JP2004253794A - Ink for forming printed wiring board, method for forming printed wiring board, and the printed wiring board - Google Patents

Ink for forming printed wiring board, method for forming printed wiring board, and the printed wiring board Download PDF

Info

Publication number
JP2004253794A
JP2004253794A JP2004018895A JP2004018895A JP2004253794A JP 2004253794 A JP2004253794 A JP 2004253794A JP 2004018895 A JP2004018895 A JP 2004018895A JP 2004018895 A JP2004018895 A JP 2004018895A JP 2004253794 A JP2004253794 A JP 2004253794A
Authority
JP
Japan
Prior art keywords
printed wiring
wiring board
forming
fine particles
ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004018895A
Other languages
Japanese (ja)
Other versions
JP4416080B2 (en
Inventor
Hiroyuki Hirai
博幸 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004018895A priority Critical patent/JP4416080B2/en
Publication of JP2004253794A publication Critical patent/JP2004253794A/en
Application granted granted Critical
Publication of JP4416080B2 publication Critical patent/JP4416080B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an on-demand printed wiring board in which a multilayer wiring structure can be formed, and a method for forming the same. <P>SOLUTION: In the method for forming the printed wiring board, a pattern is drawn on a substrate with a dispersion liquid containing fine particles of a metal oxide or a metal hydroxide and then at least a part of the fine particles of metal oxide or metal hydroxide is reduced to a metal by energy irradiation, thereby a conductive pattern is formed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、プリント配線基板、特にオンデマンドで回路を形成したプリント配線基板に関し、さらに高密度の回路が簡易に形成できるプリント配線基板の形成方法及びそれに用いるインクに関する。   The present invention relates to a printed wiring board, in particular, a printed wiring board on which a circuit is formed on demand, and more particularly to a method for forming a printed wiring board capable of easily forming a high-density circuit and an ink used therefor.

基板上に導電パターンを形成する方法として、(i) 銀や銅等の導電膜をスパッタリング、真空蒸着、無電解めっき、金属箔の接合等により全面に形成した後、フォトリソグラフィーにより所望のパターンにエッチングする方法、(ii) マスクを通して無電解めっきや真空蒸着等により所望の導電パターンを形成する方法、(iii) はんだや導電ペーストを用いて基板上に描画する方法、(iv) 異方性導電膜を形成し、所望のパターンに圧着する方法等が知られている。しかしながら、これらの方法では微細な導電パターンを迅速に形成することは困難である。   As a method for forming a conductive pattern on a substrate, (i) a conductive film such as silver or copper is formed on the entire surface by sputtering, vacuum evaporation, electroless plating, metal foil bonding, etc., and then formed into a desired pattern by photolithography. Etching method, (ii) Forming a desired conductive pattern by electroless plating or vacuum deposition through a mask, (iii) Drawing on a substrate using solder or conductive paste, (iv) Anisotropic conduction A method of forming a film and press-bonding it to a desired pattern is known. However, it is difficult to rapidly form a fine conductive pattern by these methods.

以上の方法の他に、インクジェットやディスペンサー等の技術を用いて銀インクを吐出させ、銀の導電パターンを形成する方法も知られている(例えば、特許文献1参照。)。しかしながら、金属粒子のサイズが数十nm以下になると表面積が大きくなり、酸化を受けやすくなるので、抵抗値の増大が無視できなくなる。この傾向は銅や錫等の標準電極電位がより卑であるナノ粒子の場合顕著であり、インクの保存や取扱いが面倒であるという問題を有する。   In addition to the above methods, a method of forming a silver conductive pattern by discharging silver ink using a technique such as ink jet or dispenser is also known (see, for example, Patent Document 1). However, when the size of the metal particles is several tens of nanometers or less, the surface area is increased and the metal particles are susceptible to oxidation, so an increase in resistance cannot be ignored. This tendency is conspicuous in the case of nanoparticles having a lower standard electrode potential such as copper or tin, and has a problem that the storage and handling of ink is troublesome.

また特開昭59-36993号(特許文献2)には、Cu2O単体、Cu2OとSiOの混合物、Cu2OとSiO2の混合物等の絶縁物をスパッタリング、イオンプレーティング、CVD等の気相法で成膜し、選択的なエネルギー照射により前記絶縁層の一部を金属化して導電パターンを形成する方法が開示されている。この方法は平滑な表面が得られることから薄膜多層配線構造を形成するには適しているが、成膜に時間を要すること、オンデマンドには不適であること等の問題を有している。 Also in JP-A-59-36993 (Patent Document 2), Cu 2 O alone, Cu 2 mixture of O and SiO, Cu 2 O and sputtering of the insulator mixture of SiO 2, ion plating, CVD, etc. And a method of forming a conductive pattern by metallizing a part of the insulating layer by selective energy irradiation. This method is suitable for forming a thin film multilayer wiring structure because a smooth surface can be obtained, but has problems such as requiring time for film formation and being unsuitable for on-demand.

さらに特開平5-37126号(特許文献3)には、基板上に金属酸化物を主成分とする層を設け、光もしくは熱の作用により還元金属領域からなる配線パターンを形成する方法が開示されている。この方法はカーボン微粒子や水素ガスを還元性物質として用いておりしかも金属酸化物を主成分とする層全面に作用する構成となっている。このため、光もしくは熱の拡散により高精細な導電パターンを得にくいという問題がある。   Furthermore, Japanese Patent Laid-Open No. 5-37126 (Patent Document 3) discloses a method of forming a wiring pattern composed of a reduced metal region by the action of light or heat by providing a layer mainly composed of a metal oxide on a substrate. ing. This method uses carbon fine particles or hydrogen gas as a reducing substance, and also acts on the entire surface of a metal oxide-based layer. For this reason, there is a problem that it is difficult to obtain a high-definition conductive pattern by diffusion of light or heat.

特開2002-299833号公報JP 2002-299833 JP 特開昭59-36993号公報JP 59-36993 特開平5-37126号公報Japanese Patent Laid-Open No. 5-37126

従って本発明の目的は、多層配線構造が可能なオンデマンドで高精細のプリント配線基板を提供することである。   Accordingly, an object of the present invention is to provide an on-demand, high-definition printed wiring board capable of a multilayer wiring structure.

本発明のもう一つの目的は、簡易且つ迅速に微細な導電パターンを描画することができるプリント配線基板の形成方法を提供することである。   Another object of the present invention is to provide a method for forming a printed wiring board capable of easily and quickly drawing a fine conductive pattern.

本発明のさらにもう一つの目的は、簡易且つ迅速に微細な導電パターンを描画することができるプリント配線基板の形成に用いるインクを提供することである。   Still another object of the present invention is to provide an ink used for forming a printed wiring board capable of easily and quickly drawing a fine conductive pattern.

(1) 金属酸化物又は金属水酸化物の微粒子を含有する分散液からなるプリント配線基板形成用インクであって、エネルギー照射により前記金属酸化物又は金属水酸化物の微粒子の少なくとも一部が金属に還元されることを特徴とするプリント配線基板形成用インク。
(2) 前記金属酸化物又は金属水酸化物の微粒子に対して実質的に常温では還元性を有さないがエネルギー照射により還元性を発揮する還元剤を含有する分散液からなることを特徴とする前記(1)に記載のプリント配線基板形成用インク。
(3) 前記還元剤が有機還元剤、ヒドラジン及びヒドロキシルアミンからなる群から選ばれた少なくとも1種の化合物であることを特徴とする前記(2)に記載のプリント配線基板形成用インク。
(4) 前記有機還元剤がヒドラジン系化合物類、ヒドロキシルアミン系化合物類、アルカノールアミン類、ジオール類及び一般式:X-(A=B)n-Y(ただし、A及びBはそれぞれ炭素原子又は窒素原子を表し、X及びYの各々は非共有電子対を有する原子がA又はBに結合する原子団を表し、nは0〜3を表す。)により表される化合物類からなる群から選ばれた少なくとも1種の有機化合物であることを特徴とする前記(3)に記載のプリント配線基板形成用インク。
(5) さらに塩基又は塩基プレカーサを含有することを特徴とする前記(1)〜(4)のいずれか一項に記載のプリント配線基板形成用インク。
(6) さらに吸着性化合物、界面活性剤及び/又は親水性高分子を含有することを特徴とする前記(1)〜(5)のいずれか一項に記載のプリント配線基板形成用インク。
(7) 金属酸化物又は金属水酸化物の微粒子を含有する分散液と、前記金属酸化物又は金属水酸化物の微粒子に対して還元性を発揮する還元剤又はその溶液との少なくとも2パーツからなり、両液を混ぜることにより前記金属酸化物又は金属水酸化物の微粒子の少なくとも一部が金属に還元されるプリント配線基板形成用インク。
(8) 前記還元剤が有機還元剤、ヒドラジン及びヒドロキシルアミンからなる群から選ばれた少なくとも1種の化合物であることを特徴とする前記(7)に記載のプリント配線基板形成用インク。
(9) 前記有機還元剤がヒドラジン系化合物類、ヒドロキシルアミン系化合物類、アルカノールアミン類、ジオール類及び一般式:X-(A=B)n-Y(ただし、A及びBはそれぞれ炭素原子又は窒素原子を表し、X及びYの各々は非共有電子対を有する原子がA又はBに結合する原子団を表し、nは0〜3を表す。)により表される化合物類からなる群から選ばれた少なくとも1種の有機化合物であることを特徴とする前記(8)に記載のプリント配線基板形成用インク。
(10) 金属酸化物又は金属水酸化物の微粒子を含有する分散液又は別液(還元剤又はその溶液)に塩基又は塩基プレカーサを添加することを特徴とする前記(7)〜(9)のいずれか一項に記載のプリント配線基板形成用インク。
(11) 金属酸化物又は金属水酸化物の微粒子の表面に吸着性化合物、界面活性剤及び/又は親水性高分子を吸着させることを特徴とする前記(7)〜(10)のいずれか一項に記載のプリント配線基板形成用インク。
(12) 前記金属酸化物又は金属水酸化物の微粒子を構成する金属がAu、Ag、Cu、Pt、Pd、In、Ga、Sn、Ge、Sb、Pb、Zn、Bi、Fe、Ni及びCoからなる群から選ばれた少なくとも1種からなることを特徴とする前記(1)〜(11)のいずれか一項に記載のプリント配線基板形成用インク。
(13) 前記金属酸化物又は金属水酸化物の微粒子を構成する金属がAg又はCuからなることを特徴とする前記(1)〜(12)のいずれか一項に記載のプリント配線基板形成用インク。
(14) 前記(1)〜(13)のいずれか一項に記載のプリント配線基板形成用インクによって基板上にパターンを描画する工程、および前記金属酸化物又は金属水酸化物の微粒子の少なくとも一部を金属に還元して導電パターンを形成する工程を有することを特徴とするプリント配線基板の形成方法。
(15) インクジェットプリンター又はディスペンサーによってパターンを描画することを特徴とする前記(14)に記載のプリント配線基板の形成方法。
(16) 前記パターンを図形情報としてコンピュータに入力し、前記図形情報に基づき、前記プリント配線基板形成用インクでパターンを描画することを特徴とする前記(14)又は(15)に記載のプリント配線基板の形成方法。
(17) 前記導電パターンを形成する工程において、エネルギー照射を行うことを特徴とする前記(14)〜(16)のいずれか一項に記載のプリント配線基板の形成方法。
(18) レーザービーム、電子ビーム、イオンビーム及び熱線から選ばれる少なくとも1種によってエネルギー照射を行うことを特徴とする前記(17)に記載のプリント配線基板の形成方法。
(19) 導電パターンを形成する工程を不活性ガス中で行うことを特徴とする前記(14)〜(18)のいずれか一項に記載のプリント配線基板の形成方法。
(20) 前記(1)〜(13)のいずれか一項に記載のプリント配線基板形成用インクで描画されたパターンを有することを特徴とするプリント配線基板。
(21) 前記(14)〜(19)のいずれか一項に記載のプリント配線基板の形成方法で形成されたことを特徴とするプリント配線基板。
(1) An ink for forming a printed wiring board comprising a dispersion containing fine particles of metal oxide or metal hydroxide, wherein at least a part of the fine particles of metal oxide or metal hydroxide is metal by irradiation with energy. An ink for forming a printed wiring board, which is reduced to
(2) It is characterized by comprising a dispersion containing a reducing agent that has substantially no reducing property at normal temperature with respect to the fine particles of the metal oxide or metal hydroxide, but exhibits a reducing property by energy irradiation. The ink for forming a printed wiring board according to (1) above.
(3) The printed wiring board forming ink as described in (2) above, wherein the reducing agent is at least one compound selected from the group consisting of an organic reducing agent, hydrazine and hydroxylamine.
(4) The organic reducing agent is a hydrazine compound, a hydroxylamine compound, an alkanolamine, a diol, and a general formula: X- (A = B) n -Y (where A and B are carbon atoms or Represents a nitrogen atom, and each of X and Y represents an atomic group in which an atom having an unshared electron pair is bonded to A or B, and n represents 0 to 3). The printed wiring board forming ink as described in (3) above, which is at least one organic compound.
(5) The printed wiring board forming ink as described in any one of (1) to (4) above, further comprising a base or a base precursor.
(6) The ink for forming a printed wiring board according to any one of (1) to (5), further comprising an adsorptive compound, a surfactant, and / or a hydrophilic polymer.
(7) From at least two parts of a dispersion containing fine particles of metal oxide or metal hydroxide and a reducing agent or solution thereof that exhibits reducing properties on the fine particles of metal oxide or metal hydroxide A printed wiring board forming ink in which at least part of the fine particles of the metal oxide or metal hydroxide is reduced to metal by mixing both liquids.
(8) The printed wiring board forming ink as described in (7) above, wherein the reducing agent is at least one compound selected from the group consisting of an organic reducing agent, hydrazine and hydroxylamine.
(9) The organic reducing agent is a hydrazine compound, a hydroxylamine compound, an alkanolamine, a diol, and a general formula: X- (A = B) n -Y (where A and B are carbon atoms or Represents a nitrogen atom, and each of X and Y represents an atomic group in which an atom having an unshared electron pair is bonded to A or B, and n represents 0 to 3). The printed wiring board forming ink as described in (8) above, which is at least one organic compound.
(10) The method according to any one of (7) to (9) above, wherein a base or a base precursor is added to a dispersion or a separate liquid (reducing agent or solution thereof) containing fine particles of metal oxide or metal hydroxide. The ink for forming a printed wiring board according to any one of the above.
(11) Any one of the above (7) to (10), wherein the adsorptive compound, the surfactant and / or the hydrophilic polymer are adsorbed on the surface of the metal oxide or metal hydroxide fine particles. The ink for forming a printed wiring board according to the item.
(12) The metal constituting the metal oxide or metal hydroxide fine particles is Au, Ag, Cu, Pt, Pd, In, Ga, Sn, Ge, Sb, Pb, Zn, Bi, Fe, Ni, and Co. The printed wiring board forming ink according to any one of (1) to (11), wherein the ink is formed of at least one selected from the group consisting of:
(13) For forming a printed wiring board according to any one of (1) to (12), wherein the metal constituting the fine particles of the metal oxide or metal hydroxide is Ag or Cu. ink.
(14) A step of drawing a pattern on a substrate with the printed wiring board forming ink according to any one of (1) to (13), and at least one of the fine particles of the metal oxide or metal hydroxide A method for forming a printed wiring board comprising the step of forming a conductive pattern by reducing a portion to metal.
(15) The method for forming a printed wiring board according to (14), wherein the pattern is drawn by an ink jet printer or a dispenser.
(16) The printed wiring according to (14) or (15), wherein the pattern is input to a computer as graphic information, and the pattern is drawn with the printed wiring board forming ink based on the graphic information. A method for forming a substrate.
(17) The method for forming a printed wiring board according to any one of (14) to (16), wherein energy irradiation is performed in the step of forming the conductive pattern.
(18) The method for forming a printed wiring board according to (17), wherein the energy irradiation is performed by at least one selected from a laser beam, an electron beam, an ion beam, and a heat ray.
(19) The method for forming a printed wiring board according to any one of (14) to (18), wherein the step of forming a conductive pattern is performed in an inert gas.
(20) A printed wiring board having a pattern drawn with the ink for forming a printed wiring board according to any one of (1) to (13).
(21) A printed wiring board formed by the method for forming a printed wiring board according to any one of (14) to (19).

