JP3625081B2 - Manufacturing method of solar cell - Google Patents

Manufacturing method of solar cell Download PDF

Info

Publication number
JP3625081B2
JP3625081B2 JP29143894A JP29143894A JP3625081B2 JP 3625081 B2 JP3625081 B2 JP 3625081B2 JP 29143894 A JP29143894 A JP 29143894A JP 29143894 A JP29143894 A JP 29143894A JP 3625081 B2 JP3625081 B2 JP 3625081B2
Authority
JP
Japan
Prior art keywords
solar cell
electrode
range
glass frit
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29143894A
Other languages
Japanese (ja)
Other versions
JPH08148447A (en
Inventor
東彦 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP29143894A priority Critical patent/JP3625081B2/en
Publication of JPH08148447A publication Critical patent/JPH08148447A/en
Application granted granted Critical
Publication of JP3625081B2 publication Critical patent/JP3625081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【0001】
【産業上の利用分野】
本発明は、導電性ペーストの焼結膜からなる電極を備える太陽電池の形成方法に関する。
【0002】
【従来の技術】
p型Si半導体基板上に電極が形成された構成の電子部品としては、図2及び図3で簡略化して示すような太陽電池が知られており、この太陽電池は、厚みが500μm程度とされたp型Si半導体基板1を具備し、かつ、p型Si半導体基板1の一方面には深さ0.3〜0.5μm程度のn型不純物層2が形成されたものとなっている。そして、p型Si半導体基板1の一方面(受光面)上には、n型不純物層2から負(マイナス)電位を取り出すためのグリッド電極3と、光電変換効率を高めるための反射防止膜4とがそれぞれ形成されている。
【0003】
また、この際におけるp型Si半導体基板1の他方面上には正(プラス)電位を取り出すための裏面電極5が形成されており、この裏面電極5はアルミニウム(Al)電極膜5a及び銀(Ag)電極膜5bからなる二層構造を有している。なお、図2中の符号6は外部接続用端子部であり、この外部接続用端子部6はグリッド電極3同士を接続したうえで設けられている。
【0004】
さらに、このような太陽電池は、以下のような手順に従って作製されるのが一般的となっている。すなわち、まず、p型Si半導体基板1の一方面に対するn型不純物の拡散によってn型不純物層2を形成し、かつ、SiOやTiOなどからなる反射防止膜4を形成することによって受光面を構成した後、導電性ペーストを塗布したうえで焼き付けることによってグリッド電極3を形成する。そして、p型Si半導体基板1の他方面上にAlペーストを塗布し、かつ、660℃(Alの融点)以上の温度で焼き付けることによってAl電極膜5aを形成すると同時に、BSF(back surface field)といわれるAl−Si合金層(図示していない)をp型Si半導体基板1の表面内部に形成してオーミックコンタクトを得る。
【0005】
引き続き、AgペーストをAl電極膜5a上に塗布したうえ、このAgペーストを600〜650℃の温度で焼き付けることにより、半田付け性を得るためのAg電極膜5bを形成する。その後、リフロー半田付けによってグリッド電極3上に外部接続用端子部6を形成すると、図2及び図3で示した構成の太陽電池が作製されたことになる。
【0006】
【発明が解決しようとする課題】
