かつ黒鉛の高容量が得られ、更に高率充放電が可能となる。更に、負極材料に従来より用いられてきた炭素材料に比べて、サイズの小さいCNTやCNFを用いているため、高密度での充電が可能となり、電池のエネルギー密度向上につながる。
【0027】
【実施例】
次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
(1) 負極材料の製造
先ず、平均粒径1μm以下のFe−Ni合金1g(モル比:Fe/Ni=70/30)を触媒粒子として用意した。この触媒粒子をHe及びHを含む混合ガス雰囲気下で加熱して活性化させた。次いで図5に示すように、活性化させた触媒粒子42を基板38上に載せ、基板38を熱処理炉30内に収容した。次に、熱処理炉内を600〜630℃の温度に加熱し、COとHを含む混合ガス(混合容積比:CO/H=80/20)を原料ガスとしてこの原料ガスを流量10L/分で熱処理炉内の空間37に供給しながら約10時間保持してCNFを含む混合物を合成した。得られた混合物を硝酸溶液に浸漬させて、混合物に含まれる触媒粒子を除去して黒鉛化処理を行うことなくCNFを得た。このCNFをX線回折により測定したところ、CNFのグラファイト網平面の積層間隔d002は0.3357nmであった。このCNFを実施例1の負極材料とした。
【0028】
(2) 負極(作用極)の作製
上記負極材料をn−メチルピロリドン中に分散して分散溶液を作製した。次いで結着剤としてPVdFを用意し、この結着剤を溶媒中に溶解し、結着剤の溶液を調製した。次に、分散溶液と結着剤溶液を炭素材料の割合が90重量%、結着剤の割合が10重量%の割合になるようにロールミル等の混合器で混練し、縦×横×厚さがそれぞれ1cm×1cm×0.1cmの正方形金属網状の負極集電体の両面にコーダーにより塗布、乾燥して負極(作用極)を作製した。負極集電体にはメッシュ状に形成された銅箔を用いた。
【0029】
<実施例2>
加熱温度を570〜600℃に変えてCNFを得た以外は実施例1と同様にして負極を作製した。
<実施例3>
加熱温度を540〜570℃に変えてCNFを得た以外は実施例1と同様にして負極を作製した。
【0030】
<実施例4>
先ず、平均粒径1μm以下のCoとMgOの混合粉末1g(混合重量比:Co/MgO=60/40)を触媒粒子として用意した。この触媒粒子をHe及びHを含む混合ガス雰囲気下で加熱して活性化させた。次いで図5に示すように、活性化させた触媒粒子42を基板38上に載せ、基板38を熱処理炉30内に収容した。次に、熱処理炉内を600〜650℃の温度に加熱し、COとHを含む混合ガス(混合容積比:CO/H=80/20)を原料ガスとしてこの原料ガスを流量10L/分で熱処理炉内の空間37に供給しながら約10時間保持してCNTを含む混合物を合成した。得られた混合物を硝酸溶液に浸漬させて、混合物に含まれる触媒粒子を除去して黒鉛化処理を行うことなくCNTを得た。このCNTをX線回折により測定したところ、CNTのグラファイト網平面の積層間隔d002は0.339nmであった。このCNTを実施例4の負極材料とした以外は実施例1と同様にして負極を作製した。
<実施例5>
加熱温度を700〜750℃に変えてCNTを得た以外は実施例4と同様にして負極を作製した。
【0031】
<比較例1>
負極材料に人造黒鉛を用いた以外は実施例1と同様にして負極を作製した。
<比較例2>
負極材料に2800℃の高温で熱処理して黒鉛化処理を施したピッチ系黒鉛を用いた以外は実施例1と同様にして負極を作製した。
<比較例3>
実施例4で得られたCNTを2800℃の高温で熱処理して黒鉛化処理を施したものを負極材料として用いた以外は実施例1と同様にして負極を作製した。
【0032】
<比較試験及び評価>