Cu2OやAg2O等の金属酸化物又は金属水酸化物の微粒子を含有する本発明のプリント配線基板形成用インクを用いることで、基板上に容易に精密な導電パターンを形成することができる。これにより、簡単、迅速かつ安定に精密な導電パターンを有するプリント配線基板を提供することができる。 By using the printed wiring board forming ink of the present invention containing fine particles of metal oxide or metal hydroxide such as Cu 2 O and Ag 2 O, a precise conductive pattern can be easily formed on the substrate. it can. As a result, a printed wiring board having a precise conductive pattern can be provided simply, quickly and stably.

本発明の第一のプリント配線基板は、金属酸化物又は金属水酸化物の微粒子を含有する分散液を基板上にパターン状に描画した後、エネルギー照射により前記金属酸化物又は金属水酸化物の微粒子の少なくとも一部を金属に還元して導電パターンを形成したことを特徴とする。   In the first printed wiring board of the present invention, a dispersion containing fine particles of metal oxide or metal hydroxide is drawn in a pattern on the substrate, and then the metal oxide or metal hydroxide is irradiated by energy irradiation. A conductive pattern is formed by reducing at least a part of the fine particles to metal.

本発明の第二のプリント配線基板は、金属酸化物又は金属水酸化物の微粒子及び前記金属酸化物又は金属水酸化物の微粒子に対して実質的に常温では還元性を有さないがエネルギー照射により還元性を発揮する還元剤を含有する分散液を基板上にパターン状に描画した後、エネルギー照射により前記金属酸化物又は金属水酸化物の微粒子の少なくとも一部を金属に還元して導電パターンを形成したことを特徴とする。   The second printed wiring board of the present invention has substantially no reducing property at normal temperature with respect to the metal oxide or metal hydroxide fine particles and the metal oxide or metal hydroxide fine particles, but the energy irradiation After drawing a dispersion liquid containing a reducing agent exhibiting reducibility in a pattern on a substrate, at least a part of the fine particles of the metal oxide or metal hydroxide is reduced to metal by energy irradiation to form a conductive pattern Is formed.

本発明の第三のプリント配線基板は、金属酸化物又は金属水酸化物の微粒子を含有する分散液と、前記金属酸化物又は金属水酸化物の微粒子に対して還元性を発揮する還元剤又はその溶液とを別々に調製し、両液を使用直前に混合して基板上にパターン状に描画した後、又は別々に基板上に描画して混合した後に、前記金属酸化物又は金属水酸化物の微粒子の少なくとも一部を金属に還元して導電パターンを形成したことを特徴とする。   The third printed wiring board of the present invention includes a dispersion containing fine particles of metal oxide or metal hydroxide, and a reducing agent that exhibits reducibility with respect to the fine particles of metal oxide or metal hydroxide, or After preparing the solution separately and mixing both solutions just before use and drawing in a pattern on the substrate, or after drawing and mixing separately on the substrate, the metal oxide or metal hydroxide A conductive pattern is formed by reducing at least part of the fine particles to metal.

本発明の第一のプリント配線基板の形成方法は、金属酸化物又は金属水酸化物の微粒子を含有する分散液を基板上にパターン状に描画した後、エネルギー照射により前記金属酸化物又は金属水酸化物の微粒子の少なくとも一部を金属に還元して導電パターンを形成することを特徴とする。   In the first method for forming a printed wiring board of the present invention, a dispersion containing fine particles of metal oxide or metal hydroxide is drawn in a pattern on the substrate, and then the metal oxide or metal water is irradiated by energy irradiation. A conductive pattern is formed by reducing at least a part of oxide fine particles to metal.

本発明の第二のプリント配線基板の形成方法は、金属酸化物又は金属水酸化物の微粒子及び前記金属酸化物又は金属水酸化物の微粒子に対して実質的に常温では還元性を有さないがエネルギー照射により還元性を発揮する還元剤を含有する分散液を基板上にパターン状に描画した後、エネルギー照射により前記金属酸化物又は金属水酸化物の微粒子の少なくとも一部を金属に還元して導電パターンを形成したことを特徴とする。   The second printed wiring board formation method of the present invention has substantially no reducing property at normal temperature with respect to the metal oxide or metal hydroxide fine particles and the metal oxide or metal hydroxide fine particles. After drawing a dispersion containing a reducing agent that exhibits reducibility upon energy irradiation in a pattern on the substrate, at least a part of the metal oxide or metal hydroxide fine particles is reduced to metal by energy irradiation. Thus, a conductive pattern is formed.

本発明の第三のプリント配線基板の形成方法は、(a) 金属酸化物又は金属水酸化物の微粒子を含有する分散液と、前記金属酸化物又は金属水酸化物の微粒子に対して還元性を発揮する還元剤又はその溶液とを別々に調製し、(b) 両液を使用直前に混合して基板上にパターン状に描画するか、別々に基板上にパターン状に描画して混合した後に、(c) 前記金属酸化物又は金属水酸化物の微粒子の少なくとも一部を金属に還元して導電パターンを形成することを特徴とする。   The third method for forming a printed wiring board according to the present invention comprises: (a) a dispersion containing fine particles of metal oxide or metal hydroxide; and a reducing property for the fine particles of metal oxide or metal hydroxide. (B) Both solutions are mixed immediately before use and drawn in a pattern on the substrate, or drawn separately in a pattern on the substrate and mixed. Later, (c) at least a part of the metal oxide or metal hydroxide fine particles is reduced to metal to form a conductive pattern.

本発明のプリント配線基板及びその形成方法において、以下の条件を満たすのが好ましい。
(1) 金属酸化物又は金属水酸化物の微粒子を含有する分散液、又は別液(還元剤又はその溶液)のいずれかに塩基又は塩基プレカーサを含有する。
(2) 前記金属酸化物又は金属水酸化物の微粒子を構成する金属がAu、Ag、Cu、Pt、Pd、In、Ga、Sn、Ge、Sb、Pb、Zn、Bi、Fe、Ni及びCoからなる群から選ばれた少なくとも1種からなる。
(3) 前記金属酸化物又は金属水酸化物の微粒子を構成する金属がAg又はCuからなる。
(4) 前記還元剤が有機還元剤、ヒドラジン及びヒドロキシルアミンからなる群から選ばれた少なくとも1種の化合物である。
(5) 前記有機還元剤がヒドラジン系化合物類、ヒドロキシルアミン系化合物類、アミノアルコール類、ジオール類及び一般式:X-(A=B)n-Y(ただし、A及びBはそれぞれ炭素原子又は窒素原子を表し、X及びYの各々は非共有電子対を有する原子がA又はBに結合する原子団を表し、nは0〜3を表す。)により表される化合物類からなる群から選ばれた少なくとも1種の有機化合物である。
(6) エネルギー照射手段がレーザービーム、電子ビーム、イオンビーム及び熱線から選ばれた少なくとも1種である。
In the printed wiring board and the method for forming the same according to the present invention, the following conditions are preferably satisfied.
(1) A base or a base precursor is contained in either a dispersion containing fine particles of metal oxide or metal hydroxide or a separate liquid (reducing agent or solution thereof).
(2) The metal constituting the metal oxide or metal hydroxide fine particles is Au, Ag, Cu, Pt, Pd, In, Ga, Sn, Ge, Sb, Pb, Zn, Bi, Fe, Ni, and Co. It consists of at least 1 sort (s) chosen from the group which consists of.
(3) The metal constituting the metal oxide or metal hydroxide fine particles is made of Ag or Cu.
(4) The reducing agent is at least one compound selected from the group consisting of an organic reducing agent, hydrazine and hydroxylamine.
(5) The organic reducing agent is a hydrazine compound, a hydroxylamine compound, an amino alcohol, a diol, and a general formula: X- (A = B) n -Y (where A and B are carbon atoms or Represents a nitrogen atom, and each of X and Y represents an atomic group in which an atom having an unshared electron pair is bonded to A or B, and n represents 0 to 3). At least one organic compound.
(6) The energy irradiation means is at least one selected from laser beams, electron beams, ion beams and heat rays.

本発明のプリント配線基板の形成方法において、さらに以下の条件を満たすのが好ましい。
(7) 導電パターンを図形情報としてコンピュータに入力し、前記図形情報に基づき、インクを基板上に吐出して導電パターンを形成する。
(8) 導電パターンを図形情報としてコンピュータに入力し、前記図形情報に基づき、インクを基板上にパターン状に吐出した後、さらにエネルギー照射することにより導電パターンを形成する。
(9) 分散液と還元剤又はその溶液の混合から、基板上への分散液などの吐出・描画、乾燥、導電パターンの形成まで、全ての工程を不活性ガス中で行う。
In the method for forming a printed wiring board of the present invention, it is preferable that the following conditions are further satisfied.
(7) The conductive pattern is input to the computer as graphic information, and ink is ejected onto the substrate based on the graphic information to form the conductive pattern.
(8) The conductive pattern is input to the computer as graphic information, and based on the graphic information, ink is ejected onto the substrate in a pattern, and then the conductive pattern is formed by further irradiating energy.
(9) All steps are performed in an inert gas, from mixing the dispersion and reducing agent or solution thereof to discharging and drawing the dispersion on the substrate, drying, and forming a conductive pattern.

本発明のプリント配線基板形成用インクは、(a) 少なくとも金属酸化物又は金属水酸化物の微粒子を含有する分散液、(b) 金属酸化物又は金属水酸化物の微粒子の分散液及び還元剤を含有する溶液の少なくとも2パーツ、又は(c) 金属酸化物又は金属水酸化物の微粒子の分散液及び塩基又は塩基プレカーサ溶液の少なくとも2パーツからなることを特徴とする。   The printed wiring board forming ink of the present invention comprises (a) a dispersion containing at least metal oxide or metal hydroxide fine particles, (b) a dispersion of metal oxide or metal hydroxide fine particles, and a reducing agent. Or (c) a dispersion of fine particles of metal oxide or metal hydroxide and at least two parts of a base or base precursor solution.