ところで、前記従来構成の太陽電池においては、裏面電極5を構成するAl電極膜5aの膜厚が薄いと、p型Si半導体基板1に対するAlの拡散が不十分となり、電気的特性(フィルファクタ)が満足されなくなるから、Al電極膜5aの膜厚を20〜50μm程度と設定することが行われている。しかしながら、Al電極膜5aの膜厚が厚い場合には、このAl電極膜5a上に形成されて裏面電極5を構成するAg電極膜5bに対して引っ張り方向の外力が作用した際、Al電極膜5aが層内剥離を起こすため、引っ張り強度が弱くなって実装上の不都合を生じてしまう。なお、この際における太陽電池が実用的に具備しているべき特性レベルは、フィルファクタが0.7以上であり、半田付け性が良好で引っ張り強度が10N(ニュートン)以上であることとされているのが一般的である。
【0007】
そこで、このような不都合を回避する一つの対策として、オーミックコンタクトを得るために形成済みのAl電極5aをp型Si半導体基板1から引き剥がすことによってAl−Si合金層を露出させた後、このAl−Si合金層上にAg電極5bを一層のみ直接的に形成することが行われている。しかし、この対策を採用した場合には、形成済みとなったAl電極5aをわざわざ引き剥がす必要があるため、大変な手間を要してしまうことになる。
【0008】
また、Alペーストを塗布して乾燥させた後、Agペーストを重ね塗りしたうえで同時焼き付けする対策も試みられている。ところが、Al−Si間での良好なオーミックコンタクトを得るためには、Ag−Al共晶点(566℃)よりも高いAl−Si共晶点(577℃)以上の温度で焼き付ける必要があり、Al−Si共晶点以上での焼き付けを行った場合には、Ag−Alの金属間化合物化反応が著しく、Ag−Al合金が形成されてしまう結果、半田付け性を得ることが不可能となってしまう。
【0009】
本発明は、これらの不都合に鑑みて創案されたものであって、良好なオーミックコンタクト及び半田付け性を確保しつつ、引っ張り強度の向上を図ることができる導電性ペーストを用いて形成された電極を備える太陽電池の提供を目的としている。
【0010】
【課題を解決するための手段】
本発明にかかる太陽電池の製造方法は、配合比率が85〜98.5wt%の範囲内にある銀粉末と、0.5〜10wt%の範囲内、かつ、平均粒径が5〜20μmの範囲内にあるアルミニウム粉末と、ホウケイ酸鉛系ガラスフリット、ホウケイ酸ビスマス系ガラスフリット、またはホウケイ酸亜鉛系ガラスフリットのいずれか1つからなり、かつ、1〜10wt%の範囲内にあるガラスフリットと、有機質ビヒクルと、を混練し、導電性ペーストを得る工程と、前記導電性ペーストをp型シリコン半導体基板上に塗付、および乾燥後に焼き付けて、電極を形成する工程と、を有することを特徴とするものである。
【0012】
【実施例】
以下、本発明の実施例を説明する。
【0013】
本実施例にかかる導電性ペーストは、ペースト全体に対する配合比率が60〜90wt%の範囲内にある固形分と、10〜40wt%の範囲内にある有機質ビヒクルとからなり、p型Si半導体基板上に電極を形成する際、つまり図1で断面構造を示す太陽電池の裏面電極5を形成する際などに用いられるものである。そして、この導電性ペーストにおける固形分は、固形分全体に対する配合比率が85〜98.5wt%の範囲内にあるAg粉末と、0.5〜10wt%の範囲内にあるAl粉末と、1〜10wt%の範囲内にあるガラスフリットとを含んで構成されたものとなっている。
【0014】
また、この際におけるAl粉末の平均粒径は、5〜20μmの範囲内とされている。すなわち、ここで、Al粉末の平均粒径を上記範囲内としたのは、Al−Si間の反応が生じる650〜750℃の温度下においてもAg−Al間の反応を抑制するためであり、オーミックコンタクトと半田付け性とのバランスはAl粉末の平均粒径を10〜15μmの範囲内とした場合が最良となる。
【0015】
さらにまた、本実施例の太陽電池は、従来例にかかる太陽電池の裏面電極5がAl電極膜5a及びAg電極膜5bからなる二層構造であったのに対し、本実施例にかかる導電性ペーストを用いて形成された一層構造の裏面電極5を備えたことを特徴とするものである。
【0016】
本実施例においては、まず、粒径が0.5μmの球状Ag粉及び粒径が2μmの塊状Ag粉を重量比3:7の割合で混合してなるAg粉末と、軟化点が510℃程度のホウケイ酸鉛系ガラスフリットと、球状のAl粉末とをそれぞれ固形分として用意し、かつ、エチルセルロースをターピネオールに溶解してなる有機質ビヒクルに対して固形分を加えた後、Al粉末が偏平に潰れないように留意しながら周知のセラミックロールを使用して十分に混練することにより、表1で示すような成分組成とされた各種の導電性ペーストを作製する。なお、この表1中の試料2,3,4,7,8,11,12,14それぞれは本発明の範囲内となる導電性ペーストであり、試料1,5,6,9,10,13,15の各々は本発明の範囲外となる導電性ペーストである。
【0017】
【表1】