実施例1〜5及び比較例1〜3の負極(作用極)をそれぞれ3種類ずつ作製し、これらの負極を図7に示す充放電サイクル試験装置60に取付けた。この装置60は、容器61に電解液62(支持塩を有機溶媒に溶かしたもの)が貯留され、上記負極63が正極64及び参照極66とともに電解液62に浸され、更に負極63(作用極)、正極64(対極)及び参照極66がポテンシオスタット67(ポテンショメータ)にそれぞれ電気的に接続された構成となっている。支持塩であるリチウム塩には1MのLiPFを、有機溶媒にはECとDECを重量比(EC/DEC)が1:1の割合でそれぞれ含む溶液、ECとPCを重量比(EC/PC)が1:1の割合でそれぞれ含む溶液、及びPCを含む溶液の3種類をそれぞれ用いた。正極及び参照極には金属リチウムを用いた。この装置を用いて充放電サイクル試験を行い、各負極(作用極)の低率及び高率放電容量を測定した。なお、低率放電容量は70mA/gにて、高率放電容量は350mA/gにてそれぞれ測定を行い、測定電圧範囲を0V〜2.0Vとした。なお、容量は放電容量/(炭素材料重量)より算出した。実施例1〜5及び比較例1〜3の電極の測定結果を表1にそれぞれ示す。
【0033】
【表1】
Figure 2004303613
【0034】
表1より明らかなように、比較例1〜3に用いた負極材料は、PCを含む電解液中では分解反応が生じ、充放電反応が起こらない結果が得られた。これに対して実施例1〜5に用いた負極材料は、全ての電解液中で、特にPCが混入している電解液中でも十分な放電容量を示す結果となった。CNTやCNFを負極材料として用いた実施例1〜5及び比較例3と、それ以外の炭素材料を用いた比較例1及び2を比較すると、CNT、CNFは微細な構造を有しているため、人造黒鉛やピッチ系炭素よりも高率放電時の容量維持率が高い結果となった。また、CNTやCNFを負極材料として用いた実施例1〜5と黒鉛化処理を施した比較例3を比較すると、面間隔d002の測定結果から黒鉛化処理を施さなくても黒鉛構造が発達していることが確認された。
【0035】
【発明の効果】
以上述べたように、本発明の負極材料は、CNT又はCNFのいずれか一方又はその双方を主成分として構成される。CNTは複数のチューブ状グラファイト網が同心円状に形成されたチューブ本体を有し、チューブ本体が10nm〜500nmの平均直径と、100nm以上の長さと、10以上のアスペクト比を有し、CNFは平面状のグラファイト網が複数積層されグラファイト網がファイバの縦軸に対して実質的に垂直であるファイバ本体を有し、ファイバ本体が10nm〜500nmの平均直径と、100nm以上の長さと、10以上のアスペクト比を有し、このチューブ本体又はファイバ本体の表面が厚さ0.1nm〜5nmの無定形炭素層で被覆され、CNT又はCNFがチューブ又はファイバのX線回折において測定されるチューブ本体又はファイバ本体のグラファイト網平面の積層間隔d002が0.3356nm〜0.3450nmであるため、第一に高い電気伝導性を有し、第二にチューブ表面及びファイバ表面が化学的に安定である。また無定形炭素層が活性なチューブ本体、ファイバ本体の黒鉛層を被覆しているため、電解液に含まれるPCの分解反応を抑制し、かつ黒鉛の高容量が得られ、更に高率充放電が可能となる。またCNTやCNFは従来より負極材料として用いられてきた炭素系材料に比べて、平均直径が小さい材料であるため、電池の電極を作製した場合、高密度での充電が可能となり、電池のエネルギー密度向上に繋がる。
更に無定形炭素層がチューブ全表面、ファイバ全表面の少なくとも80%の割合で被覆されることで、化学安定性がより向上し、加工性にも優れる。
【図面の簡単な説明】
【図1】本発明の負極材料の主成分であるカーボンナノチューブの模式図。
【図2】図1に対応するカーボンナノチューブの断面図。
【図3】本発明の負極材料の主成分であるカーボンナノファイバの模式図。
【図4】図3に対応するカーボンナノファイバの断面図。
【図5】カーボンナノチューブ及びカーボンナノファイバを作製する熱処理炉の断面構成図。
【図6】本発明のリチウムイオン二次電池の電極体を示す部分断面構成図。
【図7】実施例及び比較例のリチウム二次電池用負極活物質の充放電サイクル試験に用いられる装置。
【符号の説明】
10 カーボンナノチューブ
11 チューブ本体
12 無定形炭素層
20 カーボンナノファイバ
21 ファイバ本体
22 無定形炭素層