本発明のプリント配線基板形成用インクをインクジェットやディスペンサー等の技術を用いて描画した基板にエネルギー照射すると、金属酸化物又は金属水酸化物の微粒子の少なくとも一部が還元されて金属からなる導電性のパターンがオンデマンドで簡易、迅速に形成される。さらに常温では安定な(金属酸化物又は金属水酸化物の微粒子を還元しにくい)弱い還元剤でもエネルギー照射により還元作用が増強されるので、併用することが望ましい。またエネルギービームを絞って金属酸化物又は金属水酸化物の微粒子の還元を選択的に行うことにより絶縁体である金属酸化物微粒子描画層がさらに微細なパターン状に導体化するので、平滑な面の中に高精細・高密度の導電パターンを形成することができ、多層配線パターンを得ることができる。本発明では、基板上に均一に塗布したインクの上にエネルギー照射をパターン状に行っても良いし、基板上にパターン状に吐出したインクの上にエネルギー照射を全体的に行っても良い。また、導電性のパターン部以外の箇所には絶縁体からなる別のインクを吐出してして平面性をもたせることもできる。   When the printed wiring board forming ink of the present invention is irradiated with energy on a substrate drawn using a technique such as an inkjet or a dispenser, at least a part of the fine particles of the metal oxide or metal hydroxide is reduced and the conductivity is made of metal. The pattern is easily and quickly formed on demand. Furthermore, even a weak reducing agent that is stable at room temperature (it is difficult to reduce metal oxide or metal hydroxide fine particles) enhances the reducing action by energy irradiation, so it is desirable to use it together. In addition, the metal oxide fine particle drawing layer, which is an insulator, is made into a conductor in a finer pattern by selectively reducing the metal oxide or metal hydroxide fine particles by narrowing the energy beam. A high-definition and high-density conductive pattern can be formed in the substrate, and a multilayer wiring pattern can be obtained. In the present invention, energy irradiation may be performed in a pattern on the ink uniformly applied on the substrate, or energy irradiation may be performed on the ink ejected in a pattern on the substrate as a whole. Further, it is possible to give flatness by discharging another ink made of an insulator to a portion other than the conductive pattern portion.

以下、本発明について詳細に説明する。
[1] 金属酸化物又は金属水酸化物の微粒子の分散液
(A) 金属酸化物又は金属水酸化物の微粒子の組成及びサイズ
本発明に用いる金属酸化物又は金属水酸化物の微粒子を構成する金属としては、Au、Ag、Cu、Pt、Pd、In、Ga、Sn、Ge、Sb、Pb、Zn、Bi、Fe、Ni、Co、Mn、Tl、Cr、V、Ru、Rh、Ir、Al等が挙げられる。これらの金属の酸化物又は水酸化物の中では、Au、Ag、Cu、Pt、Pd、In、Ga、Sn、Ge、Sb、Pb、Zn、Bi、Fe、Ni及びCoの酸化物が好ましく、特にAg又はCuの酸化物(例えばAg2OやCu2O等)は還元されやすく、生成した金属が比較的安定であるので好ましい。この金属酸化物微粒子の平均結晶子サイズは1〜100 nm、好ましくは1〜50 nmである。
Hereinafter, the present invention will be described in detail.
[1] Metal oxide or metal hydroxide fine particle dispersion
(A) Composition and size of metal oxide or metal hydroxide fine particles As the metal constituting the metal oxide or metal hydroxide fine particles used in the present invention, Au, Ag, Cu, Pt, Pd, In, Ga, Sn, Ge, Sb, Pb, Zn, Bi, Fe, Ni, Co, Mn, Tl, Cr, V, Ru, Rh, Ir, Al, etc. are mentioned. Among these metal oxides or hydroxides, Au, Ag, Cu, Pt, Pd, In, Ga, Sn, Ge, Sb, Pb, Zn, Bi, Fe, Ni, and Co oxides are preferable. In particular, an oxide of Ag or Cu (for example, Ag 2 O or Cu 2 O) is preferable because it is easily reduced and the formed metal is relatively stable. The average crystallite size of the metal oxide fine particles is 1 to 100 nm, preferably 1 to 50 nm.

(B) 製造方法
金属酸化物又は金属水酸化物の微粒子の分散液は、金属塩(前記金属の塩化物、臭化物、硫酸塩、硝酸塩、有機酸塩等)の溶液を塩基性溶液で中和処理したり、金属アルコキシドを加水分解したり、高原子価の金属塩溶液に還元剤を添加して、低原子価の金属酸化物又は水酸化物に還元すること等により調製することができる。有機酸塩の場合、有機酸の好ましい具体例としては、ギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、2-エチル酪酸、ピバル酸、吉草酸、イソ吉草酸、プロピオール酸、乳酸、カプロン酸、カプリル酸、カプリン酸、安息香酸、フタル酸、サリチル酸、アクリル酸、メタクリル酸、エチルメチル酢酸、アリル酢酸、アセト酢酸等が挙げられる。
(B) Production method Metal oxide or metal hydroxide fine particle dispersion is made by neutralizing a solution of metal salt (such as metal chloride, bromide, sulfate, nitrate, organic acid salt, etc.) with a basic solution. It can be prepared by treating, hydrolyzing a metal alkoxide, adding a reducing agent to a high-valent metal salt solution, and reducing to a low-valent metal oxide or hydroxide. In the case of an organic acid salt, preferred specific examples of the organic acid include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, 2-ethylbutyric acid, pivalic acid, valeric acid, isovaleric acid, propiolic acid, lactic acid, caproic acid, Examples include caprylic acid, capric acid, benzoic acid, phthalic acid, salicylic acid, acrylic acid, methacrylic acid, ethylmethylacetic acid, allylacetic acid, acetoacetic acid, and the like.

必要に応じて金属酸化物又は金属水酸化物の微粒子の表面に吸着性化合物、界面活性剤及び/又は親水性高分子を吸着させて、金属酸化物又は金属水酸化物の微粒子を表面修飾して分散液を安定化しても良い。   If necessary, adsorbing compounds, surfactants and / or hydrophilic polymers are adsorbed on the surface of metal oxide or metal hydroxide fine particles to modify the surface of metal oxide or metal hydroxide fine particles. The dispersion may be stabilized.

金属酸化物又は金属水酸化物の微粒子の分散液は、必要に応じて吸着性化合物及び/又は界面活性剤の存在下で遠心分離等によって沈降させ、得られた金属酸化物又は金属水酸化物の微粒子を洗浄した後、別の分散溶媒で再分散しても良い。また、脱塩等の精製、濃縮処理を行っても良い。   A dispersion of fine particles of metal oxide or metal hydroxide is precipitated by centrifugation or the like in the presence of an adsorbing compound and / or a surfactant as necessary, and the resulting metal oxide or metal hydroxide is obtained. After the fine particles are washed, they may be redispersed with another dispersion solvent. Further, purification such as desalting and concentration treatment may be performed.

(a) 吸着性化合物
吸着性化合物としては、-SH、-CN、-NH2、-SO2OH、-SOOH、-OPO(OH)2、-COOH等の官能基を有する化合物が有効であり、特に-SH基を有する化合物(ドデカンチオール、L-システイン等)、又は-NH2基を有する化合物(オクチルアミン、ドデシルアミン、オレイルアミン、オレイン酸アミド、ラウリン酸アミド等)が好ましい。親水性コロイドの場合、親水性基[例えば、-SO3Mや-COOM(Mは水素原子、アルカリ金属原子又はアンモニウム分子等を表わす)]を有する吸着性化合物を使用するのが好ましい。
The (a) adsorbing compound adsorbing compound, -SH, -CN, -NH 2, -SO 2 OH, -SOOH, -OPO (OH) 2, is effective compound having a functional group of -COOH such as In particular, a compound having an —SH group (dodecanethiol, L-cysteine, etc.) or a compound having an —NH 2 group (octylamine, dodecylamine, oleylamine, oleic acid amide, lauric acid amide, etc.) is preferable. In the case of a hydrophilic colloid, it is preferable to use an adsorptive compound having a hydrophilic group [for example, —SO 3 M or —COOM (M represents a hydrogen atom, an alkali metal atom or an ammonium molecule)].

(b) 界面活性剤
界面活性剤としては、アニオン界面活性剤(例えば、ビス(2-エチルヘキシル)スルホコハク酸ナトリウムやドデシルベンゼンスルホン酸ナトリウム等)、ノニオン界面活性剤(例えばポリアルキルグリコールのアルキルエステルやアルキルフェニルエーテル等)、フッ素系界面活性剤等を使用することができる。
(b) Surfactant As the surfactant, an anionic surfactant (for example, sodium bis (2-ethylhexyl) sulfosuccinate or sodium dodecylbenzenesulfonate), a nonionic surfactant (for example, an alkyl ester of polyalkyl glycol, Alkyl phenyl ether, etc.), fluorine-based surfactants and the like can be used.

(c) 親水性高分子
また親水性高分子として、例えば、ヒドロキシエチルセルロース、ポリビニルピロリドン、ポリビニルアルコール、ポリエチレングリコール等をコロイド分散液中に含有させても良い。
(c) Hydrophilic polymer As the hydrophilic polymer, for example, hydroxyethyl cellulose, polyvinyl pyrrolidone, polyvinyl alcohol, polyethylene glycol and the like may be contained in the colloidal dispersion.

(d) 添加量
吸着性化合物、界面活性剤及び/又は親水性高分子の添加量は、金属酸化物微粒子に対して質量比で0.01〜2倍であるのが好ましく、0.1〜1倍がさらに好ましい。吸着性化合物、界面活性剤及び/又は親水性高分子は金属酸化物微粒子の表面を0.1〜10 nmの厚さに被覆するのが好ましい。なお被覆は一様である必要がなく、金属酸化物微粒子の表面の少なくとも一部が被覆されていれば良い。
(d) Amount to be added The amount of the adsorbing compound, surfactant and / or hydrophilic polymer added is preferably 0.01 to 2 times by mass ratio with respect to the metal oxide fine particles, more preferably 0.1 to 1 time. preferable. The adsorptive compound, surfactant and / or hydrophilic polymer preferably coats the surface of the metal oxide fine particles to a thickness of 0.1 to 10 nm. The coating does not need to be uniform and it is sufficient that at least a part of the surface of the metal oxide fine particles is coated.

金属酸化物微粒子が吸着性化合物、界面活性剤又は親水性高分子等の有機化合物で表面修飾されていることは、FE-TEM等の高分解能TEMの観察において金属酸化物微粒子間隔が一定であること、及び化学分析により確認することができる。   The fact that the metal oxide fine particles are surface-modified with an organic compound such as an adsorbent compound, a surfactant or a hydrophilic polymer means that the distance between the metal oxide fine particles is constant in observation with a high-resolution TEM such as FE-TEM. And can be confirmed by chemical analysis.

(e) 溶媒
金属酸化物又は金属水酸化物の分散溶媒(および後述のインクの溶媒)としては以下のものが挙げられる。
(1) 酢酸ブチル、セロソルブアセテート等のエステル類
(2) メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン、アセチルアセトン等のケトン類
(3) ジクロルメタン、1,2-ジクロロエタン、クロロホルム等の塩素化炭化水素類
(4) ジメチルホルムアミド等のアミド類
(5) シクロヘキサン、ヘプタン、オクタン、イソオクタン、デカン等の脂肪族炭化水素類
(6) トルエン、キシレン等の芳香族炭化水素類。
(7) テトラヒドロフラン、エチルエーテル、ジオキサン等のエーテル類
(8) エタノール、n-プロパノール、イソプロパノール、n-ブタノール、ジアセトンアルコール、エチレングリコール、2,5-ヘキサンジオール、1,4-ブタンジオール、シクロヘキサノール、シクロペンタノール、シクロヘキセノール等のアルコール類
(9) 2,2,3,3-テトラフロロプロパノール等のフッ素系溶剤類
(10) エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル等のグリコールエーテル類
(11) 2-ジメチルアミノエタノール、2-ジエチルアミノエタノール、2-ジメチルアミノイソプロパノール、3-ジエチルアミノ-1-プロパノール、2-ジメチルアミノ-2-メチル-1-プロパノール、2-メチルアミノエタノール、4-ジメチルアミノ-1-ブタノール等のアルキルアミノアルコール類
(12) 酪酸、イソ酪酸、2-エチル酪酸、ピバル酸、吉草酸、プロピオン酸、乳酸、アクリル酸、メタクリル酸、プロピオール酸、エチルメチル酢酸、アリル酢酸等のカルボン酸類
(13) ジエチレントリアミン、エチレンジアミン等のアミン類等。
(14) 水
(e) Solvent Examples of the metal oxide or metal hydroxide dispersion solvent (and the ink solvent described below) include the following.
(1) Esters such as butyl acetate and cellosolve acetate
(2) Ketones such as methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone, acetylacetone
(3) Chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane and chloroform
(4) Amides such as dimethylformamide
(5) Aliphatic hydrocarbons such as cyclohexane, heptane, octane, isooctane and decane
(6) Aromatic hydrocarbons such as toluene and xylene.
(7) Ethers such as tetrahydrofuran, ethyl ether, dioxane
(8) Alcohols such as ethanol, n-propanol, isopropanol, n-butanol, diacetone alcohol, ethylene glycol, 2,5-hexanediol, 1,4-butanediol, cyclohexanol, cyclopentanol, and cyclohexenol
(9) Fluorinated solvents such as 2,2,3,3-tetrafluoropropanol
(10) Glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether
(11) 2-dimethylaminoethanol, 2-diethylaminoethanol, 2-dimethylaminoisopropanol, 3-diethylamino-1-propanol, 2-dimethylamino-2-methyl-1-propanol, 2-methylaminoethanol, 4-dimethyl Alkylamino alcohols such as amino-1-butanol
(12) Carboxylic acids such as butyric acid, isobutyric acid, 2-ethylbutyric acid, pivalic acid, valeric acid, propionic acid, lactic acid, acrylic acid, methacrylic acid, propiolic acid, ethylmethylacetic acid, allylacetic acid
(13) Amines such as diethylenetriamine and ethylenediamine.
(14) Water

これらの溶媒は、金属酸化物又は金属水酸化物の分散安定性、還元剤の溶解性、還元剤の酸化に対する安定性、粘度等を考慮して、単独又は二種以上を組合せて用いることができる。また金属酸化物又は金属水酸化物の分散性及び還元剤の溶解性に優れた溶媒(共通溶媒)を選択するのが好ましい。   These solvents may be used alone or in combination of two or more in consideration of the dispersion stability of the metal oxide or metal hydroxide, the solubility of the reducing agent, the stability of the reducing agent to oxidation, the viscosity, and the like. it can. Further, it is preferable to select a solvent (common solvent) excellent in dispersibility of the metal oxide or metal hydroxide and solubility of the reducing agent.