Figure 0003625081
【0018】
ところで、この際におけるAg粉は、粒径が0.1〜20μmとなった球状、塊状、偏平状いずれの単独物もしくは混合物であればよく、粒径は0.5〜10μmの範囲内であることが望ましい。そして、Al粉末としては、表面酸化が少ないことから、粒径が5〜20μmとなったアトマイズ粉などのような球状物が好ましい。また、ガラスフリットとしては、650〜750℃の温度で焼き付けた際にSi半導体基板と良好な接着性を示すものがよく、ホウケイ酸鉛系やホウケイ酸ビスマス系、ホウケイ酸亜鉛系などのいずれであってもよい。さらに、有機質ビヒクルは、焼き付け後に灰分が残留しないエチルセルロースやニトロセルロースなどのような繊維素系樹脂やアルキッド樹脂、アクリル樹脂などのうちから選択された1種または2種以上をターピネオールやセルソルブなどの有機溶剤でもって溶解したものである。
【0019】
つぎに、表1で示した各種の導電性ペーストからなる一層構造の裏面電極5が形成された構成の太陽電池を作製するが、この際における作製手順は以下の通りである。
【0020】
すなわち、まず、p型Si半導体基板1の一方面側に所定深さのn型不純物層2を形成することによってpn接合を有するSi半導体基板1を用意したうえ、グリッド電極3を形成すべき領域部分を除くn型不純物層2の表面上に反射防止膜4を形成する。引き続き、p型Si半導体基板1の他方面上には試料1〜15それぞれの導電性ペーストをスクリーン印刷技術の採用によって全面的に塗布して乾燥させ、また、n型不純物層2の表面上にはグリッド電極3となる所定の導電性ペーストを塗布して乾燥させたうえ、最高温度が700℃と設定された近赤外線炉を使用して導電性ペーストの各々を焼き付けることにより、グリッド電極3と、一層構造の裏面電極5とをそれぞれ形成する。
【0021】
ところで、この際における裏面電極5がp型Si半導体基板1の他方面上に対して全面的に形成されたものである必然性はなく、例えば、蜘蛛の巣状やハニカム(蜂の巣)状などとして形成されたものであってもよい。その後、リフロー半田付けによってグリッド電極3上に外部接続用端子部6を形成すると、図1及び図2で示す構成の太陽電池が作製されたことになる。
【0022】
さらに、以上の手順に従って作製された太陽電池、すなわち、表1で示した各種の導電性ペーストを用いてなる裏面電極5がそれぞれ形成された太陽電池の具備する特性レベルをフィルファクタ及び半田付け性、引っ張り強度について調査してみたところ、表2で示すような調査結果が得られた。なお、ここでの半田付け性は、マイルド活性ロジンフラックスを使用し、220℃の温度に維持された2%Ag入り共晶半田中に太陽電池を浸漬したうえで目視判定した結果である。また、引っ張り強度は、一辺長さが2mmとされた正方形状パッドを裏面電極5に対して半田付け接続したうえ、正方形状パッドに接続された直径0.6mmのリード線を太陽電池の表面とは直交する垂直方向に沿って20mm/minの速度で引っ張った際に破壊が生じた外力の値(N)である。
【0023】
【表2】
Figure 0003625081
【0024】
そして、表2で示した特性の調査結果からは、本発明の範囲内である試料2,3,4,7,8,11,12,14いずれの導電性ペーストを用いて形成された裏面電極5によっても、太陽電池が実用的に具備しているべきフィルファクタ及び引っ張り強度、つまり0.7以上のフィルファクタと10N以上の引っ張り強度とが十分に得られており、また、優秀もしくは良好な半田付け性も得られることが分かる。これに対し、本発明の範囲外である試料1,9いずれかの導電性ペーストを用いた場合のフィルファクタは0.7以下と低下し、試料5,6,13それぞれの導電性ペーストを用いた場合には半田付け性が得られなくなり、さらにまた、試料10,15いずれかの導電性ペーストを用いた場合は引っ張り強度が大きく低下することが明らかとなっている。
【0025】
すなわち、この調査結果によれば、Al粉末の配合比率が0.5wt%未満ではフィルファクタが低下し、かつ、その配合比率が10wt%を越えると半田付け性が極端に低下することが起こる一方、Al粉末の粒径が5μm未満である場合にはAgとの反応が活発となって半田付け性が低下し、また、粒径が20μmを越えているとSi半導体基板との反応性も低下してオーミックコンタクト不良となることが分かる。そして、ガラスフリットの配合比率が1wt%未満では引っ張り強度が大きく低下することになり、また、10wt%を越えていると半田付け性の低下が生じることも明らかである。
【0026】
さらにまた、以上説明した本実施例においては、軟化点が510℃のホウケイ酸鉛系ガラスフリットを用いるとしていたが、これに代え、軟化点が490℃のホウケイ酸ビスマス系ガラスフリットもしくは軟化点が540℃のホウケイ酸亜鉛系ガラスフリットを含んで調製された導電性ペーストからなる裏面電極5を形成したうえでの調査を行ってみたところ、いずれの場合においても試料8同等の調査結果となることが確認されている。ところで、本実施例における固形分、つまりAg粉末及びAl粉末、ガラスフリットのペースト全体に対する配合比率を60〜90wt%の範囲内としたのは、以下のような理由に基づいている。すなわち、ペースト全体に対する固形分の配合比率が60wt%未満では膜厚が薄くなり過ぎてしまう結果、実装時の半田による裏面電極5の半田食われが発生して引っ張り強度の低下が生じ、また、90wt%を越える場合にはスクリーン印刷に適したペースト粘度が得られにくいためである。
【0027】
【発明の効果】
以上説明したように、本発明にかかる太陽電池によれば、良好なオーミックコンタクト及び半田付け性を確保しつつ、引っ張り強度の向上を図ることができるという効果が得られる。
【図面の簡単な説明】
【図1】本実施例にかかる太陽電池の断面構造を拡大して示す断面図である。
【図2】本実施例及び従来例にかかる太陽電池の平面構造を示す平面図である。
【図3】従来例にかかる太陽電池の断面構造を拡大して示す断面図である。
【符号の説明】
1 p型Si半導体基板
5 裏面電極(電極)[0001]
[Industrial application fields]
The present invention relates to a method for forming a solar cell including an electrode made of a sintered film of a conductive paste.
[0002]
[Prior art]
As an electronic component having a structure in which an electrode is formed on a p-type Si semiconductor substrate, a solar cell as shown in a simplified manner in FIGS. 2 and 3 is known. This solar cell has a thickness of about 500 μm. The p-type Si semiconductor substrate 1 is provided, and an n-type impurity layer 2 having a depth of about 0.3 to 0.5 μm is formed on one surface of the p-type Si semiconductor substrate 1. On one surface (light-receiving surface) of the p-type Si semiconductor substrate 1, a grid electrode 3 for extracting a negative (minus) potential from the n-type impurity layer 2 and an antireflection film 4 for increasing photoelectric conversion efficiency. And are formed respectively.
[0003]
Further, a back electrode 5 for taking out a positive (plus) potential is formed on the other surface of the p-type Si semiconductor substrate 1 at this time. The back electrode 5 includes an aluminum (Al) electrode film 5a and silver ( Ag) It has a two-layer structure composed of the electrode film 5b. Note that reference numeral 6 in FIG. 2 denotes an external connection terminal portion, and the external connection terminal portion 6 is provided after the grid electrodes 3 are connected to each other.
[0004]