Claims (8)

  1. カーボンナノチューブ(10)又はカーボンナノファイバ(20)のいずれか一方又はその双方を主成分とし、
    前記カーボンナノチューブ(10)は、複数のチューブ状グラファイト網が同心円状に形成されたチューブ本体(11)を有し、前記チューブ本体(11)が10nm〜500nmの平均直径と、100nm以上の長さと、10以上のアスペクト比を有し、
    前記カーボンナノファイバ(20)は、平面状のグラファイト網が複数積層され前記グラファイト網がファイバの縦軸に対して実質的に垂直であるファイバ本体(21)を有し、前記ファイバ本体(21)が10nm〜500nmの平均直径と、100nm以上の長さと、10以上のアスペクト比を有し、
    前記カーボンナノチューブ(10)又はカーボンナノファイバ(20)がチューブ又はファイバのX線回折において測定される前記チューブ本体(11)又はファイバ本体(21)のグラファイト網平面の積層間隔d002が0.3356nm〜0.3450nmであって、
    前記チューブ本体(11)又はファイバ本体(21)の表面が厚さ0.1nm〜5nmの無定形炭素層(12,22)で被覆されたことを特徴とする負極材料。
  2. 無定形炭素層(12,22)がチューブ本体(11)全表面又はファイバ本体(21)全表面のいずれか一方又はその双方の少なくとも80%の割合で被覆された請求項1記載の負極材料。
  3. カーボンナノチューブ(10)又はカーボンナノファイバ(20)のいずれか一方又はその双方に加えて、更に黒鉛構造を有する炭素微粉からなる粒子状凝集体を含み、
    前記カーボンナノチューブ(10)又はカーボンナノファイバ(20)のいずれか一方又はその双方が80重量%〜99.5重量%、前記粒子状凝集体が0.5重量%〜20重量%の割合である請求項1記載の負極材料。
  4. 金属又は金属酸化物のいずれか一方又はその双方が、カーボンナノチューブ(10)又はカーボンナノファイバ(20)のいずれか一方又はその双方の長軸上にある請求項1ないし3いずれか1項に記載の負極材料。
  5. 平均粒径10nm〜500nmの金属又は金属酸化物のいずれか一方又はその双方を0.5重量%〜10重量%更に含む請求項1ないし4いずれか1項に記載の負極材料。
  6. 金属又は金属酸化物中の金属のいずれか一方又はその双方がFe、Co、Ni、Mg及びAlからなる群より選ばれた少なくとも1種の元素である請求項5記載の負極材料。
  7. 請求項1ないし6いずれか1項に記載の負極材料と、結着剤とを用いて形成された負極。
  8. 請求項7記載の負極を用いて形成されたリチウムイオン二次電池。
JP2003096254A 2003-03-31 2003-03-31 負極材料及びこれを用いた負極並びに該負極を用いたリチウムイオン二次電池 Pending JP2004303613A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003096254A JP2004303613A (ja) 2003-03-31 2003-03-31 負極材料及びこれを用いた負極並びに該負極を用いたリチウムイオン二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096254A JP2004303613A (ja) 2003-03-31 2003-03-31 負極材料及びこれを用いた負極並びに該負極を用いたリチウムイオン二次電池