(C) 分散液
分散液中の金属酸化物又は金属水酸化物の微粒子の濃度は金属換算値で1〜80質量%が好ましく、5〜70質量%がより好ましい。また分散液は一種類の金属酸化物又は金属水酸化物の微粒子を含有していても、複数種の金属酸化物又は金属水酸化物の微粒子を含有していても良い。また金属酸化物又は金属水酸化物の微粒子中の金属の価数は1種類でも複数の混合物でも良い。さらにエネルギーの未照射部及び照射部の絶縁性/導電性を調節するために、SiO、SiO2、TiO2等の無機微粒子やポリマー(微粒子であってもなくても良い)を金属酸化物又は金属水酸化物の微粒子と併用しても良い。なお分散液中の金属酸化物又は金属水酸化物の微粒子の粒径は通常コロイドを形成する程度であるが、限定的ではない。好ましい粒径は1〜100nm、より好ましくは1〜50nmである。
(C) Dispersion The concentration of metal oxide or metal hydroxide fine particles in the dispersion is preferably 1 to 80% by mass, more preferably 5 to 70% by mass in terms of metal. The dispersion may contain fine particles of one kind of metal oxide or metal hydroxide, or may contain fine particles of multiple types of metal oxide or metal hydroxide. Further, the metal valence in the metal oxide or metal hydroxide fine particles may be one kind or a plurality of mixtures. Furthermore, in order to adjust the insulation / conductivity of the unexposed part and irradiated part of the energy, inorganic fine particles and polymers such as SiO, SiO 2 and TiO 2 (which may or may not be fine particles) are converted into metal oxides or It may be used in combination with metal hydroxide fine particles. The particle size of the metal oxide or metal hydroxide fine particles in the dispersion is usually such that a colloid is formed, but is not limited. The preferred particle size is 1 to 100 nm, more preferably 1 to 50 nm.

[2] インク
上記金属酸化物又は金属水酸化物の微粒子の分散液をそのままインクとして用いることができる。上記金属酸化物又は金属水酸化物の微粒子の分散液のみでは、エネルギー照射しても金属への還元反応が起こりにくい場合には、還元剤を添加することができる。
[2] Ink The dispersion of metal oxide or metal hydroxide fine particles can be used as an ink as it is. If the metal oxide or metal hydroxide fine particle dispersion is used alone and the reduction reaction to the metal is difficult to occur even after energy irradiation, a reducing agent can be added.

金属酸化物又は金属水酸化物の微粒子の還元に用いる還元剤は、無機還元剤でも有機還元剤でも良い。無機還元剤としては、NaBH4、ヒドラジン又はヒドロキシルアミン等が挙げられる。また有機還元剤としては、(i) ヒドラジン基を含有するヒドラジン系化合物類(例えばフェニルヒドラジン等)、(ii) p-フェニレンジアミン、エチレンジアミン、p-アミノフェノール等のアミン類、(iii) 窒素原子にアシル基やアルコキシカルボニル基などが置換したヒドロキシルアミン系化合物類、(iv) 2-ジメチルアミノエタノール、2-ジエチルアミノエタノール、2-アミノエタノール、ジエタノールアミン、2-アミノ-2-メチル-1-プロパノール等のアミノアルコール類、(v) ヒドロキノン、カテコール、1,4-ブタンジオール、エチレングリコール等のジオール類、又は(vi) 一般式:X-(A=B)n-Y(ただし、A及びBはそれぞれ炭素原子又は窒素原子を表し、X及びYの各々は非共有電子対を有する原子がA又はBに結合する原子団を表し、nは0〜3を表す。)により表される有機還元剤又はその互変異性体、又は熱的にこれらを生成する化合物類等が挙げられる。 The reducing agent used to reduce the metal oxide or metal hydroxide fine particles may be an inorganic reducing agent or an organic reducing agent. Examples of the inorganic reducing agent include NaBH 4 , hydrazine or hydroxylamine. Examples of the organic reducing agent include (i) hydrazine compounds containing a hydrazine group (for example, phenylhydrazine), (ii) amines such as p-phenylenediamine, ethylenediamine, and p-aminophenol, (iii) nitrogen atom Hydroxylamine compounds substituted with an acyl group or an alkoxycarbonyl group, (iv) 2-dimethylaminoethanol, 2-diethylaminoethanol, 2-aminoethanol, diethanolamine, 2-amino-2-methyl-1-propanol, etc. (V) Hydroquinone, catechol, 1,4-butanediol, diols such as ethylene glycol, or (vi) General formula: X- (A = B) n -Y (where A and B are Respectively represents a carbon atom or a nitrogen atom, each of X and Y represents an atomic group in which an atom having an unshared electron pair is bonded to A or B, and n represents 0 to 3 Organic reducing agent or a tautomer thereof represented by), or thermally compounds or the like for generating a thereof.

これらの還元剤は単独で用いても複数を組合せて用いても良いが、金属酸化物又は金属水酸化物に対する還元作用に選択性があるので、適宜組合せるのが好ましい。なお必要に応じて還元剤を有機溶媒として使用しても良い。   These reducing agents may be used alone or in combination of two or more. However, since the reducing action on the metal oxide or metal hydroxide has selectivity, it is preferable to combine them appropriately. In addition, you may use a reducing agent as an organic solvent as needed.

一般式:X-(A=B)n-Yにより表される前記(vi)の化合物における非共有電子対を有する原子としては、酸素原子、窒素原子、イオウ原子、リン原子等が好ましく、酸素原子、窒素原子がより好ましい。これらの原子を含む原子団X及びYとしては、OR1、NR1R2、SR1、及びPR1R2(ただし、R1及びR2はそれぞれ水素原子又は置換基を表す。)が好ましい。前記置換基としては、置換されていても良い炭素数1〜10のアルキル基、又は置換されていても良い炭素数1〜10のアシル基が好ましい。 The atom having an unshared electron pair in the compound of (vi) represented by the general formula: X- (A = B) n -Y is preferably an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, etc. An atom and a nitrogen atom are more preferable. As the atomic groups X and Y containing these atoms, OR 1 , NR 1 R 2 , SR 1 , and PR 1 R 2 (where R 1 and R 2 each represent a hydrogen atom or a substituent) are preferable. . The substituent is preferably an optionally substituted alkyl group having 1 to 10 carbon atoms or an optionally substituted acyl group having 1 to 10 carbon atoms.

nは0〜3が好ましく、0〜2がより好ましく、0〜1が最も好ましい。nが2以上のときA及びBは繰り返し単位ごとに異なっていても良い。またAとB、XとA、又はYとBは互いに結合して環構造を形成しても良い。環構造を形成する場合、5員環又は6員環が好ましく、さらにこれらの環は縮環していても良い。縮環する場合、5〜6員環が好ましい。   n is preferably 0 to 3, more preferably 0 to 2, and most preferably 0 to 1. When n is 2 or more, A and B may be different for each repeating unit. A and B, X and A, or Y and B may be bonded to each other to form a ring structure. When forming a ring structure, a 5-membered ring or a 6-membered ring is preferable, and these rings may be condensed. When condensed, a 5- to 6-membered ring is preferable.

本発明では還元反応後に電気伝導度が小さい還元剤が望ましく、具体的には金属イオンが残留しない有機還元剤、ヒドラジン又はヒドロキシルアミンが好ましい。還元後に残渣が多く残ると配線の導電性に悪影響を及ぼすため、残渣が少ないものが好ましく、還元後に揮発性(昇華性)又は分解して揮発性になる性質を有するものが好ましい。   In the present invention, a reducing agent having a low electrical conductivity after the reduction reaction is desirable, and specifically, an organic reducing agent that does not retain metal ions, hydrazine, or hydroxylamine is preferable. If a large amount of residue remains after the reduction, the conductivity of the wiring is adversely affected. Therefore, a material having a small amount of the residue is preferable, and a material having a property of becoming volatile (sublimation) or becoming volatile after decomposition is preferable.

同様の観点から、還元剤は少量で金属酸化物又は金属水酸化物の微粒子を還元可能なこと、すなわち低分子量であることが好ましい。従って、還元剤の分子量は500以下が好ましく、300以下がより好ましく、200以下が最も好ましい。   From the same viewpoint, it is preferable that the reducing agent is capable of reducing metal oxide or metal hydroxide fine particles in a small amount, that is, has a low molecular weight. Accordingly, the molecular weight of the reducing agent is preferably 500 or less, more preferably 300 or less, and most preferably 200 or less.

以下、金属酸化物又は金属水酸化物の微粒子の還元に用いることができる還元剤の具体例を例示するが、本発明はこれらの例に限定されない。   Hereinafter, specific examples of the reducing agent that can be used for the reduction of the metal oxide or metal hydroxide fine particles will be exemplified, but the present invention is not limited to these examples.

Figure 2004253794
Figure 2004253794

Figure 2004253794
Figure 2004253794

Figure 2004253794
Figure 2004253794

Figure 2004253794
Figure 2004253794

金属酸化物又は金属水酸化物の微粒子と還元剤との好ましい組合せとしては、(a) 金属酸化物又は金属水酸化物の微粒子と、その金属酸化物又は金属水酸化物の微粒子に対する還元作用が常温で実質的にないがエネルギー照射下では強い還元剤とを1つの分散液に含有させる場合(一液型インク)、及び(b) 金属酸化物又は金属水酸化物の微粒子の分散液(還元剤を含有しなくて良い)と、その金属酸化物又は金属水酸化物の微粒子に対して還元作用を示す還元剤(常温での還元作用の強弱は問わないが、少なくともエネルギー照射下では強い還元作用を示す)の溶液を別々に調製する場合(二液型インク)が挙げられる。   A preferred combination of metal oxide or metal hydroxide fine particles and a reducing agent includes: (a) a metal oxide or metal hydroxide fine particles and a reducing action on the metal oxide or metal hydroxide fine particles; In the case of containing a strong reducing agent in a single dispersion (one-part ink) that is substantially absent at room temperature but under energy irradiation, and (b) a dispersion of fine particles of metal oxide or metal hydroxide (reduction) A reducing agent that exhibits a reducing action on the metal oxide or metal hydroxide fine particles (regardless of whether the reducing action is strong or weak at room temperature, strong reduction at least under energy irradiation) (Showing the action) are prepared separately (two-component ink).

エネルギー照射だけでは還元されにくい金属酸化物微粒子と還元剤の組合せの場合、又はエネルギー照射下でより強い還元性を発揮させる場合、金属酸化物微粒子又は金属水酸化物分散液又は別液(還元剤又はその溶液)に塩基又は塩基プレカーサのような還元作用促進剤を入れておくことができる。塩基又は塩基プレカーサに還元作用があっても良い。   In the case of a combination of metal oxide fine particles and a reducing agent that are difficult to be reduced only by energy irradiation, or when a stronger reducing property is exhibited under energy irradiation, metal oxide fine particles or metal hydroxide dispersion or another liquid (reducing agent) Alternatively, a reducing action accelerator such as a base or a base precursor can be added to the solution). The base or base precursor may have a reducing action.

以上の通り、本発明に使用する還元剤としては、常温では金属酸化物又は金属水酸化物の微粒子を還元する速度が小さいが、エネルギー照射によって速やかに金属酸化物又は金属水酸化物の微粒子を還元するものが好ましい。エネルギー照射による加熱温度は、照射時間に依存するので一概には規定できない。基板や素子の耐熱性から熱拡散により加熱される温度は約300℃以下であるのが好ましく、約250℃以下であるのがより好ましい。従って、還元剤は約300℃以下の温度で金属酸化物又は金属水酸化物の微粒子に対して十分な還元性を有するものが好ましい。前記(b) の二液型インクに室温でも還元作用の強い還元剤を使用する場合、混合後直ちに金属酸化物又は金属水酸化物の微粒子が還元され金属を生成するので、その後のエネルギー照射は必ずしも必要ないことは言うまでもない。   As described above, the reducing agent used in the present invention has a low rate of reducing metal oxide or metal hydroxide fine particles at room temperature, but quickly removes metal oxide or metal hydroxide fine particles by energy irradiation. What is reduced is preferred. Since the heating temperature by energy irradiation depends on the irradiation time, it cannot be specified unconditionally. The temperature heated by thermal diffusion is preferably about 300 ° C. or less, more preferably about 250 ° C. or less, because of the heat resistance of the substrate or element. Accordingly, it is preferable that the reducing agent has a sufficient reducing ability with respect to fine particles of metal oxide or metal hydroxide at a temperature of about 300 ° C. or less. When a reducing agent having a strong reducing action even at room temperature is used for the two-component ink (b), the metal oxide or metal hydroxide fine particles are reduced immediately after mixing to produce a metal. Needless to say, this is not always necessary.

