JP2004296801A - Solar battery element - Google Patents

Solar battery element Download PDF

Info

Publication number
JP2004296801A
JP2004296801A JP2003087435A JP2003087435A JP2004296801A JP 2004296801 A JP2004296801 A JP 2004296801A JP 2003087435 A JP2003087435 A JP 2003087435A JP 2003087435 A JP2003087435 A JP 2003087435A JP 2004296801 A JP2004296801 A JP 2004296801A
Authority
JP
Japan
Prior art keywords
electrode
manganese
solar cell
cell element
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003087435A
Other languages
Japanese (ja)
Inventor
Shuichi Fujii
修一 藤井
Satoshi Tanimoto
谷本  智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003087435A priority Critical patent/JP2004296801A/en
Publication of JP2004296801A publication Critical patent/JP2004296801A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar battery element whose long period of reliability is ensured without coating the surface of electrodes with solder. <P>SOLUTION: The solar battery element comprises a semiconductor board 1 which has a semiconductor junction and the electrodes 5, 6 formed on the surface of the board 1. The electrodes 5, 6 contain manganese or manganese compounds of 0.005 to 5 wt% in terms of manganese content. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は太陽電池素子に関し、特に半導体基板の表面に電極を有する太陽電池素子に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
従来の太陽電池の断面図を図2に示す。図2において、1は半導体基板、2は拡散層、4はBSF層、5は表面電極、6は裏面電極、7は半田層を示す。
【0003】
例えばP型シリコン基板1の表面側には、Pを含むN型拡散層2と窒化シリコン膜などからなる反射防止膜(不図示)が形成される。また、シリコン基板1の裏面側には例えばアルミニウムなどを拡散して形成された高濃度P型のBSF層4を有する。さらに、シリコン基板1の表裏両面にはそれぞれ電極5、6が形成されている。
【0004】
図3に従来の太陽電池素子の一般的な表面電極の形状を示す。図3において、5は表面電極、8は太陽電池素子を示す。図3に示すように、表面電極5は格子状に形成されるのが一般的であり、受光面積を広くすることと抵抗を低減することを考慮して設計される。さらに、この電極5、6の表面は、後工程で太陽電池素子8同士を接続するためにインナーリード(不図示)と接続しやすくするため、また太陽電池素子8の長期信頼性を確保するために半田層7で被覆するのが一般的である(例えば特許文献1参照)。すなわち、電極5、6表面に半田7の被覆を行わないと電極5、6が吸湿したり、酸化するなどの問題により長期信頼性を確保することが難しい。従来、このような半田7としては、Sn−Pbの共晶半田が用いられていた。
【0005】
しかし、近年環境問題がとりざたされる中、Sn−Pbの共晶半田に含まれる鉛が問題となってきており、鉛フリー半田の開発が進められている。しかし、その使用温度や長期信頼性の観点から、従来のSn−Pb共晶半田に勝る太陽電池素子に適した鉛フリー半田は未だ開発されていない。
【0006】
本発明はこのような背景のもとになされたものであり、電極の表面に半田を被覆しなくても長期信頼性を確保できる太陽電池素子を提供することを目的とする。
【0007】
【特許文献1】
特開2002−111016号公報
【0008】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る太陽電池素子では、半導体接合部を有する半導体基板の表面に電極を有する太陽電池素子において、前記電極がマンガンもしくはマンガン化合物をマンガン換算で0.005から5重量%含有していることを特徴とする。
【0009】
上記太陽電池素子では、前記電極が銀を主成分する電極であったほうがよい。
【0010】
また、請求項3に係る太陽電池素子では、半導体接合部を有する半導体基板の表面に電極を有する太陽電池素子において、前記電極にマンガンもしくはマンガン化合物をマンガン換算で0.005から5重量%含有し、JIS C8917の温湿度サイクル試験後のFF値が試験前のFF値の92%以上であり、かつ前記温湿度サイクル試験前のFFの値が電極にマンガンを含有しない太陽電池素子の前記温湿度サイクル試験前のFFの92%以上であることを特徴とする。
【0011】
上記太陽電池素子では、前記半導体基板の表面に反射防止膜を有するとともに、前記電極がTi、Bi、Co、Zn、Zr、Fe、Cr、P、Mgもしくはその化合物を含有していたほうがよい。