Furthermore, such a solar cell is generally manufactured according to the following procedure. That is, first, an n-type impurity layer 2 is formed by diffusion of an n-type impurity with respect to one surface of the p-type Si semiconductor substrate 1, and an antireflection film 4 made of SiO 2 or TiO 2 is formed to thereby receive a light receiving surface. Then, the grid electrode 3 is formed by applying and then baking a conductive paste. Then, an Al paste is applied on the other surface of the p-type Si semiconductor substrate 1 and baked at a temperature of 660 ° C. (the melting point of Al) or higher to form the Al electrode film 5a. At the same time, a BSF (back surface field) is formed. An Al—Si alloy layer (not shown) is formed inside the surface of the p-type Si semiconductor substrate 1 to obtain an ohmic contact.
[0005]
Subsequently, the Ag paste is applied on the Al electrode film 5a, and this Ag paste is baked at a temperature of 600 to 650 ° C., thereby forming the Ag electrode film 5b for obtaining solderability. Thereafter, when the external connection terminal portion 6 is formed on the grid electrode 3 by reflow soldering, the solar cell having the configuration shown in FIGS. 2 and 3 is manufactured.
[0006]
[Problems to be solved by the invention]
By the way, in the solar cell having the conventional configuration, when the Al electrode film 5a constituting the back electrode 5 is thin, Al diffusion to the p-type Si semiconductor substrate 1 becomes insufficient, and electrical characteristics (fill factor) are obtained. Is not satisfied, the thickness of the Al electrode film 5a is set to about 20 to 50 μm. However, when the thickness of the Al electrode film 5a is large, when an external force in the pulling direction acts on the Ag electrode film 5b formed on the Al electrode film 5a and constituting the back electrode 5, the Al electrode film Since 5a causes delamination in the layer, the tensile strength is weakened, resulting in inconvenience in mounting. In this case, the characteristic level that the solar cell should practically have is that the fill factor is 0.7 or more, the solderability is good, and the tensile strength is 10 N (Newton) or more. It is common.
[0007]
Therefore, as one countermeasure for avoiding such inconvenience, after the Al-Si alloy layer is exposed by peeling off the Al electrode 5a that has been formed to obtain an ohmic contact from the p-type Si semiconductor substrate 1, Only one Ag electrode 5b is directly formed on the Al-Si alloy layer. However, when this measure is adopted, it is necessary to take off the Al electrode 5a that has already been formed.
[0008]
In addition, after applying and drying the Al paste, a measure of simultaneously baking after applying the Ag paste repeatedly has been tried. However, in order to obtain a good ohmic contact between Al—Si, it is necessary to bake at a temperature not lower than the Al—Si eutectic point (577 ° C.) higher than the Ag—Al eutectic point (566 ° C.), When baking is performed at an Al-Si eutectic point or higher, the intermetallic compounding reaction of Ag-Al is remarkable, and an Ag-Al alloy is formed. As a result, it is impossible to obtain solderability. turn into.
[0009]
The present invention, which has been developed in view to these disadvantages, while ensuring a good ohmic contact and soldering properties, which is formed by using a conductive paste which can be improved tensile strength It aims at provision of a solar cell provided with an electrode.
[0010]
[Means for Solving the Problems]
The method for producing a solar cell according to the present invention includes a silver powder having a blending ratio in the range of 85 to 98.5 wt%, a range of 0.5 to 10 wt% , and an average particle size in the range of 5 to 20 μm. And a glass frit consisting of any one of lead borosilicate glass frit, bismuth borosilicate glass frit, or zinc borosilicate glass frit and in the range of 1 to 10 wt% And a step of kneading an organic vehicle to obtain a conductive paste, and a step of applying the conductive paste onto a p-type silicon semiconductor substrate and baking it after drying to form an electrode. It is what.
[0012]
【Example】
Examples of the present invention will be described below.
[0013]
The conductive paste according to this example is composed of a solid content in the range of 60 to 90 wt% with respect to the whole paste and an organic vehicle in the range of 10 to 40 wt%, on the p-type Si semiconductor substrate. This is used when forming the back electrode 5 of the solar cell whose sectional structure is shown in FIG. And the solid content in this conductive paste is an Ag powder having a blending ratio with respect to the entire solid content in the range of 85 to 98.5 wt%, an Al powder in the range of 0.5 to 10 wt%, and 1 to It is comprised including the glass frit which exists in the range of 10 wt%.