後述のように、金属酸化物又は金属水酸化物の微粒子の分散液、還元剤又はこれらの混合物は、インクジェットプリンターやディスペンサー等でパターン状に描画するインクとして使用するのが好ましいので、粘度調整のために必要に応じて溶媒を添加する。インクに使用し得る溶媒は上記したものと同じである。   As will be described later, a dispersion of fine particles of metal oxide or metal hydroxide, a reducing agent, or a mixture thereof is preferably used as ink for drawing in a pattern with an ink jet printer or a dispenser. Therefore, a solvent is added as necessary. Solvents that can be used for the ink are the same as those described above.

金属酸化物又は金属水酸化物の微粒子の分散液及び/又は還元剤又はその溶液中には、さらに必要に応じて、帯電防止剤、酸化防止剤、UV吸収剤、可塑剤、カーボンナノ粒子、色素、熱硬化型フェノール樹脂等の熱硬化性樹脂等の各種添加剤を目的に応じて添加しても良い。   In a dispersion of metal oxide or metal hydroxide fine particles and / or a reducing agent or a solution thereof, if necessary, an antistatic agent, an antioxidant, a UV absorber, a plasticizer, carbon nanoparticles, Various additives such as pigments and thermosetting resins such as thermosetting phenol resins may be added according to the purpose.

金属酸化物又は金属水酸化物の微粒子の分散液、還元剤又はその溶液あるいはこれらの混合物をインクとしてインクジェットプリンターやディスペンサー等でパターン状に描画する場合、インクの粘度は重要である。インクの粘度が高すぎるとノズルから射出するのが困難であり、またインクの粘度が低すぎると描画パターンが滲む恐れがある。具体的には、インクの粘度は1〜100 cPであるのが好ましく、特に5〜30 cPであるのが好ましい。またインクの表面張力は25〜80 mN/mであるのが望ましく、特に30〜60 mN/mであるのが望ましい。   In the case where a dispersion of fine particles of metal oxide or metal hydroxide, a reducing agent or a solution thereof, or a mixture thereof is drawn as an ink in a pattern with an ink jet printer or a dispenser, the viscosity of the ink is important. If the viscosity of the ink is too high, it is difficult to eject from the nozzle, and if the viscosity of the ink is too low, the drawing pattern may be blurred. Specifically, the viscosity of the ink is preferably 1 to 100 cP, and particularly preferably 5 to 30 cP. The surface tension of the ink is preferably 25 to 80 mN / m, and particularly preferably 30 to 60 mN / m.

[3] プリント配線基板の形成
(A) 基板
本発明に使用する好ましい基板材料としては以下のものが挙げられる。
(1) 石英ガラス、無アルカリガラス、結晶化透明ガラス、パイレックスガラス、サファイア等のガラス
(2) Al2O3、MgO、BeO、ZrO2、Y2O3、ThO2、CaO、GGG(ガドリウム・ガリウム・ガーネット)等のセラミックス
(3) ポリカーボネート、ポリメチルメタクリレート等のアクリル樹脂、ポリ塩化ビニル、塩化ビニル共重合体等の塩化ビニル系樹脂、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリイミド、フッ素樹脂、フェノキシ樹脂、ポリオレフィン系樹脂、ナイロン、スチレン系樹脂、ABS樹脂等の熱可塑性樹脂
(4) エポキシ樹脂等の熱硬化性樹脂
(5) 金属等。
[3] Formation of printed wiring board
(A) Substrate Preferred substrate materials used in the present invention include the following.
(1) Quartz glass, alkali-free glass, crystallized transparent glass, pyrex glass, sapphire, and other glass
(2) Ceramics such as Al 2 O 3 , MgO, BeO, ZrO 2 , Y 2 O 3 , ThO 2 , CaO, GGG (Gadolinium Gallium Garnet)
(3) Acrylic resins such as polycarbonate and polymethyl methacrylate, vinyl chloride resins such as polyvinyl chloride and vinyl chloride copolymers, polyarylate, polysulfone, polyethersulfone, polyimide, fluororesin, phenoxy resin, polyolefin resin , Nylon, styrene resin, ABS resin, etc.
(4) Thermosetting resin such as epoxy resin
(5) Metal etc.

上記基板材料は所望により併用しても良い。用途に応じてこれらの基板材料から適宜選択して、フィルム状等の可撓性支持体、又は剛性のある支持体とすることができる。なお前記支持体の形状は円盤状、カード状、シート状等いずれの形状であっても良い。また三次元的に積層されたものでも良い。さらに基板のプリント配線を行う箇所にアスペクト比1以上の細孔又は細溝を有していてもよく、この中にインクジェット又はディスペンサーにより前記金属酸化物又は金属水酸化物の微粒子の分散液、還元剤又はその溶液、あるいはこれらの混合物を吐出しても良い。   The above substrate materials may be used together if desired. Depending on the application, these substrate materials can be appropriately selected to form a flexible support such as a film or a rigid support. The shape of the support may be any shape such as a disk shape, a card shape, or a sheet shape. Moreover, the thing laminated | stacked three-dimensionally may be used. Furthermore, the substrate may have fine pores or fine grooves with an aspect ratio of 1 or more at the place where printed wiring is performed, and the dispersion or reduction of the metal oxide or metal hydroxide fine particles by means of inkjet or dispenser. You may discharge an agent or its solution, or these mixtures.

前記基板には、表面の平滑性の改善、接着力の向上、変質防止等の目的で、下地層を設けても良い。下地層の材料は支持体とインクとの密着性に優れているのが好ましく、例えば以下のものが挙げられる。
(1) ポリメチルメタクリレート、アクリル酸・メタクリル酸共重合体、スチレン・無水マレイン酸共重合体、ポリビニルアルコール、N-メチロールアクリルアミド、スチレン・ビニルトルエン共重合体、クロルスルホン化ポリエチレン、ニトロセルロース、ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリオレフィン、ポリエステル、ポリイミド、酢酸ビニル・塩化ビニル共重合体、エチレン・酢酸ビニル共重合体、ポリエチレン、ポリプロピレン、ポリカーボネート等の熱可塑性樹脂
(2) 熱硬化性又は光・電子線硬化性樹脂
(3) カップリング剤(例えば、シランカップリング剤、チタネート系カップリング剤、ゲルマニウム系カップリング剤、アルミニウム系カップリング剤等)
(4) コロイダルシリカ等。
The substrate may be provided with a base layer for the purpose of improving the smoothness of the surface, improving the adhesive strength, and preventing alteration. The material for the underlayer is preferably excellent in adhesion between the support and the ink, and examples thereof include the following.
(1) Polymethyl methacrylate, acrylic acid / methacrylic acid copolymer, styrene / maleic anhydride copolymer, polyvinyl alcohol, N-methylol acrylamide, styrene / vinyl toluene copolymer, chlorosulfonated polyethylene, nitrocellulose, poly Thermoplastic resins such as vinyl chloride, polyvinylidene chloride, chlorinated polyolefin, polyester, polyimide, vinyl acetate / vinyl chloride copolymer, ethylene / vinyl acetate copolymer, polyethylene, polypropylene, and polycarbonate
(2) Thermosetting or photo / electron beam curable resin
(3) Coupling agents (for example, silane coupling agents, titanate coupling agents, germanium coupling agents, aluminum coupling agents, etc.)
(4) Colloidal silica and the like.

前記下地層は、上記材料を適当な溶媒に溶解又は分散させて塗布液を調製し、前記塗布液をスピンコート、ディップコート、エクストルージョンコート、バーコート等の塗布法を利用して支持体表面に塗布することにより形成することができる。前記下地層の層厚(乾燥時)は、一般に0.001〜20μmが好ましく、0.005〜10μmがより好ましい。   The underlayer is prepared by dissolving or dispersing the above materials in an appropriate solvent to prepare a coating solution, and applying the coating solution to the surface of the support using a coating method such as spin coating, dip coating, extrusion coating, or bar coating. It can form by apply | coating to. The layer thickness (when dried) of the underlayer is generally preferably 0.001 to 20 μm, and more preferably 0.005 to 10 μm.

(B) インクの描画
インクで基板表面にパターンを形成するには、インクをノズルから液滴状で基板上に吐出するのが好ましく、それにはインクジェットプリンターやディスペンサーを用いるのが好ましい。また2液を使用直前に混合するにはマイクロリアクタやマイクロミキサを用いるのが好ましい。
(B) Drawing of ink In order to form a pattern on the substrate surface with ink, it is preferable to eject the ink from the nozzle in the form of droplets onto the substrate, and it is preferable to use an ink jet printer or dispenser. In order to mix the two liquids immediately before use, it is preferable to use a microreactor or a micromixer.

マイクロリアクタやマイクロミキサの詳細は特開2003-193119号に記載されているが、このマイクロリアクタは、流体1を通す第一の流路と流体2を通す第二の流路を具備し、前記2つの流体が各々実質的に薄い流体層をなして流れる領域の少なくとも1箇所で両流体の接触界面が形成され、前記接触界面における前記2つの薄い流れの厚さがそれぞれ1〜500μmであり、前記接触界面において前記2つの流体が反応又は混合する構造を有する。   Details of the microreactor and the micromixer are described in Japanese Patent Application Laid-Open No. 2003-193119. The microreactor includes a first flow path that passes the fluid 1 and a second flow path that passes the fluid 2, and the two A contact interface between the two fluids is formed in at least one of the regions where each fluid flows in a substantially thin fluid layer, and the thickness of the two thin flows at the contact interface is 1 to 500 μm, respectively, The two fluids react or mix at the interface.

インクジェットプリンターには、インクの吐出方式により各種のタイプがある。例えば、圧電素子型、バブルジェット型、空気流型、固形熱溶融性インク型、静電誘導型、音響インクプリント型、電気粘性インク型、また大量プリントに適した連続噴射型等があり、いずれも本発明に使用することができる。これらのインクジェットプリンターは、パターンの形状や厚さ、インクの種類等により適宜選択することができる。   There are various types of ink jet printers depending on the ink ejection method. For example, there are piezoelectric element type, bubble jet type, air flow type, solid heat melting ink type, electrostatic induction type, acoustic ink print type, electrorheological ink type, continuous jet type suitable for mass printing, etc. Can also be used in the present invention. These ink jet printers can be appropriately selected depending on the shape and thickness of the pattern, the type of ink, and the like.

インクジェット方式の場合は吐出するインク滴の大きさを調節し、またディスペンサー方式の場合はインク滴の流量を調節することにより、パターン幅やピッチを数μm程度まで微細化することができる。従って、回路パターンの形成にも十分対応できる。またインクジェットプリンターやディスペンサー等の吐出装置とパソコン等のコンピュータを接続することにより、コンピュータに入力された図形情報により、基板上にパターンを描画することができる。金属酸化物微粒子は通常絶縁体であるのでインクジェット又はディスペンサーを用いて回路パターンより幅広に描画し、その中に微細な回路パターンを得るように選択的にエネルギー照射して導電パターンを形成することができる。この場合、導電パターンと絶縁部の乾燥膜厚はほぼ同じであるので望ましい。導電パターン及び絶縁部の膜厚は、用途により0.1〜10μmの範囲で設定できる。   In the case of the ink jet method, the size of the ejected ink droplet is adjusted, and in the case of the dispenser method, the pattern width and pitch can be reduced to about several μm by adjusting the flow rate of the ink droplet. Therefore, it can sufficiently cope with the formation of circuit patterns. Further, by connecting a discharge device such as an ink jet printer or a dispenser and a computer such as a personal computer, a pattern can be drawn on the substrate by graphic information input to the computer. Since the metal oxide fine particles are usually insulators, they can be drawn wider than the circuit pattern using an ink jet or dispenser, and a conductive pattern can be formed by selectively irradiating energy so as to obtain a fine circuit pattern therein. it can. In this case, the dry thickness of the conductive pattern and the insulating portion is almost the same, which is desirable. The film thickness of a conductive pattern and an insulating part can be set in the range of 0.1-10 micrometers by a use.

このように本発明によると、フォトレジストを使用して導電膜をパターンニングする従来の方法に比べて、格段に容易に短時間でパターン形成を行うことができる。   As described above, according to the present invention, pattern formation can be performed much more easily and in a shorter time than the conventional method of patterning a conductive film using a photoresist.

(C) 導電パターンの形成
導電パターンの形成に用いるエネルギーを与える手段は、電気炉、マイクロ波等の電磁波、赤外線、ホットプレート、レーザービーム、電子ビーム、イオンビーム、熱線等が挙げられる。特に局所的に微細に加熱できる点でレーザービーム、電子ビーム、イオンビーム、熱線が好ましい。比較的小型で、簡易にエネルギー照射が可能な点でレーザービームが最も好ましい。
(C) Formation of conductive pattern Examples of means for applying energy for forming the conductive pattern include an electric furnace, electromagnetic waves such as microwaves, infrared rays, hot plates, laser beams, electron beams, ion beams, and heat rays. In particular, a laser beam, an electron beam, an ion beam, and a heat ray are preferable in that they can be locally finely heated. The laser beam is most preferable because it is relatively small and can be easily irradiated with energy.