【0012】
【発明の実施の形態】
以下、図面を用いて本発明の実施の形態を詳細に説明する。
図1は本発明に係る太陽電池素子の一実施形態を示す断面図である。図1において、1は半導体基板、2は拡散層、4はBSF層、5は表面電極、6は裏面電極を示す。
【0013】
まず、半導体基板1を用意する。この半導体基板1は、単結晶または多結晶シリコンなどからなる。このシリコン基板1は、ボロン(B)などの一導電型半導体不純物を1×1016〜1×1018atoms/cm程度含有し、比抵抗1.0〜2.0Ω・cm程度の基板である。単結晶シリコン基板の場合は引き上げ法などによって形成され、多結晶シリコン基板の場合は鋳造法などによって形成される。多結晶シリコン基板は、大量生産が可能であり、製造コスト面で単結晶シリコン基板よりも有利である。引き上げ法や鋳造法によって形成されたインゴットを300〜500μm程度の厚みにスライスして、10cm×10cmもしくは15cm×15cm程度の大きさに切断して半導体基板1とする。
【0014】
次に、半導体基板1を拡散炉中に配置して、オキシ塩化リン(POCl)などの中で加熱することによって、半導体基板1の表面部分にリン原子を1×1016〜1×1018atoms/cm程度拡散させて拡散層2を形成する。この拡散層2は、0.2〜0.5μm程度の深さに形成され、シート抵抗が40Ω/□以上になるように形成される。次に、半導体基板1の表面側に反射防止膜3を形成する。この反射防止膜3はたとえば窒化シリコン膜などからなり、シランとアンモニアとの混合ガスを用いたプラズマCVD法などで形成される。この反射防止膜3は半導体基板1の表面で光が反射するのを防止して、半導体基板1内に光を有効に取り込むために設ける。
【0015】
そして、裏面側に電極材料を塗布するとともに、この反射防止膜(不図示)の表面電極5に相当する部分をエッチングした上で電極材料を塗布して焼成する。もしくは裏面側に電極材料を塗布するとともに、この反射防止膜3上に直接電極材料を塗布して焼成する。これにより表面電極5と裏面電極6が形成される。
【0016】
電極材料としては銀粉末と有機ビヒクルにガラスフリットを銀100重量部に対して0.1〜5重量部添加してペースト状にした電極ペーストなどが用いられ、電極ペーストをスクリーン印刷法で印刷して650〜900℃で1〜30分程度焼成することにより焼き付けられる。
【0017】
本発明においては、電極材料にマンガン、もしくは酸化マンガン、マンガン塩、ハロゲン化物などを含有させることによって、電極5、6中にマンガンもしくはその化合物を含有させる。マンガンもしくはその化合物は非常に酸化されやすく酸化防止剤としてはたらくため、電極5、6の酸化を有効に抑制することができる。そのため、電極5、6の表面に半田を被覆しなくても太陽電池素子の長期信頼性を確保することができる。
【0018】
このとき、電極5、6に含有されるマンガンの含有量は、電極中の全金属成分中のマンガンもしくはマンガン化合物をマンガン換算で0.005から5重量%とする。例えば銀を主成分として二酸化マンガン(MnO)をマンガン換算で0.005〜5重量%含有する場合、二酸化マンガンとしては0.0079〜7.9重量%存在することになり、銀は92.1〜99.9921重量%存在することになる。さらに例えば銀を主成分として、チタンを電極中の全金属成分中の0.1重量%含有させたペーストの場合、二酸化マンガンとしては0.0079〜7.9重量%存在することになり、銀は92.0〜99.8921重量%存在することになる。電極中の金属成分としては、他に例えばペーストに含まれるガラスフリット中の鉛、ホウ素、珪素、マグネシウム等の酸化物や、リン、鉄、亜鉛、銅、アルミニウム、クロムなどもこれに含まれる。マンガンもしくはマンガン化合物がマンガン換算で0.005重量%以下であれば酸化防止剤としての効果が薄く、本来の目的である電極の酸化を抑制する効果が得られない。また、5重量%以上であれば不純物の混入により電極5、6の導電抵抗が高くなり太陽電池素子の出力特性の低下を招いたり、電極材料同士の結合を阻害して電極5、6が脆弱になるという問題が発生することがある。
【0019】
前記電極5、6は導電抵抗の低い銀、白金、金、銅などを主成分として形成することができる。コストおよび生産性の観点から銀を主成分として形成したほうがよい。
【0020】
また、請求項3に係る太陽電池素子は、電極にマンガンもしくはマンガン化合物をマンガン換算で0.005から5重量%含有し、JIS C8917の温湿度サイクル試験後のFF値が試験前のFF値の92%以上であり、かつ温湿度サイクル試験前のFFの値が電極にマンガンを含有しない太陽電池素子の温湿度サイクル試験前のFFの92%以上であることを特徴とする。
【0021】
JIS C8917の温湿度サイクル試験後のFF値が試験前のFF値の92%以下の場合、電極の表面が酸化されて出力特性が著しく低下することから、長期信頼性に問題がある。また、温湿度サイクル試験前のFFの値が電極にマンガンを含有しない太陽電池素子の温湿度サイクル試験前のFFの92%以下の場合、初期の出力特性が低く、高出力な太陽電池素子を得ることができない。
【0022】
また、上記太陽電池素子では、前記半導体基板1の表面に反射防止膜3を有するとともに、前記電極5、6がTi、Bi、Co、Zn、Zr、Fe、Cr、P、Mgもしくはその化合物を含有していたほうがよい。このようにすることにより、この反射防止膜3の表面電極5に相当する部分をエッチングした上で電極5を形成しなくても、この反射防止膜3上に直接電極材料を塗布して焼成するいわゆるファイヤースルー法によっても半導体基板1と電極5との充分な密着強度を得ることができるとともに、良好なコンタクト抵抗を得ることができる。
【0023】
また、マンガンは安価な材料であるため、太陽電池素子の製造コストの高騰を招くということもない。
【0024】