[0014]
In this case, the average particle diameter of the Al powder is set in the range of 5 to 20 μm. That is, the reason why the average particle diameter of the Al powder is within the above range is to suppress the reaction between Ag and Al even at a temperature of 650 to 750 ° C. where the reaction between Al and Si occurs. The balance between the ohmic contact and the solderability is best when the average particle size of the Al powder is in the range of 10 to 15 μm.
[0015]
Furthermore, in the solar cell of this example, the back electrode 5 of the solar cell according to the conventional example has a two-layer structure composed of the Al electrode film 5a and the Ag electrode film 5b, whereas the conductivity according to this example. A back surface electrode 5 having a single layer structure formed by using a paste is provided.
[0016]
In this example, first, Ag powder formed by mixing spherical Ag powder having a particle diameter of 0.5 μm and massive Ag powder having a particle diameter of 2 μm in a ratio of 3: 7, and a softening point of about 510 ° C. The borosilicate lead glass frit and spherical Al powder were prepared as solid contents, and after adding the solid contents to an organic vehicle in which ethylcellulose was dissolved in terpineol, the Al powder was flattened flatly. Various conductive pastes having the component composition as shown in Table 1 are prepared by sufficiently kneading using a known ceramic roll while paying attention not to cause any problems. Samples 2, 3, 4, 7, 8, 11, 12, and 14 in Table 1 are conductive pastes that fall within the scope of the present invention. Samples 1, 5, 6, 9, 10, and 13 , 15 are conductive pastes that are outside the scope of the present invention.
[0017]
[Table 1]
Figure 0003625081
[0018]
By the way, the Ag powder in this case may be any single or mixture of a spherical shape, a lump shape, and a flat shape with a particle size of 0.1 to 20 μm, and the particle size is in the range of 0.5 to 10 μm. It is desirable. And as Al powder, since there is little surface oxidation, spherical materials, such as atomized powder etc. in which the particle size became 5-20 micrometers are preferable. Glass frit that exhibits good adhesion to the Si semiconductor substrate when baked at a temperature of 650 to 750 ° C. is preferable, such as lead borosilicate, bismuth borosilicate, or zinc borosilicate. There may be. Further, the organic vehicle is an organic material such as terpineol or cellosolve selected from one or more selected from a fibrous resin such as ethyl cellulose and nitrocellulose, an alkyd resin, and an acrylic resin that does not retain ash after baking. It is dissolved with a solvent.
[0019]
Next, a solar cell having a structure in which the back electrode 5 having a single-layer structure made of various conductive pastes shown in Table 1 is formed. The manufacturing procedure in this case is as follows.
[0020]
That is, first, an Si semiconductor substrate 1 having a pn junction is prepared by forming an n-type impurity layer 2 having a predetermined depth on one surface side of a p-type Si semiconductor substrate 1, and a region where a grid electrode 3 is to be formed. An antireflection film 4 is formed on the surface of the n-type impurity layer 2 excluding the portion. Subsequently, the conductive paste of each of the samples 1 to 15 is applied to the entire surface of the other surface of the p-type Si semiconductor substrate 1 by using a screen printing technique and dried, and the surface of the n-type impurity layer 2 is also dried. Is applied with a predetermined conductive paste to be the grid electrode 3 and dried, and then each of the conductive paste is baked using a near-infrared furnace whose maximum temperature is set to 700 ° C. Then, the back electrode 5 having a single layer structure is formed.
[0021]
By the way, the back electrode 5 at this time is not necessarily formed entirely on the other surface of the p-type Si semiconductor substrate 1, and is formed, for example, as a spider web or a honeycomb (honeycomb). It may be what was done. Thereafter, when the external connection terminal portion 6 is formed on the grid electrode 3 by reflow soldering, the solar cell having the configuration shown in FIGS. 1 and 2 is manufactured.