レーザービームの波長としては、金属酸化物又は金属水酸化物の微粒子、還元剤、溶媒又は必要に応じて両液中に添加されるカーボンナノ粒子や色素等が吸収を有するものであれば、紫外光から赤外光まで任意のものを選択できる。代表的なレーザーとしては、AlGaAs、InGaAsP、GaN系等の半導体レーザー、Nd:YAGレーザー、ArF、KrF、XeCl等のエキシマレーザー、色素レーザー、ルビーレーザー等の固体レーザー、He-Ne、He-Xe、He-Cd、CO2、Ar等の気体レーザー、自由電子レーザー等が挙げられる。また面発光型半導体レーザーやこれを1次元又は2次元に配列したマルチモードアレイを用いることもできる。 The wavelength of the laser beam may be ultraviolet as long as fine particles of metal oxide or metal hydroxide, a reducing agent, a solvent, or carbon nanoparticles or a dye added to both liquids if necessary have absorption. Any light to infrared light can be selected. Typical lasers include semiconductor lasers such as AlGaAs, InGaAsP, and GaN, Nd: YAG lasers, excimer lasers such as ArF, KrF, and XeCl, solid-state lasers such as dye lasers, and ruby lasers, He-Ne, and He-Xe , He—Cd, CO 2 , Ar and other gas lasers, free electron lasers, and the like. Also, a surface emitting semiconductor laser or a multimode array in which these are arranged one-dimensionally or two-dimensionally can be used.

これらのレーザービームの第二高調波、第三高調波等の高次高調波を利用しても良い。これらのレーザービームは連続的に照射しても、パルス状に複数回照射しても良い。照射エネルギーは金属酸化物又は金属水酸化物の微粒子種、還元剤種、バインダーや溶剤等の種類や量等に依存し、一概には言えないが、生成した金属ナノ粒子が実質的にアブレーションせずに、溶融するように設定する。   Higher order harmonics such as second harmonic and third harmonic of these laser beams may be used. These laser beams may be irradiated continuously or may be irradiated a plurality of times in the form of pulses. Irradiation energy depends on the type and amount of metal oxide or metal hydroxide fine particles, reducing agent, binder, solvent, etc., but it cannot be generally stated, but the generated metal nanoparticles are substantially ablated. Without melting, set to melt.

分散液と溶液の混合から、基板上への分散液などの吐出・描画、乾燥、導電パターンの形成までの工程のうち、少なくとも導電パターンの形成工程を不活性ガス中で行うことが望ましい。不活性ガスとしては、窒素、ヘリウム、ネオン、アルゴン等が挙げられる。導電パターンの形成工程を不活性ガス中で行うことにより、生成した金属ナノ粒子が再酸化することなく効率的な導電パターン形成が可能になる。   Of the steps from mixing the dispersion and the solution to discharging / drawing the dispersion on the substrate, drying, and forming the conductive pattern, it is desirable to perform at least the conductive pattern formation step in an inert gas. Examples of the inert gas include nitrogen, helium, neon, and argon. By conducting the conductive pattern formation step in an inert gas, it is possible to efficiently form a conductive pattern without re-oxidizing the generated metal nanoparticles.

以下に実施例により具体的に説明するが、本発明はこれらに限定されるものではない。   The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

実施例1
50gの酢酸銅(II)1水和物を、50 mlのイソ酪酸、70 mlの2-エトキシエタノール、及び水20 mlの混合溶媒に130℃で加熱溶解した。1.5 mlのドデシルアミン及び45 mlの例示化合物(R-10)を添加した。そのまま1分間反応後、室温まで冷却し、赤褐色のコロイド分散液を得た。乾燥させてX線回折(XRD)測定を行うと、平均結晶子サイズが14 nmのCu2O微粒子が生成していることが分かった。
Example 1
50 g of copper (II) acetate monohydrate was dissolved by heating at 130 ° C. in a mixed solvent of 50 ml of isobutyric acid, 70 ml of 2-ethoxyethanol, and 20 ml of water. 1.5 ml of dodecylamine and 45 ml of exemplary compound (R-10) were added. The reaction was continued for 1 minute, followed by cooling to room temperature to obtain a reddish brown colloidal dispersion. When X-ray diffraction (XRD) measurement was performed after drying, it was found that Cu 2 O fine particles having an average crystallite size of 14 nm were formed.

得られたCu2Oコロイド分散液に5倍容量のメタノールを添加し、Cu2Oナノ粒子を沈降させた。デカンテーションにより上澄み液を除去し、再度メタノールを添加してCu2Oナノ粒子を洗浄した。この操作を3回繰り返した後、Cu2Oナノ粒子を、ドデシルアミン1mlを含む2-エトキシエタノール35 ml及び水15 mlの混合溶媒に再分散して、25質量%の濃度のCu2O微粒子分散液を得た。 Five times the volume of methanol was added to the obtained Cu 2 O colloidal dispersion to precipitate Cu 2 O nanoparticles. The supernatant was removed by decantation, and methanol was added again to wash the Cu 2 O nanoparticles. After repeating this operation three times, the Cu 2 O nanoparticles were redispersed in a mixed solvent of 35 ml of 2-ethoxyethanol containing 1 ml of dodecylamine and 15 ml of water to obtain Cu 2 O fine particles having a concentration of 25% by mass. A dispersion was obtained.

ディスペンサーを用い、深さ50μm、幅1mmの細溝を有するポリイミド基板の細溝に沿って上記Cu2O微粒子分散液を液厚70μmで吐出した。80℃のホットプレート上で乾燥後、窒素ガス雰囲気下、20 J/cm2のエネルギーで830 nmの赤外線レーザーを照射したところ、比抵抗8μΩ・cm、厚さ約4μmの銅配線を得た。 Using the dispenser, the Cu 2 O fine particle dispersion was discharged at a liquid thickness of 70 μm along the fine grooves of the polyimide substrate having fine grooves with a depth of 50 μm and a width of 1 mm. After drying on a hot plate at 80 ° C. and irradiating an infrared laser of 830 nm with an energy of 20 J / cm 2 in a nitrogen gas atmosphere, a copper wiring having a specific resistance of 8 μΩ · cm and a thickness of about 4 μm was obtained.

実施例2
実施例1において、830 nmの赤外線を照射する工程を空気中で実施したところ、照射部の比抵抗は20μΩ・cmになった。
Example 2
In Example 1, when the step of irradiating infrared rays of 830 nm was performed in the air, the specific resistance of the irradiated part was 20 μΩ · cm.

実施例3
実施例1のCu2O微粒子分散液と例示化合物(R-10)液を容量比で10:3になるように特開2003-193119号に記載のマイクロリアクタを用いて瞬間に混合した後、窒素ガス雰囲気下、ディスペンサーを用いて実施例1のポリイミド基板上の細溝に液厚100μmで吐出した。窒素ガス雰囲気下、乾燥及び830 nmの赤外線レーザーを照射したところ、比抵抗6μΩ・cm、厚さ約4μmの銅配線を得た。
Example 3
The Cu 2 O fine particle dispersion of Example 1 and the exemplified compound (R-10) solution were mixed instantaneously using a microreactor described in JP-A-2003-193119 so that the volume ratio was 10: 3, and then nitrogen was added. In a gas atmosphere, a dispenser was used to discharge the fine groove on the polyimide substrate of Example 1 with a liquid thickness of 100 μm. When dried and irradiated with an infrared laser of 830 nm in a nitrogen gas atmosphere, a copper wiring having a specific resistance of 6 μΩ · cm and a thickness of about 4 μm was obtained.

実施例4
17gの硝酸銀(I)を25 mlの水及び25 ml の2-エトキシエタノールの混合溶媒に溶解し、氷冷した。0.1 NのNaOH水溶液(50容量%の2-エトキシエタノールを含む)500 mlを氷冷して前記硝酸銀溶液に添加した。実施例1と同様に得られたナノ粒子を沈降、洗浄した後、シクロヘキサノールと2-エトキシエタノールの混合溶媒(容量比50:50)に再分散して、20質量%の濃度のAg2O微粒子分散液を得た。Ag2O微粒子の平均結晶子サイズは16 nmであった。
Example 4
17 g of silver (I) nitrate was dissolved in a mixed solvent of 25 ml of water and 25 ml of 2-ethoxyethanol, and cooled with ice. 500 ml of 0.1 N NaOH aqueous solution (containing 50% by volume of 2-ethoxyethanol) was ice-cooled and added to the silver nitrate solution. Nanoparticles obtained in the same manner as in Example 1 were settled and washed, and then redispersed in a mixed solvent of cyclohexanol and 2-ethoxyethanol (volume ratio 50:50) to give Ag 2 O having a concentration of 20% by mass. A fine particle dispersion was obtained. The average crystallite size of the Ag 2 O fine particles was 16 nm.

上記Ag2O微粒子分散液を、予めコンピュータに入力してある導電パターンの図形情報に基づき、ピエゾ方式のインクジェットプリンターを用いてポリイミド基板上に50ピコリットル/滴で描画した。実施例1と同様に乾燥後、赤外線レーザーを照射したところ、Ag2O微粒子がAgに還元されて導電性を示した。
The Ag 2 O fine particle dispersion was drawn on a polyimide substrate at 50 picoliters / droplet using a piezo ink jet printer based on the graphic information of the conductive pattern previously input to the computer. When dried and irradiated with an infrared laser in the same manner as in Example 1, the Ag 2 O fine particles were reduced to Ag and exhibited conductivity.

Claims (21)