なお、本発明は上記実施形態に限定されるものではなく、本発明の範囲内で多くの修正および変更を加えることができる。たとえば太陽電池素子の構造はこれに制限されるものではなく、電極が片面にしかない太陽電池素子に使用することも可能であるし、結晶系シリコン太陽電池素子に限定されるものでもない。また、電極の形成方法も電極ペーストを焼成して焼き付ける方法に限定されるものではなく、例えばスパッタリング法や蒸着法などによって形成することも可能である。
【0025】
また、従来ファイヤースルーの際に良好なオーミックコンタクトを得たり、密着強度を確保するために電極材料に含有させて使用するTi、Bi、Co、Zn、Zr、Fe、Cr、PやMgなども非常に酸化されやすい材料であるため、酸化防止剤としての役割を果たす。これら材料をマンガンやマンガン化合物と共に含有させると、半田を被覆しなくても長期信頼性をより確保することができるようになる。
【0026】
【実施例】
以下、本発明の実施例を説明する。15cm×15cmで比抵抗1.5Ω・cmの多結晶半導体基板1表面のダメージ層をアルカリでエッチングして洗浄した。次に、半導体基板1を拡散炉中に配置して、オキシ塩化リン(POCl)の中で加熱することによって、半導体基板1の表面にリン原子を拡散させて拡散層2を形成した。このときのシート抵抗は60Ω/□であった。次に、半導体基板1の表面側にプラズマCVD法によって反射防止膜3となる窒化シリコン膜を形成した。この反射防止膜3の表面電極5に相当する部分をエッチングするとともに、裏面にアルミニウムペーストを塗布し850℃で焼き付けることによってBSF層4を形成した。その後表面に残った余剰なアルミニウムを除去した後、銀粉末と有機ビヒクルにガラスフリットを銀100重量部に対して0.1〜5重量部添加して、表1に示すように二酸化マンガンを添加した電極ペーストを表裏面にスクリーン印刷法によって各条件10枚塗布し、800℃で10分間焼きつけた。その後出力特性の測定を行うとともに、1枚は破壊して蛍光X線分析によってマンガンの含有量を測定した。また、残りの各条件9枚の太陽電池素子は電極表面に半田被覆を行わずにJIS C8917に基づき温湿度サイクル試験を行って長期信頼性の評価を行った。これらの結果を表1に示す。
【0027】
【表1】

Figure 2004296801
【0028】
表1に示すように、条件No.1、2の電極中のマンガンの含有量が0もしくは0.002重量%の条件では温湿度サイクル試験後の出力特性の低下が大きく、長期信頼性に問題がある。また、条件No.11、12の電極中のマンガンの含有量が7、10重量%の条件では、温湿度サイクル試験後の出力特性の低下は小さいものの初期の出力特性が低い。
【0029】
表1の結果からもわかるように、条件No.3〜10のマンガンの含有量が0.005〜5重量%の条件では、条件1の従来のマンガンを含有していない太陽電池素子の初期特性に対する各条件の初期特性がPm、FFとも92%を超える値を得ることができた。また、条件3〜10のマンガンの含有量が0.005〜5重量%の条件では、初期特性に対する温湿度サイクル試験後のPm、FFの比率も92%を超える条件となり、電極の表面に半田を被覆しなくても長期信頼性を確保できる太陽電池素子を得ることができた。
【0030】
【発明の効果】
以上詳細に説明したように、請求項1に係る太陽電池素子によれば、電極中に非常に酸化されやすく酸化防止剤としてはたらくマンガンもしくはその化合物を0.005から5重量%含有させることから、電極の導電抵抗が高くなって太陽電池素子の出力特性の低下を招いたり、電極材料同士の結合を阻害し電極が脆弱になるという問題が発生させることなく、電極の酸化を有効に抑制することができ、電極の表面に半田を被覆しなくても太陽電池素子の長期信頼性を確保することができる。
【0031】
また、請求項3に係る太陽電池素子によれば、電極にマンガンもしくはマンガン化合物をマンガン換算で0.005から5重量%含有し、JIS C8917の温湿度サイクル試験後のFF値が試験前のFF値の92%以上であり、かつ上記温湿度サイクル試験前のFFの値が電極にマンガンを含有しない太陽電池素子の上記温湿度サイクル試験前のFFの92%以上としたことから、電極の導電抵抗が高くなって太陽電池素子の出力特性の低下を招くことなく、電極の酸化を有効に抑制することができ、電極の表面に半田を被覆しなくても太陽電池素子の長期信頼性を確保することができる。
【0032】
また、上記太陽電池素子では、上記半導体基板の表面に反射防止膜を形成するとともに、上記電極がTi、Bi、Co、Zn、Zr、Fe、Cr、P、Mgもしくはその化合物を含有していると、この反射防止膜の表面電極に相当する部分をエッチングした上で電極を形成しなくても、この反射防止膜上に直接電極材料を塗布して焼成するいわゆるファイヤースルー法によっても半導体基板と電極との充分な密着強度を得ることができるとともに、良好なコンタクト抵抗を得ることができる。
【図面の簡単な説明】
【図1】本発明に係る太陽電池素子を示す断面図である。
【図2】従来の太陽電池の示す断面図である。
【図3】従来の太陽電池の表面電極を示す図である。
【符号の説明】
1・・・半導体基板、2・・・拡散層、4・・・BSF層、5・・・表面電極、6・・・裏面電極、7・・・半田[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solar cell element, and more particularly to a solar cell element having an electrode on a surface of a semiconductor substrate.
[0002]
2. Description of the Related Art
FIG. 2 shows a cross-sectional view of a conventional solar cell. 2, 1 denotes a semiconductor substrate, 2 denotes a diffusion layer, 4 denotes a BSF layer, 5 denotes a front electrode, 6 denotes a back electrode, and 7 denotes a solder layer.