Publications (1)

Publication Number Publication Date
JP2004303613A true JP2004303613A (ja) 2004-10-28

Family

ID=33408376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096254A Pending JP2004303613A (ja) 2003-03-31 2003-03-31 負極材料及びこれを用いた負極並びに該負極を用いたリチウムイオン二次電池

Country Status (1)

Country Link
JP (1) JP2004303613A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1309104C (zh) * 2005-04-06 2007-04-04 清华大学 一种提高碳纳米管电化学储锂容量的方法
KR100835883B1 (ko) * 2006-07-14 2008-06-09 금호석유화학 주식회사 탄소나노섬유를 혼성화시킨 리튬이차전지용 음극 활물질
JP2010129169A (ja) * 2008-11-25 2010-06-10 National Institute Of Advanced Industrial Science & Technology 負極用カーボンナノチューブ材料およびこれを負極とするリチウムイオン二次電池
JP2010525549A (ja) * 2007-04-23 2010-07-22 アプライド・サイエンシズ・インコーポレーテッド ケイ素を炭素材料へ蒸着しリチウムイオン電池用アノードを形成する方法
CN101718738B (zh) * 2009-11-06 2013-01-02 北京化工大学 NiAl-层状双金属氢氧化物/碳纳米管复合物电极及其制备方法和应用
CN103199254A (zh) * 2013-04-03 2013-07-10 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池石墨负极材料及其制备方法
US8834828B2 (en) 2008-03-06 2014-09-16 Ube Industries, Ltd. Fine carbon fiber, fine short carbon fiber, and manufacturing method for said fibers
US9206048B2 (en) 2009-08-07 2015-12-08 Ube Industries, Ltd. Electroconductive polyamide resin composition
US9234080B2 (en) 2009-04-02 2016-01-12 Ube Industries, Ltd. Conductive resin composition
US9236163B2 (en) 2009-08-07 2016-01-12 Ube Industries, Ltd. Electroconductive resin composition
US9410645B2 (en) 2009-09-07 2016-08-09 Ube Industries, Ltd. Multilayer tube for transportation
CN115246746A (zh) * 2021-04-25 2022-10-28 中国科学院苏州纳米技术与纳米仿生研究所 轻柔层状碳膜及其制备方法与应用

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1309104C (zh) * 2005-04-06 2007-04-04 清华大学 一种提高碳纳米管电化学储锂容量的方法
KR100835883B1 (ko) * 2006-07-14 2008-06-09 금호석유화학 주식회사 탄소나노섬유를 혼성화시킨 리튬이차전지용 음극 활물질
JP2010525549A (ja) * 2007-04-23 2010-07-22 アプライド・サイエンシズ・インコーポレーテッド ケイ素を炭素材料へ蒸着しリチウムイオン電池用アノードを形成する方法
US8834828B2 (en) 2008-03-06 2014-09-16 Ube Industries, Ltd. Fine carbon fiber, fine short carbon fiber, and manufacturing method for said fibers
US9103052B2 (en) 2008-03-06 2015-08-11 Ube Industries, Ltd. Fine carbon fiber, fine short carbon fiber, and manufacturing method for said fibers
JP2010129169A (ja) * 2008-11-25 2010-06-10 National Institute Of Advanced Industrial Science & Technology 負極用カーボンナノチューブ材料およびこれを負極とするリチウムイオン二次電池
US9234080B2 (en) 2009-04-02 2016-01-12 Ube Industries, Ltd. Conductive resin composition
US9206048B2 (en) 2009-08-07 2015-12-08 Ube Industries, Ltd. Electroconductive polyamide resin composition
US9236163B2 (en) 2009-08-07 2016-01-12 Ube Industries, Ltd. Electroconductive resin composition
US9410645B2 (en) 2009-09-07 2016-08-09 Ube Industries, Ltd. Multilayer tube for transportation
CN101718738B (zh) * 2009-11-06 2013-01-02 北京化工大学 NiAl-层状双金属氢氧化物/碳纳米管复合物电极及其制备方法和应用
CN103199254A (zh) * 2013-04-03 2013-07-10 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池石墨负极材料及其制备方法
CN115246746A (zh) * 2021-04-25 2022-10-28 中国科学院苏州纳米技术与纳米仿生研究所 轻柔层状碳膜及其制备方法与应用