金属酸化物又は金属水酸化物の微粒子を含有する分散液からなるプリント配線基板形成用インクであって、エネルギー照射により前記金属酸化物又は金属水酸化物の微粒子の少なくとも一部が金属に還元されることを特徴とするプリント配線基板形成用インク。 An ink for forming a printed wiring board comprising a dispersion containing fine particles of metal oxide or metal hydroxide, wherein at least a part of the fine particles of metal oxide or metal hydroxide is reduced to metal by energy irradiation. An ink for forming a printed wiring board. 前記金属酸化物又は金属水酸化物の微粒子に対して実質的に常温では還元性を有さないがエネルギー照射により還元性を発揮する還元剤を含有する分散液からなることを特徴とする請求項1に記載のプリント配線基板形成用インク。 2. The dispersion comprising a reducing agent that has substantially no reducing property at normal temperature with respect to the metal oxide or metal hydroxide fine particles but exhibits a reducing property by energy irradiation. The printed wiring board forming ink according to 1. 前記還元剤が有機還元剤、ヒドラジン及びヒドロキシルアミンからなる群から選ばれた少なくとも1種の化合物であることを特徴とする請求項2に記載のプリント配線基板形成用インク。 The printed wiring board forming ink according to claim 2, wherein the reducing agent is at least one compound selected from the group consisting of an organic reducing agent, hydrazine and hydroxylamine. 前記有機還元剤がヒドラジン系化合物類、ヒドロキシルアミン系化合物類、アルカノールアミン類、ジオール類及び一般式:X-(A=B)n-Y(ただし、A及びBはそれぞれ炭素原子又は窒素原子を表し、X及びYの各々は非共有電子対を有する原子がA又はBに結合する原子団を表し、nは0〜3を表す。)により表される化合物類からなる群から選ばれた少なくとも1種の有機化合物であることを特徴とする請求項3に記載のプリント配線基板形成用インク。 The organic reducing agent is a hydrazine compound, a hydroxylamine compound, an alkanolamine, a diol, and a general formula: X- (A = B) nY (where A and B each represent a carbon atom or a nitrogen atom, Each of X and Y represents an atomic group in which an atom having an unshared electron pair is bonded to A or B, and n represents 0 to 3.) At least one selected from the group consisting of compounds represented by: The printed wiring board forming ink according to claim 3, wherein the ink is an organic compound. さらに塩基又は塩基プレカーサを含有することを特徴とする請求項1〜4のいずれか一項に記載のプリント配線基板形成用インク。 Furthermore, a base or a base precursor is contained, The printed wiring board formation ink as described in any one of Claims 1-4 characterized by the above-mentioned. さらに吸着性化合物、界面活性剤及び/又は親水性高分子を含有することを特徴とする請求項1〜5のいずれか一項に記載のプリント配線基板形成用インク。 The ink for forming a printed wiring board according to any one of claims 1 to 5, further comprising an adsorbing compound, a surfactant and / or a hydrophilic polymer. 金属酸化物又は金属水酸化物の微粒子を含有する分散液と、前記金属酸化物又は金属水酸化物の微粒子に対して還元性を発揮する還元剤又はその溶液との少なくとも2パーツからなり、両液を混ぜることにより前記金属酸化物又は金属水酸化物の微粒子の少なくとも一部が金属に還元されるプリント配線基板形成用インク。 It consists of at least two parts: a dispersion containing fine particles of metal oxide or metal hydroxide, and a reducing agent that exhibits reducing properties for the fine particles of metal oxide or metal hydroxide, or a solution thereof. A printed wiring board forming ink in which at least a part of the metal oxide or metal hydroxide fine particles is reduced to metal by mixing the liquid. 前記還元剤が有機還元剤、ヒドラジン及びヒドロキシルアミンからなる群から選ばれた少なくとも1種の化合物であることを特徴とする請求項7に記載のプリント配線基板形成用インク。 The printed wiring board forming ink according to claim 7, wherein the reducing agent is at least one compound selected from the group consisting of an organic reducing agent, hydrazine, and hydroxylamine. 前記有機還元剤がヒドラジン系化合物類、ヒドロキシルアミン系化合物類、アルカノールアミン類、ジオール類及び一般式:X-(A=B)n-Y(ただし、A及びBはそれぞれ炭素原子又は窒素原子を表し、X及びYの各々は非共有電子対を有する原子がA又はBに結合する原子団を表し、nは0〜3を表す。)により表される化合物類からなる群から選ばれた少なくとも1種の有機化合物であることを特徴とする請求項8に記載のプリント配線基板形成用インク。 The organic reducing agent is a hydrazine compound, a hydroxylamine compound, an alkanolamine, a diol, and a general formula: X- (A = B) nY (where A and B each represent a carbon atom or a nitrogen atom, Each of X and Y represents an atomic group in which an atom having an unshared electron pair is bonded to A or B, and n represents 0 to 3.) At least one selected from the group consisting of compounds represented by: The printed wiring board forming ink according to claim 8, wherein the printed wiring board forming ink is an organic compound. 金属酸化物又は金属水酸化物の微粒子を含有する分散液又は別液(還元剤又はその溶液)に塩基又は塩基プレカーサを添加することを特徴とする請求項7〜9のいずれか一項に記載のプリント配線基板形成用インク。 10. A base or a base precursor is added to a dispersion or a separate liquid (reducing agent or solution thereof) containing metal oxide or metal hydroxide fine particles, according to any one of claims 7 to 9. Ink for forming printed wiring boards. 金属酸化物又は金属水酸化物の微粒子の表面に吸着性化合物、界面活性剤及び/又は親水性高分子を吸着させることを特徴とする請求項7〜10のいずれか一項に記載のプリント配線基板形成用インク。 The printed wiring according to claim 7, wherein an adsorptive compound, a surfactant, and / or a hydrophilic polymer are adsorbed on the surface of the metal oxide or metal hydroxide fine particles. Ink for substrate formation. 前記金属酸化物又は金属水酸化物の微粒子を構成する金属がAu、Ag、Cu、Pt、Pd、In、Ga、Sn、Ge、Sb、Pb、Zn、Bi、Fe、Ni及びCoからなる群から選ばれた少なくとも1種からなることを特徴とする請求項1〜11のいずれか一項に記載のプリント配線基板形成用インク。 The metal constituting the metal oxide or metal hydroxide fine particles is made of Au, Ag, Cu, Pt, Pd, In, Ga, Sn, Ge, Sb, Pb, Zn, Bi, Fe, Ni, and Co. The printed wiring board forming ink according to claim 1, wherein the printed wiring board forming ink is at least one selected from the group consisting of: 前記金属酸化物又は金属水酸化物の微粒子を構成する金属がAg又はCuからなることを特徴とする請求項1〜12のいずれか一項に記載のプリント配線基板形成用インク。 13. The printed wiring board forming ink according to claim 1, wherein the metal constituting the metal oxide or metal hydroxide fine particles is made of Ag or Cu. 請求項1〜13のいずれか一項に記載のプリント配線基板形成用インクによって基板上にパターンを描画する工程、および前記金属酸化物又は金属水酸化物の微粒子の少なくとも一部を金属に還元して導電パターンを形成する工程を有することを特徴とするプリント配線基板の形成方法。 A step of drawing a pattern on a substrate with the printed wiring board forming ink according to any one of claims 1 to 13, and at least a part of the fine particles of the metal oxide or metal hydroxide is reduced to metal. And forming a conductive pattern. A method for forming a printed wiring board, comprising: インクジェットプリンター又はディスペンサーによってパターンを描画することを特徴とする請求項14に記載のプリント配線基板の形成方法。 15. The method for forming a printed wiring board according to claim 14, wherein the pattern is drawn by an inkjet printer or a dispenser. 前記パターンを図形情報としてコンピュータに入力し、前記図形情報に基づき、前記プリント配線基板形成用インクでパターンを描画することを特徴とする請求項14又は15に記載のプリント配線基板の形成方法。 16. The method for forming a printed wiring board according to claim 14, wherein the pattern is input to a computer as graphic information, and the pattern is drawn with the printed wiring board forming ink based on the graphic information. 前記導電パターンを形成する工程において、エネルギー照射を行うことを特徴とする請求項14〜16のいずれか一項に記載のプリント配線基板の形成方法。 17. The method of forming a printed wiring board according to claim 14, wherein energy irradiation is performed in the step of forming the conductive pattern. レーザービーム、電子ビーム、イオンビーム及び熱線から選ばれる少なくとも1種によってエネルギー照射を行うことを特徴とする請求項17に記載のプリント配線基板の形成方法。 18. The method for forming a printed wiring board according to claim 17, wherein the energy irradiation is performed by at least one selected from a laser beam, an electron beam, an ion beam, and a heat ray. 導電パターンを形成する工程を不活性ガス中で行うことを特徴とする請求項14〜18のいずれか一項に記載のプリント配線基板の形成方法。 19. The method for forming a printed wiring board according to claim 14, wherein the step of forming the conductive pattern is performed in an inert gas. 請求項1〜13のいずれか一項に記載のプリント配線基板形成用インクで描画されたパターンを有することを特徴とするプリント配線基板。 A printed wiring board having a pattern drawn with the printed wiring board forming ink according to claim 1. 請求項14〜19のいずれか一項に記載のプリント配線基板の形成方法で形成されたことを特徴とするプリント配線基板。

A printed wiring board formed by the method for forming a printed wiring board according to any one of claims 14 to 19.

JP2004018895A 2003-01-29 2004-01-27 Printed wiring board forming ink, printed wiring board forming method, and printed wiring board Expired - Lifetime JP4416080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004018895A JP4416080B2 (en) 2003-01-29 2004-01-27 Printed wiring board forming ink, printed wiring board forming method, and printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003021009 2003-01-29
JP2004018895A JP4416080B2 (en) 2003-01-29 2004-01-27 Printed wiring board forming ink, printed wiring board forming method, and printed wiring board

Publications (2)

Publication Number Publication Date
JP2004253794A true JP2004253794A (en) 2004-09-09
JP4416080B2 JP4416080B2 (en) 2010-02-17

Family

ID=33032173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004018895A Expired - Lifetime JP4416080B2 (en) 2003-01-29 2004-01-27 Printed wiring board forming ink, printed wiring board forming method, and printed wiring board

Country Status (1)

Country Link
JP (1) JP4416080B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277627A (en) * 2003-03-18 2004-10-07 Asahi Kasei Corp Ink for inkjet printing and method for forming metal-containing thin film by using the same
WO2005115637A1 (en) * 2004-05-28 2005-12-08 Japan Science And Technology Agency Forming method, unit and material for pattern films, and product gained by said method
JP2006156579A (en) * 2004-11-26 2006-06-15 Asahi Kasei Corp Circuit board and its manufacturing method
JP2006210301A (en) * 2004-12-27 2006-08-10 Mitsui Mining & Smelting Co Ltd Conductive ink
JP2006332220A (en) * 2005-05-25 2006-12-07 Nagoya Institute Of Technology Metal thin film forming method
KR100690360B1 (en) 2005-05-23 2007-03-09 삼성전기주식회사 Conductive ink, method for producing thereof and condoctive substrate
JP2008084889A (en) * 2006-09-25 2008-04-10 Fujifilm Corp Method for supplying liquid bonding material, method for manufacturing electronic circuit board, device for supplying liquid bonding material, and liquid bonding material
KR100844861B1 (en) * 2006-08-03 2008-07-09 (주) 파루 A composition for preparing electronic ink and a preparation method thereof
JP2009224450A (en) * 2008-03-14 2009-10-01 Konica Minolta Holdings Inc Inkjet ink for metallic pattern formation and metallic pattern forming method
WO2011040189A1 (en) * 2009-09-30 2011-04-07 大日本印刷株式会社 Metal microparticle dispersion, process for production of electrically conductive substrate, and electrically conductive substrate
JP2012082502A (en) * 2010-10-14 2012-04-26 Toshiba Corp Metal nanoparticle-dispersed composition
JP2012172135A (en) * 2011-02-24 2012-09-10 Toshiba Tec Corp Nanoparticle ink composition, and method for producing the same
JP2013206720A (en) * 2012-03-28 2013-10-07 Fujifilm Corp Method of manufacturing conductive film
JP2014031577A (en) * 2012-07-11 2014-02-20 Osaka Univ Composition for forming metal pattern and method for forming metal pattern
JP2018085437A (en) * 2016-11-24 2018-05-31 株式会社村田製作所 Method for manufacturing electronic component and electronic component
JP2018131691A (en) * 2008-10-17 2018-08-23 エヌシーシー ナノ, エルエルシー Method for reducing thin film on low-temperature substrate
WO2018169012A1 (en) * 2017-03-16 2018-09-20 旭化成株式会社 Dispersion, method for producing conductive pattern-equipped structure by using dispersion, and conductive pattern-equipped structure
WO2019017363A1 (en) * 2017-07-18 2019-01-24 旭化成株式会社 Structure including electroconductive pattern regions, method for producing same, laminate, method for producing same, and copper wiring
WO2019022230A1 (en) * 2017-07-27 2019-01-31 旭化成株式会社 Copper oxide ink and method for producing conductive substrate using same, product containing coating film and method for producing product using same, method for producing product with conductive pattern, and product with conductive pattern
JP2019036628A (en) * 2017-08-15 2019-03-07 旭化成株式会社 Capacitor and manufacturing method thereof
JP2019090110A (en) * 2017-11-10 2019-06-13 旭化成株式会社 Structure having conductive pattern region and method for manufacturing the same
JP2019129306A (en) * 2018-01-26 2019-08-01 メン‐シュウ,シェ Ceramic circuit board and method of making the same
JP2019210469A (en) * 2018-05-30 2019-12-12 旭化成株式会社 Copper oxide ink for inkjet, and manufacturing method of conductive substrate to which conductive pattern is added by using he same
CN110831340A (en) * 2019-11-25 2020-02-21 浙江清华柔性电子技术研究院 Manufacturing method of circuit board and circuit board prepared by using same
JP2020508846A (en) * 2017-01-31 2020-03-26 サントル ナシオナル ドゥ ラ ルシェルシェ サイアンティフィク Material with metal layer and process for preparing this material
JP2020105339A (en) * 2018-12-27 2020-07-09 旭化成株式会社 Tin or tin oxide ink, product containing coating film, and production method of conductive substrate
CN111970842A (en) * 2020-07-08 2020-11-20 广东工业大学 Method for preparing flexible copper circuit by reducing and sintering copper oxide ink under laser induction
US11328835B2 (en) 2017-03-16 2022-05-10 Asahi Kasei Kabushiki Kaisha Dispersing element, method for manufacturing structure with conductive pattern using the same, and structure with conductive pattern

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5875496B2 (en) 2012-09-26 2016-03-02 富士フイルム株式会社 Pattern forming method and pattern forming apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291094A (en) * 1986-06-10 1987-12-17 松下電器産業株式会社 Manufacture of ceramic multilayer board
JPH0431463A (en) * 1990-05-25 1992-02-03 Asahi Chem Ind Co Ltd Electrical circuit material
JPH0537126A (en) * 1991-07-30 1993-02-12 Toshiba Corp Wiring substrate and information memory medium using metallic oxide
JPH10107395A (en) * 1996-09-30 1998-04-24 Taiyo Yuden Co Ltd Circuit board and its manufacture
JP2001089667A (en) * 1999-09-27 2001-04-03 Sanyo Chem Ind Ltd Composition for forming heterogeneous conductive joint material having photosensitive thermally developing properties
JP2001181706A (en) * 1999-12-27 2001-07-03 New Japan Radio Co Ltd Cotton-like high melting point metal, its manufacturing method, electronic parts formed thereof, and its manufacturing method
JP2003051412A (en) * 2001-08-06 2003-02-21 Mitsubishi Materials Corp Chip-type coil and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291094A (en) * 1986-06-10 1987-12-17 松下電器産業株式会社 Manufacture of ceramic multilayer board
JPH0431463A (en) * 1990-05-25 1992-02-03 Asahi Chem Ind Co Ltd Electrical circuit material
JPH0537126A (en) * 1991-07-30 1993-02-12 Toshiba Corp Wiring substrate and information memory medium using metallic oxide
JPH10107395A (en) * 1996-09-30 1998-04-24 Taiyo Yuden Co Ltd Circuit board and its manufacture
JP2001089667A (en) * 1999-09-27 2001-04-03 Sanyo Chem Ind Ltd Composition for forming heterogeneous conductive joint material having photosensitive thermally developing properties
JP2001181706A (en) * 1999-12-27 2001-07-03 New Japan Radio Co Ltd Cotton-like high melting point metal, its manufacturing method, electronic parts formed thereof, and its manufacturing method
JP2003051412A (en) * 2001-08-06 2003-02-21 Mitsubishi Materials Corp Chip-type coil and method of manufacturing the same