[0003]
For example, on the surface side of the P-type silicon substrate 1, an N-type diffusion layer 2 containing P and an antireflection film (not shown) made of a silicon nitride film or the like are formed. On the back side of the silicon substrate 1, there is provided a high-concentration P-type BSF layer 4 formed by diffusing aluminum, for example. Further, electrodes 5 and 6 are formed on the front and back surfaces of the silicon substrate 1, respectively.
[0004]
FIG. 3 shows a general shape of a surface electrode of a conventional solar cell element. In FIG. 3, 5 indicates a surface electrode, and 8 indicates a solar cell element. As shown in FIG. 3, the surface electrode 5 is generally formed in a lattice shape, and is designed in consideration of increasing the light receiving area and reducing the resistance. Further, the surfaces of the electrodes 5 and 6 facilitate connection with inner leads (not shown) in order to connect the solar cell elements 8 in a later step, and also ensure long-term reliability of the solar cell element 8. Is generally covered with a solder layer 7 (for example, see Patent Document 1). That is, unless the surfaces of the electrodes 5 and 6 are coated with the solder 7, it is difficult to ensure long-term reliability due to problems such as the electrodes 5 and 6 absorbing moisture or being oxidized. Conventionally, as such solder 7, Sn-Pb eutectic solder has been used.
[0005]
However, in recent years, environmental issues have been taken up, and lead contained in Sn-Pb eutectic solder has become a problem, and lead-free solder has been developed. However, from the viewpoints of operating temperature and long-term reliability, a lead-free solder suitable for a solar cell element that is superior to the conventional Sn-Pb eutectic solder has not yet been developed.
[0006]
The present invention has been made under such a background, and an object of the present invention is to provide a solar cell element which can ensure long-term reliability without coating the surface of the electrode with solder.
[0007]
[Patent Document 1]
JP 2002-11116 A
[Means for Solving the Problems]
In order to achieve the above object, in the solar cell element according to claim 1, in a solar cell element having an electrode on a surface of a semiconductor substrate having a semiconductor junction, the electrode is formed by converting manganese or a manganese compound to 0.005 in terms of manganese. -5% by weight.
[0009]
In the above solar cell element, it is preferable that the electrode is an electrode containing silver as a main component.