[0022]
Further, the characteristic level of the solar cell manufactured according to the above procedure, that is, the solar cell in which the back electrode 5 made of various conductive pastes shown in Table 1 is formed, is set to the fill factor and solderability. When the tensile strength was investigated, the results shown in Table 2 were obtained. The solderability here is a result of visual judgment after dipping a solar cell in 2% Ag-containing eutectic solder maintained at a temperature of 220 ° C. using a mild active rosin flux. In addition, the tensile strength is such that a square pad with a side length of 2 mm is connected to the back electrode 5 by soldering, and a lead wire having a diameter of 0.6 mm connected to the square pad is connected to the surface of the solar cell. Is the value (N) of the external force at which breakage occurred when pulled at a speed of 20 mm / min along the perpendicular direction perpendicular to each other.
[0023]
[Table 2]
Figure 0003625081
[0024]
And from the investigation results of the characteristics shown in Table 2, the back electrode formed using any conductive paste of Samples 2, 3, 4, 7, 8, 11, 12, and 14 within the scope of the present invention. 5 also provides a sufficient fill factor and tensile strength that the solar cell should have practically, that is, a fill factor of 0.7 or higher and a tensile strength of 10 N or higher, and is excellent or good. It can be seen that solderability is also obtained. On the other hand, the fill factor when using any of the conductive pastes of Samples 1 and 9 which are outside the scope of the present invention is reduced to 0.7 or less, and the conductive pastes of Samples 5, 6 and 13 are used. In the case where the conductive paste is used, the solderability is not obtained, and it is clear that the tensile strength is greatly reduced when the conductive paste of any of the samples 10 and 15 is used.
[0025]
That is, according to the results of the investigation, when the Al powder blending ratio is less than 0.5 wt%, the fill factor decreases, and when the blending ratio exceeds 10 wt%, the solderability decreases extremely. When the particle size of the Al powder is less than 5 μm, the reaction with Ag becomes active and the solderability decreases, and when the particle size exceeds 20 μm, the reactivity with the Si semiconductor substrate also decreases. As a result, it is understood that the ohmic contact is poor. It is also clear that the tensile strength is greatly reduced when the blending ratio of the glass frit is less than 1 wt%, and that the solderability is lowered when it exceeds 10 wt%.
[0026]
Furthermore, in the present embodiment described above, a lead borosilicate glass frit having a softening point of 510 ° C. was used, but instead, a bismuth borosilicate glass frit having a softening point of 490 ° C. or a softening point was used. When the investigation was carried out after forming the back electrode 5 made of a conductive paste prepared containing a zinc borosilicate glass frit at 540 ° C., the investigation result equivalent to that of the sample 8 was obtained in any case. Has been confirmed. By the way, the reason why the solid content in this example, that is, the blending ratio of Ag powder, Al powder, and glass frit with respect to the entire paste is set within the range of 60 to 90 wt% is based on the following reason. That is, when the blending ratio of the solid content with respect to the entire paste is less than 60 wt%, the film thickness becomes too thin. This is because if it exceeds 90 wt%, it is difficult to obtain a paste viscosity suitable for screen printing.
[0027]
【The invention's effect】
As described above, according to the written that solar cell of the present invention, while ensuring a good ohmic contact and solderability, is the effect that it is possible to improve the tensile strength is obtained.
[Brief description of the drawings]
FIG. 1 is an enlarged cross-sectional view of a cross-sectional structure of a solar cell according to an example.
FIG. 2 is a plan view showing a planar structure of a solar cell according to this example and a conventional example.
FIG. 3 is an enlarged sectional view showing a sectional structure of a solar cell according to a conventional example.
[Explanation of symbols]
1 p-type Si semiconductor substrate 5 back electrode (electrode)