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277627A (en) * 2003-03-18 2004-10-07 Asahi Kasei Corp Ink for inkjet printing and method for forming metal-containing thin film by using the same
WO2005115637A1 (en) * 2004-05-28 2005-12-08 Japan Science And Technology Agency Forming method, unit and material for pattern films, and product gained by said method
JP4716717B2 (en) * 2004-11-26 2011-07-06 旭化成イーマテリアルズ株式会社 Circuit board manufacturing method
JP2006156579A (en) * 2004-11-26 2006-06-15 Asahi Kasei Corp Circuit board and its manufacturing method
JP2006210301A (en) * 2004-12-27 2006-08-10 Mitsui Mining & Smelting Co Ltd Conductive ink
KR100690360B1 (en) 2005-05-23 2007-03-09 삼성전기주식회사 Conductive ink, method for producing thereof and condoctive substrate
JP2006332220A (en) * 2005-05-25 2006-12-07 Nagoya Institute Of Technology Metal thin film forming method
KR100844861B1 (en) * 2006-08-03 2008-07-09 (주) 파루 A composition for preparing electronic ink and a preparation method thereof
JP2008084889A (en) * 2006-09-25 2008-04-10 Fujifilm Corp Method for supplying liquid bonding material, method for manufacturing electronic circuit board, device for supplying liquid bonding material, and liquid bonding material
JP2009224450A (en) * 2008-03-14 2009-10-01 Konica Minolta Holdings Inc Inkjet ink for metallic pattern formation and metallic pattern forming method
JP2018131691A (en) * 2008-10-17 2018-08-23 エヌシーシー ナノ, エルエルシー Method for reducing thin film on low-temperature substrate
WO2011040189A1 (en) * 2009-09-30 2011-04-07 大日本印刷株式会社 Metal microparticle dispersion, process for production of electrically conductive substrate, and electrically conductive substrate
JPWO2011040189A1 (en) * 2009-09-30 2013-02-28 大日本印刷株式会社 Metal fine particle dispersion, method for producing conductive substrate, and conductive substrate
US9497859B2 (en) 2009-09-30 2016-11-15 Dai Nippon Printing Co., Ltd. Metal microparticle dispersion, process for production of electrically conductive substrate, and electrically conductive substrate
CN104588643A (en) * 2009-09-30 2015-05-06 大日本印刷株式会社 metal microparticle dispersion, process for production of electrically conductive substrate, and electrically conductive substrate
JP5723283B2 (en) * 2009-09-30 2015-05-27 大日本印刷株式会社 Metal fine particle dispersion, method for producing conductive substrate, and conductive substrate
JP2012082502A (en) * 2010-10-14 2012-04-26 Toshiba Corp Metal nanoparticle-dispersed composition
JP2012172135A (en) * 2011-02-24 2012-09-10 Toshiba Tec Corp Nanoparticle ink composition, and method for producing the same
JP2013206720A (en) * 2012-03-28 2013-10-07 Fujifilm Corp Method of manufacturing conductive film
JP2014031577A (en) * 2012-07-11 2014-02-20 Osaka Univ Composition for forming metal pattern and method for forming metal pattern
JP2018085437A (en) * 2016-11-24 2018-05-31 株式会社村田製作所 Method for manufacturing electronic component and electronic component
JP2020508846A (en) * 2017-01-31 2020-03-26 サントル ナシオナル ドゥ ラ ルシェルシェ サイアンティフィク Material with metal layer and process for preparing this material
WO2018169012A1 (en) * 2017-03-16 2018-09-20 旭化成株式会社 Dispersion, method for producing conductive pattern-equipped structure by using dispersion, and conductive pattern-equipped structure
JP7104687B2 (en) 2017-03-16 2022-07-21 旭化成株式会社 Dispersion and method for manufacturing a structure with a conductive pattern using the dispersion and a structure with a conductive pattern
US11328835B2 (en) 2017-03-16 2022-05-10 Asahi Kasei Kabushiki Kaisha Dispersing element, method for manufacturing structure with conductive pattern using the same, and structure with conductive pattern
US11270809B2 (en) 2017-03-16 2022-03-08 Asahi Kasei Kabushiki Kaisha Dispersing element, method for manufacturing structure with conductive pattern using the same, and structure with conductive pattern
TWI665332B (en) * 2017-03-16 2019-07-11 日商旭化成股份有限公司 Dispersion,method for manufacturing structure with conductive pattern using the same,and structure with conductive pattern
JPWO2018169012A1 (en) * 2017-03-16 2020-01-16 旭化成株式会社 Dispersion, method for producing structure with conductive pattern using the same, and structure with conductive pattern
CN110366761A (en) * 2017-03-16 2019-10-22 旭化成株式会社 Dispersion and using its structural body with conductive pattern manufacturing method and structural body with conductive pattern
JPWO2019017363A1 (en) * 2017-07-18 2020-02-06 旭化成株式会社 Structure having conductive pattern region and method of manufacturing the same, laminate and method of manufacturing the same, and copper wiring
TWI719646B (en) * 2017-07-18 2021-02-21 日商旭化成股份有限公司 Structure having conductive pattern region and manufacturing method thereof, laminate and method for manufacturing the same
JP7345532B2 (en) 2017-07-18 2023-09-15 旭化成株式会社 Structure having a conductive pattern region and its manufacturing method, laminate and its manufacturing method, and copper wiring
CN110870392B (en) * 2017-07-18 2023-04-14 旭化成株式会社 Structure having conductive pattern region and method for manufacturing the same, laminate and method for manufacturing the same, and copper wiring
KR20200015609A (en) * 2017-07-18 2020-02-12 아사히 가세이 가부시키가이샤 Structure having conductive pattern region, manufacturing method thereof, laminate and manufacturing method thereof, and copper wiring
TWI681872B (en) * 2017-07-18 2020-01-11 日商旭化成股份有限公司 Structure having conductive pattern region and manufacturing method thereof, laminate and method for manufacturing the same
WO2019017363A1 (en) * 2017-07-18 2019-01-24 旭化成株式会社 Structure including electroconductive pattern regions, method for producing same, laminate, method for producing same, and copper wiring
CN110870392A (en) * 2017-07-18 2020-03-06 旭化成株式会社 Structure having conductive pattern region and method for manufacturing the same, laminate and method for manufacturing the same, and copper wiring
KR102390722B1 (en) * 2017-07-18 2022-04-26 아사히 가세이 가부시키가이샤 Structure having conductive pattern region and manufacturing method thereof, laminate and manufacturing method thereof, and copper wiring
TWI691403B (en) * 2017-07-18 2020-04-21 日商旭化成股份有限公司 Copper wiring
JP7005625B2 (en) 2017-07-18 2022-01-21 旭化成株式会社 A structure having a conductive pattern region and its manufacturing method, a laminated body and its manufacturing method, and copper wiring.
JP2022009098A (en) * 2017-07-18 2022-01-14 旭化成株式会社 Structure having conductive pattern region and manufacturing method thereof, laminated body and manufacturing method thereof, and copper wiring
US11109492B2 (en) 2017-07-18 2021-08-31 Asahi Kasei Kabushiki Kaisha Structure including electroconductive pattern regions, method for producing same, stack, method for producing same, and copper wiring
KR102456821B1 (en) 2017-07-27 2022-10-19 아사히 가세이 가부시키가이샤 Copper oxide ink and a method for manufacturing a conductive substrate using the same, a product including a coating film and a method for manufacturing a product using the same, a method for manufacturing a product having a conductive pattern, and a product having a conductive pattern
JPWO2019022230A1 (en) * 2017-07-27 2020-05-28 旭化成株式会社 Copper oxide ink and method for producing conductive substrate using the same, product containing coating film and method for producing product using the same, method for producing product with conductive pattern, and product with conductive pattern
JP7291078B2 (en) 2017-07-27 2023-06-14 旭化成株式会社 Copper oxide ink and method for producing conductive substrate using the same, product containing coating film and method for producing product using the same, method for producing product with conductive pattern, and product with conductive pattern
JP7403512B2 (en) 2017-07-27 2023-12-22 旭化成株式会社 Copper oxide ink and a method for manufacturing a conductive substrate using the same, a product including a coating film and a method for manufacturing a product using the same, a method for manufacturing a product with a conductive pattern, and a product with a conductive pattern
US11760895B2 (en) 2017-07-27 2023-09-19 Asahi Kasei Kabushiki Kaisha Copper oxide ink and method for producing conductive substrate using same, product containing coating film and method for producing product using same, method for producing product with conductive pattern, and product with conductive pattern
JP2022008655A (en) * 2017-07-27 2022-01-13 旭化成株式会社 Copper oxide ink and method for producing conductive substrate using the same, product containing coating film and method for producing product using the same, method for producing product with conductive pattern, and product with conductive pattern
KR20220142551A (en) * 2017-07-27 2022-10-21 아사히 가세이 가부시키가이샤 Copper oxide ink and method for producing conductive substrate using same, product containing coating film and method for producing product using same, method for producing product with conductive pattern, and product with conductive pattern
KR20200018583A (en) * 2017-07-27 2020-02-19 아사히 가세이 가부시키가이샤 Copper oxide ink and method for producing conductive substrate using same, product comprising coating film and method for producing product using same, method for producing product with conductive pattern, product having conductive pattern
KR102559500B1 (en) 2017-07-27 2023-07-24 아사히 가세이 가부시키가이샤 Copper oxide ink and method for producing conductive substrate using same, product containing coating film and method for producing product using same, method for producing product with conductive pattern, and product with conductive pattern
WO2019022230A1 (en) * 2017-07-27 2019-01-31 旭化成株式会社 Copper oxide ink and method for producing conductive substrate using same, product containing coating film and method for producing product using same, method for producing product with conductive pattern, and product with conductive pattern
JP2019036628A (en) * 2017-08-15 2019-03-07 旭化成株式会社 Capacitor and manufacturing method thereof
JP2019090110A (en) * 2017-11-10 2019-06-13 旭化成株式会社 Structure having conductive pattern region and method for manufacturing the same
JP2019129306A (en) * 2018-01-26 2019-08-01 メン‐シュウ,シェ Ceramic circuit board and method of making the same
KR20200067992A (en) * 2018-01-26 2020-06-15 멍-슈 셰 Ceramic circuit board and manufacturing method thereof
KR102161340B1 (en) * 2018-01-26 2020-10-05 멍-슈 셰 Ceramic circuit board and manufacturing method thereof
JP7263124B2 (en) 2018-05-30 2023-04-24 旭化成株式会社 Inkjet copper oxide ink and method for producing conductive substrate provided with conductive pattern using the same
JP2019210469A (en) * 2018-05-30 2019-12-12 旭化成株式会社 Copper oxide ink for inkjet, and manufacturing method of conductive substrate to which conductive pattern is added by using he same
JP7174618B2 (en) 2018-12-27 2022-11-17 旭化成株式会社 Products containing tin or tin oxide inks and coatings, and methods for manufacturing conductive substrates
JP2020105339A (en) * 2018-12-27 2020-07-09 旭化成株式会社 Tin or tin oxide ink, product containing coating film, and production method of conductive substrate
CN110831340A (en) * 2019-11-25 2020-02-21 浙江清华柔性电子技术研究院 Manufacturing method of circuit board and circuit board prepared by using same
CN111970842A (en) * 2020-07-08 2020-11-20 广东工业大学 Method for preparing flexible copper circuit by reducing and sintering copper oxide ink under laser induction
CN111970842B (en) * 2020-07-08 2021-09-14 广东工业大学 Method for preparing flexible copper circuit by reducing and sintering copper oxide ink under laser induction

Also Published As

Publication number Publication date
JP4416080B2 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
JP4416080B2 (en) Printed wiring board forming ink, printed wiring board forming method, and printed wiring board
US20040185388A1 (en) Printed circuit board, method for producing same, and ink therefor
US20030146019A1 (en) Board and ink used for forming conductive pattern, and method using thereof
JP2004143571A (en) Board and ink for drawing conductive pattern and method for forming conductive pattern
Yang et al. Metal particle-free inks for printed flexible electronics
TWI494384B (en) Metallic ink
JP4636496B2 (en) Method for producing nano-coating and nano-ink having conductivity and transparency, and nano-powder coating and ink produced by this production method
US7507447B2 (en) Transparent conductive film, method for producing same and method for forming pattern
JP2006038999A (en) Method for forming conductive circuit by using laser irradiation, and conductive circuit
EP2045028A1 (en) Metal nanoparticles, method for producing the same, aqueous dispersion, method for manufacturing printed wiring or electrode, and printed wiring board or device
JP2010043350A (en) Alloy nanoparticle, method for production thereof, and ink and paste using the alloy nanoparticle
WO2005115637A1 (en) Forming method, unit and material for pattern films, and product gained by said method
JP2006222162A (en) Ink for forming printed wiring board, method of forming printed wiring board and printed wiring board
JP5326317B2 (en) COMPOSITE MATERIAL LIQUID FOR FORMING METAL FILM AND METAL COMPOUND FILM, METAL / METAL COMPOUND FILM USING THE SAME, AND COMPOSITE MATERIAL
US20140231124A1 (en) Base material for forming electroconductive pattern, circuit board, and method for producing each
JP4090805B2 (en) Method for producing transparent conductive film
JP4086143B2 (en) Method for forming printed wiring board
JP2005071805A (en) Composition containing particle of metal oxide and/or metal hydroxide, and metal particle; printed wiring board using it; its manufacturing method; and ink used for it
JP2019052298A (en) Molecular organic reactive inks for conductive metal printing using photoinitiators
JP2005109184A (en) Film pattern forming method, circuit element, electro-optic device, and electronic equipment
KR101808741B1 (en) Method for forming conductive layer patterns by inkjet-printing
JP2009097082A (en) Metal nanoparticles, manufacturing method of the same, water dispersion material, manufacturing method of printed wiring-electrode, and printed-circuit board-device
TW201344712A (en) Method for producing conductor film
JP2003249123A (en) Transparent conductive film and method of patterning the same
JP2012153820A (en) Liquid composition for printing and conductor wiring obtained by using the same, and forming method thereof, heat conduction channel, and jointing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091118

R150 Certificate of patent or registration of utility model

Ref document number: 4416080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250