[0010]
Further, in the solar cell element according to claim 3, in the solar cell element having an electrode on a surface of a semiconductor substrate having a semiconductor junction, the electrode contains manganese or a manganese compound in an amount of 0.005 to 5% by weight in terms of manganese. The FF value after the temperature / humidity cycle test of JIS C8917 is 92% or more of the FF value before the test, and the FF value before the temperature / humidity cycle test is such that the temperature / humidity of the solar cell element does not contain manganese in the electrode. It is characterized by being 92% or more of the FF before the cycle test.
[0011]
In the above solar cell element, it is preferable that the semiconductor substrate has an anti-reflection film on the surface and the electrode contains Ti, Bi, Co, Zn, Zr, Fe, Cr, P, Mg or a compound thereof.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a sectional view showing one embodiment of a solar cell element according to the present invention. In FIG. 1, reference numeral 1 denotes a semiconductor substrate, 2 denotes a diffusion layer, 4 denotes a BSF layer, 5 denotes a front electrode, and 6 denotes a back electrode.
[0013]
First, the semiconductor substrate 1 is prepared. This semiconductor substrate 1 is made of single crystal or polycrystalline silicon. This silicon substrate 1 is a substrate containing one conductivity type semiconductor impurity such as boron (B) at about 1 × 10 16 to 1 × 10 18 atoms / cm 3 and having a specific resistance of about 1.0 to 2.0 Ω · cm. is there. In the case of a single crystal silicon substrate, it is formed by a pulling method or the like, and in the case of a polycrystalline silicon substrate, it is formed by a casting method or the like. A polycrystalline silicon substrate can be mass-produced and is more advantageous than a single crystal silicon substrate in terms of manufacturing cost. An ingot formed by a pulling method or a casting method is sliced into a thickness of about 300 to 500 μm, and cut into a size of about 10 cm × 10 cm or 15 cm × 15 cm to obtain a semiconductor substrate 1.
[0014]
Next, the semiconductor substrate 1 is placed in a diffusion furnace and heated in phosphorus oxychloride (POCl 3 ) or the like, so that the surface portion of the semiconductor substrate 1 has phosphorus atoms of 1 × 10 16 to 1 × 10 18. The diffusion layer 2 is formed by diffusing about atoms / cm 3 . The diffusion layer 2 is formed at a depth of about 0.2 to 0.5 μm, and is formed so that the sheet resistance becomes 40Ω / □ or more. Next, an antireflection film 3 is formed on the front surface side of the semiconductor substrate 1. The antireflection film 3 is made of, for example, a silicon nitride film, and is formed by a plasma CVD method using a mixed gas of silane and ammonia. The antireflection film 3 is provided to prevent light from being reflected on the surface of the semiconductor substrate 1 and to effectively take in light into the semiconductor substrate 1.
[0015]
Then, an electrode material is applied to the back surface side, and a portion corresponding to the surface electrode 5 of the antireflection film (not shown) is etched, and then the electrode material is applied and fired. Alternatively, the electrode material is applied on the back surface side, and the electrode material is applied directly on the antireflection film 3 and fired. Thereby, the front surface electrode 5 and the back surface electrode 6 are formed.
[0016]
As the electrode material, an electrode paste or the like obtained by adding 0.1 to 5 parts by weight of glass frit to 100 parts by weight of silver to silver powder and an organic vehicle is used, and the electrode paste is printed by a screen printing method. By baking at 650 to 900 ° C. for about 1 to 30 minutes.
[0017]
In the present invention, manganese or a compound thereof is contained in the electrodes 5 and 6 by containing manganese or manganese oxide, a manganese salt, a halide or the like in the electrode material. Since manganese or its compound is very easily oxidized and acts as an antioxidant, the oxidation of the electrodes 5 and 6 can be effectively suppressed. Therefore, long-term reliability of the solar cell element can be ensured without coating the surfaces of the electrodes 5 and 6 with solder.
[0018]
At this time, the content of manganese contained in the electrodes 5 and 6 is set to 0.005 to 5% by weight of manganese or a manganese compound in all metal components in the electrodes in terms of manganese. For example, when manganese dioxide (MnO 2 ) is mainly contained in an amount of 0.005 to 5% by weight in terms of manganese, manganese dioxide is present in an amount of 0.0079 to 7.9% by weight, and silver has a content of 92.9% by weight. 1 to 99.9921% by weight will be present. Further, for example, in the case of a paste containing silver as a main component and titanium in a content of 0.1% by weight of all metal components in the electrode, manganese dioxide is present in an amount of 0.0079 to 7.9% by weight, and silver is present. Is from 92.0 to 99.8921% by weight. Other examples of the metal component in the electrode include oxides such as lead, boron, silicon, and magnesium in the glass frit contained in the paste, and phosphorus, iron, zinc, copper, aluminum, and chromium. If the amount of manganese or a manganese compound is 0.005% by weight or less in terms of manganese, the effect as an antioxidant is weak, and the original effect of suppressing the oxidation of the electrode cannot be obtained. If the content is 5% by weight or more, the conductive resistance of the electrodes 5 and 6 increases due to the inclusion of impurities, which causes a decrease in the output characteristics of the solar cell element, or inhibits the bonding between the electrode materials and makes the electrodes 5 and 6 brittle. Problem may occur.