Claims (1)

配合比率が85〜98.5wt%の範囲内にある銀粉末と、0.5〜10wt%の範囲内、かつ、平均粒径が5〜20μmの範囲内にあるアルミニウム粉末と、ホウケイ酸鉛系ガラスフリット、ホウケイ酸ビスマス系ガラスフリット、またはホウケイ酸亜鉛系ガラスフリットのいずれか1つからなり、かつ、1〜10wt%の範囲内にあるガラスフリットと、有機質ビヒクルと、を混練し、導電性ペーストを得る工程と、
前記導電性ペーストをp型シリコン半導体基板上に塗付、および乾燥後に焼き付けて、電極を形成する工程と、
を有することを特徴とする太陽電池の製造方法。
Silver powder having a blending ratio in the range of 85 to 98.5 wt%, aluminum powder in the range of 0.5 to 10 wt% and an average particle diameter in the range of 5 to 20 μm, and lead borosilicate A glass frit made of any one of a glass frit, a bismuth borosilicate glass frit, or a zinc borosilicate glass frit and in the range of 1 to 10 wt%, and an organic vehicle are kneaded to provide conductivity. Obtaining a paste; and
Applying the conductive paste on a p-type silicon semiconductor substrate and baking it after drying to form an electrode;
A method for producing a solar cell, comprising:
JP29143894A 1994-11-25 1994-11-25 Manufacturing method of solar cell Expired - Lifetime JP3625081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29143894A JP3625081B2 (en) 1994-11-25 1994-11-25 Manufacturing method of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29143894A JP3625081B2 (en) 1994-11-25 1994-11-25 Manufacturing method of solar cell