Similar Documents

Publication Publication Date Title
Ma et al. Na4Fe3 (PO4) 2 (P2O7)@ NaFePO4@ C core-double-shell architectures on carbon cloth: A high-rate, ultrastable, and flexible cathode for sodium ion batteries
US20200028150A1 (en) Cathode active material for lithium-ion secondary battery and preparation method thereof, cathode pole piece for lithium-ion secondary battery, and lithium-ion secondary battery
He et al. Folded-hand silicon/carbon three-dimensional networks as a binder-free advanced anode for high-performance lithium-ion batteries
JP3961440B2 (ja) カーボンナノチューブの製造方法
Yi et al. Influence of silicon nanoscale building blocks size and carbon coating on the performance of micro‐sized Si–C composite Li‐ion anodes
JP4208034B2 (ja) 導電性複合粒子の製造方法
JP5826405B2 (ja) ナノシリコン炭素複合材料及びその調製方法
JP5851756B2 (ja) 炭素ナノ構造体、金属担持炭素ナノ構造体、リチウムイオン2次電池、炭素ナノ構造体の製造方法、及び金属担持炭素ナノ構造体の製造方法
Park et al. Iron diselenide combined with hollow graphitic carbon nanospheres as a high-performance anode material for sodium-ion batteries
Song et al. Porous nano-Si/carbon derived from zeolitic imidazolate frameworks@ nano-Si as anode materials for lithium-ion batteries
JP4157791B2 (ja) カーボンナノファイバの製造方法
JP2018504762A (ja) リチウム電池用負極の作製方法
JP2016526262A5 (ja)
JPWO2006067891A1 (ja) 複合負極活物質およびその製造法ならびに非水電解質二次電池
WO2006068066A1 (ja) 非水電解液二次電池用もしくは非水電解液電気化学キャパシタ用の複合電極活物質およびその製造法
JP6302878B2 (ja) 電着法を用いた金属酸化物が担持されたカーボンナノファイバー電極の製造方法
Gaikwad et al. Enhanced catalytic graphitization of resorcinol formaldehyde derived carbon xerogel to improve its anodic performance for lithium ion battery
JP2004303613A (ja) 負極材料及びこれを用いた負極並びに該負極を用いたリチウムイオン二次電池
JP6497462B1 (ja) リチウムイオン電池用電極材料及びリチウムイオン電池
JP5997345B2 (ja) 炭素ナノ構造体、金属担持炭素ナノ構造体及びリチウム二次電池
Wang et al. Transition Metal Nitrides in Lithium‐and Sodium‐Ion Batteries: Recent Progress and Perspectives
Hsu et al. Carbon fibers as three-dimensional current collectors for silicon/reduced graphene oxide lithium ion battery anodes with improved rate performance and cycle life
Zhang et al. A carob-inspired nanoscale design of yolk–shell Si@ void@ TiO 2-CNF composite as anode material for high-performance lithium-ion batteries
KR20160016888A (ko) 리튬 이차 배터리용 코어-셸 유형의 애노드 활성 물질, 이를 제조하는 방법 및 이를 함유하는 리튬 이차 배터리
Wu et al. Electrochemical performance of Li 4 Ti 5 O 12/carbon nanofibers composite prepared by an in situ route for Li-ion batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090127