[0019]
The electrodes 5 and 6 can be formed using silver, platinum, gold, copper, or the like having a low conductive resistance as a main component. It is better to form silver as a main component from the viewpoint of cost and productivity.
[0020]
Further, the solar cell element according to claim 3 contains manganese or a manganese compound in the electrode in an amount of 0.005 to 5% by weight in terms of manganese, and the FF value after the temperature / humidity cycle test of JIS C8917 is the FF value before the test. The FF value before the temperature-humidity cycle test is 92% or more, and the FF value before the temperature-humidity cycle test is 92% or more of the FF before the temperature-humidity cycle test of the solar cell element containing no manganese in the electrode.
[0021]
If the FF value after the JIS C8917 temperature / humidity cycle test is 92% or less of the FF value before the test, the surface of the electrode is oxidized and the output characteristics are remarkably deteriorated, so that there is a problem in long-term reliability. When the value of the FF before the temperature-humidity cycle test is 92% or less of the FF of the solar cell element containing no manganese in the electrode before the temperature-humidity cycle test, the initial output characteristic is low and the high output solar cell element is used. I can't get it.
[0022]
Further, in the above solar cell element, the antireflection film 3 is provided on the surface of the semiconductor substrate 1, and the electrodes 5, 6 are made of Ti, Bi, Co, Zn, Zr, Fe, Cr, P, Mg or a compound thereof. It is better to contain. In this way, the electrode material is applied directly on the anti-reflection film 3 and baked without forming the electrode 5 after etching the portion of the anti-reflection film 3 corresponding to the surface electrode 5. A sufficient contact strength between the semiconductor substrate 1 and the electrode 5 can be obtained by the so-called fire-through method, and good contact resistance can be obtained.
[0023]
In addition, since manganese is an inexpensive material, there is no increase in the manufacturing cost of the solar cell element.
[0024]
The present invention is not limited to the above embodiment, and many modifications and changes can be made within the scope of the present invention. For example, the structure of the solar cell element is not limited to this, and the solar cell element can be used for a solar cell element having electrodes on only one side, and is not limited to a crystalline silicon solar cell element. Further, the method for forming the electrode is not limited to the method of firing and baking the electrode paste, and the electrode may be formed by, for example, a sputtering method or an evaporation method.
[0025]
In addition, Ti, Bi, Co, Zn, Zr, Fe, Cr, P, Mg, etc., which are conventionally used in an electrode material in order to obtain a good ohmic contact at the time of fire through or to secure adhesion strength, are also used. Since it is a material that is very easily oxidized, it plays a role as an antioxidant. When these materials are contained together with manganese or a manganese compound, long-term reliability can be further ensured without coating with solder.
[0026]
【Example】
Hereinafter, examples of the present invention will be described. A damaged layer on the surface of the polycrystalline semiconductor substrate 1 having a size of 15 cm × 15 cm and a specific resistance of 1.5 Ω · cm was etched and washed with alkali. Next, the semiconductor substrate 1 was placed in a diffusion furnace and heated in phosphorus oxychloride (POCl 3 ) to diffuse phosphorus atoms on the surface of the semiconductor substrate 1 to form a diffusion layer 2. At this time, the sheet resistance was 60Ω / □. Next, a silicon nitride film to be the antireflection film 3 was formed on the front surface side of the semiconductor substrate 1 by a plasma CVD method. The BSF layer 4 was formed by etching a portion of the antireflection film 3 corresponding to the surface electrode 5 and applying an aluminum paste to the back surface and baking at 850 ° C. After removing excess aluminum remaining on the surface, 0.1 to 5 parts by weight of glass frit was added to silver powder and the organic vehicle based on 100 parts by weight of silver, and manganese dioxide was added as shown in Table 1. Ten pieces of the electrode paste were applied to the front and back surfaces by a screen printing method under each condition, and baked at 800 ° C. for 10 minutes. Thereafter, the output characteristics were measured, and one of the sheets was broken to measure the manganese content by fluorescent X-ray analysis. The remaining nine solar cell elements under each of the conditions were evaluated for long-term reliability by performing a temperature-humidity cycle test based on JIS C8917 without performing solder coating on the electrode surface. Table 1 shows the results.