Publications (2)

Publication Number Publication Date
JPH08148447A JPH08148447A (en) 1996-06-07
JP3625081B2 true JP3625081B2 (en) 2005-03-02

Family

ID=17768875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29143894A Expired - Lifetime JP3625081B2 (en) 1994-11-25 1994-11-25 Manufacturing method of solar cell

Country Status (1)

Country Link
JP (1) JP3625081B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011158753A1 (en) * 2010-06-17 2013-08-19 日立化成株式会社 Resin paste composition

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100396367B1 (en) * 1998-06-18 2003-09-02 후다바 덴시 고교 가부시키가이샤 Aluminum paste for fluorescent display device, fluorescent display device using aluminum paste and method for manufacturing same
US20040055635A1 (en) * 2002-09-19 2004-03-25 Hiroshi Nagakubo Conductive paste, method for manufacturing solar battery, and solar battery
JP2004179334A (en) * 2002-11-26 2004-06-24 Kyocera Corp Method of forming solar cell element
JP4668523B2 (en) * 2003-06-11 2011-04-13 東洋アルミニウム株式会社 Solar cell element and manufacturing method thereof
US20080000519A1 (en) * 2004-07-29 2008-01-03 Kyocera Corporation Solar Cell Device and Method for Manufacturing the Same
JP4846219B2 (en) * 2004-09-24 2011-12-28 シャープ株式会社 Method for manufacturing crystalline silicon solar cell
JP3926822B2 (en) * 2005-02-03 2007-06-06 三菱電機株式会社 Semiconductor device and manufacturing method of semiconductor device
US7494607B2 (en) * 2005-04-14 2009-02-24 E.I. Du Pont De Nemours And Company Electroconductive thick film composition(s), electrode(s), and semiconductor device(s) formed therefrom
US20060231802A1 (en) * 2005-04-14 2006-10-19 Takuya Konno Electroconductive thick film composition, electrode, and solar cell formed therefrom
JP2007235082A (en) 2006-02-02 2007-09-13 E I Du Pont De Nemours & Co Paste for solar battery electrode
US20100071761A1 (en) * 2006-09-28 2010-03-25 Kyocera Corporation Solar Cell Element and Method for Manufacturing the Same
JP5219355B2 (en) * 2006-10-27 2013-06-26 京セラ株式会社 Method for manufacturing solar cell element
JP4800186B2 (en) * 2006-12-11 2011-10-26 京都エレックス株式会社 Conductive paste
JP4506838B2 (en) * 2008-01-17 2010-07-21 三菱電機株式会社 Solar cell and solar cell module
US8383011B2 (en) * 2008-01-30 2013-02-26 Basf Se Conductive inks with metallo-organic modifiers
DE102008033169A1 (en) * 2008-05-07 2009-11-12 Ersol Solar Energy Ag Process for producing a monocrystalline solar cell
KR101909143B1 (en) * 2012-01-20 2018-10-17 엘지전자 주식회사 Bifacial solar cell
CN102831960B (en) * 2012-08-24 2014-07-30 合肥中南光电有限公司 Lead-free conducting silver paste used for silicon solar cell and preparation method thereof
CN102831959B (en) * 2012-08-24 2014-08-20 合肥中南光电有限公司 Sliver paste for lead-free environment-friendly solar photovoltaic cells and preparation method of silver paste
EP2749545B1 (en) 2012-12-28 2018-10-03 Heraeus Deutschland GmbH & Co. KG Binary glass frits used in N-Type solar cell production
WO2014162818A1 (en) * 2013-04-04 2014-10-09 ナミックス株式会社 Conductive paste for forming electrode, method for manufacturing solar cell, and solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011158753A1 (en) * 2010-06-17 2013-08-19 日立化成株式会社 Resin paste composition

Also Published As

Publication number Publication date
JPH08148447A (en) 1996-06-07

Similar Documents

Publication Publication Date Title
JP3625081B2 (en) Manufacturing method of solar cell
JP3050064B2 (en) CONDUCTIVE PASTE, SOLAR CELL WITH GRID ELECTRODE FORMED FROM THE CONDUCTIVE PASTE AND METHOD FOR MANUFACTURING SAME
JP5278707B2 (en) Ag electrode paste, solar battery cell and manufacturing method thereof
US20120231571A1 (en) Method for producing a solar cell
JP5203970B2 (en) Conductive paste for electrode formation on crystalline silicon substrate
JP2000090734A (en) Conductive paste, and solar battery using it
CN103688365B (en) Element and solaode
JP4556886B2 (en) Conductive paste and solar cell element
TWI725035B (en) Electric conductive paste, solar cell and method for manufacturing solar cell
CN109564945B (en) Conductive paste and solar cell
WO2016147867A1 (en) Electroconductive paste for forming solar cell electrode
JPH0364964B2 (en)
JP2001118425A (en) Conductive paste
CN109313957B (en) Conductive paste and solar cell
JPH11213754A (en) Conductive paste
JP2004207493A (en) Semiconductor device, its manufacturing method, and solar cell
JP3497996B2 (en) Photoelectric conversion device and method of manufacturing the same
JP4975338B2 (en) Solar cell and manufacturing method thereof
JP2794141B2 (en) Method for manufacturing photoelectric conversion device
JP2014220425A (en) Conductive paste, and method of manufacturing solar cell
JP2003273379A (en) Solar cell element
JP2011233548A (en) Conductive paste and solar cell
JP5403304B2 (en) Conductive paste, solar cell, and method for manufacturing solar cell
JPH06204511A (en) Electrode paste for semiconductor substrate
JP6200128B2 (en) Conductive paste for solar cell electrode formation

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

EXPY Cancellation because of completion of term