[0027]
[Table 1]
Figure 2004296801
[0028]
As shown in Table 1, the condition No. When the manganese content in the electrodes 1 and 2 is 0 or 0.002% by weight, the output characteristics after the temperature-humidity cycle test are greatly reduced, and there is a problem in long-term reliability. Condition No. Under the conditions where the manganese content in the electrodes 11 and 12 is 7, 10% by weight, the output characteristics after the temperature-humidity cycle test are small, but the initial output characteristics are low.
[0029]
As can be seen from the results in Table 1, the condition No. Under the condition that the manganese content of 3 to 10 is 0.005 to 5% by weight, the initial characteristics of each condition are 92% with respect to the initial characteristics of the conventional manganese-free solar cell element of Condition 1 for both Pm and FF. Could be obtained. Further, under the conditions 3 to 10 in which the manganese content is 0.005 to 5% by weight, the ratio of Pm and FF after the temperature / humidity cycle test to the initial characteristics also exceeds 92%, and the solder A solar cell element which can secure long-term reliability without coating was obtained.
[0030]
【The invention's effect】
As described in detail above, according to the solar cell element according to claim 1, since manganese or a compound thereof which is very easily oxidized and acts as an antioxidant is contained in the electrode in an amount of 0.005 to 5% by weight, Effective suppression of electrode oxidation without increasing the conductive resistance of the electrodes and deteriorating the output characteristics of the solar cell element, or preventing the electrodes from becoming weakened by inhibiting the bonding between electrode materials Accordingly, long-term reliability of the solar cell element can be ensured without coating the surface of the electrode with solder.
[0031]
According to the solar cell element of the third aspect, the electrode contains manganese or a manganese compound in an amount of 0.005 to 5% by weight in terms of manganese, and the FF value after the temperature / humidity cycle test according to JIS C8917 is FF before the test. Since the FF value before the temperature / humidity cycle test was 92% or more of the value and the FF value before the temperature / humidity cycle test was 92% or more of the FF before the temperature / humidity cycle test of the solar cell element containing no manganese in the electrode. The oxidation of the electrodes can be effectively suppressed without increasing the resistance and deteriorating the output characteristics of the solar cell element, and the long-term reliability of the solar cell element can be ensured without coating the surface of the electrode with solder. can do.
[0032]
In the solar cell element, an antireflection film is formed on the surface of the semiconductor substrate, and the electrode contains Ti, Bi, Co, Zn, Zr, Fe, Cr, P, Mg, or a compound thereof. Even if the electrode corresponding to the surface electrode of the anti-reflection film is etched and the electrode is not formed, the electrode material is directly applied on the anti-reflection film and baked by a so-called fire-through method. Sufficient contact strength with the electrode can be obtained, and good contact resistance can be obtained.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a solar cell element according to the present invention.
FIG. 2 is a cross-sectional view illustrating a conventional solar cell.
FIG. 3 is a diagram showing a surface electrode of a conventional solar cell.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 2 ... Diffusion layer, 4 ... BSF layer, 5 ... Surface electrode, 6 ... Back electrode, 7 ... Solder

Claims (4)

半導体接合部を有する半導体基板の表面に電極を有する太陽電池素子において、前記電極がマンガンもしくはマンガン化合物をマンガン換算で0.005から5重量%含有していることを特徴とする太陽電池素子。A solar cell element having an electrode on a surface of a semiconductor substrate having a semiconductor junction, wherein the electrode contains manganese or a manganese compound in an amount of 0.005 to 5% by weight in terms of manganese. 前記電極が銀を主成分する電極であることを特徴とする請求項1に記載の太陽電池素子。The solar cell element according to claim 1, wherein the electrode is an electrode containing silver as a main component. 半導体接合部を有する半導体基板の表面に電極を有する太陽電池素子において、前記電極にマンガンもしくはマンガン化合物をマンガン換算で0.005から5重量%含有し、JIS C8917の温湿度サイクル試験後のFF値が試験前のFF値の92%以上であり、かつ前記温湿度サイクル試験前のFFの値が電極にマンガンを含有しない太陽電池素子の前記温湿度サイクル試験前のFFの92%以上であることを特徴とする太陽電池素子。In a solar cell element having an electrode on the surface of a semiconductor substrate having a semiconductor junction, the electrode contains manganese or a manganese compound in an amount of 0.005 to 5% by weight in terms of manganese, and has an FF value after a temperature and humidity cycle test according to JIS C8917. Is 92% or more of the FF value before the test, and the FF value before the temperature / humidity cycle test is 92% or more of the FF before the temperature / humidity cycle test of the solar cell element containing no manganese in the electrode. A solar cell element characterized by the above-mentioned. 前記半導体基板の表面に反射防止膜を有するとともに、前記電極がTi、Bi、Co、Zn、Zr、Fe、Cr、P、Mgもしくはその化合物を含有していることを特徴とする請求項1ないし3のいずれかに記載の太陽電池素子。2. The semiconductor device according to claim 1, further comprising an antireflection film on a surface of the semiconductor substrate, wherein the electrode contains Ti, Bi, Co, Zn, Zr, Fe, Cr, P, Mg, or a compound thereof. 4. The solar cell element according to any one of 3.
JP2003087435A 2003-03-27 2003-03-27 Solar battery element Pending JP2004296801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003087435A JP2004296801A (en) 2003-03-27 2003-03-27 Solar battery element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003087435A JP2004296801A (en) 2003-03-27 2003-03-27 Solar battery element

Publications (1)

Publication Number Publication Date
JP2004296801A true JP2004296801A (en) 2004-10-21

Family

ID=33401818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003087435A Pending JP2004296801A (en) 2003-03-27 2003-03-27 Solar battery element

Country Status (1)

Country Link
JP (1) JP2004296801A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078661A (en) * 2006-09-21 2008-04-03 Commiss Energ Atom Method for metallizing photovoltaic cell, as well as, performing a plurality of annealing process
JP2008135416A (en) * 2005-11-11 2008-06-12 Mitsubishi Materials Corp Composition for forming electrode in solar cell, method of forming electrode, and solar cell using electrode obtained by the same
US8758891B2 (en) 2007-04-19 2014-06-24 Mitsubishi Materials Corporation Conductive reflective film and production method thereof
US8816193B2 (en) 2006-06-30 2014-08-26 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
US8822814B2 (en) 2006-10-11 2014-09-02 Mitsubishi Materials Corporation Composition for electrode formation and method for forming electrode by using the composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135416A (en) * 2005-11-11 2008-06-12 Mitsubishi Materials Corp Composition for forming electrode in solar cell, method of forming electrode, and solar cell using electrode obtained by the same
US8816193B2 (en) 2006-06-30 2014-08-26 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
US9312404B2 (en) 2006-06-30 2016-04-12 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
US9620668B2 (en) 2006-06-30 2017-04-11 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
JP2008078661A (en) * 2006-09-21 2008-04-03 Commiss Energ Atom Method for metallizing photovoltaic cell, as well as, performing a plurality of annealing process
US8822814B2 (en) 2006-10-11 2014-09-02 Mitsubishi Materials Corporation Composition for electrode formation and method for forming electrode by using the composition
US8758891B2 (en) 2007-04-19 2014-06-24 Mitsubishi Materials Corporation Conductive reflective film and production method thereof
US10020409B2 (en) 2007-04-19 2018-07-10 Mitsubishi Materials Corporation Method for producing a conductive reflective film

Similar Documents

Publication Publication Date Title
JP5528653B2 (en) Semiconductor substrate, electrode forming method and solar cell manufacturing method
JP5127207B2 (en) Solar cell element and solar cell module using the same
JP4948876B2 (en) The conductive paste for solar cell elements, and the manufacturing method of a solar cell element using the same.
JP2000090734A (en) Conductive paste, and solar battery using it
US20040200522A1 (en) Solar cell element and solar cell module
US20120238052A1 (en) Method of producing a crystalline silicon solar cell
JP4556886B2 (en) Conductive paste and solar cell element
JP3625081B2 (en) Manufacturing method of solar cell
JP2006278071A (en) Paste composition, electrode, and solar battery element equipped with the same
JPWO2015030199A1 (en) Solar cell element and manufacturing method thereof
JP2005347276A (en) Electric conductive paste, electrode, solar cell, and method for manufacturing solar cell
JP2008159917A (en) Conductive paste for photoelectric conversion device, photoelectric conversion device, and method of constructing photoelectric conversion device
JP2004207493A (en) Semiconductor device, its manufacturing method, and solar cell
JP4780953B2 (en) Solar cell element and solar cell module using the same
JP2005050983A (en) Solar battery cell and its manufacturing method
JP2004296801A (en) Solar battery element
CN102024506A (en) Aluminum paste for solar cell
JP2005167158A (en) Solar battery cell and solar battery module
JP2004235276A (en) Solar cell element and its forming method
JP2002198547A (en) Method for manufacturing solar cell
JP2009182290A (en) Solar cell and method of manufacturing the same
JP6495713B2 (en) Solar cell element and manufacturing method thereof
JPH06204512A (en) Electrode paste for semiconductor substrate
JP2005129660A (en) Solar cell element and forming method thereof
TW201212044A (en) Electronic component, conductive paste, and method for manufacturing electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090519